1
|
Biophysical characterization of the interaction between M2-1 protein of hRSV and quercetin. Int J Biol Macromol 2016; 95:63-71. [PMID: 27851930 DOI: 10.1016/j.ijbiomac.2016.11.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/18/2016] [Accepted: 11/09/2016] [Indexed: 01/20/2023]
Abstract
hRSV is the major causative agent of acute respiratory infections. Among its eleven proteins, M2-1 is a transcription antiterminator, making it an interesting target for antivirals. Quercetin is a flavonol which inhibits some virus infectivity and replication. In the present work, the M2-1 gene was cloned, expressed and the protein was purified. Thermal stability and secondary structure were analyzed by circular dichroism and the interaction with Quercetin was evaluated by fluorescence spectroscopy. Molecular docking experiments were performed to understand this mechanism of interaction. The purified protein is mainly composed of α-helix, with a melting temperature of 328.6K (≈55°C). M2-1 titration with Quercetin showed it interacts with two sites, one with a strong constant association K1 (site 1≈1.5×106M-1) by electrostatic interactions, and another with a weak constant association K2 (site 2≈1.1×105M-1) by a hydrophobic interaction. Ligand's docking shows it interacts with the N-terminus face in a more polar pocket and, between the domains of oligomerization and RNA and P protein interaction, in a more hydrophobic pocket, as predicted by experimental data. Therefore, we postulated this ligand could be interacting with important domains of the protein, avoiding viral replication and budding.
Collapse
|
2
|
Phosphorylation of Human Metapneumovirus M2-1 Protein Upregulates Viral Replication and Pathogenesis. J Virol 2016; 90:7323-7338. [PMID: 27252537 DOI: 10.1128/jvi.00755-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 05/25/2016] [Indexed: 01/02/2023] Open
Abstract
UNLABELLED Human metapneumovirus (hMPV) is a major causative agent of upper- and lower-respiratory-tract infections in infants, the elderly, and immunocompromised individuals worldwide. Like all pneumoviruses, hMPV encodes the zinc binding protein M2-1, which plays important regulatory roles in RNA synthesis. The M2-1 protein is phosphorylated, but the specific role(s) of the phosphorylation in viral replication and pathogenesis remains unknown. In this study, we found that hMPV M2-1 is phosphorylated at amino acid residues S57 and S60. Subsequent mutagenesis found that phosphorylation is not essential for zinc binding activity and oligomerization, whereas inhibition of zinc binding activity abolished the phosphorylation and oligomerization of the M2-1 protein. Using a reverse genetics system, recombinant hMPVs (rhMPVs) lacking either one or both phosphorylation sites in the M2-1 protein were recovered. These recombinant viruses had a significant decrease in both genomic RNA replication and mRNA transcription. In addition, these recombinant viruses were highly attenuated in cell culture and cotton rats. Importantly, rhMPVs lacking phosphorylation in the M2-1 protein triggered high levels of neutralizing antibody and provided complete protection against challenge with wild-type hMPV. Collectively, these data demonstrated that phosphorylation of the M2-1 protein upregulates hMPV RNA synthesis, replication, and pathogenesis in vivo IMPORTANCE The pneumoviruses include many important human and animal pathogens, such as human respiratory syncytial virus (hRSV), hMPV, bovine RSV, and avian metapneumovirus (aMPV). Among these viruses, hRSV and hMPV are the leading causes of acute respiratory tract infection in infants and children. Currently, there is no antiviral or vaccine to combat these diseases. All known pneumoviruses encode a zinc binding protein, M2-1, which is a transcriptional antitermination factor. In this work, we found that phosphorylation of M2-1 is essential for virus replication and pathogenesis in vivo Recombinant hMPVs lacking phosphorylation in M2-1 exhibited limited replication in the upper and lower respiratory tract and triggered strong protective immunity in cotton rats. This work highlights the important role of M2-1 phosphorylation in viral replication and that inhibition of M2-1 phosphorylation may serve as a novel approach to develop live attenuated vaccines as well as antiviral drugs for pneumoviruses.
Collapse
|
3
|
In silico structure-based design and synthesis of novel anti-RSV compounds. Antiviral Res 2015; 122:46-50. [PMID: 26259810 DOI: 10.1016/j.antiviral.2015.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 08/04/2015] [Accepted: 08/06/2015] [Indexed: 12/20/2022]
Abstract
Respiratory syncytial virus (RSV) is the major cause for respiratory tract disease in infants and young children. Currently, no licensed vaccine or a selective antiviral drug against RSV infections are available. Here, we describe a structure-based drug design approach that led to the synthesis of a novel series of zinc-ejecting compounds active against RSV replication. 30 compounds, sharing a common dithiocarbamate moiety, were designed and prepared to target the zinc finger motif of the M2-1 protein. A library of ∼ 12,000 small fragments was docked to explore the area surrounding the zinc ion. Among these, seven ligands were selected and used for the preparation of the new derivatives. The results reported here may help the development of a lead compound for the treatment of RSV infections.
Collapse
|
4
|
Zinc binding activity of human metapneumovirus M2-1 protein is indispensable for viral replication and pathogenesis in vivo. J Virol 2015; 89:6391-405. [PMID: 25855728 DOI: 10.1128/jvi.03488-14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 03/30/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Human metapneumovirus (hMPV) is a member of the Pneumovirinae subfamily in the Paramyxoviridae family that causes respiratory tract infections in humans. Unlike members of the Paramyxovirinae subfamily, the polymerase complex of pneumoviruses requires an additional cofactor, the M2-1 protein, which functions as a transcriptional antitermination factor. The M2-1 protein was found to incorporate zinc ions, although the specific role(s) of the zinc binding activity in viral replication and pathogenesis remains unknown. In this study, we found that the third cysteine (C21) and the last histidine (H25) in the zinc binding motif (CCCH) of hMPV M2-1 were essential for zinc binding activity, whereas the first two cysteines (C7 and C15) play only minor or redundant roles in zinc binding. In addition, the zinc binding motif is essential for the oligomerization of M2-1. Subsequently, recombinant hMPVs (rhMPVs) carrying mutations in the zinc binding motif were recovered. Interestingly, rhMPV-C21S and -H25L mutants, which lacked zinc binding activity, had delayed replication in cell culture and were highly attenuated in cotton rats. In contrast, rhMPV-C7S and -C15S strains, which retained 60% of the zinc binding activity, replicated as efficiently as rhMPV in cotton rats. Importantly, rhMPVs that lacked zinc binding activity triggered high levels of neutralizing antibody and provided complete protection against challenge with rhMPV. Taken together, these results demonstrate that zinc binding activity is indispensable for viral replication and pathogenesis in vivo. These results also suggest that inhibition of zinc binding activity may serve as a novel approach to rationally attenuate hMPV and perhaps other pneumoviruses for vaccine purposes. IMPORTANCE The pneumoviruses include many important human and animal pathogens, such as human respiratory syncytial virus (hRSV), hMPV, bovine RSV, and avian metapneumovirus (aMPV). Among these viruses, hRSV and hMPV are the leading causes of acute respiratory tract infection in infants and children. Despite major efforts, there is no antiviral or vaccine to combat these diseases. All known pneumoviruses encode a zinc binding protein, M2-1, which is a transcriptional antitermination factor. In this work, we found that the zinc binding activity of M2-1 is essential for virus replication and pathogenesis in vivo. Recombinant hMPVs that lacked zinc binding activity were not only defective in replication in the upper and lower respiratory tract but also triggered a strong protective immunity in cotton rats. Thus, inhibition of M2-1 zinc binding activity can lead to the development of novel, live attenuated vaccines, as well as antiviral drugs for pneumoviruses.
