1
|
Kahn RE, Clouser DF, Richt JA. Emerging infections: a tribute to the one medicine, one health concept. Zoonoses Public Health 2011; 56:407-28. [PMID: 19486315 DOI: 10.1111/j.1863-2378.2009.01255.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Events in the last decade have taught us that we are now, more than ever, vulnerable to fatal zoonotic diseases such as those caused by haemorrhagic fever viruses, influenza, rabies and BSE/vCJD. Future research activities should focus on solutions to these problems arising at the interface between animals and humans. A 4-fold classification of emerging zoonoses was proposed: Type 1: from wild animals to humans (Hanta); Type 1 plus: from wild animals to humans with further human-to-human transmission (AIDS); Type 2: from wild animals to domestic animals to humans (Avian flu) and Type 2 plus: from wild animals to domestic animals to humans, with further human-to-human transmission (Severe Acute Respiratory Syndrome, SARS). The resulting holistic approach to emerging infections links microbiology, veterinary medicine, human medicine, ecology, public health and epidemiology. As emerging 'new' respiratory viruses are identified in many wild and domestic animals, issues of interspecies transmission have become of increasing concern. The development of safe and effective human and veterinary vaccines is a priority. For example, the spread of different influenza viruses has stimulated influenza vaccine development, just as the spread of Ebola and Marburg viruses has led to new approaches to filovirus vaccines. Interdisciplinary collaboration has become essential because of the convergence of human disease, animal disease and a common approach to biosecurity. High containment pathogens pose a significant threat to public health systems, as well as a major research challenge, because of limited experience in case management, lack of appropriate resources in affected areas and a limited number of animal research facilities in developed countries. Animal models that mimic certain diseases are key elements for understanding the underlying mechanisms of disease pathogenesis, as well as for the development and efficacy testing of therapeutics and vaccines. An updated veterinary curriculum is essential to empower future graduates to work in an international environment, applying international standards for disease surveillance, veterinary public health, food safety and animal welfare.
Collapse
Affiliation(s)
- R E Kahn
- Avian Flu Action, Warrington, Cheshire, UK
| | | | | |
Collapse
|
2
|
Abstract
Thanks to new technologies which enable rapid and unbiased screening for viral nucleic acids in clinical specimens, an impressive number of previously unknown viruses have recently been discovered. Two research groups independently identified a novel negative-strand RNA virus, now designated avian bornavirus (ABV), in parrots with proventricular dilatation disease (PDD), a severe lymphoplasmacytic ganglioneuritis of the gastrointestinal tract of psittacine birds that is frequently accompanied by encephalomyelitis. Since its discovery, ABV has been detected worldwide in many captive parrots and in one canary with PDD. ABV induced a PDD-like disease in experimentally infected cockatiels, strongly suggesting that ABV is highly pathogenic in psittacine birds. Until the discovery of ABV, the Bornaviridae family consisted of a single species, classical Borna disease virus (BDV), which is the causative agent of a progressive neurological disorder that affects primarily horses, sheep, and some other farm animals in central Europe. Although ABV and BDV share many biological features, there exist several interesting differences, which are discussed in this review.
Collapse
|
3
|
Lee BJ, Matsunaga H, Ikuta K, Tomonaga K. Ribavirin inhibits Borna disease virus proliferation and fatal neurological diseases in neonatally infected gerbils. Antiviral Res 2008; 80:380-4. [PMID: 18778737 DOI: 10.1016/j.antiviral.2008.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2008] [Revised: 08/01/2008] [Accepted: 08/07/2008] [Indexed: 11/30/2022]
Abstract
By using neonatal gerbils, we assessed the effect of ribavirin on the proliferation of Borna disease virus (BDV) in the brain. The intracranial inoculation of ribavirin reduced viral propagation in the acutely infected brain, resulting in protection from fatal neurological disorders. We found that the treatment with ribavirin markedly reduces the numbers of OX-42-positive microglial cells, but does not activate expression of Th1 cytokines, in BDV-infected gerbil brains. Our results suggested that ribavirin directly inhibits BDV replication and might be a potential tool for the treatment of BDV infection.
Collapse
Affiliation(s)
- Byeong-Jae Lee
- Department of Virology, Research Institute for Microbial Diseases (BIKEN), Osaka University, Suita, Osaka 565-0871, Japan
| | | | | | | |
Collapse
|
4
|
Abstract
Borna disease virus (BDV) is an enveloped virus that has a non-segmented, negative-strand RNA genome with the characteristic organization of the mononegaviruses. However, based on its unique genetic and biological features, BDV is considered to be the prototypic member of a new mononegavirus family, the Bornaviridae. BDV causes central nervous system (CNS) disease in a wide variety of mammals. This article discusses the recently developed reverse-genetics systems for BDV, and the implications for the elucidation of the molecular mechanisms underlying BDV-host interactions, including the basis of BDV persistence in the CNS and its associated diseases.
