1
|
Guo Y, Hu H, Xiao H, Deng F, Li J, Wang M, Hu Z. Successful Rescue of Synthetic AcMNPV with a ~17 kb Deletion in the C1 Region of the Genome. Viruses 2022; 14:v14122780. [PMID: 36560785 PMCID: PMC9782167 DOI: 10.3390/v14122780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022] Open
Abstract
Baculoviruses have been widely used as expression vectors. However, numerous genes in the baculoviral genome are non-essential for cellular infection and protein expression, making the optimisation of baculovirus expression vectors possible. We used a synthetic biological method to reduce the number of genes in a partial region of the autograph californica multiple nucleopolyhedrovirus (AcMNPV), the most widely used baculovirus expression vector. The C1 region of the AcMNPV is 46.4 kb and is subdivided into B1, B2, and B3 fragments. We first designed modified B1, B2, and B3 fragments by deleting the non-essential genes, and then synthesised complete viral genomes containing either individual modified B fragments or joint modified B fragments through transformation-related recombination in yeast. The synthetic genomes were then transfected into Sf9 cells to rescue the progeny viruses and test their infectivity. The design-build-test cycle was repeated until the ultimately rescued virus could produce progeny viruses efficiently. Finally, AcMNPV-Syn-mC1-1.1 by deleting approximately 17.2 kb, including 20 ORFs, in the C1 region, was obtained. This is essential to the synthesis of a minimal AcMNPV genome that can generate infectious progeny viruses and can be further used to optimise the foundation of baculovirus expression vectors.
Collapse
Affiliation(s)
- Yijia Guo
- Centre for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Hengrui Hu
- Centre for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Han Xiao
- Centre for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Fei Deng
- Centre for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
- State Key Laboratory of Virology and National Virus Resource Centre, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Jiang Li
- Centre for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Manli Wang
- Centre for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
- Correspondence: (M.W.); (Z.H.); Tel./Fax: +86-27-87197340 (M.W.); +86-27-87197180 (Z.H.)
| | - Zhihong Hu
- Centre for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
- Correspondence: (M.W.); (Z.H.); Tel./Fax: +86-27-87197340 (M.W.); +86-27-87197180 (Z.H.)
| |
Collapse
|
2
|
Harrison RL, Rowley DL, Popham HJR. A Novel Alphabaculovirus from the Soybean Looper, Chrysodeixis includens, that Produces Tetrahedral Occlusion Bodies and Encodes Two Copies of he65. Viruses 2019; 11:E579. [PMID: 31247912 PMCID: PMC6669638 DOI: 10.3390/v11070579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/18/2019] [Accepted: 06/21/2019] [Indexed: 11/29/2022] Open
Abstract
Isolates of the alphabaculovirus species, Chrysodeixis includens nucleopolyhedrovirus, have been identified that produce polyhedral occlusion bodies and infect larvae of the soybean looper, Chrysodeixis includens. In this study, we report the discovery and characterization of a novel C. includens-infecting alphabaculovirus, Chrysodeixis includens nucleopolyhedrovirus #1 (ChinNPV#1), that produces tetrahedral occlusion bodies. In bioassays against C. includens larvae, ChinNPV #1 exhibited a degree of pathogenicity that was similar to that of other ChinNPV isolates, but killed larvae more slowly. The host range of ChinNPV#1 was found to be very narrow, with no indication of infection occurring in larvae of Trichoplusia ni and six other noctuid species. The ChinNPV#1 genome sequence was determined to be 130,540 bp, with 126 open reading frames (ORFs) annotated but containing no homologous repeat (hr) regions. Phylogenetic analysis placed ChinNPV#1 in a clade with other Group II alphabaculoviruses from hosts of lepidopteran subfamily Plusiinae, including Chrysodeixis chalcites nucleopolyhedrovirus and Trichoplusia ni single nucleopolyhedrovirus. A unique feature of the ChinNPV#1 genome was the presence of two full-length copies of the he65 ORF. The results indicate that ChinNPV#1 is related to, but distinct from, other ChinNPV isolates.
