1
|
Phylogenetic comparison of Epstein-Barr virus genomes. J Microbiol 2018; 56:525-533. [PMID: 29948828 DOI: 10.1007/s12275-018-8039-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 02/22/2018] [Accepted: 02/22/2018] [Indexed: 01/06/2023]
Abstract
Technologies used for genome analysis and whole genome sequencing are useful for us to understand genomic characterization and divergence. The Epstein-Barr virus (EBV) is an oncogenic virus that causes diverse diseases such as Burkitt's lymphoma (BL), nasopharyngeal carcinoma (NPC), Hodgkin's lymphoma (HL), and gastric carcinoma (GC). EBV genomes found in these diseases can be classified either by phases of EBV latency (type-I, -II, and -III latency) or types of EBNA2 sequence difference (type-I EBV, type-II EBV or EBV-1, EBV-2). EBV from EBV-transformed lymphoblastoid cell line (LCL) establishes type-III latency, EBV from NPC establishes type-II latency, and EBV from GC establishes type-I latency. However, other important factors play key roles in classifying numerous EBV strains because EBV genomes are highly diverse and not phylogenetically related to types of EBV-associated diseases. Herein, we first reviewed previous studies to describe molecular characteristics of EBV genomes. Then, using comparative and phylogenetic analyses, we phylogenetically analyzed molecular variations of EBV genomes and proteins. The review of previous studies and our phylogenetic analysis showed that EBV genomes and proteins were highly diverse regardless of types of EBV-associated diseases. Other factors should be considered in determining EBV taxonomy. This review will be helpful to understand complicated phylogenetic relationships of EBV genomes.
Collapse
|
2
|
Banerjee S, Lu J, Cai Q, Saha A, Jha HC, Dzeng RK, Robertson ES. The EBV Latent Antigen 3C Inhibits Apoptosis through Targeted Regulation of Interferon Regulatory Factors 4 and 8. PLoS Pathog 2013; 9:e1003314. [PMID: 23658517 PMCID: PMC3642079 DOI: 10.1371/journal.ppat.1003314] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 03/04/2013] [Indexed: 12/15/2022] Open
Abstract
Epstein-Barr virus (EBV) is linked to a broad spectrum of B-cell malignancies. EBV nuclear antigen 3C (EBNA3C) is an encoded latent antigen required for growth transformation of primary human B-lymphocytes. Interferon regulatory factor 4 (IRF4) and 8 (IRF8) are transcription factors of the IRF family that regulate diverse functions in B cell development. IRF4 is an oncoprotein with anti-apoptotic properties and IRF8 functions as a regulator of apoptosis and tumor suppressor in many hematopoietic malignancies. We now demonstrate that EBNA3C can contribute to B-cell transformation by modulating the molecular interplay between cellular IRF4 and IRF8. We show that EBNA3C physically interacts with IRF4 and IRF8 with its N-terminal domain in vitro and forms a molecular complex in cells. We identified the Spi-1/B motif of IRF4 as critical for EBNA3C interaction. We also demonstrated that EBNA3C can stabilize IRF4, which leads to downregulation of IRF8 by enhancing its proteasome-mediated degradation. Further, si-RNA mediated knock-down of endogenous IRF4 results in a substantial reduction in proliferation of EBV-transformed lymphoblastoid cell lines (LCLs), as well as augmentation of DNA damage-induced apoptosis. IRF4 knockdown also showed reduced expression of its targeted downstream signalling proteins which include CDK6, Cyclin B1 and c-Myc all critical for cell proliferation. These studies provide novel insights into the contribution of EBNA3C to EBV-mediated B-cell transformation through regulation of IRF4 and IRF8 and add another molecular link to the mechanisms by which EBV dysregulates cellular activities, increasing the potential for therapeutic intervention against EBV-associated cancers. Interferon regulatory factor (IRF) family members have different roles in context of pathogen response, signal transduction, cell proliferation and hematopoietic development. IRF4 and IRF8 are members of the IRF family and are critical mediators of B-cell development. Enhanced expression of IRF4 is often associated with multiple myeloma and adult T-cell lymphomas. Furthermore, IRF8 can function as a tumor suppressor in myeloid cancers. Epstein-Barr virus (EBV), one of the first characterized human tumor viruses is associated with several lymphoid malignancies. One of the essential antigens, EBV encoded nuclear antigen 3C (EBNA3C), plays a critical role in EBV-induced B-cell transformation. In our study, we now demonstrate that EBNA3C forms a molecular complex with IRF4 and IRF8 specifically through its N-terminal domain. We show that IRF4 is stabilized by EBNA3C, which resulted in downregulation of IRF8 through proteasome-mediated degradation and subsequent inhibition of its tumor suppressive activity. Moreover, si-RNA-mediated inhibition of IRF4 showed a substantial reduction in EBV transformed B-cell proliferation, and also enhanced their sensitivity to DNA-damage induced apoptosis. Therefore, our findings demonstrated that targeted disruption of EBNA3C-mediated differential regulation of IRF4 and IRF8 may have potential therapeutic value for treating EBV induced B-cell malignancies.
