1
|
Millet JK, Tang T, Nathan L, Jaimes JA, Hsu HL, Daniel S, Whittaker GR. Production of Pseudotyped Particles to Study Highly Pathogenic Coronaviruses in a Biosafety Level 2 Setting. J Vis Exp 2019. [PMID: 30882796 DOI: 10.3791/59010] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The protocol aims to generate coronavirus (CoV) spike (S) fusion protein pseudotyped particles with a murine leukemia virus (MLV) core and luciferase reporter, using a simple transfection procedure of the widely available HEK-293T cell line. Once formed and released from producer cells, these pseudovirions incorporate a luciferase reporter gene. Since they only contain the heterologous coronavirus spike protein on their surface, the particles behave like their native coronavirus counterparts for entry steps. As such, they are the excellent surrogates of native virions for studying viral entry into host cells. Upon successful entry and infection into target cells, the luciferase reporter gets integrated into the host cell genome and is expressed. Using a simple luciferase assay, transduced cells can be easily quantified. An important advantage of the procedure is that it can be performed in biosafety level 2 (BSL-2) facilities instead of BSL-3 facilities required for work with highly pathogenic coronaviruses such as Middle East respiratory syndrome coronavirus (MERS-CoV) and severe acute respiratory syndrome coronavirus (SARS-CoV). Another benefit comes from its versatility as it can be applied to envelope proteins belonging to all three classes of viral fusion proteins, such as the class I influenza hemagglutinin (HA) and Ebola virus glycoprotein (GP), the class II Semliki forest virus E1 protein, or the class III vesicular stomatitis virus G glycoprotein. A limitation of the methodology is that it can only recapitulate virus entry steps mediated by the envelope protein being investigated. For studying other viral life cycle steps, other methods are required. Examples of the many applications these pseudotype particles can be used in include investigation of host cell susceptibility and tropism and testing the effects of virus entry inhibitors to dissect viral entry pathways used.
Collapse
Affiliation(s)
- Jean K Millet
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University; INRA, Virologie et Immunologie Moléculaires
| | - Tiffany Tang
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University
| | - Lakshmi Nathan
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University
| | - Javier A Jaimes
- Department of Microbiology, College of Agricultural and Life Sciences, Cornell University
| | - Hung-Lun Hsu
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University; Horae Gene Therapy Center, University of Massachusetts Medical School
| | - Susan Daniel
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University
| | - Gary R Whittaker
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University;
| |
Collapse
|
2
|
Li Q, Liu Q, Huang W, Li X, Wang Y. Current status on the development of pseudoviruses for enveloped viruses. Rev Med Virol 2017; 28. [PMID: 29218769 PMCID: PMC7169153 DOI: 10.1002/rmv.1963] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 11/01/2017] [Accepted: 11/02/2017] [Indexed: 12/21/2022]
Abstract
Emerging and reemerging infectious diseases have a strong negative impact on public health. However, because many of these pathogens must be handled in biosafety level, 3 or 4 containment laboratories, research and development of antivirals or vaccines against these diseases are often impeded. Alternative approaches to address this issue have been vigorously pursued, particularly the use of pseudoviruses in place of wild‐type viruses. As pseudoviruses have been deprived of certain gene sequences of the virulent virus, they can be handled in biosafety level 2 laboratories. Importantly, the envelopes of these viral particles may have similar conformational structures to those of the wild‐type viruses, making it feasible to conduct mechanistic investigation on viral entry and to evaluate potential neutralizing antibodies. However, a variety of challenging issues remain, including the production of a sufficient pseudovirus yield and the inability to produce an appropriate pseudotype of certain viruses. This review discusses current progress in the development of pseudoviruses and dissects the factors that contribute to low viral yields.