Collapse
|
5
|
Leyrat C, Renner M, Harlos K, Huiskonen JT, Grimes JM. Drastic changes in conformational dynamics of the antiterminator M2-1 regulate transcription efficiency in Pneumovirinae. eLife 2014; 3:e02674. [PMID: 24842877 PMCID: PMC4051120 DOI: 10.7554/elife.02674] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 05/15/2014] [Indexed: 12/24/2022] Open
Abstract
The M2-1 protein of human metapneumovirus (HMPV) is a zinc-binding transcription antiterminator which is highly conserved among pneumoviruses. We report the structure of tetrameric HMPV M2-1. Each protomer features a N-terminal zinc finger domain and an α-helical tetramerization motif forming a rigid unit, followed by a flexible linker and an α-helical core domain. The tetramer is asymmetric, three of the protomers exhibiting a closed conformation, and one an open conformation. Molecular dynamics simulations and SAXS demonstrate a dynamic equilibrium between open and closed conformations in solution. Structures of adenosine monophosphate- and DNA- bound M2-1 establish the role of the zinc finger domain in base-specific recognition of RNA. Binding to 'gene end' RNA sequences stabilized the closed conformation of M2-1 leading to a drastic shift in the conformational landscape of M2-1. We propose a model for recognition of gene end signals and discuss the implications of these findings for transcriptional regulation in pneumoviruses.DOI: http://dx.doi.org/10.7554/eLife.02674.001.
Collapse
Affiliation(s)
- Cedric Leyrat
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, Oxford, United Kingdom
| | - Max Renner
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, Oxford, United Kingdom
| | - Karl Harlos
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, Oxford, United Kingdom
| | - Juha T Huiskonen
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, Oxford, United Kingdom
| | - Jonathan M Grimes
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, Oxford, United Kingdom Diamond Light Source Ltd, Didcot, United Kingdom
| |
Collapse
|
6
|
Esperante SA, Noval MG, Altieri TA, de Oliveira GAP, Silva JL, de Prat-Gay G. Fine modulation of the respiratory syncytial virus M2-1 protein quaternary structure by reversible zinc removal from its Cys(3)-His(1) motif. Biochemistry 2013; 52:6779-89. [PMID: 23984912 DOI: 10.1021/bi401029q] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Human respiratory syncytial virus (hRSV) is a worldwide distributed pathogen that causes respiratory disease mostly in infants and the elderly. The M2-1 protein of hRSV functions as a transcription antiterminator and partakes in virus particle budding. It is present only in Pneumovirinae, namely, Pneumovirus (RSV) and Metapneumovirus, making it an interesting target for specific antivirals. hRSV M2-1 is a tight tetramer bearing a Cys3-His1 zinc-binding motif, present in Ebola VP30 protein and some eukaryotic proteins, whose integrity was shown to be essential for protein function but without a biochemical mechanistic basis. We showed that removal of the zinc atom causes dissociation to a monomeric apo-M2-1 species. Surprisingly, the secondary structure and stability of the apo-monomer is indistinguishable from that of the M2-1 tetramer. Dissociation reported by a highly sensitive tryptophan residue is much increased at pH 5.0 compared to pH 7.0, suggesting a histidine protonation cooperating in zinc removal. The monomeric apo form binds RNA at least as well as the tetramer, and this interaction is outcompeted by the phosphoprotein P, the RNA polymerase cofactor. The role of zinc goes beyond stabilization of local structure, finely tuning dissociation to a fully folded and binding competent monomer. Removal of zinc is equivalent to the disruption of the motif by mutation, only that the former is potentially reversible in the cellular context. Thus, this process could be triggered by a natural chelator such as glutathione or thioneins, where reversibility strongly suggests a modulatory role in the participation of M2-1 in the assembly of the polymerase complex or in virion budding.
Collapse
Affiliation(s)
- Sebastián A Esperante
- Protein Structure-Function and Engineering Laboratory, Fundación Instituto Leloir and IIBA-Conicet , Patricias Argentinas 435, (1405) Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
7
|
Blondot ML, Dubosclard V, Fix J, Lassoued S, Aumont-Nicaise M, Bontems F, Eléouët JF, Sizun C. Structure and functional analysis of the RNA- and viral phosphoprotein-binding domain of respiratory syncytial virus M2-1 protein. PLoS Pathog 2012; 8:e1002734. [PMID: 22675274 PMCID: PMC3364950 DOI: 10.1371/journal.ppat.1002734] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 04/20/2012] [Indexed: 02/07/2023] Open
Abstract
Respiratory syncytial virus (RSV) protein M2-1 functions as an essential transcriptional cofactor of the viral RNA-dependent RNA polymerase (RdRp) complex by increasing polymerase processivity. M2-1 is a modular RNA binding protein that also interacts with the viral phosphoprotein P, another component of the RdRp complex. These binding properties are related to the core region of M2-1 encompassing residues S58 to K177. Here we report the NMR structure of the RSV M2-1(58-177) core domain, which is structurally homologous to the C-terminal domain of Ebola virus VP30, a transcription co-factor sharing functional similarity with M2-1. The partial overlap of RNA and P interaction surfaces on M2-1(58-177), as determined by NMR, rationalizes the previously observed competitive behavior of RNA versus P. Using site-directed mutagenesis, we identified eight residues located on these surfaces that are critical for an efficient transcription activity of the RdRp complex. Single mutations of these residues disrupted specifically either P or RNA binding to M2-1 in vitro. M2-1 recruitment to cytoplasmic inclusion bodies, which are regarded as sites of viral RNA synthesis, was impaired by mutations affecting only binding to P, but not to RNA, suggesting that M2-1 is associated to the holonucleocapsid by interacting with P. These results reveal that RNA and P binding to M2-1 can be uncoupled and that both are critical for the transcriptional antitermination function of M2-1.
