1
|
Prince A, Tiwari A, Mandal T, Koiri D, Meher G, Sinha DK, Saleem M. Lipid Specificity of the Fusion of Bacterial Extracellular Vesicles with the Host Membrane. J Phys Chem B 2024; 128:8116-8130. [PMID: 38981091 DOI: 10.1021/acs.jpcb.4c02321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Bacterial membrane vesicles (MVs) facilitate the long-distance delivery of virulence factors crucial for pathogenicity. The entry and trafficking mechanisms of virulence factors inside host cells are recently emerging; however, whether bacterial MVs can fuse and modulate the physicochemical properties of the host lipid membrane and membrane lipid parameter for fusion remains unknown. In this study, we reconstituted the interaction of bacterial MVs with host cell lipid membranes and quantitatively showed that bacterial MV interaction increases the fluidity, dipole potential, and compressibility of a biologically relevant multicomponent host membrane upon fusion. The presence of cylindrical lipids, such as phosphatidylcholine, and a moderate acyl chain length of C16 help the MV interaction. While significant binding of bacterial MVs to the raft-like lipid membranes with phase-separated regions of the membrane was observed, however, MVs prefer binding to the liquid-disordered regions of the membrane. Furthermore, the elevated levels of cholesterol tend to hinder the interaction of bacterial MVs, as evident from the favorable excess Gibbs free energy of mixing bacterial MVs with host lipid membranes. The findings provide new insights that might have implications for the regulation of host machinery by bacterial pathogens through manipulation of the host membrane properties.
Collapse
Affiliation(s)
- Ashutosh Prince
- Department of Life Sciences, National Institute of Technology, Rourkela 769008, India
| | - Anuj Tiwari
- Department of Life Sciences, National Institute of Technology, Rourkela 769008, India
| | - Titas Mandal
- Department of Physical Biochemistry, University of Potsdam, Potsdam 14476, Germany
| | - Debraj Koiri
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar 752050, India
- Homi Bhabha National Institute, Mumbai 400094, India
| | - Geetanjali Meher
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar 752050, India
- Homi Bhabha National Institute, Mumbai 400094, India
| | - Deepak Kumar Sinha
- Department of Biological Chemistry, Indian Association for the Cultivation of Sciences, Kolkata 700032, India
| | - Mohammed Saleem
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar 752050, India
- Homi Bhabha National Institute, Mumbai 400094, India
| |
Collapse
|
2
|
Membrane Sphingomyelin in Host Cells Is Essential for Nucleocapsid Penetration into the Cytoplasm after Hemifusion during Rubella Virus Entry. mBio 2022; 13:e0169822. [PMID: 36346228 PMCID: PMC9765692 DOI: 10.1128/mbio.01698-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The lipid composition of the host cell membrane is one of the key determinants of the entry of enveloped viruses into cells. To elucidate the detailed mechanisms behind the cell entry of rubella virus (RuV), one of the enveloped viruses, we searched for host factors involved in such entry by using CRISPR/Cas9 genome-wide knockout screening, and we found sphingomyelin synthase 1 (SMS1), encoded by the SGMS1 gene, as a candidate. RuV growth was strictly suppressed in SGMS1-knockout cells and was completely recovered by the overexpression of enzymatically active SMS1 and partially recovered by that of SMS2, another member of the SMS family, but not by that of enzymatically inactive SMS1. An entry assay using pseudotyped vesicular stomatitis virus possessing RuV envelope proteins revealed that sphingomyelin generated by SMSs is crucial for at least RuV entry. In SGMS1-knockout cells, lipid mixing between the RuV envelope membrane and the membrane of host cells occurred, but entry of the RuV genome from the viral particles into the cytoplasm was strongly inhibited. This indicates that sphingomyelin produced by SMSs is essential for the formation of membrane pores after hemifusion occurs during RuV entry. IMPORTANCE Infection with rubella virus during pregnancy causes congenital rubella syndrome in infants. Despite its importance in public health, the detailed mechanisms of rubella virus cell entry have only recently become somewhat clearer. The E1 protein of rubella virus is classified as a class II fusion protein based on its structural similarity, but it has the unique feature that its activity is dependent on calcium ion binding in the fusion loops. In this study, we found another unique feature, as cellular sphingomyelin plays a critical role in the penetration of the nucleocapsid into the cytoplasm after hemifusion by rubella virus. This provides important insight into the entry mechanism of rubella virus. This study also presents a model of hemifusion arrest during cell entry by an intact virus, providing a useful tool for analyzing membrane fusion, a biologically important phenomenon.
Collapse
|
3
|
Flagging fusion: Phosphatidylserine signaling in cell-cell fusion. J Biol Chem 2021; 296:100411. [PMID: 33581114 PMCID: PMC8005811 DOI: 10.1016/j.jbc.2021.100411] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 02/06/2023] Open
Abstract
Formations of myofibers, osteoclasts, syncytiotrophoblasts, and fertilized zygotes share a common step, cell–cell fusion. Recent years have brought about considerable progress in identifying some of the proteins involved in these and other cell-fusion processes. However, even for the best-characterized cell fusions, we still do not know the mechanisms that regulate the timing of cell-fusion events. Are they fully controlled by the expression of fusogenic proteins or do they also depend on some triggering signal that activates these proteins? The latter scenario would be analogous to the mechanisms that control the timing of exocytosis initiated by Ca2+ influx and virus-cell fusion initiated by low pH- or receptor interaction. Diverse cell fusions are accompanied by the nonapoptotic exposure of phosphatidylserine at the surface of fusing cells. Here we review data on the dependence of membrane remodeling in cell fusion on phosphatidylserine and phosphatidylserine-recognizing proteins and discuss the hypothesis that cell surface phosphatidylserine serves as a conserved “fuse me” signal regulating the time and place of cell-fusion processes.
