1
|
Tamura T, Yamamoto H, Ogino S, Morioka Y, Tsujino S, Suzuki R, Hiono T, Suzuki S, Isoda N, Sakoda Y, Fukuhara T. A rapid and versatile reverse genetics approach for generating recombinant positive-strand RNA viruses that use IRES-mediated translation. J Virol 2024; 98:e0163823. [PMID: 38353536 PMCID: PMC10949505 DOI: 10.1128/jvi.01638-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/24/2024] [Indexed: 03/20/2024] Open
Abstract
Reverse genetics systems have played a central role in developing recombinant viruses for a wide spectrum of virus research. The circular polymerase extension reaction (CPER) method has been applied to studying positive-strand RNA viruses, allowing researchers to bypass molecular cloning of viral cDNA clones and thus leading to the rapid generation of recombinant viruses. However, thus far, the CPER protocol has only been established using cap-dependent RNA viruses. Here, we demonstrate that a modified version of the CPER method can be successfully applied to positive-strand RNA viruses that use cap-independent, internal ribosomal entry site (IRES)-mediated translation. As a proof-of-concept, we employed mammalian viruses with different types (classes I, II, and III) of IRES to optimize the CPER method. Using the hepatitis C virus (HCV, class III), we found that inclusion in the CPER assembly of an RNA polymerase I promoter and terminator, instead of those from polymerase II, allowed greater viral production. This approach was also successful in generating recombinant bovine viral diarrhea virus (class III) following transfection of MDBK/293T co-cultures to overcome low transfection efficiency. In addition, we successfully generated the recombinant viruses from clinical specimens. Our modified CPER could be used for producing hepatitis A virus (HAV, type I) as well as de novo generation of encephalomyocarditis virus (type II). Finally, we generated recombinant HCV and HAV reporter viruses that exhibited replication comparable to that of the wild-type parental viruses. The recombinant HAV reporter virus helped evaluate antivirals. Taking the findings together, this study offers methodological advances in virology. IMPORTANCE The lack of versatility of reverse genetics systems remains a bottleneck in viral research. Especially when (re-)emerging viruses reach pandemic levels, rapid characterization and establishment of effective countermeasures using recombinant viruses are beneficial in disease control. Indeed, numerous studies have attempted to establish and improve the methods. The circular polymerase extension reaction (CPER) method has overcome major obstacles in generating recombinant viruses. However, this method has not yet been examined for positive-strand RNA viruses that use cap-independent, internal ribosome entry site-mediated translation. Here, we engineered a suitable gene cassette to expand the CPER method for all positive-strand RNA viruses. Furthermore, we overcame the difficulty of generating recombinant viruses because of low transfection efficiency. Using this modified method, we also successfully generated reporter viruses and recombinant viruses from a field sample without virus isolation. Taking these findings together, our adapted methodology is an innovative technology that could help advance virologic research.
Collapse
Affiliation(s)
- Tomokazu Tamura
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development (IVReD), Hokkaido University, Sapporo, Japan
- One Health Research Center, Hokkaido University, Sapporo, Japan
| | - Hirotaka Yamamoto
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Saho Ogino
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Yuhei Morioka
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
- Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Shuhei Tsujino
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Rigel Suzuki
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development (IVReD), Hokkaido University, Sapporo, Japan
| | - Takahiro Hiono
- Institute for Vaccine Research and Development (IVReD), Hokkaido University, Sapporo, Japan
- One Health Research Center, Hokkaido University, Sapporo, Japan
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Saori Suzuki
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development (IVReD), Hokkaido University, Sapporo, Japan
| | - Norikazu Isoda
- Institute for Vaccine Research and Development (IVReD), Hokkaido University, Sapporo, Japan
- One Health Research Center, Hokkaido University, Sapporo, Japan
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Yoshihiro Sakoda
- Institute for Vaccine Research and Development (IVReD), Hokkaido University, Sapporo, Japan
- One Health Research Center, Hokkaido University, Sapporo, Japan
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Takasuke Fukuhara
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development (IVReD), Hokkaido University, Sapporo, Japan
- One Health Research Center, Hokkaido University, Sapporo, Japan
- Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
- AMED-CREST, Japan Agency for Medical Research and Development (AMED), Tokyo, Japan
| |
Collapse
|
2
|
Basal expression of interferon regulatory factor 1 drives intrinsic hepatocyte resistance to multiple RNA viruses. Nat Microbiol 2019; 4:1096-1104. [PMID: 30988429 PMCID: PMC6588457 DOI: 10.1038/s41564-019-0425-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/06/2019] [Indexed: 12/13/2022]
Abstract
Current paradigms of cell intrinsic immunity to RNA viruses center on virus-triggered inducible antiviral responses initiated by RIG-I-like receptors (RLRs) or Toll-like receptors (TLRs) that sense pathogen-associated molecular patterns, and signal downstream through interferon regulatory factors (IRFs), transcription factors that induce synthesis of type I and type III interferons (IFNs)1. RNA viruses have evolved sophisticated strategies to disrupt these signaling pathways and evade elimination by cells, attesting to their importance2. Less attention has been paid how IRFs maintain basal levels of protection against viruses. Here, we depleted antiviral factors linked to RLR and TLR signaling in order to map critical host pathways restricting positive-strand RNA virus replication in immortalized hepatocytes and identified an unexpected role for IRF1. We show constitutively expressed IRF1 acts independently of MAVS, IRF3, and STAT1-dependent signaling to provide intrinsic antiviral protection in actinomycin D-treated cells. IRF1 localizes to the nucleus, where it maintains basal transcription of a suite of antiviral genes that protect against multiple pathogenic RNA viruses, including hepatitis A and C viruses (HAV and HCV), dengue virus (DENV) and Zika virus (ZIKV). Our findings reveal an unappreciated layer of hepatocyte intrinsic immunity to these positive-strand RNA viruses, and identify previously unrecognized antiviral effector genes.