Collapse
Affiliation(s)
- Marie-Lise Blondot
- Unité de Virologie et Immunologie Moléculaires (UR892), INRA, Jouy-en-Josas, France
| | - Virginie Dubosclard
- Unité de Virologie et Immunologie Moléculaires (UR892), INRA, Jouy-en-Josas, France
| | - Jenna Fix
- Unité de Virologie et Immunologie Moléculaires (UR892), INRA, Jouy-en-Josas, France
| | - Safa Lassoued
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Gif-sur-Yvette, France
| | | | - François Bontems
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Gif-sur-Yvette, France
| | - Jean-François Eléouët
- Unité de Virologie et Immunologie Moléculaires (UR892), INRA, Jouy-en-Josas, France
- * E-mail:
| | - Christina Sizun
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Gif-sur-Yvette, France
| |
Collapse
|
8
|
Esperante SA, Chemes LB, Sánchez IE, de Prat-Gay G. The respiratory syncytial virus transcription antiterminator M(2-1) is a highly stable, zinc binding tetramer with strong pH-dependent dissociation and a monomeric unfolding intermediate. Biochemistry 2011; 50:8529-39. [PMID: 21877705 DOI: 10.1021/bi200661k] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The human respiratory syncytial virus M(2-1) transcription antiterminator is an essential elongation factor required by the RNA polymerase for effective transcription beyond the first two nonstructural genes. Its exclusive presence in pneumovirus among all paramyxovirus suggests a unique function within this small genus. With the aim of understanding its biochemical properties, we investigated this α-helical tetramer by making use of a biophysical approach. We found that the tetramer hydrodynamic radius is considerably extended at high ionic strengths and determined its zinc content to be one atom per monomer. Dissociation-unfolding experiments show a fully reversible and concentration-dependent cooperative transition, but secondary and tertiary structural changes are uncoupled at lower protein concentrations. We detect the presence of a monomeric intermediate, which can be classified as a "late molten globule" with substantial secondary and tertiary structure. Global fittings of experiments from three different probes at two M(2-1) concentrations provide a free energy of dissociation-unfolding of -36.8 ± 0.1 kcal mol(-1), corresponding to a tight dissociation constant of 10(-28) M(3) at pH 7.0. The tetramer affinity is strongly governed by pH, with a free energy change of 13 kcal mol(-1) when pH decreases from 7.0 to 5.0 (K(D) = 10(-18) M(3)). The drastic changes that take place within a pH range compatible with a cellular environment strongly suggest a regulatory effect of pH on M(2-1) structure and biochemical properties, likely affecting transcription and interaction with proteins and RNA.
Collapse
Affiliation(s)
- Sebastián A Esperante
- Protein Structure-Function and Engineering Laboratory, Fundación Instituto Leloir and IIBA-Conicet, Patricias Argentinas 435, 1405 Buenos Aires, Argentina
| | | | | | | |
Collapse
|
9
|
Kumaria R, Iyer LR, Hibberd ML, Simões EAF, Sugrue RJ. Whole genome characterization of non-tissue culture adapted HRSV strains in severely infected children. Virol J 2011; 8:372. [PMID: 21794174 PMCID: PMC3166936 DOI: 10.1186/1743-422x-8-372] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Accepted: 07/28/2011] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Human respiratory syncytial virus (HRSV) is the most important virus causing lower respiratory infection in young children. The complete genetic characterization of RSV clinical strains is a prerequisite for understanding HRSV infection in the clinical context. Current information about the genetic structure of the HRSV genome has largely been obtained using tissue culture adapted viruses. During tissue culture adaptation genetic changes can be introduced into the virus genome, which may obscure subtle variations in the genetic structure of different RSV strains. METHODS In this study we describe a novel Sanger sequencing strategy which allowed the complete genetic characterisation of 14 clinical HRSV strains. The viruses were sequenced directly in the nasal washes of severely hospitalized children, and without prior passage of the viruses in tissue culture. RESULTS The analysis of nucleotide sequences suggested that vRNA length is a variable factor among primary strains, while the phylogenetic analysis suggests selective pressure for change. The G gene showed the greatest sequence variation (2-6.4%), while small hydrophobic protein and matrix genes were completely conserved across all clinical strains studied. A number of sequence changes in the F, L, M2-1 and M2-2 genes were observed that have not been described in laboratory isolates. The gene junction regions showed more sequence variability, and in particular the intergenic regions showed a highest level of sequence variation. Although the clinical strains grew slower than the HRSVA2 virus isolate in tissue culture, the HRSVA2 isolate and clinical strains formed similar virus structures such as virus filaments and inclusion bodies in infected cells; supporting the clinical relevance of these virus structures. CONCLUSION This is the first report to describe the complete genetic characterization of HRSV clinical strains that have been sequenced directly from clinical material. The presence of novel substitutions and deletions in the vRNA of clinical strains emphasize the importance of genomic characterization of non-tissue culture adapted primary strains.