Collapse
Affiliation(s)
- Qianqian Li
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Qiang Liu
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Weijin Huang
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Xuguang Li
- Division of Regulatory Research, Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, Health Canada, Ottawa, Canada
| | - Youchun Wang
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| |
Collapse
|
3
|
Walsh SR, de Jong JG, van Vloten JP, Gerpe MCR, Santry LA, Wootton SK. Truncation of the enzootic nasal tumor virus envelope protein cytoplasmic tail increases Env-mediated fusion and infectivity. J Gen Virol 2017; 98:108-120. [PMID: 27902399 DOI: 10.1099/jgv.0.000654] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Enzootic nasal tumor virus (ENTV) and Jaagsiekte sheep retrovirus (JSRV) are highly related ovine betaretroviruses that induce nasal and lung tumours in small ruminants, respectively. While the ENTV and JSRV envelope (Env) glycoproteins mediate virus entry using the same cellular receptor, the glycosylphosphatidylinositol-linked protein hyaluronoglucosaminidase, ENTV Env pseudovirions mediate entry into cells from a much more restricted range of species than do JSRV Env pseudovirions. Unlike JSRV Env, ENTV Env does not induce cell fusion at pH 5.0 or above, but rather requires a much lower pH (4.0-4.5) for fusion to occur. The cytoplasmic tail of retroviral envelope proteins is a key modulator of envelope-mediated fusion and pseudotype efficiency, especially in the context of virions composed of heterologous Gag proteins. Here we report that progressive truncation of the ENTV Env cytoplasmic tail improves transduction efficiency of pseudotyped retroviral vectors and that complete truncation of the ENTV Env cytoplasmic tail increases transduction efficiency to wild-type JSRV Env levels by increasing fusogenicity without affecting sensitivity to inhibition by lysosomotropic agents, subcellular localization or efficiency of inclusion into virions. Truncation of the cytoplasmic domain of ENTV Env resulted in a significant advantage in viral entry into all cell types tested, including foetal ovine lung and nasal cells. Taken together, we demonstrate that the cytoplasmic tail modulates the fusion activity of the ENTV Env protein and that truncation of this region enhances Eenv-mediated entry into target cells.
Collapse
Affiliation(s)
- Scott R Walsh
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Jondavid G de Jong
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Jacob P van Vloten
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | | | - Lisa A Santry
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Sarah K Wootton
- Present address: McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada.,Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
4
|
Sanjosé L, Crespo H, Blatti-Cardinaux L, Glaria I, Martínez-Carrasco C, Berriatua E, Amorena B, De Andrés D, Bertoni G, Reina R. Post-entry blockade of small ruminant lentiviruses by wild ruminants. Vet Res 2016; 47:1. [PMID: 26738942 PMCID: PMC4702310 DOI: 10.1186/s13567-015-0288-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 11/13/2015] [Indexed: 11/16/2022] Open
Abstract
Small ruminant lentivirus (SRLV) infection causes losses in the small ruminant industry due to reduced animal production and increased replacement rates. Infection of wild ruminants in close contact with infected domestic animals has been proposed to play a role in SRLV epidemiology, but studies are limited and mostly involve hybrids between wild and domestic animals. In this study, SRLV seropositive red deer, roe deer and mouflon were detected through modified ELISA tests, but virus was not successfully amplified using a set of different PCRs. Apparent restriction of SRLV infection in cervids was not related to the presence of neutralizing antibodies. In vitro cultured skin fibroblastic cells from red deer and fallow deer were permissive to the SRLV entry and integration, but produced low quantities of virus. SRLV got rapidly adapted in vitro to blood-derived macrophages and skin fibroblastic cells from red deer but not from fallow deer. Thus, although direct detection of virus was not successfully achieved in vivo, these findings show the potential susceptibility of wild ruminants to SRLV infection in the case of red deer and, on the other hand, an in vivo SRLV restriction in fallow deer. Altogether these results may highlight the importance of surveilling and controlling SRLV infection in domestic as well as in wild ruminants sharing pasture areas, and may provide new natural tools to control SRLV spread in sheep and goats.