Collapse
|
3
|
Sander AL, Corman VM, Lukashev AN, Drexler JF. Evolutionary Origins of Enteric Hepatitis Viruses. Cold Spring Harb Perspect Med 2018; 8:cshperspect.a031690. [PMID: 29610146 DOI: 10.1101/cshperspect.a031690] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The enterically transmitted hepatitis A (HAV) and hepatitis E viruses (HEV) are the leading causes of acute viral hepatitis in humans. Despite the discovery of HAV and HEV 40-50 years ago, their evolutionary origins remain unclear. Recent discoveries of numerous nonprimate hepatoviruses and hepeviruses allow revisiting the evolutionary history of these viruses. In this review, we provide detailed phylogenomic analyses of primate and nonprimate hepatoviruses and hepeviruses. We identify conserved and divergent genomic properties and corroborate historical interspecies transmissions by phylogenetic comparisons and recombination analyses. We discuss the likely non-recent origins of human HAV and HEV precursors carried by mammals other than primates, and detail current zoonotic HEV infections. The novel nonprimate hepatoviruses and hepeviruses offer exciting new possibilities for future research focusing on host range and the unique biological properties of HAV and HEV.
Collapse
Affiliation(s)
- Anna-Lena Sander
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Berlin 10117, Germany.,German Center for Infection Research (DZIF), Germany
| | - Victor Max Corman
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Berlin 10117, Germany.,German Center for Infection Research (DZIF), Germany
| | - Alexander N Lukashev
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, 119991 Moscow, Russia.,Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Preparations, 142782 Moscow, Russia
| | - Jan Felix Drexler
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Berlin 10117, Germany.,German Center for Infection Research (DZIF), Germany
| |
Collapse
|
4
|
A Recombinant HAV Expressing a Neutralization Epitope of HEV Induces Immune Response against HAV and HEV in Mice. Viruses 2017; 9:v9090260. [PMID: 28914805 PMCID: PMC5618026 DOI: 10.3390/v9090260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 09/03/2017] [Accepted: 09/09/2017] [Indexed: 01/29/2023] Open
Abstract
Hepatitis A virus (HAV) and hepatitis E virus (HEV) are causative agents of acute viral hepatitis transmitted via the fecal–oral route. Both viruses place a heavy burden on the public health and economy of developing countries. To test the possibility that HAV could be used as an expression vector for the development of a combination vaccine against hepatitis A and E infections, recombinant HAV-HEp148 was created as a vector to express an HEV neutralization epitope (HEp148) located at aa 459–606 of the HEV capsid protein. The recombinant virus expressed the HEp148 protein in a partially dimerized state in HAV-susceptible cells. Immunization with the HAV-HEp148 virus induced a strong HAV- and HEV-specific immune response in mice. Thus, the present study demonstrates a novel approach to the development of a combined hepatitis A and E vaccine.
Collapse
|
5
|
Yang X, Cheng A, Wang M, Jia R, Sun K, Pan K, Yang Q, Wu Y, Zhu D, Chen S, Liu M, Zhao XX, Chen X. Structures and Corresponding Functions of Five Types of Picornaviral 2A Proteins. Front Microbiol 2017; 8:1373. [PMID: 28785248 PMCID: PMC5519566 DOI: 10.3389/fmicb.2017.01373] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 07/06/2017] [Indexed: 11/27/2022] Open
Abstract
Among the few non-structural proteins encoded by the picornaviral genome, the 2A protein is particularly special, irrespective of structure or function. During the evolution of the Picornaviridae family, the 2A protein has been highly non-conserved. We believe that the 2A protein in this family can be classified into at least five distinct types according to previous studies. These five types are (A) chymotrypsin-like 2A, (B) Parechovirus-like 2A, (C) hepatitis-A-virus-like 2A, (D) Aphthovirus-like 2A, and (E) 2A sequence of the genus Cardiovirus. We carried out a phylogenetic analysis and found that there was almost no homology between each type. Subsequently, we aligned the sequences within each type and found that the functional motifs in each type are highly conserved. These different motifs perform different functions. Therefore, in this review, we introduce the structures and functions of these five types of 2As separately. Based on the structures and functions, we provide suggestions to combat picornaviruses. The complexity and diversity of the 2A protein has caused great difficulties in functional and antiviral research. In this review, researchers can find useful information on the 2A protein and thus conduct improved antiviral research.