Collapse
Affiliation(s)
- Juan C de la Torre
- Molecular Integrative Neuroscience Department IMM-6, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA.
| |
Collapse
|
5
|
Schneider U. Novel insights into the regulation of the viral polymerase complex of neurotropic Borna disease virus. Virus Res 2005; 111:148-60. [PMID: 15992626 DOI: 10.1016/j.virusres.2005.04.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Borna disease virus (BDV) genetic information is encoded in a highly condensed non-segmented RNA genome of negative polarity. Replication and transcription of the genome occurs in the nucleus, enabling the virus to employ the cellular splicing machinery to process primary transcripts and to regulate expression of viral gene products. BDV establishes a non-cytolytic, persistent infection that in animals is mainly restricted to neurons of the central nervous system. Based on these unique properties, BDV represents the prototype member of the virus family Bornaviridae in the order Mononegavirales. Analysis of molecular aspects of BDV replication has long been hampered by the lack of a reverse genetics system. Only recently, artificial BDV minigenomes permitted the reconstitution of the viral polymerase complex, allowing finally the recovery of BDV from cDNA. As in other families of the Mononegavirales, the active polymerase complex of BDV is composed of the polymerase (L), the nucleoprotein (N) and the phosphoprotein (P). In addition, the viral X protein was identified as potent negative regulator of polymerase activity. Protein interaction studies combined with minireplicon assays suggested that P is a central regulatory element of BDV replication that directs the assembly of the polymerase complex. Most intriguingly, BDV obtained from cDNA with variable genomic termini suggests a novel strategy for viral replication-control. BDV seems to restrict its propagation efficacy by defined 5' terminal trimming of genomic and antigenomic RNA molecules. This review will summarize these novel findings and will discuss them in the context of BDV neurotropism and persistence.
Collapse
Affiliation(s)
- Urs Schneider
- Department of Virology, University of Freiburg, D-79104 Freiburg, Germany.
| |
Collapse
|
6
|
Volmer R, Bajramovic JJ, Schneider U, Ufano S, Pochet S, Gonzalez-Dunia D. Mechanism of the antiviral action of 1-beta-D-arabinofuranosylcytosine on Borna disease virus. J Virol 2005; 79:4514-8. [PMID: 15767452 PMCID: PMC1061581 DOI: 10.1128/jvi.79.7.4514-4518.2005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Borna disease virus (BDV) is a nonsegmented, negative-stranded RNA virus that causes neurological diseases in a variety of warm-blooded animal species. Recently, we showed that the nucleoside analog 1-beta-D-arabinofuranosylcytosine (Ara-C) was a potent inhibitor of BDV. This finding was surprising for an RNA virus, since Ara-C is a DNA polymerase inhibitor. Thus, we sought to better define the mechanism of action of Ara-C on BDV. Here, we show that (i) this effect is specific for an arabinoside ring carrying a cytosine base, (ii) it requires phosphorylation of the nucleotide, and (iii) it can be reversed by an excess of cytidine. Using the recently described minigenome assay for BDV, we provide evidence suggesting that Ara-C may act as a competitive inhibitor of the BDV replication complex.
Collapse
|
7
|
|
8
|
Bajramovic JJ, Volmer R, Syan S, Pochet S, Gonzalez-Dunia D. 2'-fluoro-2'-deoxycytidine inhibits Borna disease virus replication and spread. Antimicrob Agents Chemother 2004; 48:1422-5. [PMID: 15047559 PMCID: PMC375289 DOI: 10.1128/aac.48.4.1422-1425.2004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Borna disease virus (BDV) causes neurological diseases in a variety of warm-blooded animal species, possibly including humans. To date, there is no effective treatment against BDV infection. Recently, we reported on the antiviral activity of 1-beta-D-arabinofuranosylcytosine (Ara-C). However, Ara-C's cytotoxic side effects are a major obstacle for its therapeutic use. Herein, we demonstrate that the nucleoside analog 2'-fluoro-2'-deoxycytidine (2'-FdC) exhibits potent antiviral activity against BDV. Importantly, 2'-FdC-associated cytotoxicity is negligible, indicating 2'-FdC as an excellent candidate for the development of antiviral therapy against BDV.