Collapse
Affiliation(s)
- Leticia Sanjosé
- Instituto de Agrobiotecnología (CSIC-Universidad Pública de Navarra-Gobierno de Navarra), Avda, Pamplona, 123, 31192, Mutilva-Navarra, Spain.
| | - Helena Crespo
- Instituto de Agrobiotecnología (CSIC-Universidad Pública de Navarra-Gobierno de Navarra), Avda, Pamplona, 123, 31192, Mutilva-Navarra, Spain.
| | | | - Idoia Glaria
- Instituto de Agrobiotecnología (CSIC-Universidad Pública de Navarra-Gobierno de Navarra), Avda, Pamplona, 123, 31192, Mutilva-Navarra, Spain.
| | - Carlos Martínez-Carrasco
- Animal Health Department, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, 30100, Murcia, Spain.
| | - Eduardo Berriatua
- Animal Health Department, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, 30100, Murcia, Spain.
| | - Beatriz Amorena
- Instituto de Agrobiotecnología (CSIC-Universidad Pública de Navarra-Gobierno de Navarra), Avda, Pamplona, 123, 31192, Mutilva-Navarra, Spain.
| | - Damián De Andrés
- Instituto de Agrobiotecnología (CSIC-Universidad Pública de Navarra-Gobierno de Navarra), Avda, Pamplona, 123, 31192, Mutilva-Navarra, Spain.
| | | | - Ramses Reina
- Instituto de Agrobiotecnología (CSIC-Universidad Pública de Navarra-Gobierno de Navarra), Avda, Pamplona, 123, 31192, Mutilva-Navarra, Spain.
| |
Collapse
|
5
|
Small ruminant lentiviruses: genetic variability, tropism and diagnosis. Viruses 2013; 5:1175-207. [PMID: 23611847 PMCID: PMC3705272 DOI: 10.3390/v5041175] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 04/09/2013] [Accepted: 04/12/2013] [Indexed: 02/05/2023] Open
Abstract
Small ruminant lentiviruses (SRLV) cause a multisystemic chronic disease affecting animal production and welfare. SRLV infections are spread across the world with the exception of Iceland. Success in controlling SRLV spread depends largely on the use of appropriate diagnostic tools, but the existence of a high genetic/antigenic variability among these viruses, the fluctuant levels of antibody against them and the low viral loads found in infected individuals hamper the diagnostic efficacy. SRLV have a marked in vivo tropism towards the monocyte/macrophage lineage and attempts have been made to identify the genome regions involved in tropism, with two main candidates, the LTR and env gene, since LTR contains primer binding sites for viral replication and the env-encoded protein (SU ENV), which mediates the binding of the virus to the host’s cell and has hypervariable regions to escape the humoral immune response. Once inside the host cell, innate immunity may interfere with SRLV replication, but the virus develops counteraction mechanisms to escape, multiply and survive, creating a quasi-species and undergoing compartmentalization events. So far, the mechanisms of organ tropism involved in the development of different disease forms (neurological, arthritic, pulmonary and mammary) are unknown, but different alternatives are proposed. This is an overview of the current state of knowledge on SRLV genetic variability and its implications in tropism as well as in the development of alternative diagnostic assays.
Collapse
|
6
|
[Receptors for animal retroviruses]. Uirusu 2010; 59:223-42. [PMID: 20218331 DOI: 10.2222/jsv.59.223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Diseases caused by animal retroviruses have been recognized since 19th century in veterinary field. Most livestock and companion animals have own retroviruses. To disclose the receptors for these retroviruses will be useful for understanding retroviral pathogenesis, developments of anti-retroviral drugs and vectors for human and animal gene therapies. Of retroviruses in veterinary field, receptors for the following viruses have been identified; equine infectious anemia virus, feline immunodeficiency virus, feline leukemia virus subgroups A, B, C, and T, Jaagsiekte sheep retrovirus, enzootic nasal tumor virus, avian leukosis virus subgroups A, B, C, D, E, and J, reticuloendotheliosis virus, RD-114 virus (a feline endogenous retrovirus), and porcine endogenous retrovirus subgroup A. Primate lentiviruses require two molecules (CD4 and chemokine receptors such as CXCR4) as receptors. Likewise, feline immunodeficiency virus also requires two molecules, i.e., CD134 (an activation marker of CD4 T cells) and CXCR4 in infection. Gammaretroviruses utilize multi-spanning transmembrane proteins, most of which are transporters of amino acids, vitamins and inorganic ions. Betaretroviruses and alpharetroviruses utilize transmembrane and/or GPI-anchored proteins as receptors. In this review, I overviewed receptors for animal retroviruses in veterinary field.