Collapse
Affiliation(s)
- Xiaoyao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural UniversityChengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural UniversityChengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural UniversityChengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural UniversityChengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Kunfeng Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural UniversityChengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Kangcheng Pan
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural UniversityChengdu, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural UniversityChengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural UniversityChengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural UniversityChengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural UniversityChengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural UniversityChengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Xin-Xin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural UniversityChengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Xiaoyue Chen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural UniversityChengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| |
Collapse
|
6
|
Dey D, Banerjee M. Inhibitor-Based Therapeutics for Treatment of Viral Hepatitis. J Clin Transl Hepatol 2016; 4:248-257. [PMID: 27777893 PMCID: PMC5075008 DOI: 10.14218/jcth.2016.00025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 09/14/2016] [Accepted: 09/14/2016] [Indexed: 12/12/2022] Open
Abstract
Viral hepatitis remains a significant worldwide threat, in spite of the availability of several successful therapeutic and vaccination strategies. Complications associated with acute and chronic infections, such as liver failure, cirrhosis and hepatocellular carcinoma, are the cause of considerable morbidity and mortality. Given the significant burden on the healthcare system caused by viral hepatitis, it is essential that novel, more effective therapeutics be developed. The present review attempts to summarize the current treatments against viral hepatitis, and provides an outline for upcoming, promising new therapeutics. Development of novel therapeutics requires an understanding of the viral life cycles and viral effectors in molecular detail. As such, this review also discusses virally-encoded effectors, found to be essential for virus survival and replication in the host milieu, which may be utilized as potential candidates for development of alternative therapies in the future.
Collapse
Affiliation(s)
- Debajit Dey
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
| | - Manidipa Banerjee
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
- *Correspondence to: Dr. Manidipa Banerjee, Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Block 1A, Hauz Khas, New Delhi 110016, India. Tel: +91-11-26597538, Fax: +91-11-26597530, E-mail:
| |
Collapse
|
7
|
Abstract
Hepatitis A virus (HAV) is an ancient and ubiquitous human pathogen recovered previously only from primates. The sole species of the genus Hepatovirus, existing in both enveloped and nonenveloped forms, and with a capsid structure intermediate between that of insect viruses and mammalian picornaviruses, HAV is enigmatic in its origins. We conducted a targeted search for hepatoviruses in 15,987 specimens collected from 209 small mammal species globally and discovered highly diversified viruses in bats, rodents, hedgehogs, and shrews, which by pairwise sequence distance comprise 13 novel Hepatovirus species. Near-complete genomes from nine of these species show conservation of unique hepatovirus features, including predicted internal ribosome entry site structure, a truncated VP4 capsid protein lacking N-terminal myristoylation, a carboxyl-terminal pX extension of VP1, VP2 late domains involved in membrane envelopment, and a cis-acting replication element within the 3D(pol) sequence. Antibodies in some bat sera immunoprecipitated and neutralized human HAV, suggesting conservation of critical antigenic determinants. Limited phylogenetic cosegregation among hepatoviruses and their hosts and recombination patterns are indicative of major hepatovirus host shifts in the past. Ancestral state reconstructions suggest a Hepatovirus origin in small insectivorous mammals and a rodent origin of human HAV. Patterns of infection in small mammals mimicked those of human HAV in hepatotropism, fecal shedding, acute nature, and extinction of the virus in a closed host population. The evolutionary conservation of hepatovirus structure and pathogenesis provide novel insight into the origins of HAV and highlight the utility of analyzing animal reservoirs for risk assessment of emerging viruses.
Collapse
|
8
|
Hepatitis A virus: host interactions, molecular epidemiology and evolution. INFECTION GENETICS AND EVOLUTION 2013; 21:227-43. [PMID: 24200587 DOI: 10.1016/j.meegid.2013.10.023] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Revised: 10/25/2013] [Accepted: 10/26/2013] [Indexed: 12/16/2022]
Abstract
Infection with hepatitis A virus (HAV) is the commonest viral cause of liver disease and presents an important public health problem worldwide. Several unique HAV properties and molecular mechanisms of its interaction with host were recently discovered and should aid in clarifying the pathogenesis of hepatitis A. Genetic characterization of HAV strains have resulted in the identification of different genotypes and subtypes, which exhibit a characteristic worldwide distribution. Shifts in HAV endemicity occurring in different parts of the world, introduction of genetically diverse strains from geographically distant regions, genotype displacement observed in some countries and population expansion detected in the last decades of the 20th century using phylogenetic analysis are important factors contributing to the complex dynamics of HAV infections worldwide. Strong selection pressures, some of which, like usage of deoptimized codons, are unique to HAV, limit genetic variability of the virus. Analysis of subgenomic regions has been proven useful for outbreak investigations. However, sharing short sequences among epidemiologically unrelated strains indicates that specific identification of HAV strains for molecular surveillance can be achieved only using whole-genome sequences. Here, we present up-to-date information on the HAV molecular epidemiology and evolution, and highlight the most relevant features of the HAV-host interactions.