Collapse
Affiliation(s)
- Shuvomoy Banerjee
- Department of Microbiology and the Tumor Virology Program, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jie Lu
- Department of Microbiology and the Tumor Virology Program, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Qiliang Cai
- Department of Microbiology and the Tumor Virology Program, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Abhik Saha
- Department of Microbiology and the Tumor Virology Program, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Hem Chandra Jha
- Department of Microbiology and the Tumor Virology Program, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Richard Kuo Dzeng
- Department of Microbiology and the Tumor Virology Program, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Erle S. Robertson
- Department of Microbiology and the Tumor Virology Program, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
3
|
Cellular corepressor TLE2 inhibits replication-and-transcription- activator-mediated transactivation and lytic reactivation of Kaposi's sarcoma-associated herpesvirus. J Virol 2009; 84:2047-62. [PMID: 19939918 DOI: 10.1128/jvi.01984-09] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Replication and transcription activator (RTA) encoded by open reading frame 50 (ORF50) of Kaposi's sarcoma-associated herpesvirus (KSHV) is essential and sufficient to initiate lytic reactivation. RTA activates its target genes through direct binding with high affinity to its responsive elements or by interaction with cellular factors, such as RBP-Jkappa, Ap-1, C/EBP-alpha, and Oct-1. In this study, we identified transducin-like enhancer of split 2 (TLE2) as a novel RTA binding protein by using yeast two-hybrid screening of a human spleen cDNA library. The interaction between TLE2 and RTA was confirmed by glutathione S-transferase (GST) binding and coimmunoprecipitation assays. Immunofluorescence analysis showed that TLE2 and RTA were colocalized in the same nuclear compartment in KSHV-infected cells. This interaction recruited TLE2 to RTA bound to its recognition sites on DNA and repressed RTA auto-activation and transactivation activity. Moreover, TLE2 also inhibited the induction of lytic replication and virion production driven by RTA. We further showed that the Q (Gln-rich), SP (Ser-Pro-rich), and WDR (Trp-Asp repeat) domains of TLE2 and the Pro-rich domain of RTA were essential for this interaction. RBP-Jkappa has been shown previously to bind to the same Pro-rich domain of RTA, and this binding can be subject to competition by TLE2. In addition, TLE2 can form a complex with RTA to access the cognate DNA sequence of the RTA-responsive element at different promoters. Intriguingly, the transcription level of TLE2 could be upregulated by RTA during the lytic reactivation process. In conclusion, we identified a new RTA binding protein, TLE2, and demonstrated that TLE2 inhibited replication and transactivation mediated by RTA. This provides another potentially important mechanism for maintenance of KSHV viral latency through interaction with a host protein.
