1
|
Zhou Z, Zhang G, Xu Y, Yang S, Wang J, Li Z, Peng F, Lu Q. The underlying mechanism of chimeric antigen receptor (CAR)-T cell therapy triggering secondary T-cell cancers: Mystery of the Sphinx? Cancer Lett 2024; 597:217083. [PMID: 38925363 DOI: 10.1016/j.canlet.2024.217083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/13/2024] [Accepted: 06/23/2024] [Indexed: 06/28/2024]
Abstract
The U.S. Food and Drug Administration (FDA) has reported cases of T-cell malignancies, including CAR-positive lymphomas, in patients receiving B cell maturation antigen (BCMA)- or CD19-targeted autologous CAR-T cell immunotherapy. These reports were derived from clinical trials and/or post-marketing adverse event data. This finding has attracted widespread attention. Therefore, it is essential to explore the potential mechanisms by which chimeric antigen receptor (CAR)-T cell therapy triggers secondary T-cell cancers to further guarantee the safety of CAR-T cell therapy.
Collapse
MESH Headings
- Humans
- Immunotherapy, Adoptive/adverse effects
- Immunotherapy, Adoptive/methods
- Receptors, Chimeric Antigen/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Antigens, CD19/immunology
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/genetics
- B-Cell Maturation Antigen/immunology
Collapse
Affiliation(s)
- Zhaokai Zhou
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Ge Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Henan Province Key Laboratory of Cardiac Injury and Repair, Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, China
| | - Yudi Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Shuai Yang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Jiaojiao Wang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Zhengrui Li
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fu Peng
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Qiong Lu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
2
|
Morath K, Sadhu L, Dyckhoff G, Gapp M, Keppler OT, Fackler OT. Activation-neutral gene editing of tonsillar CD4 T cells for functional studies in human ex vivo tonsil cultures. CELL REPORTS METHODS 2024; 4:100685. [PMID: 38211593 PMCID: PMC10831948 DOI: 10.1016/j.crmeth.2023.100685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/13/2023] [Accepted: 12/13/2023] [Indexed: 01/13/2024]
Abstract
The molecular and immunological properties of tissue-resident resting CD4 T cells are understudied due to the lack of suitable gene editing methods. Here, we describe the ex vivo culture and gene editing methodology ediTONSIL for CD4 T cells from human tonsils. Optimized CRISPR-Cas9 RNP nucleofection results in knockout efficacies of over 90% without requiring exogenous activation. Editing can be performed on multiple cell types in bulk cultures or on isolated CD4 T cells that can be labeled and reintroduced into their tissue environment. Importantly, CD4 T cells maintain their tissue-specific properties such as viability, activation state, or immunocompetence following reassembly into lymphoid aggregates. This highly efficient and versatile gene editing workflow for tonsillar CD4 T cells enables the dissection of molecular mechanisms in ex vivo cultures of human lymphoid tissue and can be adapted to other tonsil-resident cell types.
Collapse
Affiliation(s)
- Katharina Morath
- Department of Infectious Diseases, Integrative Virology, University Hospital Heidelberg, Im Neuenheimer Feld 344, 69120 Heidelberg, Germany
| | - Lopamudra Sadhu
- Department of Infectious Diseases, Integrative Virology, University Hospital Heidelberg, Im Neuenheimer Feld 344, 69120 Heidelberg, Germany
| | - Gerhard Dyckhoff
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Madeleine Gapp
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Ludwig-Maximilians-Universität München, Pettenkoferstraße 9a, 80336 Munich, Germany
| | - Oliver T Keppler
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Ludwig-Maximilians-Universität München, Pettenkoferstraße 9a, 80336 Munich, Germany; German Centre for Infection Research (DZIF), Partner Site München, Munich, Germany
| | - Oliver T Fackler
- Department of Infectious Diseases, Integrative Virology, University Hospital Heidelberg, Im Neuenheimer Feld 344, 69120 Heidelberg, Germany; German Centre for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany.
| |
Collapse
|
3
|
Imrie RM, Walsh SK, Roberts KE, Lello J, Longdon B. Investigating the outcomes of virus coinfection within and across host species. PLoS Pathog 2023; 19:e1011044. [PMID: 37216391 DOI: 10.1371/journal.ppat.1011044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 05/02/2023] [Indexed: 05/24/2023] Open
Abstract
Interactions between coinfecting pathogens have the potential to alter the course of infection and can act as a source of phenotypic variation in susceptibility between hosts. This phenotypic variation may influence the evolution of host-pathogen interactions within host species and interfere with patterns in the outcomes of infection across host species. Here, we examine experimental coinfections of two Cripaviruses-Cricket Paralysis Virus (CrPV), and Drosophila C Virus (DCV)-across a panel of 25 Drosophila melanogaster inbred lines and 47 Drosophilidae host species. We find that interactions between these viruses alter viral loads across D. melanogaster genotypes, with a ~3 fold increase in the viral load of DCV and a ~2.5 fold decrease in CrPV in coinfection compared to single infection, but we find little evidence of a host genetic basis for these effects. Across host species, we find no evidence of systematic changes in susceptibility during coinfection, with no interaction between DCV and CrPV detected in the majority of host species. These results suggest that phenotypic variation in coinfection interactions within host species can occur independently of natural host genetic variation in susceptibility, and that patterns of susceptibility across host species to single infections can be robust to the added complexity of coinfection.
Collapse
Affiliation(s)
- Ryan M Imrie
- Centre for Ecology & Conservation, Faculty of Environment, Science, and Economy, Biosciences, University of Exeter, Penryn Campus, Penryn, United Kingdom
| | - Sarah K Walsh
- Centre for Ecology & Conservation, Faculty of Environment, Science, and Economy, Biosciences, University of Exeter, Penryn Campus, Penryn, United Kingdom
| | - Katherine E Roberts
- Centre for Ecology & Conservation, Faculty of Environment, Science, and Economy, Biosciences, University of Exeter, Penryn Campus, Penryn, United Kingdom
| | - Joanne Lello
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Ben Longdon
- Centre for Ecology & Conservation, Faculty of Environment, Science, and Economy, Biosciences, University of Exeter, Penryn Campus, Penryn, United Kingdom
| |
Collapse
|
4
|
Thrombotic Microangiopathy: Multi-Institutional Review of Pediatric Patients Who Underwent HSCT. J Pers Med 2021; 11:jpm11060467. [PMID: 34070379 PMCID: PMC8226470 DOI: 10.3390/jpm11060467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/16/2021] [Accepted: 05/18/2021] [Indexed: 12/03/2022] Open
Abstract
Thrombotic microangiopathy (TMA) is a rare but serious complication of hematopoietic stem cell transplantation (HSCT). The purpose of our study is to estimate the incidence, prevalence, and analyze the risk factors and outcome of TMA in children receiving HSCT. Patients under the age of 21 who underwent HSCT at one of the 42 Pediatric Health Information System (PHIS) hospitals from 2000–2012 were analyzed, including demographics, hospitalizations, TMA, and other HSCT-related complications. From 2000 to 2012, a total of 12,369 unique pediatric patients who received HSCT were identified. Among these, 93 (0.8%) children were identified to have the diagnosis of TMA. TMA was significantly associated with allogeneic HSCT, peripheral blood stem cell trasnplants (PBSCT), cytomegalovirus (CMV), human herpes virus 6 (HHV6), fungal infection, graft-versus-host disease (GVHD), and veno-occlusive disease (VOD) (p = 0.01). Multivariate logistic regression analysis of mortality showed only HHV6 was an independent risk factor associated with increased mortality in patients with TMA (hazard ratio: 2.86 [1.01, 8.39], p = 0.05). The prevalence of TMA in our study is 0.8% with a mortality in our pediatric TMA cohort of 30%, which is in contrast to the higher mortality reported in previously published, small-case series. HHV6 emerged as not only a risk factor for TMA but also as associated with increased mortality in these patients.