Collapse
Affiliation(s)
- Robert L Harrison
- Invasive Insect Biocontrol and Behavior Laboratory, Beltsville Agricultural Research Center, USDA Agricultural Research Service, Beltsville, MD 20705, USA.
| | - Daniel L Rowley
- Invasive Insect Biocontrol and Behavior Laboratory, Beltsville Agricultural Research Center, USDA Agricultural Research Service, Beltsville, MD 20705, USA
| | | |
Collapse
|
3
|
Xu X, Zhou X, Nan H, Zhao Y, Bai Y, Ou Y, Chen H. Aggregation of AcMNPV LEF-10 and Its Impact on Viral Late Gene Expression. PLoS One 2016; 11:e0154835. [PMID: 27152613 PMCID: PMC4859499 DOI: 10.1371/journal.pone.0154835] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 04/20/2016] [Indexed: 12/24/2022] Open
Abstract
The Autographa californica multiple nucleopolyhedrovirus (AcMNPV) late expression factor gene lef-10 has been identified to be required for viral late gene expression by transient expression assay. Our previous work has shown that the gene product LEF-10 can form very stable high-molecular-weight complexes, but the structure and function of the protein remain unknown. In this study, we demonstrated that LEF-10 was essential for the replication of AcMNPV, and its truncated fragment containing amino acid residues 1 to 48 were sufficient to support the virus survival. Our data also suggested that the LEF-10 could spontaneously aggregate to form punctate spots in virus infected Sf9 cells at low frequency, and the aggregation of the protein could be induced by LEF-10 over-expression. When the protein aggregated to form punctate spots, soluble LEF-10 proteins were depleted and this could result in the down-regulation of viral late gene expression.
Collapse
Affiliation(s)
- Xiaodong Xu
- College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, 712100, P. R. China
- * E-mail: (XX); (HC)
| | - Xinyu Zhou
- College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, 712100, P. R. China
| | - Hao Nan
- College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, 712100, P. R. China
| | - Yu Zhao
- College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, 712100, P. R. China
| | - Yu Bai
- College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, 712100, P. R. China
| | - Yanmei Ou
- College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, 712100, P. R. China
| | - Hongying Chen
- College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, 712100, P. R. China
- * E-mail: (XX); (HC)
| |
Collapse
|
4
|
Abstract
The development of baculovirus expression vector systems has accompanied a rapid expansion of our knowledge about the genes, their function and regulation in insect cells. Classification of these viruses has also been refined as we learn more about differences in gene content between isolates, how this affects virus structure and their replication in insect larvae. Baculovirus gene expression occurs in an ordered cascade, regulated by early, late and very late gene promoters. There is now a detailed knowledge of these promoter elements and how they interact first with host cell-encoded RNA polymerases and later with virus-encoded enzymes. The composition of this virus RNA polymerase is known. The virus replication process culminates in the very high level expression of both polyhedrin and p10 gene products in the latter stages of infection. It has also been realized that the insect host cell has innate defenses against baculoviruses in the form of an apoptotic response to virus invasion. Baculoviruses counter this by encoding apoptotic-suppressors, which also appear to have a role in determining the host range of the virus. Also of importance to our understanding of baculovirus expression systems is how the virus can accumulate mutations within genes that affect recombinant protein yield in cell culture. The summary in this chapter is not exhaustive, but should provide a good preparation to those wishing to use this highly successful gene expression system.
Collapse
Affiliation(s)
- Barbara J Kelly
- The Moyne Institute of Preventive Medicine, Trinity College, Dublin, Ireland
| | - Linda A King
- School of Biological and Molecular Sciences, Oxford Brookes University, Oxford, UK
| | - Robert D Possee
- NERC CEH (Oxford), Mansfield Road, Oxford, OX1, UK.
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK.
| |
Collapse
|
5
|
Deng Z, Huang Z, Yuan M, Yang K, Pang Y. Baculovirus induces host cell aggregation via a Rho/Rok-dependent mechanism. J Gen Virol 2014; 95:2310-2320. [PMID: 24866850 DOI: 10.1099/vir.0.066811-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Several baculoviruses can induce host cell aggregation during infection; however, the molecular basis remains unknown. The Rho family of small GTPases, including Rho1, Racs and Cdc42, plays important roles in cell migration and cell-cell contact. Activated GTPases target actin polymerization to discrete sites on the plasma membrane, thereby inducing membrane protrusions. In this study, we demonstrated that Spodoptera litura nucleopolyhedrovirus (SpltNPV) infection induced the amoeboid movement and aggregation of SpLi-221 cells in vitro. The amount of Rho1-GTP increased in the infected cells, which suggested that Rho1 was activated upon infection. RNA interference and superinfection of dominant-negative recombinants revealed that the SpltNPV-induced SpLi-221 cell aggregation was dependent on the Rho1, but not Racs or Cdc42, signalling pathway. Inhibition of Rho-associated protein kinase (Rok) activity by the inhibitor Y-27632 significantly reduced SpLi-221 cell aggregation. Silencing Rho1 expression with RNA interference decreased SpltNPV propagation by approximately 40 % in vitro, when SpLi-221 cells were infected at a low, but not high, m.o.i., suggesting that the SpltNPV-induced cell aggregation may benefit SpltNPV spread.