Collapse
Affiliation(s)
- Rajni Kumaria
- Singapore-MIT Alliance for Research and Technology, Centre for Life Sciences, #05-06M, 28 Medical Drive, 117456, Singapore
| | - Laxmi Ravi Iyer
- Division of Molecular and Cell biology, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 639798, Singapore
| | - Martin L Hibberd
- Singapore-MIT Alliance for Research and Technology, Centre for Life Sciences, #05-06M, 28 Medical Drive, 117456, Singapore
- Genome Institute of Singapore, #02-01, Genome Building, 60 Biopolis Street, 138672, Singapore
| | - Eric AF Simões
- University of Colorado, Denver and The Division of Infectious Diseases, The Children's Hospital, 13123 East 16th Avenue, Aurora, CO 80045, USA
| | - Richard J Sugrue
- Singapore-MIT Alliance for Research and Technology, Centre for Life Sciences, #05-06M, 28 Medical Drive, 117456, Singapore
- Division of Molecular and Cell biology, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 639798, Singapore
| |
Collapse
|
10
|
Boukhvalova MS, Prince GA, Blanco JCG. Inactivation of respiratory syncytial virus by zinc finger reactive compounds. Virol J 2010; 7:20. [PMID: 20102602 PMCID: PMC2823672 DOI: 10.1186/1743-422x-7-20] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Accepted: 01/26/2010] [Indexed: 11/26/2022] Open
Abstract
Background Infectivity of retroviruses such as HIV-1 and MuLV can be abrogated by compounds targeting zinc finger motif in viral nucleocapsid protein (NC), involved in controlling the processivity of reverse transcription and virus infectivity. Although a member of a different viral family (Pneumoviridae), respiratory syncytial virus (RSV) contains a zinc finger protein M2-1 also involved in control of viral polymerase processivity. Given the functional similarity between the two proteins, it was possible that zinc finger-reactive compounds inactivating retroviruses would have a similar effect against RSV by targeting RSV M2-1 protein. Moreover, inactivation of RSV through modification of an internal protein could yield a safer whole virus vaccine than that produced by RSV inactivation with formalin which modifies surface proteins. Results Three compounds were evaluated for their ability to reduce RSV infectivity: 2,2'-dithiodipyridine (AT-2), tetraethylthiuram disulfide and tetramethylthiuram disulfide. All three were capable of inactivating RSV, with AT-2 being the most potent. The mechanism of action of AT-2 was analyzed and it was found that AT-2 treatment indeed results in the modification of RSV M2-1. Altered intramolecular disulfide bond formation in M2-1 protein of AT-2-treated RSV virions might have been responsible for abrogation of RSV infectivity. AT-2-inactivated RSV was found to be moderately immunogenic in the cotton rats S.hispidus and did not cause a vaccine-enhancement seen in animals vaccinated with formalin-inactivated RSV. Increasing immunogenicity of AT-2-inactivated RSV by adjuvant (Ribi), however, led to vaccine-enhanced disease. Conclusions This work presents evidence that compounds that inactivate retroviruses by targeting the zinc finger motif in their nucleocapsid proteins are also effective against RSV. AT-2-inactivated RSV vaccine is not strongly immunogenic in the absence of adjuvants. In the adjuvanted form, however, vaccine induces immunopathologic response. The mere preservation of surface antigens of RSV, therefore may not be sufficient to produce a highly-efficacious inactivated virus vaccine that does not lead to an atypical disease.
Collapse
|
11
|
The respiratory syncytial virus M2-1 protein forms tetramers and interacts with RNA and P in a competitive manner. J Virol 2009; 83:6363-74. [PMID: 19386701 DOI: 10.1128/jvi.00335-09] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The respiratory syncytial virus (RSV) M2-1 protein is an essential cofactor of the viral RNA polymerase complex and functions as a transcriptional processivity and antitermination factor. M2-1, which exists in a phosphorylated or unphosphorylated form in infected cells, is an RNA-binding protein that also interacts with some of the other components of the viral polymerase complex. It contains a CCCH motif, a putative zinc-binding domain that is essential for M2-1 function, at the N terminus. To gain insight into its structural organization, M2-1 was produced as a recombinant protein in Escherichia coli and purified to >95% homogeneity by using a glutathione S-transferase (GST) tag. The GST-M2-1 fusion proteins were copurified with bacterial RNA, which could be eliminated by a high-salt wash. Circular dichroism analysis showed that M2-1 is largely alpha-helical. Chemical cross-linking, dynamic light scattering, sedimentation velocity, and electron microscopy analyses led to the conclusion that M2-1 forms a 5.4S tetramer of 89 kDa and approximately 7.6 nm in diameter at micromolar concentrations. By using a series of deletion mutants, the oligomerization domain of M2-1 was mapped to a putative alpha-helix consisting of amino acid residues 32 to 63. When tested in an RSV minigenome replicon system using a luciferase gene as a reporter, an M2-1 deletion mutant lacking this region showed a significant reduction in RNA transcription compared to wild-type M2-1, indicating that M2-1 oligomerization is essential for the activity of the protein. We also show that the region encompassing amino acid residues 59 to 178 binds to P and RNA in a competitive manner that is independent of the phosphorylation status of M2-1.
Collapse
|
12
|
Li D, Jans DA, Bardin PG, Meanger J, Mills J, Ghildyal R. Association of respiratory syncytial virus M protein with viral nucleocapsids is mediated by the M2-1 protein. J Virol 2008; 82:8863-70. [PMID: 18579594 PMCID: PMC2519653 DOI: 10.1128/jvi.00343-08] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2008] [Accepted: 06/17/2008] [Indexed: 11/20/2022] Open
Abstract
Cytoplasmic inclusions in respiratory syncytial virus-infected cells comprising viral nucleocapsid proteins (L, N, P, and M2-1) and the viral genome are sites of viral transcription. Although not believed to be necessary for transcription, the matrix (M) protein is also present in these inclusions, and we have previously shown that M inhibits viral transcription. In this study, we have investigated the mechanisms for the association of the M protein with cytoplasmic inclusions. Our data demonstrate for the first time that the M protein associates with cytoplasmic inclusions via an interaction with the M2-1 protein. The M protein colocalizes with M2-1 in the cytoplasm of cells expressing only the M and M2-1 proteins and directly interacts with M2-1 in a cell-free binding assay. Using a cotransfection system, we confirmed that the N and P proteins are sufficient to form cytoplasmic inclusions and that M2-1 localizes to these inclusions; additionally, we show that M associates with cytoplasmic inclusions only in the presence of the M2-1 protein. Using truncated mutants, we show that the N-terminal 110 amino acids of M mediate the interaction with M2-1 and the subsequent association with nucleocapsids. The interaction of M2-1 with M and, in particular, the N-terminal region of M may represent a target for novel antivirals that block the association of M with nucleocapsids, thereby inhibiting virus assembly.
Collapse
Affiliation(s)
- Dongsheng Li
- Department of Medicine, Monash Institute of Medical Research, Monash University, Melbourne, Australia
| | | | | | | | | | | |
Collapse
|
13
|
John SP, Wang T, Steffen S, Longhi S, Schmaljohn CS, Jonsson CB. Ebola virus VP30 is an RNA binding protein. J Virol 2007; 81:8967-76. [PMID: 17567691 PMCID: PMC1951390 DOI: 10.1128/jvi.02523-06] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The Ebola virus (EBOV) genome encodes for several proteins that are necessary and sufficient for replication and transcription of the viral RNAs in vitro; NP, VP30, VP35, and L. VP30 acts in trans with an RNA secondary structure upstream of the first transcriptional start site to modulate transcription. Using a bioinformatics approach, we identified a region within the N terminus of VP30 with sequence features that typify intrinsically disordered regions and a putative RNA binding site. To experimentally assess the ability of VP30 to directly interact with the viral RNA, we purified recombinant EBOV VP30 to >90% homogeneity and assessed RNA binding by UV cross-linking and filter-binding assays. VP30 is a strongly acidophilic protein; RNA binding became stronger as pH was decreased. Zn(2+), but not Mg(2+), enhanced activity. Enhancement of transcription by VP30 requires a RNA stem-loop located within nucleotides 54 to 80 of the leader region. VP30 showed low binding affinity to the predicted stem-loop alone or to double-stranded RNA but showed a good binding affinity for the stem-loop when placed in the context of upstream and downstream sequences. To map the region responsible for interacting with RNA, we constructed, purified, and assayed a series of N-terminal deletion mutations of VP30 for RNA binding. The key amino acids supporting RNA binding activity map to residues 26 to 40, a region rich in arginine. Thus, we show for the first time the direct interaction of EBOV VP30 with RNA and the importance of the N-terminal region for binding RNA.