Collapse
|
5
|
Pawlowska AB, Karras NA, Liu H, DiMundo J, Cheng JC, Sun W, Armenian S, Yang D, Palmer JM, Bell A, Tahoun A, Tegtmeier B, Dadwal S, Rosenthal J. Reactivation of human herpesvirus 6 in pediatric allogeneic hematopoietic stem cell transplant recipients. Transpl Infect Dis 2020; 23:e13453. [PMID: 32860467 DOI: 10.1111/tid.13453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 08/03/2020] [Accepted: 08/08/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND Reactivation of human herpesvirus 6 (HHV-6) occurs in 30%-50% of patients (pts) who receive allogeneic (allo) hematopoietic stem cell transplant (HCT). However, the recommendation for post-transplant HHV-6 monitoring and treatment in pediatric pts is not well established. METHODS HHV-6 incidence rates and the clinical outcomes were reported for 139 pediatric pts (≤18 years) undergoing first allo-HCT at City of Hope from July 2011 to July 2017, for whom HHV-6 was monitored weekly throughout HCT hospitalization. For 57 pediatric pts, who underwent first HCT from January 2009 to July 2011, HHV-6 was tested as clinically indicated and only rates of HHV-6 viremia were collected. RESULTS From July 2011 to July 2017, HHV-6 was detected in 88/139 pts (63%). The frequency of HHV-6 viremia was associated with malignant diagnoses, myeloablative conditioning, and cord blood HCT. Treatment with antiviral agents was offered to symptomatic pts with a higher viral load (VL), for whom the time to VL clearance was longer and the frequency of subsequent recurrences was higher. Pts with a lower VL cleared HHV-6 without treatment. HHV-6 viremia was associated with a higher frequency of grade II-IV acute graft-versus-host disease (GVHD) (P = .022), but did not affect overall survival (OS), disease-free survival (DFS), non-relapsed mortality (NRM), myeloid, or platelet (Plt) engraftment. CONCLUSIONS HHV-6 weekly screening is not necessary for all HCT pts but may be considered for high-risk pts with malignant diagnoses undergoing cord blood HCT; otherwise, HHV-6 should be tested as clinically indicated. Only symptomatic pts (especially with a high VL > 25 000) could benefit from treatment. HHV-6 viremia at the time of initiation and administration of the conditioning regimen cleared promptly without the need to augment the transplant process.
Collapse
Affiliation(s)
| | | | - Huaying Liu
- Department of Pediatrics, City of Hope, Duarte, CA, USA.,Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Julie DiMundo
- Department of Pediatrics, City of Hope, Duarte, CA, USA
| | | | - Weili Sun
- Department of Pediatrics, City of Hope, Duarte, CA, USA.,Janssen Pharmaceuticals, Los Angeles, CA, USA
| | - Saro Armenian
- Department of Pediatrics, City of Hope, Duarte, CA, USA
| | - Dongyun Yang
- Information Sciences, City of Hope, Duarte, CA, USA
| | | | - Alison Bell
- Information Sciences, City of Hope, Duarte, CA, USA
| | - Ahmed Tahoun
- Department of Pediatrics, City of Hope, Duarte, CA, USA
| | | | - Sanjeet Dadwal
- Division of Infectious Diseases, City of Hope, Duarte, CA, USA
| | | |
Collapse
|
6
|
Keyvani H, Zahednasab H, Aljanabi HAA, Asadi M, Mirzaei R, Esghaei M, Karampoor S. The role of human herpesvirus-6 and inflammatory markers in the pathogenesis of multiple sclerosis. J Neuroimmunol 2020; 346:577313. [PMID: 32673896 DOI: 10.1016/j.jneuroim.2020.577313] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/31/2020] [Accepted: 06/29/2020] [Indexed: 10/25/2022]
Abstract
Multiple sclerosis (MS) is a destructive autoimmune neuroinflammatory and neurodegenerative disorder of the central nervous system (CNS) with unknown etiology and mechanism of pathogenesis. Pathogens, especially human herpes viruses, have been suggested as environmental factors of the MS and other neuroinflammatory disorders. This study aimed to determine the prevalence of HHV-6 antibody response in MS patients and investigate the levels of pro/anti-inflammatory cytokine and chemokines in MS patients in comparison with healthy subjects. Two hundred sixty-three patients with clinically defined MS (140 females and 123 males), along with 263 healthy subjects (140 females and 123 males), were recruited for this study. After the analysis of HHV-6 seropositivity/seronegativity, the levels of some pro/anti-inflammatory cytokines, including TNF-α, IFN-γ, IL-1β, IL-6, and IL-12 as well as two chemokines, namely CCL-2 and CCL-5 were determined by the enzyme-linked immunosorbent assay (ELISA) method in HHV-6 seropositive/seronegative MS patients and healthy subjects. Our results showed that the serum concentrations of TNF-α, IFN-γ, IL-1β, IL-6, and CCL-5 elevated in HHV-6 seropositive compared with seronegative MS patients (P < .05). Moreover, the levels of IL-12, IL-10, and CCL-2 levels were significantly lower in seropositive MS patients when compared with seronegative MS patients (P < .05). Also, our results revealed that the mean values of the expanded disability status scale (EDSS) were significantly higher in HHV-6 seropositive versus seronegative MS patients (P < .05). In conclusion, we proposed that HHV-6 infection may play a role in MS pathogenesis by changing cytokine signaling in MS patients that may lead to peripheral inflammation.
Collapse
Affiliation(s)
- Hossein Keyvani
- Department of Medical Virology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hamid Zahednasab
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Hussain Ali Abraham Aljanabi
- Alnahrain University College of Medicine, Bagdad, Iraq; Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Muhammad Asadi
- Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Rasoul Mirzaei
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Maryam Esghaei
- Department of Medical Virology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sajad Karampoor
- Department of Medical Virology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
7
|
Abstract
OBJECTIVE This cohort study, based on the design of a prior study in the United States, was conducted to elucidate the clinical features of primary human herpesvirus-6B (HHV-6B) infection. METHODS Between June 2014 and May 2016, febrile children younger than 5 years who visited the emergency room (ER) and underwent blood examination were enrolled in this study. RESULTS Fifty-nine (12%) of the 491 patients were diagnosed with primary HHV-6B infection. The rates of both simple and complex febrile seizure were significantly higher in patients with primary HHV-6B infection than in those without (P < 0.001 and P = 0.008, respectively). The median age at primary HHV-6B infection was 15 months. Forty-seven (79.7%) of the 59 patients with primary HHV-6B infection were younger than 2-year-old. Clinical features were compared between HHV-6B-infected patients older and younger than 2 years. The frequency of apparent infection (exanthema subitum) was significantly higher in the younger patients (P = 0.01). The median leukocyte (P = 0.01) and lymphocyte (P < 0.001) counts in the patients older than 2 years were significantly lower than those in the younger patients. CONCLUSIONS Primary HHV-6B infection accounted for 12% of ER visits. Secondary febrile seizures, in particular the complex type, were considered to be a major contributor to the disease burden of primary HHV-6B infection. The timing of primary HHV-6B infection occurred at older ages than in past reports, and the frequency of inapparent infection was higher in older patients.