Collapse
|
4
|
Zheng T, Baaken G, Behrends JC, Rühe J. Microelectrochemical cell arrays for whole-cell currents recording through ion channel proteins based on trans-electroporation approach. Analyst 2019; 145:197-205. [PMID: 31730143 DOI: 10.1039/c9an01737b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
High electrostability and long life-time of planar chip technology are crucial for electrophysiological measurements such as ionic current recording through ion channel proteins embedded in biological cell membrane. In this paper, we propose a novel planar microchip integrated with microelectrochemical cell array toward to a feasible solution for ion channel screening with high resolution and long life-time. In order to reduce the interference from the leakage currents, a synthetic lipid bilayer is applied to form a high sealing resistance. The whole-cell electrical access can be constructed via electroporating the lipid bilayer in close proximity to the cell membrane. Parameters of electroporation including amplitude and time scale are firstly optimized by using parallel electroporation to the lipid bilayers. In this approach, individual cells can be trapped to the target positions by applying dielectrophoresis (DEP) manipulation. Poly(ethylene glycol) (PEG) is employed with low concentration to facilitate the closed contact between the cells and the lipid bilayer to increase the efficiency of the whole-cell mode construction. Through this chip based method, stable current recordings through inward rectifier potassium (Kir) ion channels embedded in rat basophilic leukemia (RBL-1) cell membrane are achieved with high electrical sealing resistance (over 1 GΩ). In addition, without need for complex fluidic connections, this method allows for an easy operation and further miniaturization of the measuring system.
Collapse
Affiliation(s)
- Tianyang Zheng
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, 100084, Beijing, China.
| | | | | | | |
Collapse
|
5
|
Dubey RC, Mishra N, Gaur R. G protein-coupled and ATP-sensitive inwardly rectifying potassium ion channels are essential for HIV entry. Sci Rep 2019; 9:4113. [PMID: 30858482 PMCID: PMC6411958 DOI: 10.1038/s41598-019-40968-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 02/26/2019] [Indexed: 11/14/2022] Open
Abstract
The high genetic diversity of Human Immunodeficiency virus (HIV), has hindered the development of effective vaccines or antiviral drugs against it. Hence, there is a continuous need for identification of new antiviral targets. HIV exploits specific host proteins also known as HIV-dependency factors during its replication inside the cell. Potassium channels play a crucial role in the life cycle of several viruses by modulating ion homeostasis, cell signaling, cell cycle, and cell death. In this study, using pharmacological tools, we have identified that HIV utilizes distinct cellular potassium channels at various steps in its life cycle. Members of inwardly rectifying potassium (Kir) channel family, G protein-coupled (GIRK), and ATP-sensitive (KATP) are involved in HIV entry. Blocking these channels using specific inhibitors reduces HIV entry. Another member, Kir 1.1 plays a role post entry as inhibiting this channel inhibits virus production and release. These inhibitors are not toxic to the cells at the concentration used in the study. We have further identified the possible mechanism through which these potassium channels regulate HIV entry by using a slow-response potential-sensitive probe DIBAC4(3) and have observed that blocking these potassium channels inhibits membrane depolarization which then inhibits HIV entry and virus release as well. These results demonstrate for the first time, the important role of Kir channel members in HIV-1 infection and suggest that these K+ channels could serve as a safe therapeutic target for treatment of HIV/AIDS.
Collapse
Affiliation(s)
- Ravi C Dubey
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, 110021, India
| | - Nawneet Mishra
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, 110021, India
| | - Ritu Gaur
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, 110021, India.
| |
Collapse
|
6
|
Both Sphingomyelin and Cholesterol in the Host Cell Membrane Are Essential for Rubella Virus Entry. J Virol 2017; 92:JVI.01130-17. [PMID: 29070689 DOI: 10.1128/jvi.01130-17] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 10/17/2017] [Indexed: 11/20/2022] Open
Abstract
Rubella virus (RuV) causes a systemic infection, and transplacental fetal infection causes congenital rubella syndrome. In this study, we showed that treatment of cells with sphingomyelinase inhibited RuV infection. Assays using inhibitors of serine palmitoyl transferase and ceramide transport protein demonstrated the contribution of sphingomyelin (SM) to RuV infection. Compelling evidence for direct binding of RuV to lipid membranes at neutral pH was obtained using liposome coflotation assays. The absence of either SM or cholesterol (Chol) abrogated the RuV-liposome interaction. SM and Chol (SM/Chol) were also critical for RuV binding to erythrocytes and lymphoid cells. Removal of Ca2+ from the assay buffer or mutation of RuV envelope E1 protein Ca2+-binding sites abrogated RuV binding to liposomes, erythrocytes, and lymphoid cells. However, RuV bound to various nonlymphoid adherent cell lines independently of extracellular Ca2+ or SM/Chol. Even in these adherent cell lines, both the E1 protein Ca2+-binding sites and cellular SM/Chol were essential for the early stage of RuV infection, possibly affecting envelope-membrane fusion in acidic compartments. Myelin oligodendrocyte glycoprotein (MOG) has recently been identified as a cellular receptor for RuV. However, RuV bound to MOG-negative cells in a Ca2+-independent manner. Collectively, our data demonstrate that RuV has two distinct binding mechanisms: one is Ca2+ dependent and the other is Ca2+ independent. Ca2+-dependent binding observed in lymphoid cells occurs by the direct interaction between E1 protein fusion loops and SM/Chol-enriched membranes. Clarification of the mechanism of Ca2+-independent RuV binding is an important next step in understanding the pathology of RuV infection.IMPORTANCE Rubella has a significant impact on public health as infection during early pregnancy can result in babies being born with congenital rubella syndrome. Even though effective rubella vaccines are available, rubella outbreaks still occur in many countries. We studied the entry mechanism of rubella virus (RuV) and found that RuV binds directly to the host plasma membrane in the presence of Ca2+ at neutral pH. This Ca2+-dependent binding is specifically directed to membranes enriched in sphingomyelin and cholesterol and is critical for RuV infection. Importantly, RuV also binds to many cell lines in a Ca2+-independent manner. An unidentified RuV receptor(s) is involved in this Ca2+-independent binding. We believe that the data presented here may aid the development of the first anti-RuV drug.