Collapse
Affiliation(s)
- Sinu P John
- Graduate Program in Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | | | | | | | |
Collapse
|
14
|
Cowton VM, McGivern DR, Fearns R. Unravelling the complexities of respiratory syncytial virus RNA synthesis. J Gen Virol 2006; 87:1805-1821. [PMID: 16760383 DOI: 10.1099/vir.0.81786-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Human respiratory syncytial virus (RSV) is the leading cause of paediatric respiratory disease and is the focus of antiviral- and vaccine-development programmes. These goals have been aided by an understanding of the virus genome architecture and the mechanisms by which it is expressed and replicated. RSV is a member of the order Mononegavirales and, as such, has a genome consisting of a single strand of negative-sense RNA. At first glance, transcription and genome replication appear straightforward, requiring self-contained promoter regions at the 3' ends of the genome and antigenome RNAs, short cis-acting elements flanking each of the genes and one polymerase. However, from these minimal elements, the virus is able to generate an array of capped, methylated and polyadenylated mRNAs and encapsidated antigenome and genome RNAs, all in the appropriate ratios to facilitate virus replication. The apparent simplicity of genome expression and replication is a consequence of considerable complexity in the polymerase structure and its cognate cis-acting sequences; here, our understanding of mechanisms by which the RSV polymerase proteins interact with signals in the RNA template to produce different RNA products is reviewed.
Collapse
MESH Headings
- Base Sequence
- DNA-Directed RNA Polymerases/metabolism
- Genome, Viral
- Humans
- Models, Biological
- Molecular Sequence Data
- Mononegavirales/genetics
- Mononegavirales/physiology
- Nucleocapsid/biosynthesis
- Nucleocapsid/genetics
- RNA, Antisense/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Viral/biosynthesis
- RNA, Viral/genetics
- Respiratory Syncytial Virus, Human/genetics
- Respiratory Syncytial Virus, Human/pathogenicity
- Respiratory Syncytial Virus, Human/physiology
- Transcription, Genetic
- Viral Proteins/metabolism
- Virus Replication
Collapse
Affiliation(s)
- Vanessa M Cowton
- Division of Pathology and Neuroscience, University of Dundee Medical School, Dundee DD1 9SY, UK
| | - David R McGivern
- Division of Pathology and Neuroscience, University of Dundee Medical School, Dundee DD1 9SY, UK
| | - Rachel Fearns
- Division of Pathology and Neuroscience, University of Dundee Medical School, Dundee DD1 9SY, UK
| |
Collapse
|
15
|
Collins PL, Murphy BR. New generation live vaccines against human respiratory syncytial virus designed by reverse genetics. Ann Am Thorac Soc 2006; 2:166-73. [PMID: 16113487 PMCID: PMC2713317 DOI: 10.1513/pats.200501-011aw] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Development of a live pediatric vaccine against human respiratory syncytial virus (RSV) is complicated by the need to immunize young infants and the difficulty in balancing attenuation and immunogenicity. The ability to introduce desired mutations into infectious virus by reverse genetics provides a method for identifying and designing highly defined attenuating mutations. These can be introduced in combinations as desired to achieve gradations of attenuation. Attenuation is based on several strategies: multiple independent temperature-sensitive point mutations in the polymerase, a temperature-sensitive point mutation in a transcription signal, a set of non-temperature-sensitive mutations involving several genes, deletion of a viral RNA synthesis regulatory protein, and deletion of viral IFN alpha/beta antagonists. The genetic stability of the live vaccine can be increased by judicious choice of mutations. The virus also can be engineered to increase the level of expression of the protective antigens. Protective antigens from antigenically distinct RSV strains can be added or swapped to increase the breadth of coverage. Alternatively, the major RSV protective antigens can be expressed from transcription units added to an attenuated parainfluenza vaccine virus, making a bivalent vaccine. This would obviate the difficulties inherent in the fragility and inefficient in vitro growth of RSV, simplifying vaccine design and use.
Collapse
Affiliation(s)
- Peter L Collins
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892-8007, USA.
| | | |
Collapse
|
16
|
Cheng X, Park H, Zhou H, Jin H. Overexpression of the M2-2 protein of respiratory syncytial virus inhibits viral replication. J Virol 2006; 79:13943-52. [PMID: 16254330 PMCID: PMC1280200 DOI: 10.1128/jvi.79.22.13943-13952.2005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The M2-2 protein of respiratory syncytial virus (RSV) is involved in regulation of viral RNA transcription and replication. Encoded by the next-to-last gene of RSV, the M2-2 open reading frame (ORF) overlaps with the upstream M2-1 ORF, suggesting that the production of the M2-2 protein might be tightly regulated during virus replication. To evaluate the effect of M2-2 overexpression on RSV replication, the M2-2 gene was separated from M2-1 by leaving it at the position prior to the M2-1 or moving it to the promoter proximal position as an independent transcriptional unit in the RSV A2 genome. Although recombinant viruses bearing the shuffled M2-2 gene were recovered and expressed higher levels of M2-2, most of these viruses grew poorly in HEp-2 cells. Sequence analysis revealed that various mutations (substitution, insertion, and deletion) occurred in the M2-2 gene, resulting in reduced M2-2 activity as measured by the RSV minigenome system. Further examination of the M2-2 sequence and its function showed that either one of the first two AUG codons located at the 5' end of M2-2 could be used to produce a functional M2-2 protein and that deletion of the first six amino acids from its N terminus or four amino acids from its C terminus greatly reduced its function. The effect of M2-2 protein on RSV replication was also studied by examining RSV replication in cells transiently expressing M2-2. The M2-2 protein expressed at a high level completely inhibited RSV replication. These results strongly suggested that the level of the M2-2 protein produced in the infected cells is critical to RSV replication.