Collapse
|
8
|
HHV-6B reduces autophagy and induces ER stress in primary monocytes impairing their survival and differentiation into dendritic cells. Virus Res 2019; 273:197757. [PMID: 31521763 DOI: 10.1016/j.virusres.2019.197757] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/06/2019] [Accepted: 09/11/2019] [Indexed: 12/21/2022]
Abstract
HHV-6A and HHV-6B are ubiquitous human betaherpesviruses sharing more than 80% homology. HHV-6B is the most common cause of encephalitis in transplant patients and its primary infection may cause the exanthema subitum and febrile seizures in infants. HHV-6A and HHV-6B are able to infect several immune cell types such as T cells, monocytes and dendritic cells (DCs). In this study we found that HHV-6 B derived from patients affected by exanthema subitum impaired monocyte differentiation into DCs, as the infected cells acquired less CD1a DC marker and retained more CD14 monocyte marker. In agreement with the previous finding that HHV-6B dysregulated autophagy and induced endoplasmic reticulum (ER) stress in cells in which it replicated, here we found that these effects occurred also in differentiating monocytes and that ER stress relief, by using the chemical chaperone sodium 4-phenylbutirate (PBA), partially restored DC formation. This suggests that the induction of ER stress, likely exacerbated by autophagy inhibition, could contribute to the immune suppression induced by HHV-6B derived from exanthema subitem patients.
Collapse
|
9
|
Human Herpes Virus 6 (HHV-6)-associated Lymphadenitis: Pitfalls in Diagnosis in Benign and Malignant Settings. Am J Surg Pathol 2019; 42:1402-1408. [PMID: 29975251 DOI: 10.1097/pas.0000000000001121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Human herpes virus 6 (HHV-6) is a member of the β-herpesvirinae subfamily. Most people acquire HHV-6 primary infection early in life and reactivation may occur, most often in immunocompromised individuals, leading to various clinical manifestations. HHV-6 infected cells may be identified in lymph nodes in both reactive and neoplastic conditions. Cases were retrieved from the hematopathology consultation service archives at National Institutes of Health from 2003 to 2017 in which infection by HHV-6 had been documented by immunohistochemical stains to HHV-6 gp60/110 envelope glycoprotein. Five cases of reactive lymphadenitis and 3 cases of lymphoma; 2 angioimmunoblastic T-cell lymphoma and 1 classic Hodgkin lymphoma, positive for HHV-6 were identified. The reactive lymph nodes showed marked paracortical hyperplasia and admixed large atypical lymphoid cells exhibiting pleomorphic nuclei, vesicular chromatin, and prominent eosinophilic intranuclear inclusions. Vascular proliferation and necrosis were also present, raising suspicion of peripheral T-cell lymphoma. The 3 cases of lymphoma showed similar viral inclusions, in addition to the characteristic features diagnostic of the lymphoma. Staining for HHV-6 was positive with a membranous and Golgi pattern and was restricted to cells with evident inclusions on hematoxylin and eosin. HHV-6 infected cells were positive for CD3 and CD4. HHV-6 lymphadenitis can present with morphologic atypia creating a diagnostic pitfall for lymphoma. In such cases, careful attention to the characteristic viral inclusions can lead to immunohistochemical analysis highlighting the replicating virus. In cases of lymphoma, identification of the inclusions is key in detecting the associated infection as well as in avoiding misinterpretation of the lymphoma subtype.
Collapse
|
10
|
Bortolotti D, Gentili V, Rotola A, Cultrera R, Marci R, Di Luca D, Rizzo R. HHV-6A infection of endometrial epithelial cells affects immune profile and trophoblast invasion. Am J Reprod Immunol 2019; 82:e13174. [PMID: 31338899 DOI: 10.1111/aji.13174] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 07/15/2019] [Accepted: 07/15/2019] [Indexed: 12/22/2022] Open
Abstract
PROBLEM We first reported human herpesvirus (HHV)-6A DNA presence in 43% of endometrial cells from women with idiopathic infertility, whereas no fertile control women harbored the virus. We investigated the effect of HHV-6A infection on the immunological status of the endometrium. METHOD OF STUDY Endometrial biopsies, uterine flushing, and whole blood samples were collected from 67 idiopathic infertile women (mid-secretory phase). We analyzed the endometrial immunological status evaluating: (a) the effect of HHV-6A infection on endometrial immune profile analyzing the ratio of interleukin (IL)-15/ fibroblast growth factor-inducible 14 (Fn-14) and IL-18/ TNF-related weak inducer of apoptosis (TWEAK) mRNA as a biomarker of endometrial (e)natural killer activation/maturation, angiogenesis, and Th1/Th2 balance; (b) endometrial receptivity to trophoblasts in endometrial 3D in vitro model; (c) natural killer (NK) cells and T cells percentage and subpopulations by flow cytometry. RESULTS We confirmed the presence of HHV-6A infection in a 40% of idiopathic infertile women, characterized by an immune profile reflecting eNK cell cytotoxic activation and a decrease in CD4+ CD25+ CD127dim/- regulatory T cells. The co-culture of endometrial epithelial cells with spheroids generated from the extravillous trophoblast-derived cell line JEG3 showed a twofold expansion of spheroids on endometrial epithelial-stromal cells (ESC) culture surface from HHV-6A negative women while no expansion was observed on the surface of ESC from HHV-6A positive women. CONCLUSION The identification of an effect of HHV-6A infection on endometrial immune status opens new perspectives in idiopathic infertile women care management. In addition, it would be possible to select antiviral therapies as novel, non-hormonal therapeutic approaches to those idiopathic infertile women characterized by the presence of endometrial HHV-6A infection, to increase their pregnancy rate.