Collapse
|
7
|
Germain K, Croise B, Valas S. Field evaluation of a gag/env heteroduplex mobility assay for genetic subtyping of small-ruminant lentiviruses. J Gen Virol 2008; 89:2020-2028. [PMID: 18632974 DOI: 10.1099/vir.0.2008/000851-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Small-ruminant lentiviruses (SRLVs) display a high genetic diversity and are currently classified into five genotypes and an increasing number of subtypes. The co-circulation of subtypes in restricted geographical regions, combined with the occurrence of cross-species infection, suggests the need for development of a large-scale screening methodology for rapid monitoring of the prevalence of the various genetic subtypes and their genetic evolution. Here, a heteroduplex mobility assay (HMA) was developed for the rapid identification of group B subtypes. The assay was validated for both the p14 nucleocapsid-coding region of the gag gene and the V1-V2 region of the env gene using a panel of reference standards and was applied to the genetic subtyping of SRLV field isolates from five mixed flocks in France. Subtyping of 75 blood samples using the env HMA revealed a preferential distribution of subtypes B1 and B2 in sheep and goats, despite direct evidence for interspecies transmission of both subtypes. Adding the gag HMA to the env HMA provided evidence for dual infection and putative recombination between subtypes B1 and B2 in five goats, and between groups A and B in one sheep. Phylogenetic analysis revealed that 100 % (23/23) and 96.7 % (30/31) of samples were correctly classified using the gag and env HMAs, respectively. These results indicate that dual infection and recombination may be a significant source of new variation in SRLV and provide a useful tool for the rapid genetic subtyping of SRLV isolates, which could be relevant for the development of more accurate diagnosis of prevalent SRLV strains in different countries.
Collapse
Affiliation(s)
- Karine Germain
- Agence Française de Securite Sanitaire des Aliments (AFSSA), Laboratoire d'Etudes et de Recherches Caprines, Niort, France
| | - Benoit Croise
- Agence Française de Securite Sanitaire des Aliments (AFSSA), Laboratoire d'Etudes et de Recherches Caprines, Niort, France
| | - Stephen Valas
- Agence Française de Securite Sanitaire des Aliments (AFSSA), Laboratoire d'Etudes et de Recherches Caprines, Niort, France
| |
Collapse
|
8
|
Klewitz C, Klenk HD, Ter Meulen J. Amino acids from both N-terminal hydrophobic regions of the Lassa virus envelope glycoprotein GP-2 are critical for pH-dependent membrane fusion and infectivity. J Gen Virol 2007; 88:2320-2328. [PMID: 17622638 DOI: 10.1099/vir.0.82950-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Lassa virus glycoprotein 2 (LASV GP-2) belongs to the class I fusion protein family. Its N terminus contains two stretches of highly conserved hydrophobic amino acids (residues 260-266 and 276-298) that have been proposed as N-terminal or internal fusion peptide segments (N-FPS, I-FPS) by analogy with similar sequences of other viral glycoproteins or based on experimental data obtained with synthetic peptides, respectively. By using a pH-dependent, recombinant LASV glycoprotein mediated cell-cell fusion assay and a retroviral pseudotype infectivity assay, an alanine scan of all hydrophobic amino acids within both proposed FPSs was performed. Fusogenicity and infectivity were correlated, both requiring correct processing of the glycoprotein precursor. Most point mutations in either FPS accounted for reduced or abolished fusion or infection, respectively. Some mutations also had an effect on pre-fusion steps of virus entry, possibly by inducing structural changes in the glycoprotein. The data demonstrate that several amino acids from both hydrophobic regions of the N terminus, some of which (W264, G277, Y278 and L280) are 100 % conserved in all arenaviruses, are involved in fusogenicity and infectivity of LASV GP-2.