Collapse
|
9
|
Hans A, Bajramovic JJ, Syan S, Perret E, Dunia I, Brahic M, Gonzalez-Dunia D. Persistent, non‐cytolytic infection of neurons by Borna disease virus interferes with ERK 1/2 signaling and abrogates BDNF‐induced synaptogenesis. FASEB J 2004; 18:863-5. [PMID: 15033926 DOI: 10.1096/fj.03-0764fje] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Infection of the central nervous system by Borna disease virus (BDV) provides a unique model to study the mechanisms whereby a persistent viral infection can impair neuronal function and cause behavioral diseases reminiscent of mood disorders, schizophrenia, or autism in humans. In the present work, we studied the effect of BDV infection on the response of hippocampal neurons, the main target for this virus, to the neurotrophin BDNF. We showed that persistent infection did not affect neuronal survival or morphology. However, it blocked BDNF-induced ERK 1/2 phosphorylation, despite normal expression of the TrkB BDNF receptor. In addition, BDNF-induced expression of synaptic vesicle proteins was abrogated, which resulted in severely impaired synaptogenesis and defects in synaptic organization. Thus, we provide the first evidence that a virus can interfere specifically with neurotrophin-regulated neuroplasticity, thereby hampering proper neuronal connectivity. These results may help to understand the behavioral disorders associated with BDV infection.
Collapse
Affiliation(s)
- Aymeric Hans
- Unité des Virus Lents, CNRS URA 1930, Institut Pasteur, Paris, France
| | | | | | | | | | | | | |
Collapse
|
10
|
Bajramovic JJ, Münter S, Syan S, Nehrbass U, Brahic M, Gonzalez-Dunia D. Borna disease virus glycoprotein is required for viral dissemination in neurons. J Virol 2003; 77:12222-31. [PMID: 14581559 PMCID: PMC254271 DOI: 10.1128/jvi.77.22.12222-12231.2003] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2003] [Accepted: 08/12/2003] [Indexed: 11/20/2022] Open
Abstract
Borna disease virus (BDV) is a nonsegmented negative-strand RNA virus with a tropism for neurons. Infection with BDV causes neurological diseases in a wide variety of animal species. Although it is known that the virus spreads from neuron to neuron, assembled viral particles have never been visualized in the brains of infected animals. This has led to the hypothesis that BDV spreads as nonenveloped ribonucleoproteins (RNP) rather than as enveloped viral particles. We assessed whether the viral envelope glycoprotein (GP) is required for neuronal dissemination of BDV by using primary cultures of rat hippocampal neurons. We show that upon in vitro infection, BDV replicated and spread efficiently in this system. Despite rapid virus dissemination, very few infectious viral particles were detectable in the culture. However, neutralizing antibodies directed against BDV-GP inhibited BDV spread. In addition, interference with BDV-GP processing by inhibiting furin-mediated cleavage of the glycoprotein blocked virus spread. Finally, antisense treatment with peptide nucleic acids directed against BDV-GP mRNA inhibited BDV dissemination, marking BDV-GP as an attractive target for antiviral therapy against BDV. Together, our results demonstrate that the expression and correct processing of BDV-GP are necessary for BDV dissemination in primary cultures of rat hippocampal neurons, arguing against the hypothesis that the virus spreads from neuron to neuron in the form of nonenveloped RNP.
Collapse
Affiliation(s)
- Jeffrey J Bajramovic
- Unité des Virus Lents, CNRS URA 1930, Département de Virologie, Institut Pasteur, Paris, France
| | | | | | | | | | | |
Collapse
|
11
|
Armeanu S, Ungerechts G, Bernloehr C, Bossow S, Gregor M, Neubert WJ, Lauer UM, Bitzer M. Cell cycle independent infection and gene transfer by recombinant Sendai viruses. J Virol Methods 2003; 108:229-33. [PMID: 12609691 DOI: 10.1016/s0166-0934(02)00280-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A common problem for viral vectors in the field of somatic gene therapy is the dependence of an efficient cellular transduction on the cell cycle phase of target cells. An optimized viral vector system should therefore transduce cells in different cell cycle phases equally to improve transduction efficiencies. Recent observations that recombinant Sendai viruses (SeV) can infect a broad range of different tissues suggested SeV to be a good candidate for future gene therapeutic strategies in which dividing and non-dividing cells have to be reached. However, detailed data on the influence of distinct cell cycle phases on the infection of SeV or related viruses are missing. We report that synchronization of NIH 3T3 cells as well as contact inhibition of human fibroblast cells did not exhibit any negative influence on SeV infection rates. Furthermore, different attractive target tissues like human umbilical cord derived cells or primary human hepatocytes can be reached by SeV efficiently. As an important information for further cell cycle studies of paramyxoviruses we discovered surprisingly that the DNA polymerase inhibitor aphidicolin (induces a G(1)/M arrest) functions as an inhibitor of SeV but not of an adenoviral expression vector. In conclusion, the results demonstrate SeV based vector particles to be an ideal tool to reach equally cells coexisting in different cell cycle phases.
Collapse
Affiliation(s)
- Sorin Armeanu
- Internal Medicine I, University Clinic Tübingen, D-72076, Tübingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|