Collapse
Affiliation(s)
- Daria Bortolotti
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| | - Valentina Gentili
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| | - Antonella Rotola
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| | - Rosario Cultrera
- Department of Medical Sciences, Section of Dermathology and Infective Medicine, University of Ferrara, Ferrara, Italy
| | - Roberto Marci
- Department of Morphology, Surgery and Experimental Medicine, Section of Orthopedics, Obstetrics and Gynecology and Anesthesiology and Reanimation Ferrara, University of Ferrara, Ferrara, Italy.,School of Medicine, University of Geneva, Geneva, Switzerland
| | - Dario Di Luca
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Roberta Rizzo
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| |
Collapse
|
11
|
Nakayama H, Yamazaki R, Kato J, Koda Y, Sakurai M, Abe R, Watanuki S, Sumiya C, Shiroshita K, Fujita S, Yamaguchi K, Okamoto S, Mori T. Human Herpesvirus 6 Reactivation Evaluated by Digital Polymerase Chain Reaction and Its Association With Dynamics of CD134-Positive T Cells After Allogeneic Hematopoietic Stem Cell Transplantation. J Infect Dis 2019; 220:1001-1007. [DOI: 10.1093/infdis/jiz237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 05/06/2019] [Indexed: 11/14/2022] Open
Abstract
AbstractBackgroundHuman herpesvirus 6 (HHV-6) causes life-threatening central nervous system disorders after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Recent studies implicated CD134 as a specific receptor of HHV-6B and demonstrated that its expression levels in CD4-positive T cells after allo-HSCT could be related to the reactivation of HHV-6. We prospectively evaluated the relationship between HHV-6 reactivation and CD134+ T cells in the recipients of allo-HSCT.MethodsHHV-6 viral load in plasma was quantitatively measured weekly after allo-HSCT by digital polymerase chain reaction in 34 patients. The ratio of CD134 in CD4+ T cells (CD134/CD4 ratio) was serially measured by flow cytometry before and after transplantation.ResultsHHV-6 reactivation was detected in 23 patients (68%). The CD134/CD4 ratio before conditioning was significantly higher in patients with HHV-6 reactivation than in those without (median, 3.8% vs 1.5%, P < .01). In multivariate analysis, a higher CD134/CD4 ratio before conditioning was significantly associated with the incidence of HHV-6 reactivation (odds ratio, 10.5 [95% confidence interval, 1.3–85.1], P = .03).ConclusionsA higher CD134/CD4 ratio before conditioning was associated with a higher risk of HHV-6 reactivation, suggesting that the rate may be a promising marker for predicting HHV-6 reactivation after allo-HSCT.
Collapse
Affiliation(s)
- Hitomi Nakayama
- Division of Hematology, Department of Medicine, Tokyo, Japan
| | - Rie Yamazaki
- Division of Hematology, Department of Medicine, Tokyo, Japan
- Center for Transfusion Medicine and Cell Therapy, Keio University School of Medicine, Tokyo, Japan
| | - Jun Kato
- Division of Hematology, Department of Medicine, Tokyo, Japan
| | - Yuya Koda
- Division of Hematology, Department of Medicine, Tokyo, Japan
| | | | - Ryohei Abe
- Division of Hematology, Department of Medicine, Tokyo, Japan
| | | | - Chieko Sumiya
- Division of Hematology, Department of Medicine, Tokyo, Japan
| | | | - Shinya Fujita
- Division of Hematology, Department of Medicine, Tokyo, Japan
| | | | | | - Takehiko Mori
- Division of Hematology, Department of Medicine, Tokyo, Japan
| |
Collapse
|
12
|
Miura H, Kawamura Y, Hattori F, Tanaka M, Kudo K, Ihira M, Yatsuya H, Takahashi Y, Kojima S, Yoshikawa T. Late-phase human herpesvirus 6B reactivation in hematopoietic stem cell transplant recipients. Transpl Infect Dis 2018; 20:e12916. [PMID: 29797616 DOI: 10.1111/tid.12916] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/17/2018] [Accepted: 05/07/2018] [Indexed: 11/30/2022]
Abstract
BACKGROUND We sought to determine whether late-phase human herpesvirus 6B (HHV-6B) infection in hematopoietic stem cell transplant (HSCT) recipients was associated with serious outcomes and mortality. METHODS The occurrence and course of HHV-6B infection was monitored for at least 60 days after transplant using virus isolation and real-time polymerase chain reaction. Risk factors for late-phase HHV-6B infection were examined, and the propensity score was calculated with significant risk factors. The inverse probability-weighted multivariable logistic regression analysis was performed to estimate odds ratios (ORs) and the 95% confidence intervals (95% CI) for mortality. RESULTS Late-phase HHV-6B infection was observed in 12/89 (13.5%) of the HSCT recipients. Older age (OR: 10.3, 95% CI: 2.1/72.9, P = .0027), hematologic malignancy (OR: 10.3, 95% CI: 1.8/97.1, P = .0063), unrelated donor transplantation (OR: 5.3, 95% CI: 1.1/36.0, P = .0345), and sex-mismatched donor transplantation (OR: 6.3, 95% CI: 1.4/39.5, P = .0149) were identified as risk factors for late-phase HHV-6B infection. Fifteen subjects died (17%). Inverse probability-weighted multivariable logistic model analysis revealed that late-phase HHV-6B infection was an independent risk factor for mortality (OR: 4.2, 95% CI: 1.7/11.0, P = .0012). Among 5 of the fatal cases of late-phase HHV-6B infection, viral infection might be associated with severe clinical manifestations. CONCLUSION Late-phase HHV-6B infection in HSCT recipients was associated with worse outcomes. The full spectrum of clinical features of the infection has not been fully elucidated, and therefore, recipients with high-risk factors for late-phase HHV-6B infection should be carefully monitored.
Collapse
Affiliation(s)
- Hiroki Miura
- Department of Pediatrics, Fujita Health University School of Medicine, Toyoake, Japan
| | - Yoshiki Kawamura
- Department of Pediatrics, Fujita Health University School of Medicine, Toyoake, Japan
| | - Fumihiko Hattori
- Department of Pediatrics, Fujita Health University School of Medicine, Toyoake, Japan
| | - Makito Tanaka
- Department of Pediatrics, Fujita Health University School of Medicine, Toyoake, Japan
| | - Kazuko Kudo
- Department of Pediatrics, Fujita Health University School of Medicine, Toyoake, Japan
| | - Masaru Ihira
- Faculty of Clinical Engineering, Fujita Health University School of Health Sciences, Toyoake, Japan
| | - Hiroshi Yatsuya
- Department of Public Health, Fujita Health University School of Medicine, Toyoake, Japan
| | - Yoshiyuki Takahashi
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Seiji Kojima
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tetsushi Yoshikawa
- Department of Pediatrics, Fujita Health University School of Medicine, Toyoake, Japan
| |
Collapse
|
13
|
Eliassen E, Krueger G, Luppi M, Ablashi D. Lymphoproliferative Syndromes Associated with Human Herpesvirus-6A and Human Herpesvirus-6B. Mediterr J Hematol Infect Dis 2018; 10:e2018035. [PMID: 29755712 PMCID: PMC5937953 DOI: 10.4084/mjhid.2018.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 04/26/2018] [Indexed: 12/28/2022] Open
Abstract
Human herpesvirus 6A and 6B (HHV-6A and HHV-6B) have been noted since their discovery for their T-lymphotropism. Although it has proven difficult to determine the extent to which HHV-6A and HHV-6B are involved in the pathogenesis of many diseases, evidence suggests that primary infection and reactivation of both viruses may induce or contribute to the progression of several lymphoproliferative disorders, ranging from benign to malignant and including infectious mononucleosis-like illness, drug induced hypersensitivity syndrome/drug reaction with eosinophilia and systemic symptoms (DIHS/DRESS), and nodular sclerosis Hodgkin's lymphoma. Herein, we discuss the conditions associated with the lymphoproliferative capacity of HHV-6, as well as the potential mechanisms behind them. Continued exploration on this topic may add to our understanding of the interactions between HHV-6 and the immune system and may open the doors to more accurate diagnosis and treatment of certain lymphoproliferative disorders.