Collapse
|
9
|
Li P, Bai X, Cao Y, Han C, Lu Z, Sun P, Yin H, Liu Z. Expression and stability of foreign epitopes introduced into 3A nonstructural protein of foot-and-mouth disease virus. PLoS One 2012; 7:e41486. [PMID: 22848509 PMCID: PMC3407237 DOI: 10.1371/journal.pone.0041486] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 06/21/2012] [Indexed: 11/19/2022] Open
Abstract
Foot-and-mouth disease virus (FMDV) is an aphthovirus that belongs to the Picornaviridae family and causes one of the most important animal diseases worldwide. The capacity of other picornaviruses to express foreign antigens has been extensively reported, however, little is known about FMDV. To explore the potential of FMDV as a viral vector, an 11-amino-acid (aa) HSV epitope and an 8 aa FLAG epitope were introduced into the C-terminal different regions of 3A protein of FMDV full-length infectious cDNA clone. Recombinant viruses expressing the HSV or FLAG epitope were successfully rescued after transfection of both modified constructs. Immunofluorescence assay, Western blot and sequence analysis showed that the recombinant viruses stably maintained the foreign epitopes even after 11 serial passages in BHK-21 cells. The 3A-tagged viruses shared similar plaque phenotypes and replication kinetics to those of the parental virus. In addition, mice experimentally infected with the epitope-tagged viruses could induce tag-specific antibodies. Our results demonstrate that FMDV can be used effectively as a viral vector for the delivery of foreign tags.
Collapse
Affiliation(s)
- Pinghua Li
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Xingwen Bai
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Yimei Cao
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Chenghao Han
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Zengjun Lu
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Pu Sun
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Hong Yin
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- * E-mail: (HY); (ZXL)
| | - Zaixin Liu
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- * E-mail: (HY); (ZXL)
| |
Collapse
|
10
|
Konduru K, Nakamura SM, Kaplan GG. Hepatitis A virus (HAV) packaging size limit. Virol J 2009; 6:204. [PMID: 19922643 PMCID: PMC2787512 DOI: 10.1186/1743-422x-6-204] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Accepted: 11/18/2009] [Indexed: 12/02/2022] Open
Abstract
Background Hepatitis A virus (HAV), an atypical Picornaviridae that causes acute hepatitis in humans, grows poorly in cell culture and in general does not cause cytopathic effect. Foreign sequences have been inserted into different parts of the HAV genome. However, the packaging size limit of HAV has not been determined. The purpose of the present study is to investigate the maximum size of additional sequences that the HAV genome can tolerate without loosing infectivity. Results In vitro T7 polymerase transcripts of HAV constructs containing a 456-nt fragment coding for a blasticidin (Bsd) resistance gene, a 1,098-nt fragment coding for the same gene fused to GFP (GFP-Bsd), or a 1,032-nt fragment containing a hygromycin (Hyg) resistance gene cloned into the 2A-2B junction of the HAV genome were transfected into fetal Rhesus monkey kidney (FRhK4) cells. After antibiotic selection, cells transfected with the HAV construct containing the resistance gene for Bsd but not the GFP-Bsd or Hyg survived and formed colonies. To determine whether this size limitation was due to the position of the insertion, a 606 bp fragment coding for the Encephalomyocarditis virus (EMCV) internal ribosome entry site (IRES) sequence was cloned into the 5' nontranslated (NTR) region of HAV. The resulting HAV-IRES retained the EMCV IRES insertion for 1-2 passages. HAV constructs containing both the EMCV IRES at the 5' NTR and the Bsd-resistance gene at the 2A-2B junction could not be rescued in the presence of Bsd but, in the absence of antibiotic, the rescued viruses contained deletions in both inserted sequences. Conclusion HAV constructs containing insertions of approximately 500-600 nt but not 1,000 nt produced viable viruses, which indicated that the HAV particles can successfully package approximately 600 nt of additional sequences and maintain infectivity.