Collapse
|
4
|
Hertle ML, Popp C, Petermann S, Maier S, Kremmer E, Lang R, Mages J, Kempkes B. Differential gene expression patterns of EBV infected EBNA-3A positive and negative human B lymphocytes. PLoS Pathog 2009; 5:e1000506. [PMID: 19578441 PMCID: PMC2700271 DOI: 10.1371/journal.ppat.1000506] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Accepted: 06/05/2009] [Indexed: 01/05/2023] Open
Abstract
The genome of Epstein-Barr virus (EBV) encodes 86 proteins, but only a limited set is expressed in EBV–growth transformed B cells, termed lymphoblastoid cell lines (LCLs). These cells proliferate via the concerted action of EBV nuclear antigens (EBNAs) and latent membrane proteins (LMPs), some of which are rate limiting to establish a stable homeostasis of growth promoting and anti-apoptotic activities. We show here that EBV mutants, which lack the EBNA-3A gene, are impaired but can still initiate cell cycle entry and proliferation of primary human B cells in contrast to an EBNA-2 deficient mutant virus. Surprisingly, and in contrast to previous reports, these viral mutants are attenuated in growth transformation assays but give rise to permanently growing EBNA-3A negative B cell lines which exhibit reduced proliferation rates and elevated levels of apoptosis. Expression profiles of EBNA-3A deficient LCLs are characterized by 129 down-regulated and 167 up-regulated genes, which are significantly enriched for genes involved in apoptotic processes or cell cycle progression like the tumor suppressor gene p16/INK4A, or might contribute to essential steps of the viral life cycle in the infected host. In addition, EBNA-3A cellular target genes remarkably overlap with previously identified targets of EBNA-2. This study comprises the first genome wide expression profiles of EBNA-3A target genes generated within the complex network of viral proteins of the growth transformed B cell and permits a more detailed understanding of EBNA-3A's function and contribution to viral pathogenesis. Epstein-Barr virus (EBV) infects primary human B cells and establishes a latent infection, which leads to permanently growing B cell cultures. These growth transformed B cells express a well defined set of latent viral genes, which are also expressed in post-transplant lymphomas of immunosuppressed patients. In a concerted action these latent viral proteins drive cellular proliferation and prevent apoptosis. For this study, recombinant Epstein-Barr virus mutants that lack the gene for the Epstein-Barr virus nuclear antigen-3A (EBNA-3A) were generated. EBNA-3A is a transcriptional modulator of gene expression. We show here that EBNA-3A deficient growth transformed B cells can be established in vitro. Our results suggest that EBNA-3A supports viability but is not absolutely essential for proliferation of the infected B cell. By virtue of the established EBNA-3A deficient cell lines, we could for the first time identify a broad array of cellular target genes controlled by EBNA-3A in EBV infected B cells. These EBNA-3A target genes will permit a more detailed understanding of EBNA-3A's function and contribution to viral pathogenesis.
Collapse
Affiliation(s)
- Marie L. Hertle
- Department of Gene Vectors, Helmholtz Center Munich, German Research Center for Environmental Health, Munich, Germany
| | - Claudia Popp
- Department of Gene Vectors, Helmholtz Center Munich, German Research Center for Environmental Health, Munich, Germany
| | - Sabine Petermann
- Department of Gene Vectors, Helmholtz Center Munich, German Research Center for Environmental Health, Munich, Germany
| | - Sabine Maier
- Department of Gene Vectors, Helmholtz Center Munich, German Research Center for Environmental Health, Munich, Germany
| | - Elisabeth Kremmer
- Institute of Molecular Immunology, Helmholtz Center Munich, German Research Center for Environmental Health, Munich, Germany
| | - Roland Lang
- Institute of Clinical Microbiology, Immunology and Hygiene, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
- Institute of Medical Microbiology, Immunology and Hygiene, Technical University Munich, Munich, Germany
| | - Jörg Mages
- Institute of Medical Microbiology, Immunology and Hygiene, Technical University Munich, Munich, Germany
- Biotools B&M Labs, S.A., Madrid, Spain
| | - Bettina Kempkes
- Department of Gene Vectors, Helmholtz Center Munich, German Research Center for Environmental Health, Munich, Germany
- * E-mail:
| |
Collapse
|
5
|
Lan K, Verma SC, Murakami M, Bajaj B, Robertson ES. Epstein-Barr Virus (EBV): infection, propagation, quantitation, and storage. ACTA ACUST UNITED AC 2008; Chapter 14:Unit 14E.2. [PMID: 18770612 DOI: 10.1002/9780471729259.mc14e02s6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Epstein-Barr virus (EBV) was first reported as the etiological agent of Burkitt's lymphoma in 1964. Since then, EBV has also been associated with nasopharyngeal carcinoma, which is highly prevalent in Southeast Asia, as well as infectious mononucleosis, complications of AIDS, and transplant-related B cell lymphomas. This virus has further been linked with T cell lymphomas and Hodgkin's disease, establishing the concept of a wide spectrum of EBV-associated malignant disorders. So far, there are a number of EBV-infected cell lines established that can be induced for production of infectious viral progeny and that facilitate the study of the mechanism of EBV-related infection, transformation, and oncogenesis. This unit describes procedures for the preparation of EBV virion particles and in vitro infection of cells with EBV. In addition, procedures for quantitation and storage of the virus are provided.