Collapse
Affiliation(s)
- Eva Eliassen
- HHV-6 Foundation, Santa Barbara, California, USA
| | - Gerhard Krueger
- Department of Pathology and Laboratory Medicine, University of Texas, Houston, Texas, USA
| | - Mario Luppi
- Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | |
Collapse
|
14
|
Tang H, Mori Y. Glycoproteins of HHV-6A and HHV-6B. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1045:145-165. [PMID: 29896667 DOI: 10.1007/978-981-10-7230-7_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Recently, human herpesvirus 6A and 6B (HHV-6A and HHV-6B) were classified into distinct species. Although these two viruses share many similarities, cell tropism is one of their striking differences, which is partially because of the difference in their entry machinery. Many glycoproteins of HHV-6A/B have been identified and analyzed in detail, especially in their functions during entry process into host cells. Some of these glycoproteins were unique to HHV-6A/B. The cellular factors associated with these viral glycoproteins (or glycoprotein complex) were also identified in recent years. Detailed interaction analyses were also conducted, which could partially prove the difference of entry machinery in these two viruses. Although there are still issues that should be addressed, all the knowledges that have been earned in recent years could not only help us to understand these viruses' entry mechanism well but also would contribute to the development of the therapy and/or prophylaxis methods for HHV-6A/B-associated diseases.
Collapse
Affiliation(s)
- Huamin Tang
- Department of Immunology, Nanjing Medical University, Nanjing, China.
| | - Yasuko Mori
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| |
Collapse
|
15
|
Caselli E, Bortolotti D, Marci R, Rotola A, Gentili V, Soffritti I, D'Accolti M, Lo Monte G, Sicolo M, Barao I, Di Luca D, Rizzo R. HHV-6A Infection of Endometrial Epithelial Cells Induces Increased Endometrial NK Cell-Mediated Cytotoxicity. Front Microbiol 2017; 8:2525. [PMID: 29326672 PMCID: PMC5736868 DOI: 10.3389/fmicb.2017.02525] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 12/05/2017] [Indexed: 12/31/2022] Open
Abstract
Background: We have recently reported the presence of Human herpesvirus-6A (HHV-6A) DNA in the 43% of endometrial epithelial cells from primary idiopathic infertile women, with no positivity in fertile women. To investigate the possible effect of HHV-6A infection in endometrial (e)NK cells functions, we examined activating/inhibitory receptors expressed by eNK cells and the corresponding ligands on endometrial cells during HHV-6A infection. Methods: Endometrial biopsies and uterine flushing samples during the secretory phase were obtained from 20 idiopathic infertile women and twenty fertile women. HHV-6A infection of endometrial epithelial cells was analyzed by Real-Time PCR, immunofluorescence and flow cytometry. eNKs receptors and endometrial ligands expression were evaluated by immunofluorescence and flow cytometry. Results: We observed the presence of HHV-6A infection (DNA, protein) of endometrial epithelial cells in the 40% of idiopathic infertile women. The eNK from all the subgroups expressed high levels of NKG2D and NKG2A receptors. Functional studies showed that NKG2D activating receptor and FasL are involved in the acquired cytotoxic function of eNK cells during HHV-6A infection of endometrial epithelial cells. In the presence of HHV-6A infection, eNK cells increased expression of CCR2, CXCR3 and CX3CR1 chemokine receptors (p = 0.01) and endometrial epithelial cells up-modulated the corresponding ligands: MCP1 (Monocyte chemotactic protein 1, CCL2), IP-10 (Interferon gamma-induced protein 10, CXCL10) and Eotaxin-3 (CCL26). Conclusion: Our results, for the first time, showed the implication of eNK cells in controlling HHV-6A endometrial infection and clarify the mechanisms that might be implicated in female idiopathic infertility.
Collapse
Affiliation(s)
- Elisabetta Caselli
- Section of Microbiology and Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Daria Bortolotti
- Section of Microbiology and Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Roberto Marci
- School of Medicine, University of Geneva, Geneva, Switzerland
| | - Antonella Rotola
- Section of Microbiology and Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Valentina Gentili
- Section of Microbiology and Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Irene Soffritti
- Section of Microbiology and Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Maria D'Accolti
- Section of Microbiology and Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | | | - Mariangela Sicolo
- Section of Microbiology and Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Isabel Barao
- School of Medicine, University of Nevada, Reno, NV, United States
| | - Dario Di Luca
- Section of Microbiology and Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Roberta Rizzo
- Section of Microbiology and Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| |
Collapse
|
16
|
A Murine Herpesvirus Closely Related to Ubiquitous Human Herpesviruses Causes T-Cell Depletion. J Virol 2017; 91:JVI.02463-16. [PMID: 28179532 PMCID: PMC5391440 DOI: 10.1128/jvi.02463-16] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 01/26/2017] [Indexed: 12/14/2022] Open
Abstract
The human roseoloviruses human herpesvirus 6A (HHV-6A), HHV-6B, and HHV-7 comprise the Roseolovirus genus of the human Betaherpesvirinae subfamily. Infections with these viruses have been implicated in many diseases; however, it has been challenging to establish infections with roseoloviruses as direct drivers of pathology, because they are nearly ubiquitous and display species-specific tropism. Furthermore, controlled study of infection has been hampered by the lack of experimental models, and until now, a mouse roseolovirus has not been identified. Herein we describe a virus that causes severe thymic necrosis in neonatal mice, characterized by a loss of CD4+ T cells. These phenotypes resemble those caused by the previously described mouse thymic virus (MTV), a putative herpesvirus that has not been molecularly characterized. By next-generation sequencing of infected tissue homogenates, we assembled a contiguous 174-kb genome sequence containing 128 unique predicted open reading frames (ORFs), many of which were most closely related to herpesvirus genes. Moreover, the structure of the virus genome and phylogenetic analysis of multiple genes strongly suggested that this virus is a betaherpesvirus more closely related to the roseoloviruses, HHV-6A, HHV-6B, and HHV-7, than to another murine betaherpesvirus, mouse cytomegalovirus (MCMV). As such, we have named this virus murine roseolovirus (MRV) because these data strongly suggest that MRV is a mouse homolog of HHV-6A, HHV-6B, and HHV-7.IMPORTANCE Herein we describe the complete genome sequence of a novel murine herpesvirus. By sequence and phylogenetic analyses, we show that it is a betaherpesvirus most closely related to the roseoloviruses, human herpesviruses 6A, 6B, and 7. These data combined with physiological similarities with human roseoloviruses collectively suggest that this virus is a murine roseolovirus (MRV), the first definitively described rodent roseolovirus, to our knowledge. Many biological and clinical ramifications of roseolovirus infection in humans have been hypothesized, but studies showing definitive causative relationships between infection and disease susceptibility are lacking. Here we show that MRV infects the thymus and causes T-cell depletion, suggesting that other roseoloviruses may have similar properties.