Collapse
Affiliation(s)
- Xing Cheng
- MedImmune Vaccines Inc., 297 N. Bernardo Ave., Mountain View, CA 94043, USA
| | | | | | | |
Collapse
|
17
|
Melero JA. Molecular Biology of Human Respiratory Syncytial Virus. RESPIRATORY SYNCYTIAL VIRUS 2006. [DOI: 10.1016/s0168-7069(06)14001-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
18
|
Buchholz UJ, Biacchesi S, Pham QN, Tran KC, Yang L, Luongo CL, Skiadopoulos MH, Murphy BR, Collins PL. Deletion of M2 gene open reading frames 1 and 2 of human metapneumovirus: effects on RNA synthesis, attenuation, and immunogenicity. J Virol 2005; 79:6588-97. [PMID: 15890897 PMCID: PMC1112115 DOI: 10.1128/jvi.79.11.6588-6597.2005] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The M2 gene of human metapneumovirus (HMPV) contains two overlapping open reading frames (ORFs), M2-1 and M2-2. The expression of separate M2-1 and M2-2 proteins from these ORFs was confirmed, and recombinant HMPVs were recovered in which expression of M2-1 and M2-2 was ablated individually or together [rdeltaM2-1, rdeltaM2-2, and rdeltaM2(1+2)]. Each M2 mutant virus directed efficient multicycle growth in Vero cells. The ability to recover HMPV lacking M2-1 contrasts with human respiratory syncytial virus, for which M2-1 is an essential transcription factor. Expression of the downstream HMPV M2-2 ORF was not reduced when translation of the upstream M2-1 ORF was silenced, indicating that it is initiated separately. The rdeltaM2-2 mutants exhibited a two- to fivefold increase in the accumulation of mRNA, normalized to the genome template, suggesting that M2-2 has a role in regulating RNA synthesis. Replication and immunogenicity were tested in hamsters. Animals infected intranasally with rdeltaM2-1 or rdeltaM2(1+2) did not have recoverable virus in the lungs or nasal turbinates on days 3 or 5 postinfection and did not develop HMPV-neutralizing serum antibodies or resistance to HMPV challenge. Thus, M2-1 appears to be essential for significant virus replication in vivo. In animals infected with rdeltaM2-2, virus was recovered from only 1 of 12 animals and only in the nasal turbinates on a single day. However, all of the animals developed a high titer of HMPV-neutralizing serum antibodies and were highly protected against challenge with wild-type HMPV. The HMPV rdeltaM2-2 virus is a promising and highly attenuated HMPV vaccine candidate.
Collapse
Affiliation(s)
- Ursula J Buchholz
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-8007, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
García-Barreno B, Steel J, Payá M, Martínez-Sobrido L, Delgado T, Yeo RP, Melero JA. Epitope mapping of human respiratory syncytial virus 22K transcription antitermination factor: role of N-terminal sequences in protein folding. J Gen Virol 2005; 86:1103-1107. [PMID: 15784904 DOI: 10.1099/vir.0.80712-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The reactivity of a panel of 12 monoclonal antibodies raised against the human respiratory syncytial virus 22 kDa (22K) protein was tested by Western blotting with a set of 22K deletion mutants. The results obtained identified sequences in the C-terminal half of the 22K polypeptide required for integrity of most antibody epitopes, except for epitope 112, which was lost in mutants with short N-terminal deletions. This antibody, in contrast to the others, failed to immunoprecipitate the native 22K protein, indicating that the N terminus of this protein is buried in the native molecule and exposed only under the denaturing conditions of Western blotting. In addition, N-terminal deletions that abolished reactivity with monoclonal antibody 112 also inhibited phosphorylation of the 22K protein previously identified at Ser-58 and Ser-61, suggesting that the N terminus is important in regulating the 22K protein phosphorylation status, most likely as a result of its requirement for protein folding.
Collapse
MESH Headings
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/metabolism
- Antibodies, Viral/immunology
- Antibodies, Viral/metabolism
- Blotting, Western
- Epitope Mapping
- Gene Deletion
- Gene Expression Regulation, Viral
- Humans
- Mutation
- Protein Folding
- Respiratory Syncytial Virus, Human/chemistry
- Respiratory Syncytial Virus, Human/genetics
- Respiratory Syncytial Virus, Human/immunology
- Respiratory Syncytial Virus, Human/metabolism
- Transcription, Genetic
- Viral Proteins/chemistry
- Viral Proteins/genetics
- Viral Proteins/immunology
- Viral Proteins/metabolism
Collapse
Affiliation(s)
- Blanca García-Barreno
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| | - John Steel
- MRC Virology Unit, Institute for Virology, Church Street, Glasgow G11 5JR, UK
| | - Monica Payá
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| | - Luis Martínez-Sobrido
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| | - Teresa Delgado
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| | - Robert P Yeo
- The Centre for Infectious Diseases, Wolfson Institute, University of Durham, Queen's Campus, Stockton-on-Tees TS17 6BH, UK
| | - José A Melero
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| |
Collapse
|
20
|
Morcock DR, Thomas JA, Gagliardi TD, Gorelick RJ, Roser JD, Chertova EN, Bess JW, Ott DE, Sattentau QJ, Frank I, Pope M, Lifson JD, Henderson LE, Crise BJ. Elimination of retroviral infectivity by N-ethylmaleimide with preservation of functional envelope glycoproteins. J Virol 2005; 79:1533-42. [PMID: 15650179 PMCID: PMC544125 DOI: 10.1128/jvi.79.3.1533-1542.2005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The zinc finger motifs in retroviral nucleocapsid (NC) proteins are essential for viral replication. Disruption of these Cys-X2-Cys-X4-His-X4-Cys zinc-binding structures eliminates infectivity. To determine if N-ethylmaleimide (NEM) can inactivate human immunodeficiency virus type 1 (HIV-1) or simian immunodeficiency virus (SIV) preparations by alkylating cysteines of NC zinc fingers, we treated infectious virus with NEM and evaluated inactivation of infectivity in cell-based assays. Inactivation was rapid and proportional to the NEM concentration. NEM treatment of HIV-1 or SIV resulted in extensive covalent modification of NC and other internal virion proteins. In contrast, viral envelope glycoproteins, in which the cysteines are disulfide bonded, remained intact and functional, as assayed by high-performance liquid chromatography, fusion-from-without analyses, and dendritic cell capture. Quantitative PCR assays for reverse transcription intermediates showed that NEM and 2,2'-dipyridyl disulfide (aldrithiol-2), a reagent which inactivates retroviruses through oxidation of cysteines in internal virion proteins such as NC, blocked HIV-1 reverse transcription prior to the formation of minus-strand strong-stop products. However, the reverse transcriptase from NEM-treated virions remained active in exogenous template assays, consistent with a role for NC in reverse transcription. Since disruption of NC zinc finger structures by NEM blocks early postentry steps in the retroviral infection cycle, virus preparations with modified NC proteins may be useful as vaccine immunogens and probes of the role of NC in viral replication.