Collapse
Affiliation(s)
- Ke Lan
- University of Pennsylvania Medical School, Philadelphia, Pennsylvania, USA
| | | | | | | | | |
Collapse
|
6
|
Lan K, Murakami M, Choudhuri T, Tsai DE, Schuster SJ, Wasik MA, Robertson ES. Detection of Epstein-Barr virus in T-cell prolymphocytic leukemia cells in vitro. J Clin Virol 2008; 43:260-5. [PMID: 18790666 DOI: 10.1016/j.jcv.2008.07.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2008] [Revised: 06/20/2008] [Accepted: 07/17/2008] [Indexed: 11/26/2022]
Abstract
BACKGROUND Epstein-Barr virus (EBV) is closely associated with the development of a number of tumors. During latent infection, EBV continuously expresses a number of viral genes which are essential for cell transformation and maintenance of the malignant phenotype of EBV-related tumors. There has been no previous link between EBV and T-cell prolymphocytic leukemia (T-PLL), a distinctive form of leukemia derived from T-cells at an intermediate stage of differentiation between a cortical thymocyte and a mature peripheral blood T-cell. OBJECTIVE To determine if EBV was present in the T-PLL cells collected. STUDY DESIGN T-PLL cells were isolated from the peripheral blood of a patient diagnosed with T-PLL and continuously cultured for about 1 year. The existence of EBV in these cells was detected using multiple strategies including PCR, Western blotting, immunofluorescent assay and flow cytometry analysis. RESULTS The EBV genome was present in these T-PLL cells by PCR analysis across multiple sites in the viral genome. In addition, these T-PLL cells expressed a number of EBV latent antigens. The EBV oncoproteins LMP1, EBNA1 and EBNA3C were expressed in the majority of the infected cells. CONCLUSION This report suggests a potential link between EBV infection and T-PLL and provides new information about the potential contribution of EBV in the initiation or maintenance of T-PLL.
Collapse
Affiliation(s)
- Ke Lan
- Department of Microbiology and the Tumor Virology Program of Abramson Comprehensive Cancer Center, University of Pennsylvania Medical School, 201E Johnson Pavilion, Philadelphia, PA 19104, U S
| | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
SNU (Seoul National University) cell lines have been established from Korean cancer patients since 1982. Of these 109 cell lines have been characterized and reported, i.e., 17 colorectal carcinoma, 12 hepatocellular carcinoma, 11 gastric carcinoma, 12 uterine cervical carcinoma, 17 B-lymphoblastoid cell lines derived from cancer patients, 5 ovarian carcinoma, 3 malignant mixed Mllerian tumor, 6 laryngeal squamous cell carcinoma, 7 renal cell carcinoma, 9 brain tumor, 6 biliary tract, and 4 pancreatic carcinoma cell lines. These SNU cell lines have been distributed to biomedical researchers domestic and worldwide through the KCLB (Korean Cell Line Bank), and have proven to be of value in various scientific research fields. The characteristics of these cell lines have been reported in over 180 international journals by our laboratory and by many other researchers from 1987. In this paper, the cellular and molecular characteristics of SNU human cancer cell lines are summarized according to their genetic and epigenetic alterations and functional analysis.