Collapse
|
17
|
Hansen AS, Bundgaard BB, Biltoft M, Rossen LS, Höllsberg P. Divergent tropism of HHV-6A GS and HHV-6B PL1 in T cells expressing different CD46 isoform patterns. Virology 2017; 502:160-170. [PMID: 28056415 DOI: 10.1016/j.virol.2016.12.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 12/21/2016] [Accepted: 12/23/2016] [Indexed: 01/08/2023]
Abstract
CD46 is a receptor for HHV-6A, but its role as a receptor for HHV-6B is controversial. The significance of CD46 isoforms for HHV-6A and HHV-6B tropism is unknown. HHV-6AGS was able to initiate transcription of the viral genes U7 and U23 in the CD46+CD134- T-cell lines Peer, Jurkat, Molt3, and SupT1, whereas HHV-6BPL1 was only able to do so in Molt3 and SupT1, which expressed a CD46 isoform pattern different from Peer and Jurkat. The HHV-6BPL1-susceptible T-cell lines were characterized by low expression of the CD46 isoform BC2 and domination of isoforms containing the cytoplasmic tail, CYT-1. A HHV-6BPL1 susceptible cell line, Be13, changed over time its CD46 isoform pattern to resemble Peer and Jurkat and concomitantly lost its susceptibility to HHV-6BPL1 but not HHV-6AGS infection. We propose that isoforms of CD46 impact on HHV-6B infection and thereby in part explain the distinct tropism of HHV-6AGS and HHV-6BPL1.
Collapse
Affiliation(s)
- Aida S Hansen
- Department of Biomedicine, Aarhus University, Bartholins Allé 6, DK-8000 Aarhus, Denmark
| | - Bettina B Bundgaard
- Department of Biomedicine, Aarhus University, Bartholins Allé 6, DK-8000 Aarhus, Denmark
| | - Mette Biltoft
- Department of Biomedicine, Aarhus University, Bartholins Allé 6, DK-8000 Aarhus, Denmark
| | - Litten S Rossen
- Department of Biomedicine, Aarhus University, Bartholins Allé 6, DK-8000 Aarhus, Denmark
| | - Per Höllsberg
- Department of Biomedicine, Aarhus University, Bartholins Allé 6, DK-8000 Aarhus, Denmark.
| |
Collapse
|
18
|
Pritchett JC, Green JS, Thomm AM, Knox KK, Verneris MR, Lund TC. CD4+ T Cells Coexpressing CD134 (OX40) Harbor Significantly Increased Levels of Human Herpesvirus 6B DNA Following Umbilical Cord Blood Transplantation. J Infect Dis 2016; 214:1911-1915. [PMID: 27703035 DOI: 10.1093/infdis/jiw469] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 09/28/2016] [Indexed: 02/01/2023] Open
Abstract
Human herpesvirus 6B (HHV-6B) commonly reactivates after umbilical cord blood transplantation (UCBT) and is associated with delayed engraftment, fever, rash, and central nervous system dysfunction. Recently, CD134 (OX40) has been implicated as a potential viral entry receptor. We evaluated CD4+CD134+/neg-lo and CD8+CD134+/neg-lo cells at day 28 after UCBT in 20 subjects with previously documented HHV-6 reactivation and persistent viremia. Analysis of CD4+CD134+ cells as compared to CD4+CD134neg-lo cells showed 0.308 versus 0.129 copies of HHV-6B/cell (P = .0002). CD8+CD134+/neg-lo cells contained little to no HHV-6B copies. Following UCBT, CD4+CD134+ cells harbor significantly increased levels of HHV-6B, suggesting that CD134 (OX40) may facilitate viral entry.
Collapse
Affiliation(s)
| | - Jaime S Green
- Division of Infectious Disease, Department of Medicine, University of Minnesota Medical School, Minneapolis
| | | | | | | | - Troy C Lund
- Division of Blood and Marrow Transplantation, Department of Pediatrics
| |
Collapse
|
19
|
Greco R, Crucitti L, Noviello M, Racca S, Mannina D, Forcina A, Lorentino F, Valtolina V, Rolla S, Dvir R, Morelli M, Giglio F, Barbanti MC, Lupo Stanghellini MT, Oltolini C, Vago L, Scarpellini P, Assanelli A, Carrabba MG, Marktel S, Bernardi M, Corti C, Clementi M, Peccatori J, Bonini C, Ciceri F. Human Herpesvirus 6 Infection Following Haploidentical Transplantation: Immune Recovery and Outcome. Biol Blood Marrow Transplant 2016; 22:2250-2255. [PMID: 27697585 DOI: 10.1016/j.bbmt.2016.09.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 09/21/2016] [Indexed: 12/19/2022]
Abstract
Human herpesvirus 6 (HHV-6) is increasingly recognized as a potentially life-threatening pathogen in allogeneic hematopoietic stem cell transplantation (alloSCT). We retrospectively evaluated 54 adult patients who developed positivity to HHV-6 after alloSCT. The median time from alloSCT to HHV-6 reactivation was 34 days. HHV-6 was present in plasma samples from 31 patients, in bone marrow (BM) of 9 patients, in bronchoalveolar lavage fluid and liver or gut biopsy specimens from 33 patients, and in cerebrospinal fluid of 7 patients. Twenty-nine patients developed acute graft-versus-host disease (GVHD), mainly grade III-IV, and 15 had concomitant cytomegalovirus reactivation. The median absolute CD3+ lymphocyte count was 207 cells/µL. We reported the following clinical manifestations: fever in 43 patients, skin rash in 22, hepatitis in 19, diarrhea in 24, encephalitis in 10, BM suppression in 18, and delayed engraftment in 11. Antiviral pharmacologic treatment was administered to 37 patients; nonetheless, the mortality rate was relatively high in this population (overall survival [OS] at 1 year, 38% ± 7%). A better OS was significantly associated with a CD3+ cell count ≥200/µL at the time of HHV-6 reactivation (P = .0002). OS was also positively affected by the absence of acute GVHD grade III-IV (P = .03) and by complete disease remission (P = .03), but was not significantly influenced by steroid administration, time after alloSCT, type of antiviral prophylaxis, plasma viral load, or organ involvement. Although HHV-6 detection typically occurred early after alloSCT, better T cell immune reconstitution seems to have the potential to improve clinical outcomes. Our findings provide new insight into the interplay between HHV-6 and the transplanted immune system.
Collapse
Affiliation(s)
- Raffaella Greco
- Unit of Hematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Maddalena Noviello
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sara Racca
- Laboratory of Microbiology and Virology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Daniele Mannina
- Unit of Hematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandra Forcina
- Unit of Hematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesca Lorentino
- Unit of Hematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Veronica Valtolina
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Serena Rolla
- Laboratory of Microbiology and Virology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Roee Dvir
- Laboratory of Microbiology and Virology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Mara Morelli
- Unit of Hematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Fabio Giglio
- Unit of Hematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria Chiara Barbanti
- Unit of Hematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Chiara Oltolini
- Infectious Disease Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luca Vago
- Unit of Hematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, Milan, Italy; Unit of Immunogenetics, Leukemia, Genomics, and Immunobiology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paolo Scarpellini
- Infectious Disease Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Assanelli
- Unit of Hematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Matteo G Carrabba
- Unit of Hematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sarah Marktel
- Unit of Hematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Bernardi
- Unit of Hematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Consuelo Corti
- Unit of Hematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Clementi
- Laboratory of Microbiology and Virology, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Jacopo Peccatori
- Unit of Hematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Bonini
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Fabio Ciceri
- Unit of Hematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|
20
|
Cornaby C, Tanner A, Stutz EW, Poole BD, Berges BK. Piracy on the molecular level: human herpesviruses manipulate cellular chemotaxis. J Gen Virol 2015; 97:543-560. [PMID: 26669819 DOI: 10.1099/jgv.0.000370] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cellular chemotaxis is important to tissue homeostasis and proper development. Human herpesvirus species influence cellular chemotaxis by regulating cellular chemokines and chemokine receptors. Herpesviruses also express various viral chemokines and chemokine receptors during infection. These changes to chemokine concentrations and receptor availability assist in the pathogenesis of herpesviruses and contribute to a variety of diseases and malignancies. By interfering with the positioning of host cells during herpesvirus infection, viral spread is assisted, latency can be established and the immune system is prevented from eradicating viral infection.