Collapse
Affiliation(s)
- Zihao Deng
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Zhihong Huang
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Meijin Yuan
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Kai Yang
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Yi Pang
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510275, PR China
| |
Collapse
|
6
|
Functional analysis of Spodoptera frugiperda nucleopolyhedrovirus late expression factors in Sf9 cells. Virus Genes 2012; 46:152-61. [PMID: 23124597 DOI: 10.1007/s11262-012-0843-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 10/25/2012] [Indexed: 10/27/2022]
Abstract
We used transient expression assays to assess the function of the baculovirus Spodoptera frugiperda M nucleopolyhedrovirus (SfMNPV) homologs of Autographa californica MNPV (AcMNPV) factors involved in late gene expression (lefs), in the Sf9 insect cell-line, which is permissive for both viruses. It is well-established that nineteen AcMNPV lefs support optimal levels of activity from a late promoter-reporter gene cassette in this assay. A subgroup of SfMNPV lefs predicted to function in transcription-specific events substituted the corresponding AcMNPV lefs very efficiently. When all SfMNPV lefs were assayed, including replication lefs, activity was low, but addition of two AcMNPV lefs not encoded in SfMNPV genome, resulted in augmented reporter activity. SfMNPV IE-1 was able to activate an early promoter cis-linked to an hr-derived element from SfMNPV but not from AcMNPV. However, the level of early promoter activation with SfMNPV IE-1 was lower compared to AcMNPV IE-1.
Collapse
|
7
|
An ac34 deletion mutant of Autographa californica nucleopolyhedrovirus exhibits delayed late gene expression and a lack of virulence in vivo. J Virol 2012; 86:10432-43. [PMID: 22787232 DOI: 10.1128/jvi.00779-12] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Ac34 and its homologs are highly conserved in all sequenced alphabaculoviruses. In this paper, we show that ac34 transcripts were detected from 6 to 48 h postinfection (p.i.) in Autographa californica nucleopolyhedrovirus (AcMNPV)-infected Sf9 cells. Ac34 localized to both the cytoplasm and the nuclei of infected cells but was not a viral structural protein. To determine the function of ac34 in the viral life cycle, an ac34 knockout AcMNPV (vAc34KO) was constructed. Compared with wild-type and repair viruses, vAc34KO exhibited an approximately 100-fold reduction in infectious virus production. Further investigations showed that the ac34 deletion did not affect the replication of viral DNA, polyhedron formation, or nucleocapsid assembly but delayed the expression of late genes, such as vp39, 38k, and p6.9. Bioassays revealed that vAc34KO was unable to establish a fatal infection in Trichoplusia ni larvae via per os inoculation. Few infectious progeny viruses were detected in the hemolymph of the infected larvae, indicating that the replication of vAc34KO was attenuated. These results suggest that Ac34 is an activator protein that promotes late gene expression and is essential for the pathogenicity of AcMNPV.
Collapse
|
8
|
Ono C, Kamagata T, Taka H, Sahara K, Asano SI, Bando H. Phenotypic grouping of 141 BmNPVs lacking viral gene sequences. Virus Res 2012; 165:197-206. [PMID: 22421381 DOI: 10.1016/j.virusres.2012.02.016] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 02/07/2012] [Accepted: 02/16/2012] [Indexed: 11/15/2022]
Abstract
We constructed a series of gene knockout BmNPVs (KOVs) for each of 141 genes (Gomi et al., 1999; Katsuma et al., 2011) using the BmNPV T3 bacmid system (Ono et al., 2007) and lambda red recombination system (Datsenko and Wanner, 2000). In a subsequent analysis of the properties needed for infection using a marker gene, egfp (enhanced green fluorescent protein gene), inserted into the polyhedrin locus, the knockout viruses (KOVs) were subdivided into four phenotypic types, A to D. Type-A (86 KOVs) showed the ability to expand infections equivalent to the control while type-B (8 KOVs) spread infections more slowly. Type-C (37 KOVs) expressed egfp in transfected-BmN cells but the production of infectious viruses was not observed. Type-D (10 KOVs) showed no ability to express egfp even in the transfection experiments. KOVs lacking genes (pkip (Bm15), gp41 (Bm66), bro-d (Bm131), Bm20, 48, 65, 91, 93, or 101) previously identified as being essential, were placed in the viable type-A and B categories.