Collapse
Affiliation(s)
- Krishnamurthy Konduru
- Laboratory of Hepatitis and Related Emerging Agents, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland 20892, USA.
| | | | | |
Collapse
|
11
|
Cristina J, Costa-Mattioli M. Genetic variability and molecular evolution of hepatitis A virus. Virus Res 2007; 127:151-7. [PMID: 17328982 DOI: 10.1016/j.virusres.2007.01.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Accepted: 01/08/2007] [Indexed: 02/08/2023]
Abstract
Hepatitis A virus (HAV), the causative agent of type A viral hepatitis, was first identified about three decades ago. Recent findings have shown that HAV possess several characteristics that make it unique among the family Picornaviridae, particularly in terms of its mechanisms of polyprotein processing and virion morphogenesis. HAV circulates in vivo as distributions of closely genetically related variants referred to as quasispecies. HAV exploits all known mechanisms of genetic variation to ensure its survival, including mutation and recombination. Only one serotype and six different genetic groups (three humans and three simian) have been described. HAV mutation rate is significantly lower as compared to other members of the family Picornaviridae. The mode of evolution appears, at least in part, to contribute to the presence of only one known serotype.
Collapse
Affiliation(s)
- Juan Cristina
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Iguá 4225, 11400 Montevideo, Uruguay.
| | | |
Collapse
|
12
|
Abstract
Human wild-type (wt) hepatitis A virus (HAV), the causative agent of acute hepatitis, barely grows in cell culture and in the process accumulates attenuating and cell culture-adapting mutations. This genetic instability of wt HAV in cell culture is a major roadblock to studying HAV pathogenesis and producing live vaccines that are not overly attenuated for humans. To develop a robust cell culture system capable of supporting the efficient growth of wt HAV, we transfected different cell lines with in vitro RNA transcripts of wt HAV containing the blasticidin resistance gene. Blasticidin-resistant colonies grew only in transfected Huh7 cells and produced infectious virus. HAV was genetically stable in Huh7 cells for at least nine serial passages and did not accumulate attenuating or cell culture-adapting mutations. Treatment with alpha interferon A/D cured the blasticidin-resistant Huh7 cells of the HAV infection. The cured cells, termed Huh7-A-I cells, did not contain virus or HAV antigens and were sensitive to blasticidin. Huh7-A-I cells were more permissive than parental cells for wt HAV infection, including a natural isolate from a human stool sample, and produced 10-fold-more infectious particles. This is the first report of a cell line that allows the genetically stable growth of human wt HAV. The viral vectors and cells described here should allow better insight into the pathogenesis of HAV and the development of attenuated vaccines. The cell lines susceptible to wt HAV growth may also be used to detect and isolate infectious virus from patient and environmental samples.
Collapse
Affiliation(s)
- Krishnamurthy Konduru
- Laboratory of Hepatitis and Related Emerging Agents, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892, USA
| | | |
Collapse
|
13
|
Abstract
Hepatitis A virus (HAV), the causative agent of type A viral hepatitis, is an ancient human virus that was first identified almost 35 years ago. It has several characteristics that make it unique among the Picornaviridae, particularly in terms of its mechanisms of polyprotein processing and virion morphogenesis, and which likely contribute to its pathobiology. Although efficacious vaccines containing formalin-inactivated virus produced in cell culture have been licensed in multiple countries, their use has been limited by cost considerations. Changes in public health sanitation and generally increasing standards of living are leading to a decreasing incidence of acute hepatitis A worldwide, with the result that the prevalence of preexisting immunity among adults is declining in many regions. These changes in the epidemiology of HAV may paradoxically enhance the disease burden, as greater numbers of individuals become infected at older ages when disease is more likely to be clinically evident, thus providing greater incentives for vaccine utilization.
Collapse
Affiliation(s)
- Annette Martin
- Unité de Génétique Moléculaire des Virus Respiratoires, CNRS URA 1966, Institut Pasteur, Paris, France
| | | |
Collapse
|
14
|
|
15
|
Ghibaudo D, Cohen L, Penin F, Martin A. Characterization of GB virus B polyprotein processing reveals the existence of a novel 13-kDa protein with partial homology to hepatitis C virus p7 protein. J Biol Chem 2004; 279:24965-75. [PMID: 15060070 DOI: 10.1074/jbc.m401148200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although responsible for a major health problem worldwide, hepatitis C virus is difficult to study because of the absence of fully permissive cell cultures or experimental animal models other than the chimpanzee. GB virus B (GBV-B), a closely related hepatotropic virus that infects small New World primates and replicates efficiently in primary hepatocyte cultures, is an attractive surrogate model system. However, little is known about processing of the GBV-B polyprotein. Because an understanding of these events is critical to further development of model GBV-B systems, we characterized signal peptidase processing of the polyprotein segment containing the putative structural proteins. We identified the exact N termini of the mature GBV-B envelope proteins, E1 and E2, and the first nonstructural protein, NS2, by direct amino acid sequencing. Interestingly, these studies document the existence of a previously unrecognized 13-kDa protein (p13) located between E2 and NS2 within the polyprotein. We compared the sequence of the p13 protein to that of hepatitis C virus p7, a small membrane-spanning protein with a similar location in the polyprotein and recently identified ion channel activity. The C-terminal half of p13 shows clear homology with p7, suggesting a common function, but the substantially larger size of p13, with 4 rather than 2 predicted transmembrane segments, indicates a different structural organization and/or additional functions. The identification of p13 in the GBV-B polyprotein provides strong support for the hypothesis that ion channel-forming proteins are essential for the life cycle of flaviviruses, possibly playing a role in virion morphogenesis and/or virus entry into cells.