Collapse
Affiliation(s)
- Christian Klewitz
- The Institute for Virology, Philipps University, Hans-Meerwein-Straße 3, 35043 Marburg, Germany
| | - Hans-Dieter Klenk
- The Institute for Virology, Philipps University, Hans-Meerwein-Straße 3, 35043 Marburg, Germany
| | - Jan Ter Meulen
- Crucell Holland BV, PO Box 2048, 2301 CA Leiden, The Netherlands
- The Institute for Virology, Philipps University, Hans-Meerwein-Straße 3, 35043 Marburg, Germany
| |
Collapse
|
9
|
Oskarsson T, Hreggvidsdóttir HS, Agnarsdóttir G, Matthíasdóttir S, Ogmundsdóttir MH, Jónsson SR, Georgsson G, Ingvarsson S, Andrésson OS, Andrésdóttir V. Duplicated sequence motif in the long terminal repeat of maedi-visna virus extends cell tropism and is associated with neurovirulence. J Virol 2007; 81:4052-7. [PMID: 17287273 PMCID: PMC1866131 DOI: 10.1128/jvi.02319-06] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2006] [Accepted: 01/26/2007] [Indexed: 11/20/2022] Open
Abstract
Maedi-visna virus (MVV) is a lentivirus of sheep causing chronic inflammatory disease of the lungs (maedi) and the nervous system (visna). We have previously shown that a duplicated sequence in the long terminal repeat (LTR) of MVV is a determinant of cell tropism. Here, we demonstrate that deletion of a CAAAT sequence from either one of the repeats resulted in poor virus growth in sheep choroid plexus cells. A duplication in the LTR encompassing the CAAAT sequence was found in four neurological field cases that were sequenced, but no duplication was present in the LTRs from seven maedi cases; one maedi isolate was mixed. These results indicate that the duplication in the LTR is associated with neurovirulence.
Collapse
Affiliation(s)
- Thórdur Oskarsson
- Institute for Experimental Pathology, University of Iceland, Keldur v/Vesturlandsveg, 112 Reykjavik, Iceland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Brellou GD, Angelopoulou K, Poutahidis T, Vlemmas I. Detection of maedi-visna virus in the liver and heart of naturally infected sheep. J Comp Pathol 2007; 136:27-35. [PMID: 17258227 DOI: 10.1016/j.jcpa.2006.10.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2006] [Accepted: 10/05/2006] [Indexed: 10/23/2022]
Abstract
Maedi-visna virus (MVV) in sheep, which infects mainly cells of the monocyte/macrophage lineage, produces changes in the lung, mammary gland, brain and joints. In this study, however, the liver and heart of six naturally infected sheep were examined for the presence of the virus. MVV proviral DNA was demonstrated by polymerase chain reaction (PCR) analysis, and immunohistochemical examination revealed viral antigens in the cytoplasm of hepatocytes and cardiac myocytes. Although histopathological examination showed mild to moderate, chronic lymphocytic cholangiohepatitis and myocarditis and the presence of small lymphoid aggregates, the typical maedi lymphoproliferative lesions (lymphoid follicle-like structures of considerable size with germinal centres) were not seen in the liver and heart. These novel findings suggest that, although the macrophage is the main cell for productive viral replication, the liver and heart represent additional MVV targets.
Collapse
Affiliation(s)
- G D Brellou
- Laboratory of Pathology, School of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | | | | | | |
Collapse
|
11
|
Germain K, Valas S. Distribution and heterogeneity of small ruminant lentivirus envelope subtypes in naturally infected French sheep. Virus Res 2006; 120:156-62. [PMID: 16616391 DOI: 10.1016/j.virusres.2006.03.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2005] [Revised: 02/21/2006] [Accepted: 03/01/2006] [Indexed: 11/16/2022]
Abstract
Small ruminants lentiviruses (SRLV) nucleotide sequences spanning the V1V2 variable regions of the env gene were amplified by nested-PCR from 38 blood samples collected from 16 naturally infected sheep flocks in France. For the rapid SRLV group determination of field isolates, the PCR-amplified fragments were subjected to a SRLV-adapted heteroduplex mobility assay (HMA). All viral sequences were clearly assignable to the SRLV group B by HMA analysis. Twenty-seven SRLV isolates were selected for DNA sequence analysis. In each case, nucleotide comparison and phylogenetic analyses confirmed the genetic relationships inferred by HMA. Six SRLV isolates belonged to subtype B1, and 21 pertained to subtype B2, one flock being infected with both subtypes. Subtypes B1 and B2 were found with different frequencies and geographic spread, but exhibited similar genetic diversities. These results give a more complete picture of the distribution and heterogeneity of SRLV env subtypes in sheep and confirmed that multiple interspecies transmission occurred in the past. Furthermore, HMA appeared to be a rapid and reliable method to differentiate caprine arthritis encephalitis virus from maedi-visna virus.