Collapse
|
7
|
Markosyan RM, Miao C, Zheng YM, Melikyan GB, Liu SL, Cohen FS. Induction of Cell-Cell Fusion by Ebola Virus Glycoprotein: Low pH Is Not a Trigger. PLoS Pathog 2016; 12:e1005373. [PMID: 26730950 PMCID: PMC4711667 DOI: 10.1371/journal.ppat.1005373] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 12/08/2015] [Indexed: 12/11/2022] Open
Abstract
Ebola virus (EBOV) is a highly pathogenic filovirus that causes hemorrhagic fever in humans and animals. Currently, how EBOV fuses its envelope membrane within an endosomal membrane to cause infection is poorly understood. We successfully measure cell-cell fusion mediated by the EBOV fusion protein, GP, assayed by the transfer of both cytoplasmic and membrane dyes. A small molecule fusion inhibitor, a neutralizing antibody, as well as mutations in EBOV GP known to reduce viral infection, all greatly reduce fusion. By monitoring redistribution of small aqueous dyes between cells and by electrical capacitance measurements, we discovered that EBOV GP-mediated fusion pores do not readily enlarge—a marked difference from the behavior of other viral fusion proteins. EBOV GP must be cleaved by late endosome-resident cathepsins B or L in order to become fusion-competent. Cleavage of cell surface-expressed GP appears to occur in endosomes, as evidenced by the fusion block imposed by cathepsin inhibitors, agents that raise endosomal pH, or an inhibitor of anterograde trafficking. Treating effector cells with a recombinant soluble cathepsin B or thermolysin, which cleaves GP into an active form, increases the extent of fusion, suggesting that a fraction of surface-expressed GP is not cleaved. Whereas the rate of fusion is increased by a brief exposure to acidic pH, fusion does occur at neutral pH. Importantly, the extent of fusion is independent of external pH in experiments in which cathepsin activity is blocked and EBOV GP is cleaved by thermolysin. These results imply that low pH promotes fusion through the well-known pH-dependent activity of cathepsins; fusion induced by cleaved EBOV GP is a process that is fundamentally independent of pH. The cell-cell fusion system has revealed some previously unappreciated features of EBOV entry, which could not be readily elucidated in the context of endosomal entry. The devastation and transmissibility of Ebola virus (EBOV) are well known. However, the manner in which EBOV enters host cells through endosomal membrane remains elusive. Here, we have developed a convenient experimental system to mimic EBOV fusion in endosomes: cells expressing the fusion protein of EBOV, GP, on their surface are fused to target cells. This system exhibits the known key properties of EBOV fusion. We show that the pH-dependence of EBOV fusion is caused by the pH-dependence of cathepsins, proteases known to cleave EBOV GP into a fusion-competent form. We demonstrate that the fusion activity of this cleaved form is independent of pH. We further show that the enlargement of the fusion pore created by EBOV GP is unusually slow in reaching sizes necessary to pass EBOV’s genome—this is atypical of virally created fusion pores. This cell-cell fusion system should provide a useful platform for developing drugs against EBOV infection.
Collapse
Affiliation(s)
- Ruben M. Markosyan
- Rush University Medical Center, Department of Molecular Biophysics and Physiology, Chicago, Illinois, United States of America
| | - Chunhui Miao
- University of Missouri School of Medicine, Bond Life Sciences Center, Department of Molecular Microbiology and Immunology, Columbia, Missouri, United States of America
| | - Yi-Min Zheng
- University of Missouri School of Medicine, Bond Life Sciences Center, Department of Molecular Microbiology and Immunology, Columbia, Missouri, United States of America
| | - Gregory B. Melikyan
- Emory University Medical School, Department of Pediatrics, Infectious Diseases, Atlanta, Georgia, United States of America
| | - Shan-Lu Liu
- University of Missouri School of Medicine, Bond Life Sciences Center, Department of Molecular Microbiology and Immunology, Columbia, Missouri, United States of America
- * E-mail: (SLL); (FSC)
| | - Fredric S. Cohen
- Rush University Medical Center, Department of Molecular Biophysics and Physiology, Chicago, Illinois, United States of America
- * E-mail: (SLL); (FSC)
| |
Collapse
|
8
|
Abstract
Maintenance of cellular homeostasis requires tight and coordinated control of numerous metabolic pathways, which are governed by interconnected networks of signaling pathways and energy-sensing regulators. Autophagy, a lysosomal degradation pathway by which the cell self-digests its own components, has over the past decade been recognized as an essential part of metabolism. Autophagy not only rids the cell of excessive or damaged organelles, misfolded proteins, and invading microorganisms, it also provides nutrients to maintain crucial cellular functions. Besides serving as essential structural moieties of biomembranes, lipids including sphingolipids are increasingly being recognized as central regulators of a number of important cellular processes, including autophagy. In the present review we describe how sphingolipids, with special emphasis on ceramides and sphingosine-1-phosphate, can act as physiological regulators of autophagy in relation to cellular and organismal growth, survival, and aging.