Collapse
Affiliation(s)
- David Ghibaudo
- Unité de Génétique Moléculaire des Virus Respiratoires, CNRS URA 1966, Institut Pasteur, 75724 Paris Cedex 15, France
| | | | | | | |
Collapse
|
16
|
Costa-Mattioli M, Napoli AD, Ferré V, Billaudel S, Perez-Bercoff R, Cristina J. Genetic variability of hepatitis A virus. J Gen Virol 2004; 84:3191-3201. [PMID: 14645901 DOI: 10.1099/vir.0.19532-0] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Knowledge of the molecular biology of hepatitis A virus (HAV) has increased exponentially since its identification. HAV exploits all known mechanisms of genetic variation to ensure survival, including mutation and genetic recombination. HAV has been characterized by the emergence of different genotypes, three human antigenic variants and only one major serotype. This paper reviews the genetic variability and molecular epidemiology of HAV. Its evolutionary mechanisms are described with particular emphasis on genetic recombination and HAV mutation rate. Genotypic classification methods are also discussed.
Collapse
Affiliation(s)
- Mauro Costa-Mattioli
- Department of Biochemistry, McGill University, McIntyre Medical Building, Montreal, Quebec, Canada H3G 1Y6
| | - Anna Di Napoli
- Laboratoire de Virologie Moléculaire et Structurale, CNRS, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Virginie Ferré
- Laboratorie de Virologie UPRES-EA1156, Institut de Biologie, Centre Hospitalier Regional Universitaire de Nantes, Rue Quai Moncousu 9, 44093 Nantes, France
| | - Sylviane Billaudel
- Laboratorie de Virologie UPRES-EA1156, Institut de Biologie, Centre Hospitalier Regional Universitaire de Nantes, Rue Quai Moncousu 9, 44093 Nantes, France
| | - Raul Perez-Bercoff
- Laboratoire de Virologie Moléculaire et Structurale, CNRS, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Juan Cristina
- Departamento de Técnicas Nucleares Aplicadas, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Igua 4225, 11400 Montevideo, Uruguay
| |
Collapse
|
17
|
Costa-Mattioli M, Ferré V, Casane D, Perez-Bercoff R, Coste-Burel M, Imbert-Marcille BM, Andre ECM, Bressollette-Bodin C, Billaudel S, Cristina J. Evidence of recombination in natural populations of hepatitis A virus. Virology 2003; 311:51-9. [PMID: 12832202 DOI: 10.1016/s0042-6822(03)00109-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Genetic analysis of selected genome regions of hepatitis A virus (HAV) suggested that distinct genotypes of HAV could be found in different geographical regions. At least seven HAV genotypes have been identified all over the world, including four human genotypes (I, II, III, and VII) and three simian strains (IV, V, and VI). Phylogenetic analysis using full-length VP1 sequences revealed that human strain 9F94 has a close genetic relation with strain SLF-88 (sub-genotype VII). Nevertheless, the same analysis using full-length VP2 or VP3 sequences revealed that strain 9F94 has a close genetic relation with strain MBB (sub-genotype IB). To test the possibility of genetic recombination, phylogenetic studies were carried out, revealing that a crossing over had taken place in the VP1 capsid protein. These findings indicate that capsid-recombination can play a significant role in shaping the genetic diversity of HAV and, as such, can have important implications for its evolution, biology, and control.
Collapse
Affiliation(s)
- Mauro Costa-Mattioli
- Laboratorie de Virologie UPRES-EA1156, Institut de Biologie, Centre Hospitalier Regional Universitaire de Nantes, Rue Quai Moncousu, 9, 44093, Nantes, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Kusov YY, Shatirishvili G, Klinger M, Gauss-Müller V. A vaccinia virus MVA-T7-mediated recovery of infectious hepatitis A virus from full-size cDNA or from two cDNAs, both by themselves unable to complete the virus life cycle. Virus Res 2002; 89:75-88. [PMID: 12367752 DOI: 10.1016/s0168-1702(02)00115-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The replication-deficient vaccinia virus (VV) MVA-T7 produces large amounts of T7 RNA polymerase and permits efficient protein expression from cDNA of T7-promoted genes. Yet, unlike recombinant VV vTF7-3, (VV) MVA-T7 produces no cytopathic effect in primate cells, thus allowing the study of processes with slow kinetics. We have applied MVA-T7 to aid genome expression of HAV, a representative of the Picornaviridae family that is well known for its inefficient replication in mammalian cell cultures. After cDNA transfection and MVA-T7 infection, empty capsids and mature HAV particles were formed with different kinetics and were characterized by their morphology, protein content, and infectivity. The data suggests that HAV genome replication is initiated from RNA, which was transcribed in vivo by the MVA-T7-encoded T7 RNA polymerase. HAV genome replication was also demonstrated in a recombination assay. After co-expression of two subgenomic HAV cDNAs, both by themselves unable to complete the viral life cycle, infectious HAV was rescued, indicating that replication-dependent genetic recombination has occurred. We propose that the high-level genome expression mediated in vivo by the VV-encoded T7 RNA polymerase augments the amount of viral RNA, such that replication of viruses poorly replicating in cell cytoplasm is detectable.