Collapse
Affiliation(s)
- Ja-Lok Ku
- Korean Cell Line Bank, Laboratory of Cell Biology, Cancer Research Center and Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | | |
Collapse
|
8
|
Lan K, Kuppers DA, Verma SC, Robertson ES. Kaposi's sarcoma-associated herpesvirus-encoded latency-associated nuclear antigen inhibits lytic replication by targeting Rta: a potential mechanism for virus-mediated control of latency. J Virol 2004; 78:6585-94. [PMID: 15163750 PMCID: PMC416549 DOI: 10.1128/jvi.78.12.6585-6594.2004] [Citation(s) in RCA: 162] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Like other herpesviruses, Kaposi's sarcoma-associated herpesvirus (KSHV, also designated human herpesvirus 8) can establish a latent infection in the infected host. During latency a small number of genes are expressed. One of those genes encodes latency-associated nuclear antigen (LANA), which is constitutively expressed in cells during latent as well as lytic infection. LANA has previously been shown to be important for the establishment of latent episome maintenance through tethering of the viral genome to the host chromosomes. Under specific conditions, KSHV can undergo lytic replication, with the production of viral progeny. The immediate-early Rta, encoded by open reading frame 50 of KSHV, has been shown to play a critical role in switching from viral latent replication to lytic replication. Overexpression of Rta from a heterologous promoter is sufficient for driving KSHV lytic replication and the production of viral progeny. In the present study, we show that LANA down-modulates Rta's promoter activity in transient reporter assays, thus repressing Rta-mediated transactivation. This results in a decrease in the production of KSHV progeny virions. We also found that LANA interacts physically with Rta both in vivo and in vitro. Taken together, our results demonstrate that LANA can inhibit viral lytic replication by inhibiting expression as well as antagonizing the function of Rta. This suggests that LANA may play a critical role in maintaining latency by controlling the switch between viral latency and lytic replication.
Collapse
Affiliation(s)
- Ke Lan
- Department of Microbiology and the Abramson Comprehensive Cancer Center, University of Pennsylvania Medical School, 201E Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
9
|
Maruo S, Johannsen E, Illanes D, Cooper A, Kieff E. Epstein-Barr Virus nuclear protein EBNA3A is critical for maintaining lymphoblastoid cell line growth. J Virol 2003; 77:10437-47. [PMID: 12970429 PMCID: PMC228516 DOI: 10.1128/jvi.77.19.10437-10447.2003] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
To evaluate the role of Epstein-Barr Virus (EBV) nuclear antigen 3A (EBNA3A) in the continuous proliferation of EBV-infected primary B lymphocytes as lymphoblastoid cell lines (LCLs), we derived LCLs that are infected with a recombinant EBV genome that expresses EBNA3A fused to a 4-hydroxy-tamoxifen (4HT)-dependent mutant estrogen receptor hormone binding domain (EBNA3AHT). The LCLs grew similarly to wild-type LCLs in medium with 4HT despite a reduced level of EBNA3AHT fusion protein expression. In the absence of 4HT, EBNA3AHT moved from the nucleus to the cytoplasm and was degraded. EBNA3AHT-infected LCLs were unable to grow in medium without 4HT. The precise time to growth arrest varied inversely with cell density. Continued maintenance in medium without 4HT resulted in cell death, whereas readdition of 4HT restored cell growth. Expression of other EBNAs and LMP1, of CD23, and of c-myc was unaffected by EBNA3A inactivation. Wild-type EBNA3A expression from an oriP plasmid transfected into the LCLs protected the EBNA3AHT-infected LCLs from growth arrest and death in medium without 4HT, whereas EBNA3B or EBNA3C expression was unable to protect the LCLs from growth arrest and death. These experiments indicate that EBNA3A has a unique and critical role for the maintenance of LCL growth and ultimately survival. The EBNA3AHT-infected LCLs are also useful for genetic and biochemical analyses of the role of EBNA3A domains in LCL growth.
Collapse
Affiliation(s)
- Seiji Maruo
- Department of Medicine and Microbiology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|