Collapse
Affiliation(s)
- Eva Bang Harvald
- Villum Center for Bioanalytical Sciences, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | | | | |
Collapse
|
9
|
van Duijl-Richter MKS, Blijleven JS, van Oijen AM, Smit JM. Chikungunya virus fusion properties elucidated by single-particle and bulk approaches. J Gen Virol 2015; 96:2122-2132. [DOI: 10.1099/vir.0.000144] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Mareike K. S. van Duijl-Richter
- Department of Medical Microbiology, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Jelle S. Blijleven
- Centre for Synthetic Biology, Zernike Institute of Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Antoine M. van Oijen
- Centre for Synthetic Biology, Zernike Institute of Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands
- School of Chemistry, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Jolanda M. Smit
- Department of Medical Microbiology, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| |
Collapse
|
10
|
Chiou YL, Chen YJ, Lin SR, Chang LS. Phospholipase A2 activity-dependent and -independent fusogenic activity of Naja nigricollis CMS-9 on zwitterionic and anionic phospholipid vesicles. Toxicon 2011; 58:518-26. [DOI: 10.1016/j.toxicon.2011.08.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 07/22/2011] [Accepted: 08/23/2011] [Indexed: 10/17/2022]
|
11
|
Kao PH, Chiou YL, Chen YJ, Lin SR, Chang LS. Guanidination of notexin promotes its phospholipase A(2) activity-independent fusogenicity on vesicles with lipid-supplied negative curvature. Toxicon 2011; 59:47-58. [PMID: 22030836 DOI: 10.1016/j.toxicon.2011.10.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2011] [Revised: 09/27/2011] [Accepted: 10/11/2011] [Indexed: 11/30/2022]
Abstract
To address the requirement of phospholipase A(2) (PLA(2)) activity in membrane fusion events and membrane perturbation activity of notexin and guanidinated notexin (Gu-notexin), the present study was conducted. Notexin and Gu-notexin did not show PLA(2) activity after the removal of Ca(2+) with EDTA. Metal-free notexin and Gu-notexin were found to induce membrane leakage and fusion of phospholipid vesicles. Fusogenic activity of native and modified notexin correlated positively with their membrane-damaging activity underlying the deprivation of PLA(2) activity. Compared with Ca(2+)-bound Gu-notexin, fusogenicity of metal-free Gu-notexin was notably increased by incorporation of cholesterol, cholesterol sulfate, phosphatidylethanolamine, α-tocopherol and phosphatidic acid that supplied negative curvature into phospholipid bilayer. The ability of Gu-notexin to induce membrane fusion of vesicles with lipid-supplied negative curvature was higher than that of notexin regardless of the absence or presence of Ca(2+). Consistently, metal-free Gu-notexin markedly induced membrane fusion of red blood cells (RBCs) compared with metal-free notexin, and fusion activity of metal-free Gu-notexin on cholesterol-depleted RBCs notably reduced. Compared with notexin, Gu-notexin highly induced uptake of calcein-loaded phosphatidylcholine (PC)/cholesterol and PC/cholesterol sulfate vesicles by K562 cells in the presence of EDTA. Taken together, our data suggest that notexin and Gu-notexin could induce vesicle leakage and fusion via a PLA(2) activity-independent mechanism, and guanidination promotes PLA(2) activity-independent fusogenicity of notexin on vesicles with lipid-supplied negative curvature.
Collapse
Affiliation(s)
- Pei-Hsiu Kao
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | | | | | | | | |
Collapse
|
12
|
The effect of long-chain bases on polysialic acid-mediated membrane interactions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:2322-6. [DOI: 10.1016/j.bbamem.2011.05.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2011] [Revised: 05/04/2011] [Accepted: 05/10/2011] [Indexed: 11/20/2022]
|
13
|
Zaitseva E, Yang ST, Melikov K, Pourmal S, Chernomordik LV. Dengue virus ensures its fusion in late endosomes using compartment-specific lipids. PLoS Pathog 2010; 6:e1001131. [PMID: 20949067 PMCID: PMC2951369 DOI: 10.1371/journal.ppat.1001131] [Citation(s) in RCA: 206] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Accepted: 09/03/2010] [Indexed: 12/31/2022] Open
Abstract
Many enveloped viruses invade cells via endocytosis and use different environmental factors as triggers for virus-endosome fusion that delivers viral genome into cytosol. Intriguingly, dengue virus (DEN), the most prevalent mosquito-borne virus that infects up to 100 million people each year, fuses only in late endosomes, while activation of DEN protein fusogen glycoprotein E is triggered already at pH characteristic for early endosomes. Are there any cofactors that time DEN fusion to virion entry into late endosomes? Here we show that DEN utilizes bis(monoacylglycero)phosphate, a lipid specific to late endosomes, as a co-factor for its endosomal acidification-dependent fusion machinery. Effective virus fusion to plasma- and intracellular- membranes, as well as to protein-free liposomes, requires the target membrane to contain anionic lipids such as bis(monoacylglycero)phosphate and phosphatidylserine. Anionic lipids act downstream of low-pH-dependent fusion stages and promote the advance from the earliest hemifusion intermediates to the fusion pore opening. To reach anionic lipid-enriched late endosomes, DEN travels through acidified early endosomes, but we found that low pH-dependent loss of fusogenic properties of DEN is relatively slow in the presence of anionic lipid-free target membranes. We propose that anionic lipid-dependence of DEN fusion machinery protects it against premature irreversible restructuring and inactivation and ensures viral fusion in late endosomes, where the virus encounters anionic lipids for the first time during entry. Currently there are neither vaccines nor effective therapies for DEN, and the essential role of the newly identified DEN-bis(monoacylglycero)phosphate interactions in viral genome escape from the endosome suggests a novel target for drug design. Dengue virus infection is a growing public health problem with up to 100 million cases annually, and neither vaccines nor effective therapies are available. To search for the ways of preventing and treating dengue infections we need to better understand their molecular mechanisms. As with many other viruses, dengue virus enters cells by fusion between the viral membrane and the membrane of intracellular vesicles (endosomes). In this work we explored the fusion stage of dengue virus entry in different experimental systems ranging from virus fusion to artificial lipid membranes to fusion inside the cells. While earlier work on dengue virus entry has focused on viral protein that mediates fusion, we found that effective action of this protein requires specific lipid composition of the membrane the virus fuses to. In effect, this lipid dependence allows virus to control intracellular location of the fusion event and, thus, the place of its RNA release by exploiting cell-controlled differences between lipid compositions of different organelles the virus travels through. The essential role of the interactions between dengue virus and its lipid cofactors during viral entry suggests that these interactions may be targeted in drug design.