Collapse
Affiliation(s)
- Yuri Y Kusov
- Institute of Medical Molecular Biology, Medical University of Lübeck, Ratzeburger Allee 160, D-23538 Lübeck, Germany.
| | | | | | | |
Collapse
|
19
|
Gauss-Müller V, Kusov YY. Replication of a hepatitis A virus replicon detected by genetic recombination in vivo. J Gen Virol 2002; 83:2183-2192. [PMID: 12185272 DOI: 10.1099/0022-1317-83-9-2183] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Unlike other picornaviruses, hepatitis A virus (HAV) replicates so inefficiently in cell culture that the study of its RNA biosynthesis presents a major experimental challenge. To assess viral RNA replication independent of particle formation, a subgenomic replicon representing a self-replicating RNA was constructed by replacing the P1 domain encoding the capsid proteins with the firefly luciferase sequence. Although translation of the HAV replicon was as efficient as a similar poliovirus replicon, the luciferase activity derived from replication of the HAV construct was more than 100-fold lower than that of poliovirus. The replication capacity of the HAV replicon was clearly demonstrated by its ability to recombine genetically with a non-viable, full-length HAV genome that served as capsid donor and thus to rescue a fully infectious virus. In contrast to a replication-deficient replicon, co-expression of the genetically marked and replication-competent HAV replicon with several lethally mutated HAV genomes resulted in the successful rescue of infectious HAV with a unique genetic marker. Our data suggest: (i) that autonomous HAV RNA replication does not require sequences for the HAV structural proteins; and (ii) that low-level genome replication can unequivocally be demonstrated by the rescue of infectious virus after co-expression with non-viable genomes.
Collapse
Affiliation(s)
- Verena Gauss-Müller
- Institute of Medical Molecular Biology, Medical University of Lübeck, Ratzeburger Allee 160, D-23538 Lübeck, Germany1
| | - Yuri Y Kusov
- Institute of Medical Molecular Biology, Medical University of Lübeck, Ratzeburger Allee 160, D-23538 Lübeck, Germany1
| |
Collapse
|
20
|
Cohen L, Bénichou D, Martin A. Analysis of deletion mutants indicates that the 2A polypeptide of hepatitis A virus participates in virion morphogenesis. J Virol 2002; 76:7495-505. [PMID: 12097562 PMCID: PMC136361 DOI: 10.1128/jvi.76.15.7495-7505.2002] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Unlike all other picornaviruses, the primary cleavage of the hepatitis A virus (HAV) polyprotein occurs at the 2A/2B junction and is carried out by the only proteinase encoded by the virus, 3C(pro). The resulting P1-2A capsid protein precursor is subsequently cleaved by 3C(pro) to generate VP0, VP3, and VP1-2A, which associate as pentamers. An unidentified cellular proteinase acting at the VP1/2A junction releases the mature capsid protein VP1 from VP1-2A later in the morphogenesis process. Although these aspects of polyprotein processing are well characterized, the function of 2A is unknown. To study its role in the viral life cycle, we assessed the infectivity of synthetic, genome-length RNAs containing 11 different in-frame deletions in the 2A region. Deletions in the N-terminal 40% of 2A abolished infectivity, whereas deletions in the C-terminal 60% resulted in viruses with a small-focus replication phenotype. C-terminal deletions in 2A had no effect on RNA replication kinetics under one-step growth conditions, nor did they have an effect on capsid protein synthesis and 3C(pro)-mediated processing. However, C-terminal deletions in 2A altered the VP1/2A cleavage, resulting in accumulation of uncleaved VP1-2A precursor in virions and possibly accounting for a delay in the appearance of infectious particles with these mutants, as well as a fourfold decrease in specific infectivity of the virus particles. When the capsid proteins were expressed from recombinant vaccinia viruses, the N-terminal part of 2A was required for efficient cleavage of the P1-2A precursor by 3C(pro) and assembly of structural precursors into pentamers. These data indicate that the N-terminal domain of 2A must be present as a C-terminal extension of P1 for folding of the capsid protein precursor to allow efficient 3C(pro)-mediated cleavages and to promote pentamer assembly, after which cleavage at the VP1/2A junction releases the mature VP1 protein, a process that appears to be necessary to produce highly infectious particles.