Collapse
Affiliation(s)
- Chikako Ono
- Laboratory of Applied Molecular Entomology, Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | | | | | | | | | | |
Collapse
|
9
|
Su J, Lung O, Blissard GW. The Autographa californica multiple nucleopolyhedrovirus lef-5 gene is required for productive infection. Virology 2011; 416:54-64. [DOI: 10.1016/j.virol.2011.04.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 02/22/2011] [Accepted: 04/26/2011] [Indexed: 11/29/2022]
|
10
|
Cohen DPA, Marek M, Davies BG, Vlak JM, van Oers MM. Encyclopedia of Autographa californica nucleopolyhedrovirus genes. Virol Sin 2009. [DOI: 10.1007/s12250-009-3059-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
11
|
Guarino LA. Processing of baculovirus late and very late mRNAs. Virol Sin 2008. [DOI: 10.1007/s12250-007-0012-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
12
|
Abstract
The development of baculovirus expression vector systems has accompanied a rapid expansion of our knowledge about the genes, their function, and regulation in insect cells. Classification of these viruses has also been refined as we learn more about differences in gene content between isolates, how this affects virus structure, and their replication in insect larvae. Baculovirus gene expression occurs in an ordered cascade, regulated by early, late, and very late gene promoters. There is now a detailed knowledge of these promoter elements and how they interact first with host cell-encoded RNA polymerases and later with virus-encoded enzymes. The composition of this virus RNA polymerase is known. The virus replication process culminates in the very high level expression of both polyhedrin and p10 gene products in the latter stages of infection. It has also been realized that the insect host cell has innate defenses against baculoviruses in the form of an apoptotic response to virus invasion. Baculoviruses counter this by encoding apoptotic-suppressors, which also appear to have a role in determining the host range of the virus. Also of importance to our understanding of baculovirus expression systems is how the virus can accumulate mutations within genes that affect recombinant protein yield in cell culture. The summary in this chapter is not exhaustive, but should provide a good preparation to those wishing to use this highly successful gene expression system.
Collapse
|
13
|
Wang F, Yang LR, Tang XD, Mo JC, Yang WJ, Zhang CX. The translational and transcriptional initiation sites of BmNPV lef-7 gene. Virus Genes 2007; 35:483-8. [PMID: 16991007 DOI: 10.1007/s11262-006-0075-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2006] [Accepted: 12/27/2006] [Indexed: 10/24/2022]
Abstract
The predicted open reading frame of lef-7 from Bombyx mori nucleopolyhedrovirus (BmNPV) is 45 bp longer at the 5'-terminal and harbors a 42 bp deletion towards the 3' terminal end compared to that of Autograph californica mlulticapsid NPV (AcMNPV). In the present study, to determine whether the BmNPV lef-7 is translated from an initiation site different from that of AcMNPV lef-7, the translational and transcriptional initiation sites of BmNPV lef-7 were examined. A BmNPV mutant, Bmlef7M1(-) was constructed by deleting 11 nucleotides (nt) including the predicted initiation codon ATG. Western blot analysis demonstrated that the size of LEF-7 in BmNPV and Bmlef7M1(-)-infected cells was identical. The LEF-7s in BmNPV and Bmlef7M1(-)-infected cells were both localized in the nuclei as observed using confocal microscopy. Therefore, the presumed initiation codon ATG (at 97059 nt of BmNPV genome) appears to be non-functional for lef-7 translation. The 5'-RACE analysis revealed that transcription of lef-7 mRNA in BmNPV and Bmlef7M1(-)-infected cells both initiated from an ATCATT motif located 26 nt upstream of the second ATG (located at 97014 nt on BmNPV genome), and 20 nt downstream of the presumed initiation codon.