Collapse
Affiliation(s)
- Elena Zaitseva
- Section on Membrane Biology, Laboratory of Cellular and Molecular Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | | | | | | | | |
Collapse
|
14
|
Pseudorevertants of a Semliki forest virus fusion-blocking mutation reveal a critical interchain interaction in the core trimer. J Virol 2010; 84:11624-33. [PMID: 20826687 DOI: 10.1128/jvi.01625-10] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Semliki Forest virus (SFV) is an enveloped alphavirus that infects cells by a low-pH-triggered membrane fusion reaction mediated by the viral E1 protein. E1 inserts into target membranes and refolds to a hairpin-like homotrimer containing a central core trimer and an outer layer composed of domain III and the juxtamembrane stem region. The key residues involved in mediating E1 trimerization are not well understood. We recently showed that aspartate 188 in the interface of the core trimer plays a critical role. Substitution with lysine (D188K) blocks formation of the core trimer and E1 trimerization and strongly inhibits virus fusion and infection. Here, we have isolated and characterized revertants that rescued the fusion and growth defects of D188K. These revertants included pseudorevertants containing acidic or polar neutral residues at E1 position 188 and a second-site revertant containing an E1 K176T mutation. Computational analysis using multiconformation continuum electrostatics revealed an important interaction bridging D188 of one chain with K176 of the adjacent chain in the core trimer. E1 K176 is completely conserved among the alphaviruses, and mutations of K176 to threonine (K176T) or isoleucine (K176I) produced similar fusion phenotypes as D188 mutants. Together, our data support a model in which a ring of three salt bridges formed by D188 and K176 stabilize the core trimer, a key intermediate of the alphavirus fusion protein.
Collapse
|
15
|
Markosyan RM, Cohen FS. Negative potentials across biological membranes promote fusion by class II and class III viral proteins. Mol Biol Cell 2010; 21:2001-12. [PMID: 20427575 PMCID: PMC2883944 DOI: 10.1091/mbc.e09-10-0904] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Fusion of virions pseudotyped with a class II, SFV E1 or VEEV E, or a class III protein, VSV G is promoted by negative potentials and hindered by positive potentials across the target cell. Hemifusion is independent of polarity. Reversion of hemifused membranes into two distinct ones is responsible for voltage-dependence and inhibition of fusion. Voltage was investigated as a factor in the fusion of virions. Virions, pseudotyped with a class II, SFV E1 or VEEV E, or a class III protein, VSV G, were prepared with GFP within the core and a fluorescent lipid. This allowed both hemifusion and fusion to be monitored. Voltage clamping the target cell showed that fusion is promoted by a negative potential and hindered by a positive potential. Hemifusion occurred independent of polarity. Lipid dye movement, in the absence of content mixing, ceased before complete transfer for positive potentials, indicating that reversion of hemifused membranes into two distinct membranes is responsible for voltage dependence and inhibition of fusion. Content mixing quickly followed lipid dye transfer for a negative potential, providing a direct demonstration that hemifusion induced by class II and class III viral proteins is a functional intermediate of fusion. In the hemifused state, virions that fused exhibited slower lipid transfer than did nonfusing virions. All viruses with class II or III fusion proteins may utilize voltage to achieve infection.
Collapse
Affiliation(s)
- Ruben M Markosyan
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, IL 60612, USA
| | | |
Collapse
|
16
|
Abstract
The study of enveloped animal viruses has greatly advanced our understanding of the general properties of membrane fusion and of the specific pathways that viruses use to infect the host cell. The membrane fusion proteins of the alphaviruses and flaviviruses have many similarities in structure and function. As reviewed here, alphaviruses use receptor-mediated endocytic uptake and low pH-triggered membrane fusion to deliver their RNA genomes into the cytoplasm. Recent advances in understanding the biochemistry and structure of the alphavirus membrane fusion protein provide a clearer picture of this fusion reaction, including the protein’s conformational changes during fusion and the identification of key domains. These insights into the alphavirus fusion mechanism suggest new areas for experimental investigation and potential inhibitor strategies for anti-viral therapy.
Collapse
Affiliation(s)
- Margaret Kielian
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-718-430-3638; Fax: +1-718-430-8574
| | | | | |
Collapse
|
17
|
Teissier É, Pécheur EI. Lipids as modulators of membrane fusion mediated by viral fusion proteins. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2007; 36:887-99. [PMID: 17882414 PMCID: PMC7080115 DOI: 10.1007/s00249-007-0201-z] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Revised: 05/17/2007] [Accepted: 06/11/2007] [Indexed: 11/24/2022]
Abstract
Enveloped viruses infect host cells by fusion of viral and target membranes. This fusion event is triggered by specific glycoproteins in the viral envelope. Fusion glycoproteins belong to either class I, class II or the newly described third class, depending upon their arrangement at the surface of the virion, their tri-dimensional structure and the location within the protein of a short stretch of hydrophobic amino acids called the fusion peptide, which is able to induce the initial lipid destabilization at the onset of fusion. Viral fusion occurs either with the plasma membrane for pH-independent viruses, or with the endosomal membranes for pH-dependent viruses. Although, viral fusion proteins are parted in three classes and the subcellular localization of fusion might vary, these proteins have to act, in common, on lipid assemblies. Lipids contribute to fusion through their physical, mechanical and/or chemical properties. Lipids can thus play a role as chemically defined entities, or through their preferential partitioning into membrane microdomains called “rafts”, or by modulating the curvature of the membranes involved in the fusion process. The purpose of this review is to make a state of the art on recent findings on the contribution of cholesterol, sphingolipids and glycolipids in cell entry and membrane fusion of a number of viral families, whose members bear either class I or class II fusion proteins, or fusion proteins of the recently discovered third class.