Collapse
Affiliation(s)
- Caleb Cornaby
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA
| | - Anne Tanner
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA
| | - Eric W Stutz
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA
| | - Brian D Poole
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA
| | - Bradford K Berges
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|
21
|
Silva N, Abusleme L, Bravo D, Dutzan N, Garcia-Sesnich J, Vernal R, Hernández M, Gamonal J. Host response mechanisms in periodontal diseases. J Appl Oral Sci 2015. [PMID: 26221929 PMCID: PMC4510669 DOI: 10.1590/1678-775720140259] [Citation(s) in RCA: 265] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Periodontal diseases usually refer to common inflammatory disorders known as gingivitis and periodontitis, which are caused by a pathogenic microbiota in the subgingival biofilm, including Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, Tannerella forsythia and Treponema denticola that trigger innate, inflammatory, and adaptive immune responses. These processes result in the destruction of the tissues surrounding and supporting the teeth, and eventually in tissue, bone and finally, tooth loss. The innate immune response constitutes a homeostatic system, which is the first line of defense, and is able to recognize invading microorganisms as non-self, triggering immune responses to eliminate them. In addition to the innate immunity, adaptive immunity cells and characteristic cytokines have been described as important players in the periodontal disease pathogenesis scenario, with a special attention to CD4+ T-cells (T-helper cells). Interestingly, the T cell-mediated adaptive immunity development is highly dependent on innate immunity-associated antigen presenting cells, which after antigen capture undergo into a maturation process and migrate towards the lymph nodes, where they produce distinct patterns of cytokines that will contribute to the subsequent polarization and activation of specific T CD4+ lymphocytes. Skeletal homeostasis depends on a dynamic balance between the activities of the bone-forming osteoblasts (OBLs) and bone-resorbing osteoclasts (OCLs). This balance is tightly controlled by various regulatory systems, such as the endocrine system, and is influenced by the immune system, an osteoimmunological regulation depending on lymphocyte- and macrophage-derived cytokines. All these cytokines and inflammatory mediators are capable of acting alone or in concert, to stimulate periodontal breakdown and collagen destruction via tissue-derived matrix metalloproteinases, a characterization of the progression of periodontitis as a stage that presents a significantly host immune and inflammatory response to the microbial challenge that determine of susceptibility to develop the destructive/progressive periodontitis under the influence of multiple behavioral, environmental and genetic factors.
Collapse
Affiliation(s)
- Nora Silva
- Department of Pathology, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Loreto Abusleme
- Department of Pathology, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Denisse Bravo
- Department of Pathology, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Nicolás Dutzan
- Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Jocelyn Garcia-Sesnich
- Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Rolando Vernal
- Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Marcela Hernández
- Department of Pathology, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Jorge Gamonal
- Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, Santiago, Chile
| |
Collapse
|
22
|
Abstract
BACKGROUND Although myelosuppression caused by human herpesvirus 6B (HHV-6B) reactivation in transplant recipients has been extensively investigated, the pathophysiological mechanisms of severe neutropenia in primary HHV-6B infection remain unclear. PROCEDURE Fifty-four patients with primary HHV-6B infection were evaluated. Hematological examinations and blood sampling were conducted on days 1-4 (pre) and 5-10 (post) after the onset of illness. Severe neutropenia was defined as a neutrophil count less than 500 cells/μL. Patient characteristics, clinical data, and cytokines and chemokines levels were compared between the patients with (n = 16) and without (n = 38) severe neutropenia. RESULTS Severe neutropenia was detected in samples that were collected between days 5 and 10 after illness. Significantly lower platelet counts (pre, P = 0.048; post, P = 0.032) and regulated on activation, normal T cell expressed and secreted levels (post, P = 0.007) were detected in the patients with neutropenia. Aspartate aminotransferase levels (P = 0.008), and interferon γ-inducible protein-10 (P < 0.0001), monocyte chemoattractant protein-1 (P = 0.005), and monokine induced by interferon γ (P = 0.011) levels were significantly higher in post samples collected from the patients with neutropenia. No differences were observed in any patient characteristics and serum cytokines levels. No bacterial infections were detected during the observation period. CONCLUSIONS Chemokines may play an important role in the pathogenesis of severe neutropenia in patients with primary HHV-6B infection.
Collapse
|
23
|
Gustafsson R, Svensson M, Fogdell-Hahn A. Modulatory effects on dendritic cells by human herpesvirus 6. Front Microbiol 2015; 6:388. [PMID: 25983728 PMCID: PMC4415433 DOI: 10.3389/fmicb.2015.00388] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 04/15/2015] [Indexed: 11/13/2022] Open
Abstract
Human herpesvirus 6A and 6B are β-herpesviruses approaching 100% seroprevalance worldwide. These viruses are involved in several clinical syndromes and have important immunomodulatory effects. Dendritic cells (DC) are key players in innate and adaptive immunity. Accordingly, DC are implicated in the pathogenesis of many human diseases, including infections. In this review the effects of HHV-6 infection on DC will be discussed.
Collapse
Affiliation(s)
- Rasmus Gustafsson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital Stockholm, Sweden
| | - Mattias Svensson
- Department of Medicine, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital Stockholm, Sweden
| | - Anna Fogdell-Hahn
- Department of Clinical Neuroscience, Karolinska Institutet, Karolinska University Hospital Stockholm, Sweden
| |
Collapse
|
24
|
Horvat B, Berges BK, Lusso P. Recent developments in animal models for human herpesvirus 6A and 6B. Curr Opin Virol 2014; 9:97-103. [PMID: 25462440 DOI: 10.1016/j.coviro.2014.09.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Revised: 09/18/2014] [Accepted: 09/23/2014] [Indexed: 12/30/2022]
Abstract
Progress in the identification of suitable animal models for human herpesvirus (HHV)-6A and HHV-6B infections has been slow. Recently, new models have been established, mainly for HHV-6A, which reproduce some pathological features seen in humans. Neuroinflammatory signs were observed in infected marmosets and CD46-transgenic mice; although viral replication was not prominent, persistence of viral DNA and specific immunologic responses were detected, suggesting an immune-mediated pathogenic mechanism. Pig-tailed macaques showed robust viral replication concomitant with acute-phase symptoms, and provided a model to study the effects of HHV-6A on AIDS progression. In humanized mice, viral replication was less evident, but infection led to T-cell alterations. Altogether, these recent developments have opened new perspectives for studying the pathogenic role of HHV-6A in humans.