Collapse
Affiliation(s)
- David R Morcock
- AIDS Vaccine Program, SAIC Frederick, NCI-Frederick, Building 535, 5th Floor, PO Box B, Frederick, MD 21702, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Blanco JCG, Pletneva L, Boukhvalova M, Richardson JY, Harris KA, Prince GA. The cotton rat: an underutilized animal model for human infectious diseases can now be exploited using specific reagents to cytokines, chemokines, and interferons. J Interferon Cytokine Res 2004; 24:21-8. [PMID: 14980081 DOI: 10.1089/107999004772719873] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The cotton rat represents the best or only animal model for a large number of human infectious diseases, and it may be unique among small laboratory animals in its susceptibility to several potential agents of bioterrorism. Although the cotton rat is a reliable model to define pathologic changes produced during infection with human pathogens, the lack of specific reagents has precluded a more extensive analysis of the molecular basis of pathogenesis. Here, we report the cloning of 24 cotton rat genes encoding various cytokines, chemokines, and interferons (IFNs). Analysis of the expression of most of these genes was performed by RT-PCR in cotton rat macrophages during treatment with lipopolysaccharide (LPS) and in cotton rat lungs after infection with influenza virus. The availability of these reagents will provide the tools for molecular analysis of pathogenesis and immune responses to a wide variety of pathogens and set the basis for the development of new prophylactic and therapeutic strategies against human infectious diseases.
Collapse
|
22
|
Mason SW, Aberg E, Lawetz C, DeLong R, Whitehead P, Liuzzi M. Interaction between human respiratory syncytial virus (RSV) M2-1 and P proteins is required for reconstitution of M2-1-dependent RSV minigenome activity. J Virol 2003; 77:10670-6. [PMID: 12970453 PMCID: PMC228475 DOI: 10.1128/jvi.77.19.10670-10676.2003] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have investigated protein-protein interactions among the respiratory syncytial virus (RSV) RNA polymerase subunits using affinity chromatography. Here we demonstrate a novel interaction of P and M2-1 proteins. Phosphorylation of either M2-1 or P appears to be dispensable for this interaction. Internal deletions within P mapped the M2-1-binding domain to a region between residues 100 and 120. Alanine-scanning mutagenesis within this region of P revealed that substitution of any one of the three residues, L101, Y102, and F109, prevented both M2-1 and P binding and expression of an M2-1-dependent luciferase reporter gene. However, these same mutations did not prevent the activity of an M2-1-independent chloramphenicol acetyltransferase minigenome, suggesting that these residues of P specifically affect M2-1-P interaction. On the basis of these observations, it is possible that the interaction between RSV M2-1 and P proteins is important for viral replication.
Collapse
Affiliation(s)
- Stephen W Mason
- Biological Sciences Department, Boehringer Ingelheim (Canada) Ltd, Laval, Québec, Canada.
| | | | | | | | | | | |
Collapse
|
23
|
Jin H, Cheng X, Traina-Dorge VL, Park HJ, Zhou H, Soike K, Kemble G. Evaluation of recombinant respiratory syncytial virus gene deletion mutants in African green monkeys for their potential as live attenuated vaccine candidates. Vaccine 2003; 21:3647-52. [PMID: 12922094 DOI: 10.1016/s0264-410x(03)00426-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Towards the goal of developing live attenuated respiratory syncytial virus (RSV) vaccines to prevent severe respiratory tract infections caused by respiratory syncytial virus, recombinant RSV containing a deletion of single or multiple NS1, NS2, SH and M2-2 genes have been generated. In this study, recombinants, rA2DeltaM2-2, rA2DeltaNS2, rA2DeltaNS1NS2, rA2DeltaSHNS2, rA2DeltaM2-2NS2 were evaluated in African green monkeys (AGMs) for their infectivity, immunogenicity and protection against wild type (wt) RSV challenge. Replication of rA2DeltaNS2 and rA2DeltaSHNS2 was not attenuated in either the upper or the lower respiratory tracts of AGMs. On the other hands, rA2DeltaNS1NS2 was over-attenuated; it did not replicate in the respiratory tracts of the infected monkeys and did not provide sufficient protection against wild type RSV challenge. rA2DeltaM2-2NS2 was slightly more attenuated than rA2DeltaM2-2 and provided partial protection against wt RSV challenge. rA2DeltaM2-2, and possibly rA2DeltaM2-2NS2, exhibited the attenuated but protective phenotypes in the monkeys that could be further evaluated as potential live attenuated RSV vaccine candidates in the clinical studies.
Collapse
Affiliation(s)
- Hong Jin
- MedImmune Vaccines Inc., 297 North Bernardo Avenue, Mountain View, CA 94043, USA.
| | | | | | | | | | | | | |
Collapse
|
24
|
Zhou H, Cheng X, Jin H. Identification of amino acids that are critical to the processivity function of respiratory syncytial virus M2-1 protein. J Virol 2003; 77:5046-53. [PMID: 12692207 PMCID: PMC153968 DOI: 10.1128/jvi.77.9.5046-5053.2003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The M2-1 protein of respiratory syncytial virus (RSV) is a transcription processivity factor that is essential for virus replication. The function of RSV M2-1 protein can be examined by using an RSVlacZ minigenome assay in vitro since the expression of the lacZ gene is dependent on M2-1. The M2-1 protein of pneumonia virus of mice (PVM), also a member of the Pneumovirus genus, functions poorly in the RSVlacZ minigenome assay despite conservation of the Cys(3)-His(1) motif at its N terminus and an overall 40% amino acid identity with RSV M2-1. To identify the amino acids responsible for the differences between these two proteins, two chimeric proteins were constructed. The RSV/PVM (RP) M2-1 chimera that contains the N-terminal 30 amino acids from RSV and the remaining C-terminal 148 amino acids from PVM maintained a level of activity at an ca. 36% of RSV M2-1. However, the PVM/RSV (PR) M2-1 chimera with the N-terminal 29 amino acids from PVM and 164 amino acids from RSV had an activity of <5% of RSV M2-1, indicating that the functional determinants are mainly located in the N terminus of M2-1. Mutagenesis of the N terminus of PR M2-1 and RSV M2-1 identified that Leu-16 and Asn-17 of RSV M2-1 are critical to the M2-1 function. In addition, several charged residues in the N terminus of RSV M2-1 also contributed to the functional integrity of M2-1.