Collapse
Affiliation(s)
- Élodie Teissier
- Structural NMR and Bioinformatics, UMR CNRS 5086, Institut de Biologie et Chimie des Protéines, IFR 128 BioSciences Lyon-Gerland, 7 passage du Vercors, 69367 Lyon, France
| | - Eve-Isabelle Pécheur
- Structural NMR and Bioinformatics, UMR CNRS 5086, Institut de Biologie et Chimie des Protéines, IFR 128 BioSciences Lyon-Gerland, 7 passage du Vercors, 69367 Lyon, France
| |
Collapse
|
18
|
Markosyan RM, Kielian M, Cohen FS. Fusion induced by a class II viral fusion protein, semliki forest virus E1, is dependent on the voltage of the target cell. J Virol 2007; 81:11218-25. [PMID: 17686870 PMCID: PMC2045574 DOI: 10.1128/jvi.01256-07] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cells expressing the low pH-triggered class II viral fusion protein E1 of Semliki Forest virus (SFV) were fused to target cells. Fusion was monitored by electrical capacitance and aqueous dye measurements. Electrical voltage-clamp measurements showed that SFV E1-induced cell-cell fusion occurred quickly after acidification for a trans-negative potential across the target membrane (i.e., negative potential inside the target cell) but that a trans-positive potential eliminated all fusion. Use of an ionophore to control potentials for a large population of cells confirmed the dependence of fusion on voltage polarity. In contrast, fusion induced by the class I fusion proteins of human immunodeficiency virus, avian sarcoma leukosis virus, and influenza virus was independent of the voltage polarity across the target cell. Initial pore size and pore growth were also independent of voltage polarity for the class I proteins. An intermediate of SFV E1-induced fusion was created by transient acidification at low temperature. Membranes were hemifused at this intermediate state, and raising the temperature at neutral pH allowed full fusion to occur. Capacitance measurements showed that maintaining a trans-positive potential definitely blocked fusion at steps following the creation of the hemifusion intermediate and may have inhibited fusion at prior steps. It is proposed that the trans-negative voltage across the endosomal membrane facilitates fusion after low-pH-induced conformational changes of SFV E1 have occurred.
Collapse
Affiliation(s)
- Ruben M Markosyan
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, 1653 W. Congress Pkwy., Chicago, IL 60612, USA
| | | | | |
Collapse
|
19
|
Wessels L, Elting MW, Scimeca D, Weninger K. Rapid membrane fusion of individual virus particles with supported lipid bilayers. Biophys J 2007; 93:526-38. [PMID: 17449662 PMCID: PMC1896232 DOI: 10.1529/biophysj.106.097485] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many enveloped viruses employ low-pH-triggered membrane fusion during cell penetration. Solution-based in vitro assays in which viruses fuse with liposomes have provided much of our current biochemical understanding of low-pH-triggered viral membrane fusion. Here, we extend this in vitro approach by introducing a fluorescence assay using single particle tracking to observe lipid mixing between individual virus particles (influenza or Sindbis) and supported lipid bilayers. Our single-particle experiments reproduce many of the observations of the solution assays. The single-particle approach naturally separates the processes of membrane binding and membrane fusion and therefore allows measurement of details that are not available in the bulk assays. We find that the dynamics of lipid mixing during individual Sindbis fusion events is faster than 30 ms. Although neither virus binds membranes at neutral pH, under acidic conditions, the delay between membrane binding and lipid mixing is less than half a second for nearly all virus-membrane combinations. The delay between binding and lipid mixing lengthened only for Sindbis virus at the lowest pH in a cholesterol-dependent manner, highlighting the complex interaction between lipids, virus proteins, and buffer conditions in membrane fusion.
Collapse
Affiliation(s)
- Laura Wessels
- Department of Physics, North Carolina State University, Raleigh, North Carolina 27695, USA
| | | | | | | |
Collapse
|
20
|
Abstract
Enveloped animal viruses fuse their membrane with a host cell membrane, thus delivering the virus genetic material into the cytoplasm and initiating infection. This critical membrane fusion reaction is mediated by a virus transmembrane protein known as the fusion protein, which inserts its hydrophobic fusion peptide into the cell membrane and refolds to drive the fusion reaction. This review describes recent advances in our understanding of the structure and function of the class II fusion proteins of the alphaviruses and flaviviruses. Inhibition of the fusion protein refolding reaction confirms its importance in fusion and suggests new antiviral strategies for these medically important viruses.
Collapse
Affiliation(s)
- Margaret Kielian
- Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA.
| |
Collapse
|
21
|
Abstract
Enveloped viruses enter cells by fusing their lipid bilayer membrane with a cellular membrane. Most viral fusion proteins require priming by proteolytic processing, either of the fusion protein itself or of an accompanying protein. The priming step, which often occurs during transport of the fusion protein to the cell surface but may also occur extracellularly, then prepares the fusion protein for triggering by events that accompany attachment and uptake. Two classes of viral fusion proteins have been identified so far by structural studies. The fusion of two bilayers that these proteins catalyze is likely to proceed by the same pathway in both cases. That is, these proteins are like enzymes that have different structures but that still catalyze the same chemical reaction. It is found that bilayer fusion reaction is common to all the enveloped viral entry pathways. It is believed to pass through an intermediate known as a “hemifusion stalk.”