Collapse
Affiliation(s)
- Lisette Cohen
- Unité de Génétique Moléculaire des Virus Respiratoires, URA CNRS 1966, Institut Pasteur, 75724 Paris Cedex 15, France
| | | | | |
Collapse
|
21
|
Yi M, Lemon SM. Replication of subgenomic hepatitis A virus RNAs expressing firefly luciferase is enhanced by mutations associated with adaptation of virus to growth in cultured cells. J Virol 2002; 76:1171-80. [PMID: 11773393 PMCID: PMC135777 DOI: 10.1128/jvi.76.3.1171-1180.2002] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Replication of hepatitis A virus (HAV) in cultured cells is inefficient and difficult to study due to its protracted and generally noncytopathic cycle. To gain a better understanding of the mechanisms involved, we constructed a subgenomic HAV replicon by replacing most of the P1 capsid-coding sequence from an infectious cDNA copy of the cell culture-adapted HM175/18f virus genome with sequence encoding firefly luciferase. Replication of this RNA in transfected Huh-7 cells (derived from a human hepatocellular carcinoma) led to increased expression of luciferase relative to that in cells transfected with similar RNA transcripts containing a lethal premature termination mutation in 3D(pol) (RNA polymerase). However, replication could not be confirmed in either FrhK4 cells or BSC-1 cells, cells that are typically used for propagation of HAV. Replication was substantially slower than that observed with replicons derived from other picornaviruses, as the basal luciferase activity produced by translation of input RNA did not begin to increase until 24 to 48 h after transfection. Replication of the RNA was reversibly inhibited by guanidine. The inclusion of VP4 sequence downstream of the viral internal ribosomal entry site had no effect on the basal level of luciferase or subsequent increases in luciferase related to its amplification. Thus, in this system this sequence does not contribute to viral translation or replication, as suggested previously. Amplification of the replicon RNA was profoundly enhanced by the inclusion of P2 (but not 5' noncoding sequence or P3) segment mutations associated with adaptation of wild-type virus to growth in cell culture. These results provide a simple reporter system for monitoring the translation and replication of HAV RNA and show that critical mutations that enhance the growth of virus in cultured cells do so by promoting replication of viral RNA in the absence of encapsidation, packaging, and cellular export of the viral genome.
Collapse
Affiliation(s)
- MinKyung Yi
- Department of Microbiology and Immunology, The University of Texas Medical Branch at Galveston, Galveston, Texas 77555-1019, USA
| | | |
Collapse
|
22
|
Crotty S, Miller CJ, Lohman BL, Neagu MR, Compton L, Lu D, Lü FX, Fritts L, Lifson JD, Andino R. Protection against simian immunodeficiency virus vaginal challenge by using Sabin poliovirus vectors. J Virol 2001; 75:7435-52. [PMID: 11462016 PMCID: PMC114979 DOI: 10.1128/jvi.75.16.7435-7452.2001] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Here we provide the first report of protection against a vaginal challenge with a highly virulent simian immunodeficiency virus (SIV) by using a vaccine vector. New poliovirus vectors based on Sabin 1 and 2 vaccine strain viruses were constructed, and these vectors were used to generate a series of new viruses containing SIV gag, pol, env, nef, and tat in overlapping fragments. Two cocktails of 20 transgenic polioviruses (SabRV1-SIV and SabRV2-SIV) were inoculated into seven cynomolgus macaques. All monkeys produced substantial anti-SIV serum and mucosal antibody responses. SIV-specific cytotoxic T-lymphocyte responses were detected in three of seven monkeys after vaccination. All 7 vaccinated macaques, as well as 12 control macaques, were challenged vaginally with pathogenic SIVmac251. Strikingly, four of the seven vaccinated animals exhibited substantial protection against the vaginal SIV challenge. All 12 control monkeys became SIV positive. In two of the seven SabRV-SIV-vaccinated monkeys we found no virological evidence of infection following challenge, indicating that these two monkeys were completely protected. Two additional SabRV-SIV-vaccinated monkeys exhibited a pronounced reduction in postacute viremia to <10(3) copies/ml, suggesting that the vaccine elicited an effective cellular immune response. Three of six control animals developed clinical AIDS by 48 weeks postchallenge. In contrast, all seven vaccinated monkeys remained healthy as judged by all clinical parameters. These results demonstrate the efficacy of SabRV as a potential human vaccine vector, and they show that the use of a vaccine vector cocktail expressing an array of defined antigenic sequences can be an effective vaccination strategy in an outbred population.
Collapse
Affiliation(s)
- S Crotty
- Department of Microbiology and Immunology, University of California, San Francisco, California 94143-0414, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|