Collapse
Affiliation(s)
- Helen Zhou
- MedImmune Vaccines, Inc., Mountain View, California 94043, USA
| | | | | |
Collapse
|
25
|
Modrof J, Becker S, Mühlberger E. Ebola virus transcription activator VP30 is a zinc-binding protein. J Virol 2003; 77:3334-8. [PMID: 12584359 PMCID: PMC149768 DOI: 10.1128/jvi.77.5.3334-3338.2003] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2002] [Accepted: 11/20/2002] [Indexed: 11/20/2022] Open
Abstract
Ebola virus VP30 is an essential activator of viral transcription. In viral particles, VP30 is closely associated with the nucleocapsid complex. A conspicuous structural feature of VP30 is an unconventional zinc-binding Cys(3)-His motif comprising amino acids 68 to 95. By using a colorimetric zinc-binding assay we found that the VP30-specific Cys(3)-His motif stoichiometrically binds zinc ions in a one-to-one relationship. Substitution of the conserved cysteines and the histidine within the motif led to a complete loss of the capacity for zinc binding. Functional analyses revealed that none of the tested mutations of the proposed zinc-coordinating residues influenced binding of VP30 to nucleocapsid-like particles but, concerning its role in activating viral transcription, all resulted in a protein that was inactive.
Collapse
Affiliation(s)
- Jens Modrof
- Institut für Virologie der Philipps-Universität Marburg, 35037 Marburg, Germany
| | | | | |
Collapse
|
26
|
Tang RS, Nguyen N, Zhou H, Jin H. Clustered charge-to-alanine mutagenesis of human respiratory syncytial virus L polymerase generates temperature-sensitive viruses. Virology 2002; 302:207-16. [PMID: 12429529 DOI: 10.1006/viro.2002.1596] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Clustered charge-to-alanine mutagenesis was performed on the large (L) polymerase protein of human respiratory syncytial virus to identify charged residues in the L protein that are important for viral RNA synthesis and to generate temperature-sensitive viruses. Clusters of three, four, and five charged residues throughout the entire L protein were substituted with alanines. A minigenome replicon assay was used to determine the functions of the mutant L proteins and to identify mutations that caused temperature sensitivity by comparing the level of reporter gene expression at 39 and 33 degrees C. Charge-to-alanine mutations were introduced into an antigenomic cDNA derived from RSV A2 strain to recover infectious viruses. Of the 27 charge-to-alanine mutations, 17 recombinant viruses (63%) were obtained. Seven mutants (41%) exhibited small plaque morphologies and/or temperature-sensitive growth in tissue culture. To generate mutant viruses with more temperature-sensitive and attenuated phenotypes, several clusters of charge-to-alanine substitutions were combined. Five combination mutants were recovered that exhibited shut-off temperatures ranging from 36 to 39 degrees C in tissue culture and restricted replication in the respiratory tracts of cotton rats.
Collapse
|
27
|
Weik M, Modrof J, Klenk HD, Becker S, Mühlberger E. Ebola virus VP30-mediated transcription is regulated by RNA secondary structure formation. J Virol 2002; 76:8532-9. [PMID: 12163572 PMCID: PMC136988 DOI: 10.1128/jvi.76.17.8532-8539.2002] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The nucleocapsid protein VP30 of Ebola virus (EBOV), a member of the Filovirus family, is known to act as a transcription activator. By using a reconstituted minigenome system, the role of VP30 during transcription was investigated. We could show that VP30-mediated transcription activation is dependent on formation of a stem-loop structure at the first gene start site. Destruction of this secondary structure led to VP30-independent transcription. Analysis of the transcription products of bicistronic minigenomes with and without the ability to form the secondary structure at the first transcription start signal revealed that transcription initiation at the first gene start site is a prerequisite for transcription of the second gene, independent of the presence of VP30. When the transcription start signal of the second gene was exchanged with the transcription start signal of the first gene, transcription of the second gene also was regulated by VP30, indicating that the stem-loop structure of the first transcription start site acts autonomously and independently of its localization on the RNA genome. Our results suggest that VP30 regulates a very early step of EBOV transcription, most likely by inhibiting pausing of the transcription complex at the RNA structure of the first transcription start site.
Collapse
Affiliation(s)
- Michael Weik
- Institut für Virologie der Philipps-Universität Marburg, 35037 Marburg, Germany
| | | | | | | | | |
Collapse
|
28
|
Affiliation(s)
- Peter L Collins
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892-0720, USA.
| | | |
Collapse
|
29
|
Lu B, Brazas R, Ma CH, Kristoff T, Cheng X, Jin H. Identification of temperature-sensitive mutations in the phosphoprotein of respiratory syncytial virus that are likely involved in its interaction with the nucleoprotein. J Virol 2002; 76:2871-80. [PMID: 11861854 PMCID: PMC135989 DOI: 10.1128/jvi.76.6.2871-2880.2002] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The phosphoprotein (P) of human respiratory syncytial virus (RSV) is an essential component of the viral RNA polymerase, along with the large polymerase (L), nucleocapsid (N), and M2-1 proteins. By screening a randomly mutagenized P gene cDNA library, two independent mutations, one with a substitution of glycine at position 172 by serine (G172S) and the other with a substitution of glutamic acid at position 176 by glycine (E176G), were identified to result in the loss of N-P interaction at 37 degrees C in the yeast two-hybrid assay. Both P mutants exhibited greatly reduced activity in supporting the replication and transcription of an RSV minigenome replicon at 37 and 39 degrees C. The G172S and E176G mutations were introduced individually into the RSV A2 (rA2) antigenomic cDNA, and recombinant viruses, rA2-P172 and rA2-P176, were obtained. Both viruses replicate as well as wild-type A2 virus in both Vero and HEp-2 cells at 33 degrees C, but each mutant virus exhibited temperature-sensitive replication in both cell lines. rA2-P176 is more temperature sensitive than rA2-P172. Coimmunoprecipitation of the N protein with each P mutant from virus-infected cells demonstrates that N-P interaction is impaired at 37 degrees C. In addition, the levels of replication of rA2-P172 and rA2-P176 in the lungs of mice and cotton rats were reduced. As is the case with the in vitro assays, rA2-P176 is more restricted in replication in the lower respiratory tract of mice and cotton rats than rA2-P172. During in vitro passage at 37 degrees C, the E176G mutation in rA2-P176 was rapidly changed from glycine to predominantly aspartic acid; mutations to cysteine or serine were also detected. All of the revertants lost the temperature-sensitive phenotype. To analyze the importance of the amino acids in the region from positions 161 to 180 for the P protein function, additional mutations were introduced and their functions were analyzed in vitro. A double mutant containing both G172S and E176G changes in the P gene, substitution of the three charged residues at positions 174 to 176 by alanine, and a deletion of residues from positions 161 to 180 completely abolished the P protein function in the minigenome assay. Thus, the amino acids at positions 172 and 176 and the adjacent charged residues play critical roles in the function of the P protein.
Collapse
Affiliation(s)
- Bin Lu
- Aviron, Mountain View, California 94043, USA
| | | | | | | | | | | |
Collapse
|