Collapse
Affiliation(s)
- Stephen C Harrison
- Children's Hospital, Harvard Medical School, and Howard Hughes Medical Institute, Boston, Massachusetts 02115, USA
| |
Collapse
|
22
|
Zaitseva E, Mittal A, Griffin DE, Chernomordik LV. Class II fusion protein of alphaviruses drives membrane fusion through the same pathway as class I proteins. ACTA ACUST UNITED AC 2005; 169:167-77. [PMID: 15809312 PMCID: PMC2171914 DOI: 10.1083/jcb.200412059] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Viral fusion proteins of classes I and II differ radically in their initial structures but refold toward similar conformations upon activation. Do fusion pathways mediated by alphavirus E1 and influenza virus hemagglutinin (HA) that exemplify classes II and I differ to reflect the difference in their initial conformations, or concur to reflect the similarity in the final conformations? Here, we dissected the pathway of low pH–triggered E1-mediated cell–cell fusion by reducing the numbers of activated E1 proteins and by blocking different fusion stages with specific inhibitors. The discovered progression from transient hemifusion to small, and then expanding, fusion pores upon an increase in the number of activated fusion proteins parallels that established for HA-mediated fusion. We conclude that proteins as different as E1 and HA drive fusion through strikingly similar membrane intermediates, with the most energy-intensive stages following rather than preceding hemifusion. We propose that fusion reactions catalyzed by all proteins of both classes follow a similar pathway.
Collapse
Affiliation(s)
- Elena Zaitseva
- Section on Membrane Biology, Laboratory of Cellular and Molecular Biophysics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
23
|
Abstract
Many of the highly pathogenic viruses including influenza virus, HIV and others of world wide epidemiological importance are enveloped and possess a membrane around the nucleocapsid containing the viral genome. Viral membrane is required to protect the viral genome and provide important functions for attachment, morphogenesis and transmission. Viral membrane is essentially composed of lipids and proteins. While the proteins on the viral envelope are almost exclusively virally encoded, lipids, on the other hand, are all of host origin and recruited from host membrane. However, lipids on the viral membrane are not incorporated randomly and do not represent average lipid composition of the host membrane. Recent studies support that specific lipid microdomains such as lipid rafts play critical roles in many aspects of the virus infectious cycle including attachment, entry, uncoating, protein transport and sorting as well as viral morphogenesis and budding. Lipid microdomains aid in bringing and concentrating viral components to the budding site. Similarly, specific viral protein plays an important role in organizing lipid microdomains in and around the assembly and budding site of the virus. This review deals with the specific role of lipid microdomains in different aspects of the virus life cycle and the role of specific viral proteins in organizing the lipid microdomains.
Collapse
Affiliation(s)
- Debi P Nayak
- Department of Microbiology, Immunology and Molecular Genetics, UCLA School of Medicine, Los Angeles, CA 90095-1747, USA
| | | |
Collapse
|
24
|
Wengler G, Koschinski A, Wengler G, Repp H. During entry of alphaviruses, the E1 glycoprotein molecules probably form two separate populations that generate either a fusion pore or ion-permeable pores. J Gen Virol 2004; 85:1695-1701. [PMID: 15166454 DOI: 10.1099/vir.0.79845-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Studies using the alphavirus Semliki Forest virus have indicated that the viral E1 fusion protein forms two types of pore: fusion pores and ion-permeable pores. The formation of ion-permeable pores has not been generally accepted, partly because it was not evident how the protein might form these different pores. Here it is proposed that the choice of the target membrane determines whether a fusion pore or ion-permeable pores are formed. The fusion protein is activated in the endosome and for steric reasons only a fraction of the activated molecules can interact with the endosomal membrane. This target membrane reaction forms the fusion pore. It is proposed that the rest of the activated molecules interact with the membrane in which the protein is anchored and that this self-membrane reaction leads to formation of ion-permeable pores, which can be detected in the target membrane after fusion of the viral membrane into the target membrane.
Collapse
Affiliation(s)
- Gerd Wengler
- Institut für Virologie der Veterinärmedizin, Justus-Liebig-Universität, D-35392 Giessen, Germany
| | - Andreas Koschinski
- Rudolf-Buchheim-Institut für Pharmakologie, Justus-Liebig-Universität, D-35392 Giessen, Germany
| | - Gisela Wengler
- Institut für Virologie der Veterinärmedizin, Justus-Liebig-Universität, D-35392 Giessen, Germany
| | - Holger Repp
- Rudolf-Buchheim-Institut für Pharmakologie, Justus-Liebig-Universität, D-35392 Giessen, Germany
| |
Collapse
|
25
|
Melikyan GB, Barnard RJO, Markosyan RM, Young JAT, Cohen FS. Low pH is required for avian sarcoma and leukosis virus Env-induced hemifusion and fusion pore formation but not for pore growth. J Virol 2004; 78:3753-62. [PMID: 15016895 PMCID: PMC371058 DOI: 10.1128/jvi.78.7.3753-3762.2004] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Binding of avian sarcoma and leukosis virus (ASLV) to its cognate receptor on the cell surface causes conformational changes in its envelope protein (Env). It is currently debated whether low pH is required for ASLV infection. To elucidate the role of low pH, we studied the association between ASLV subgroup B (ASLV-B) and liposomes and fusion between effector cells expressing Env from ASLV-A and ASLV-B and target cells expressing cognate receptors. Neither EnvA nor EnvB promoted cell-cell fusion at neutral pH, but lowering the pH resulted in quick and extensive fusion. As expected for a low-pH-triggered reaction, fusion was a steep function of pH. Steps that required low pH were identified. Binding a soluble form of the receptor caused ASLV-B to hydrophobically associate with liposome membranes at neutral pH, indicating that low pH is not required for insertion of Env's fusion peptides into membranes. But both cell-cell hemifusion and fusion pore formation were pH dependent. It is proposed that fusion peptide insertion stabilizes the conformation of ASLV Env into a form that can be acted upon by low pH. At this point, but not before, low pH can induce fusion and is in fact required for fusion to occur. However, low pH is no longer necessary after formation of the initial fusion pore: pore enlargement does not require low pH.