Collapse
Affiliation(s)
- Karine Germain
- Agence Française de Sécurité Sanitaire des Aliments, Laboratoire d'Etudes et de Recherches Caprines, B.P. 3081, 60 rue de Pied de Fond, F-79012 Niort Cedex, France
| | | |
Collapse
|
12
|
Rue SM, Roos JW, Tarwater PM, Clements JE, Barber SA. Phosphorylation and proteolytic cleavage of gag proteins in budded simian immunodeficiency virus. J Virol 2005; 79:2484-92. [PMID: 15681449 PMCID: PMC546538 DOI: 10.1128/jvi.79.4.2484-2492.2005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The lentiviral Gag polyprotein (Pr55(Gag)) is cleaved by the viral protease during the late stages of the virus life cycle. Proteolytic cleavage of Pr55(Gag) is necessary for virion maturation, a structural rearrangement required for infectivity that occurs in budded virions. In this study, we investigate the relationship between phosphorylation of capsid (CA) domains in Pr55(Gag) and its cleavage intermediates and their cleavage by the viral protease in simian immunodeficiency virus (SIV). First, we demonstrate that phosphorylated forms of Pr55(Gag), several CA-containing cleavage intermediates of Pr55(Gag), and the free CA protein are detectable in SIV virions but not in virus-producing cells, indicating that phosphorylation of these CA-containing Gag proteins may require an environment that is unique to the virion. Second, we show that the CA domain of Pr55(Gag) can be phosphorylated in budded virus and that this phosphorylation does not require the presence of an active viral protease. Further, we provide evidence that CA domains (i.e., incompletely cleaved CA) are phosphorylated to a greater extent than free (completely cleaved) CA and that CA-containing Gag proteins can be cleaved by the viral protease in SIV virions. Finally, we demonstrate that Pr55(Gag) and several of its intermediates, but not free CA, are actively phosphorylated in budded virus. Taken together, these data indicate that, in SIV virions, phosphorylation of CA domains in Pr55(Gag) and several of its cleavage intermediates likely precedes the cleavage of these domains by the viral protease.
Collapse
Affiliation(s)
- Sarah M Rue
- Department of Comparative Medicine, John Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | | | |
Collapse
|
13
|
Rue SM, Roos JW, Clements JE, Barber SA. Conserved serines in simian immunodeficiency virus capsid are required for virus budding. Virology 2005; 336:37-50. [PMID: 15866069 DOI: 10.1016/j.virol.2005.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2004] [Revised: 11/13/2004] [Accepted: 03/04/2005] [Indexed: 10/25/2022]
Abstract
The simian immunodeficiency virus (SIV) capsid protein (CA), a constituent of the Pr55Gag polyprotein, is phosphorylated in virions but not in virus-producing cells (Rue, S.M., Roos, J.W., Tarwater, P.M., Clements, J.E., Barber, S.A., 2005. Phosphorylation and proteolytic cleavage of gag proteins in budded simian immunodeficiency virus. J. Virol. 79 (4), 2484-2492.). Using phosphoamino acid analysis of CA, we show that serine is the primary phosphate acceptor. A series of substitution mutants of serines in the CA domain of Pr55Gag were constructed in the infectious viral clone SIVmac239. These virus mutants were examined for defects in virus replication and virion infectivity, release, and morphology, as well as alterations in phosphorylation of CA-containing proteins. Although the virus mutants exhibited a number of replication defects, none of these defects could be directly attributed to aberrant CA phosphorylation. A novel defect was a block in early budding, which was common among several virus mutants with substitutions in the CA N terminus. Together, these results indicate that certain residues in the CA N terminus are crucial for early budding events.