Collapse
Affiliation(s)
- Fang Wang
- Institute of Insect Sciences, Zhejiang University, Kaixuan Road 268#, Hangzhou, 310029, P.R. China
| | | | | | | | | | | |
Collapse
|
14
|
Berretta MF, Deshpande M, Crouch EA, Passarelli AL. Functional characterization of Bombyx mori nucleopolyhedrovirus late gene transcription and genome replication factors in the non-permissive insect cell line SF-21. Virology 2006; 348:175-89. [PMID: 16442141 DOI: 10.1016/j.virol.2005.12.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2005] [Revised: 11/09/2005] [Accepted: 12/14/2005] [Indexed: 10/25/2022]
Abstract
We compared the abilities of late gene transcription and DNA replication machineries of the baculoviruses Autographa californica nucleopolyhedrovirus (AcMNPV) and Bombyx mori NPV (BmNPV) in SF-21 cells, an insect-derived cell line permissive for AcMNPV infection. It has been well established that 19 AcMNPV late expression factors (lefs) stimulate substantial levels of late gene promoter activity in SF-21 cells. Thus, we constructed a set of clones containing the BmNPV homologs of the AcMNPV lefs under control of the constitutive Drosophila heat shock 70 protein promoter and tested their ability to activate an AcMNPV late promoter-reporter gene cassette in SF-21 cells. We tested the potential of individual or predicted functional groups of BmNPV lefs to successfully replace the corresponding AcMNPV gene(s) in transient late gene expression assays. We found that most, but not all, BmNPV lefs were able to either fully or partially substitute for the corresponding AcMNPV homolog in the context of the remaining AcMNPV lefs with the exception of BmNPV p143, ie-2, and p35. BmNPV p143 was unable to support late gene expression or be imported into the nucleus of cells in the presence of the AcMNPV or the BmNPV LEF-3, a P143 nuclear shuttling factor. Our results suggest that host-specific factors may affect the function of homologous proteins.
Collapse
Affiliation(s)
- Marcelo F Berretta
- Division of Biology, Molecular, Cellular, and Developmental Biology Program, Kansas State University, 232 Ackert Hall, Manhattan, KS 66506-4901, USA
| | | | | | | |
Collapse
|
15
|
Abstract
Autographa californica nuclear polyhedrosis virus, or AcMNPV, is the type member of the baculoviruses, a family of double-stranded DNA viruses with large circular genomes. The successive and concomitant expression of an assortment of early, late and very late genes is instrumental for successful baculovirus infection, and requires a switch from early dependence on a host cell-derived polymerase II to a novel virus-encoded RNA polymerase that is required for transcription later on in infection. A series of repetitive and highly conserved sequences known as homologous regions, or hrs, function both as origins of DNA replication as well as transcriptional enhancers of late gene expression. An array of AcMNPV genes produced early on in infection, known as late expression factors, or LEFs, are essential for both replication and late gene expression. In this review, an overview of baculovirus LEFs and their roles in viral replication and late gene expression is presented. The role of LEFs in determining baculovirus host range is described. Finally, we compare baculovirus replication and transcription machinery with other viral systems.
Collapse
|
16
|
Wu X, Guarino LA. Autographa californica nucleopolyhedrovirus orf69 encodes an RNA cap (nucleoside-2'-O)-methyltransferase. J Virol 2003; 77:3430-40. [PMID: 12610118 PMCID: PMC149537 DOI: 10.1128/jvi.77.6.3430-3440.2003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The AcNPV orf69 gene encodes a protein that contains an S-adenosylmethionine (AdoMet)-dependent methyltransferase signature motif. More significantly, ORF69 shows high conservation at residues diagnostic for (nucleoside 2'-O)-methyltransferase activity. To analyze the function of this protein, which was renamed MTase1, it was overexpressed in Escherichia coli and purified to homogeneity. Photo cross-linking experiments showed that MTase1 bound AdoMet, and functional assays demonstrated cap 0-dependent methyltransferase activity. In vivo expression assays in insect cells showed that MTase1 was synthesized during the late phase of infection and that its expression was dependent on viral DNA replication. Primer extension analysis identified a late promoter motif, ATAAG, at the transcription start site. A mutant virus was constructed by inserting the lacZ gene into the coding region of mtase1. Immunoblot analysis confirmed that MTase1 was not synthesized in these cells, and single-step growth curves revealed that the rate of virus replication in tissue culture was not affected by the absence of MTase1.
Collapse
Affiliation(s)
- Xiaofeng Wu
- Department of Biochemistry, Texas A&M University, College Station, Texas 77843-2128, USA
| | | |
Collapse
|