Collapse
Affiliation(s)
- G B Melikyan
- Department of Molecular Biophysics and Physiology, Rush Medical College, Chicago, Illinois 60612, USA
| | | | | | | | | |
Collapse
|
26
|
Morris R, Cox H, Mombelli E, Quinn PJ. Rafts, little caves and large potholes: how lipid structure interacts with membrane proteins to create functionally diverse membrane environments. Subcell Biochem 2004; 37:35-118. [PMID: 15376618 DOI: 10.1007/978-1-4757-5806-1_2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
This chapter reviews how diverse lipid microdomains form in the membrane and partition proteins into different functional units that regulate cell trafficking, signalling and movement. We will concentrate upon five major issues: 1. the diversity of lipid structure that produces diverse microenvironments into which different subsets of proteins partition; 2. why ordered lipid domains exclude proteins, and the conditions required for select subsets of proteins to enter these domains; 3. the coupling of the inner and outer leaflets within ordered microdomains; 4. the effect of ordered lipid domains upon membrane properties including curvature and hydrophobicity that affect membrane fission, fusion and extension of filopodia; 5. the biological effects of these structural constraints; in particular how the properties of these domains combine to provide a very different signalling, trafficking and membrane fusion environment to that found in disordered (fluid mosaic) membrane. In addressing these problems, the review draws upon studies ranging from molecular dynamic modelling of lipid interactions, through physical studies of model membrane systems to structural and biological studies of whole cells, examining in the process problems inherent in visualising and purifying these microdomains. While the diversity of structure and function of ordered lipid microdomains is emphasised, some general roles emerge. In particular, the basis for having quite different, non-interacting ordered lipid domains on the same membrane is evident in the diversity of lipid structure and plays a key role in sorting signalling systems. The exclusion of ordered membrane from coated pits, and hence rapid endocytosis, is suggested to underlie the ability of highly ordered domains to establish stable secondary signalling systems required, for instance, in T cell receptor, insulin and neurotrophin signalling.
Collapse
Affiliation(s)
- Roger Morris
- Molecular Neurobiology Group, MRC Centre for Developmental Neurobiology, King's College, London, UK
| | | | | | | |
Collapse
|
27
|
Frolov VA, Dunina-Barkovskaya AY, Samsonov AV, Zimmerberg J. Membrane permeability changes at early stages of influenza hemagglutinin-mediated fusion. Biophys J 2003; 85:1725-33. [PMID: 12944287 PMCID: PMC1303346 DOI: 10.1016/s0006-3495(03)74602-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
While biological membrane fusion is classically defined as the leak-free merger of membranes and contents, leakage is a finding in both experimental and theoretical studies. The fusion stages, if any, that allow membrane permeation are uncharted. In this study we monitored membrane ionic permeability at early stages of fusion mediated by the fusogenic protein influenza hemagglutinin (HA). HAb2 cells, expressing HA on their plasma membrane, fused with human red blood cells, cultured liver cells PLC/PRF/5, or planar phospholipid bilayer membranes. With a probability that depended upon the target membrane, an increase of the electrical conductance of the fusing membranes (leakage) by up to several nS was generally detected. This leakage was recorded at the initial stages of fusion, when fusion pores formed. This leakage usually accompanied the "flickering" stage of the early fusion pore development. As the pore widened, the leakage reduced; concomitantly, the lipid exchange between the fusing membranes accelerated. We conclude that during fusion pore formation, HA locally and temporarily increases the permeability of fusing membranes. Subsequent rearrangement in the fusion complex leads to the resealing of the leaky membranes and enlargement of the pore.
Collapse
Affiliation(s)
- V A Frolov
- A. N. Frumkin Institute of Electrochemistry, Russian Academy of Sciences, Moscow, Russia
| | | | | | | |
Collapse
|
28
|
Stiasny K, Koessl C, Heinz FX. Involvement of lipids in different steps of the flavivirus fusion mechanism. J Virol 2003; 77:7856-62. [PMID: 12829825 PMCID: PMC161939 DOI: 10.1128/jvi.77.14.7856-7862.2003] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Flavivirus membrane fusion is triggered by acidic pH and mediated by the major envelope protein E. A structurally very similar fusion protein is found in alphaviruses, and these molecules are designated class II viral fusion proteins. In contrast to that of flaviviruses, however, alphavirus fusion has been shown to be absolutely dependent on the presence of cholesterol and sphingomyelin in the target membrane, suggesting significant differences in the fusion protein-membrane interactions that lead to fusion. With the flavivirus tick-borne encephalitis virus (TBEV), we have therefore conducted a study on the lipid requirements of viral fusion with liposomes and on the processes preceding fusion, specifically, the membrane-binding step and the fusion-associated oligomeric switch from E protein dimers to trimers. As with alphaviruses, cholesterol had a strong promoting effect on membrane binding and trimerization of the fusion protein, and-as shown by the use of cholesterol analogs-the underlying interactions involve the 3beta-hydroxyl group at C-3 in both viral systems. In contrast to alphaviruses, however, these effects are much less pronounced with respect to the overall fusion of TBEV and can only be demonstrated when fusion is slowed down by lowering the temperature. The data presented thus suggest the existence of structurally related interactions of the flavivirus and alphavirus fusion proteins with cholesterol in the molecular processes required for fusion but, at the same time, point to significant differences between the class II fusion machineries of these viruses.
Collapse
Affiliation(s)
- Karin Stiasny
- Institute of Virology, University of Vienna, Kinderspitalgasse 15, A-1095 Vienna, Austria.
| | | | | |
Collapse
|