Collapse
Affiliation(s)
- Sarah M Rue
- Department of Comparative Medicine, Johns Hopkins University School of Medicine, 733 N. Broadway, Room 831, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
14
|
Meyer K, Beyene A, Bowlin TL, Basu A, Ray R. Coexpression of hepatitis C virus E1 and E2 chimeric envelope glycoproteins displays separable ligand sensitivity and increases pseudotype infectious titer. J Virol 2004; 78:12838-47. [PMID: 15542636 PMCID: PMC524985 DOI: 10.1128/jvi.78.23.12838-12847.2004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2004] [Accepted: 07/22/2004] [Indexed: 02/05/2023] Open
Abstract
We have previously reported that a pseudotype virus generated by reconstitution of hepatitis C virus (HCV) chimeric envelope glycoprotein E1-G or E2-G on the surface of a temperature-sensitive mutant of vesicular stomatitis virus (VSVts045) interacts independently with mammalian cells to initiate infection. Here, we examined whether coexpression of both of the envelope glycoproteins on pseudotype particles would augment virus infectivity and/or alter the functional properties of the individual subunits. Stable transfectants of baby hamster kidney (BHK) epithelial cells expressing either one or both of the chimeric envelope glycoproteins of HCV on the cell surface were generated. The infectious titer of the VSV pseudotype, derived from a stable cell line incorporating both of the chimeric glycoproteins of HCV, was approximately 4- to 5-fold higher than that of a pseudotype bearing E1-G alone or approximately 25- to 30-fold higher than that of E2-G alone when assayed with a number of mammalian cell lines. Further studies suggested that that the E1-G/E2-G or E2-G pseudotype was more sensitive to the inhibitory effect of heparin than the E1-G pseudotype. Treatment of the E1-G/E2-G pseudotype with a negatively charged sulfated sialyl lipid (NMSO3) displayed a approximately 4-fold-higher sensitivity to neutralization than pseudotypes with either of the two individual glycoproteins. In contrast, VSVts045, used as a backbone for the generation of pseudotypes, displayed at least 20-fold-higher sensitivity to NMSO3-mediated inhibition of virus plaque formation. The effect of low-density lipoprotein on the E1-G pseudotype was greater than that apparent for the E1-G/E2-G pseudotype. The treatment of cells with monoclonal antibodies to CD81 displayed an inhibitory effect upon the pseudotype with E1-G/E2-G or with E2-G alone. Taken together, our results indicate that the HCV E1 and E2 glycoproteins have separable functional properties and that the presence of these two envelope glycoproteins on VSV/HCV pseudotype particles increases infectious titer.
Collapse
Affiliation(s)
- Keith Meyer
- Division of Infectious Diseases and Immunology, Saint Louis University, 3635 Vista Ave., FDT-8N, St. Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
15
|
Rue SM, Roos JW, Amzel LM, Clements JE, Barber SA. Hydrogen bonding at a conserved threonine in lentivirus capsid is required for virus replication. J Virol 2003; 77:8009-18. [PMID: 12829840 PMCID: PMC161920 DOI: 10.1128/jvi.77.14.8009-8018.2003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The N terminus of the capsid protein (CA) undergoes a considerable conformational change when the human immunodeficiency virus (HIV) protease cleaves it free from the Pr55(Gag) polyprotein. This rearrangement is thought to facilitate the establishment of specific CA-CA interactions that are required for the formation of the mature viral core. Substitution of amino acids that are critical for this refolding of the N terminus is generally detrimental to virus replication and mature virion core morphology. Here, we identify a conserved threonine in simian immunodeficiency virus (SIV) CA, T(47)(CA), that is requisite for viral replication. Replacement of T(47)(CA) in the infectious viral clone SIVmac239 with amino acids with different hydrogen-bonding capabilities and analysis of the effects of these substitutions at key steps in the viral life cycle demonstrate that hydrogen bonding at this position is important for virus infectivity and virion release. In the HIV-based homology model of the mature SIV CA N terminus presented in this study, T(47)(CA) forms several hydrogen bonds with a proximal aspartate, D(50)(CA). This model, coupled with strong phenotypic similarities between viral substitution mutants of each of these two residues in all of the virological assays described herein, indicates that hydrogen bonding between T(47)(CA) and D(50)(CA) is likely required for viral replication. As hydrogen bonding between these two residues is present in HIV CA as well, this interaction presents a potential target for antiviral drug design.
Collapse
Affiliation(s)
- Sarah M Rue
- Department of Comparative Medicine, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Baltimore, MD 21287, USA
| | | | | | | | | |
Collapse
|
16
|
Abstract
CD4 is the principal binding site for human and simian immunodeficiency virus (HIV/SIV) receptor interactions and the a chemokine receptor CXCR4 has been implicated as a primordial lentivirus receptor. This study sought to determine the relevance of CD4 and CXCR4 in virus-receptor interactions for the prototype lentivirus, maedi-visna virus (MVV) of sheep. Neither CD4 nor alpha/beta chemokine receptors represent principal receptors for MVV since human osteosarcoma cells devoid of these molecules were susceptible to productive infection. Interestingly, the presence of either CD4 and/or CXCR4 on indicator cells dramatically enhanced MVV-induced cell fusion (syncytium formation) for three independent virus strains. Syncytium formation results from virus-receptor interactions and can be inhibited by receptor ligands. However, neither SDF-la that binds CXCR4 nor recombinant gp120 (rgp120) that binds CD4 could specifically inhibit the observed enhancement of MVV-induced cell fusion under conditions that significantly reduced HIV-1-induced cell fusion. Our observations suggest that CD4 and CXCR4 may represent optional auxiliary components of an MVV receptor (or receptor complex) that facilitate MVV-mediated membrane fusion events, a feature important for virus entry. This potential accessory role for CXCR4 in MW receptor interactions may reflect the distant relationship between the ovine (MVV) and the human/feline lentiviruses (HIV/FIV).
Collapse
Affiliation(s)
- Arnt-Ove Hovden
- Department of Molecular Biology, The Gade Institute, University of Bergen, Bergen High Technology Centre, Bergen, Norway
| | | |
Collapse
|
17
|
Abstract
Pseudotyped vectors can be used to introduce genes into cells or to study the entry process of the virus from which the outer shell of the recombinant virus is derived. Recently, several novel pseudotyped retroviruses and lentiviruses have been constructed. Virus vectors pseudotyped with an alphavirus glycoprotein hold special promise. The increasing diversity of the available pseudotyped vectors offers expanded opportunities for gene transfer to specific cells.
Collapse
Affiliation(s)
- David Avram Sanders
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
18
|
Hötzel I, Cheevers WP. A maedi-visna virus strain K1514 receptor gene is located in sheep chromosome 3p and the syntenic region of human chromosome 2. J Gen Virol 2002; 83:1759-1764. [PMID: 12075096 DOI: 10.1099/0022-1317-83-7-1759] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The maedi-visna lentivirus (MVV) induces encephalitis, interstitial pneumonia, arthritis and mastitis in sheep. While some MVV strains can enter cells of ruminant species only, others can enter cells from many species, including human, but not Chinese hamster cells. However, the identity of the receptor(s) used by MVV for entry is unknown. The MVV-K1514 receptor gene was localized in sheep and human chromosomes using hamster x sheep and hamster x human hybrid cell lines. Based on entry by a vector pseudotyped with the MVV-K1514 envelope, the MVV-K1514 receptor gene was mapped to sheep chromosome 3p and to a region of human chromosome 2 (2p25>q13), which has conserved synteny with sheep chromosome 3p. These regions do not include any known lentivirus receptor or coreceptor gene, indicating that MVV-K1514 uses a new lentivirus receptor to infect human cells.
Collapse
Affiliation(s)
- Isidro Hötzel
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164-7040, USA1
| | - William P Cheevers
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164-7040, USA1
| |
Collapse
|