Collapse
Affiliation(s)
- Branka Horvat
- CIRI, International Center for Infectiology Research, France; Inserm, U1111, Lyon, France; CNRS, UMR5308, Lyon, France; Université Lyon 1, Lyon, France; Ecole Normale Supérieure de Lyon, Lyon, France
| | - Bradford K Berges
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA
| | - Paolo Lusso
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
25
|
Ablashi D, Agut H, Alvarez-Lafuente R, Clark DA, Dewhurst S, DiLuca D, Flamand L, Frenkel N, Gallo R, Gompels UA, Höllsberg P, Jacobson S, Luppi M, Lusso P, Malnati M, Medveczky P, Mori Y, Pellett PE, Pritchett JC, Yamanishi K, Yoshikawa T. Classification of HHV-6A and HHV-6B as distinct viruses. Arch Virol 2014; 159:863-70. [PMID: 24193951 PMCID: PMC4750402 DOI: 10.1007/s00705-013-1902-5] [Citation(s) in RCA: 239] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 10/18/2013] [Indexed: 12/18/2022]
Abstract
Shortly after the discovery of human herpesvirus 6 (HHV-6), two distinct variants, HHV-6A and HHV-6B, were identified. In 2012, the International Committee on Taxonomy of Viruses (ICTV) classified HHV-6A and HHV-6B as separate viruses. This review outlines several of the documented epidemiological, biological, and immunological distinctions between HHV-6A and HHV-6B, which support the ICTV classification. The utilization of virus-specific clinical and laboratory assays for distinguishing HHV-6A and HHV-6B is now required for further classification. For clarity in biological and clinical distinctions between HHV-6A and HHV-6B, scientists and physicians are herein urged, where possible, to differentiate carefully between HHV-6A and HHV-6B in all future publications.
Collapse
|
26
|
Human herpesvirus 6A infection in CD46 transgenic mice: viral persistence in the brain and increased production of proinflammatory chemokines via Toll-like receptor 9. J Virol 2014; 88:5421-36. [PMID: 24574405 DOI: 10.1128/jvi.03763-13] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED Human herpesvirus 6 (HHV-6) is widely spread in the human population and has been associated with several neuroinflammatory diseases, including multiple sclerosis. To develop a small-animal model of HHV-6 infection, we analyzed the susceptibility of several lines of transgenic mice expressing human CD46, identified as a receptor for HHV-6. We showed that HHV-6A (GS) infection results in the expression of viral transcripts in primary brain glial cultures from CD46-expressing mice, while HHV-6B (Z29) infection was inefficient. HHV-6A DNA persisted for up to 9 months in the brain of CD46-expressing mice but not in the nontransgenic littermates, whereas HHV-6B DNA levels decreased rapidly after infection in all mice. Persistence in the brain was observed with infectious but not heat-inactivated HHV-6A. Immunohistological studies revealed the presence of infiltrating lymphocytes in periventricular areas of the brain of HHV-6A-infected mice. Furthermore, HHV-6A stimulated the production of a panel of proinflammatory chemokines in primary brain glial cultures, including CCL2, CCL5, and CXCL10, and induced the expression of CCL5 in the brains of HHV-6A-infected mice. HHV-6A-induced production of chemokines in the primary glial cultures was dependent on the stimulation of toll-like receptor 9 (TLR9). Finally, HHV-6A induced signaling through human TLR9 as well, extending observations from the murine model to human infection. Altogether, this study presents a first murine model for HHV-6A-induced brain infection and suggests a role for TLR9 in the HHV-6A-initiated production of proinflammatory chemokines in the brain, opening novel perspectives for the study of virus-associated neuropathology. IMPORTANCE HHV-6 infection has been related to neuroinflammatory diseases; however, the lack of a suitable small-animal infection model has considerably hampered further studies of HHV-6-induced neuropathogenesis. In this study, we have characterized a new model for HHV-6 infection in mice expressing the human CD46 protein. Infection of CD46 transgenic mice with HHV-6A resulted in long-term persistence of viral DNA in the brains of infected animals and was followed by lymphocyte infiltration and upregulation of the CCL5 chemokine in the absence of clinical signs of disease. The secretion of a panel of chemokines was increased after infection in primary murine brain glial cultures, and the HHV-6-induced chemokine expression was inhibited when TLR9 signaling was blocked. These results describe the first murine model for HHV-6A-induced brain infection and suggest the importance of the TLR9 pathway in HHV-6A-initiated neuroinflammation.
Collapse
|
27
|
Human herpesvirus 6A infection and immunopathogenesis in humanized Rag2⁻/⁻ γc⁻/⁻ mice. J Virol 2013; 87:12020-8. [PMID: 24006442 DOI: 10.1128/jvi.01556-13] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Although serious human diseases have been correlated with human herpesvirus 6A (HHV-6A) and HHV-6B, the lack of animal models has prevented studies which would more definitively link these viral infections to disease. HHV-6A and HHV-6B have recently been classified as two distinct viruses, and in this study we focused specifically on developing an in vivo model for HHV-6A. Here we show that Rag2⁻/⁻γc⁻/⁻ mice humanized with cord blood-derived human hematopoietic stem cells produce human T cells that express the major HHV-6A receptor, CD46. Both cell-associated and cell-free viral transmission of HHV-6A into the peritoneal cavity resulted in detectable viral DNA in at least one of the samples (blood, bone marrow, etc.) analyzed from nearly all engrafted mice. Organs and cells positive for HHV-6A DNA were the plasma and cellular blood fractions, bone marrow, lymph node, and thymic samples; control mice had undetectable viral DNA. We also noted viral pathogenic effects on certain T cell populations. Specific thymocyte populations, including CD3⁻ CD4⁺ CD8⁻ and CD3⁺ CD4⁻ cells, were significantly modified in humanized mice infected by cell-associated transmission. In addition, we detected significantly increased proportions of CD4⁺ CD8⁺ cells in the blood of animals infected by cell-free transmission. These findings provide additional evidence that HHV-6A may play a role in human immunodeficiencies. These results indicate that humanized mice can be used to study HHV-6A in vivo infection and replication as well as aspects of viral pathogenesis.
Collapse
|
28
|
Abstract
Human herpesvirus (HHV-) 6A and HHV-6B are two distinct β-herpesviruses which have been associated with various neurological diseases, including encephalitis, meningitis, epilepsy, and multiple sclerosis. Although the reactivation of both viruses is recognized as the cause of some neurological complications in conditions of immunosuppression, their involvement in neuroinflammatory diseases in immunocompetent people is still unclear, and the mechanisms involved have not been completely elucidated. Here, we review the available data providing evidence for the capacity of HHV-6A and -6B to infect the central nervous system and to induce proinflammatory responses by infected cells. We discuss the potential role of both viruses in neuroinflammatory pathologies and the mechanisms which could explain virus-induced neuropathogenesis.
Collapse
Affiliation(s)
- Joséphine M. Reynaud
- International Center for Infectiology Research (CIRI), INSERM U1111, CNRS UMR5308, University of Lyon 1, ENS-Lyon, 21 Avenue T. Garnier, 69365 Lyon, France
| | - Branka Horvat
- International Center for Infectiology Research (CIRI), INSERM U1111, CNRS UMR5308, University of Lyon 1, ENS-Lyon, 21 Avenue T. Garnier, 69365 Lyon, France
| |
Collapse
|
29
|
Dagna L, Pritchett JC, Lusso P. Immunomodulation and immunosuppression by human herpesvirus 6A and 6B. Future Virol 2013; 8:273-287. [PMID: 24163703 PMCID: PMC3806647 DOI: 10.2217/fvl.13.7] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Like other members of the Herpesviridae family, human herpesvirus (HHV)-6A and HHV-6B have developed a wide variety of strategies to modulate or suppress host immune responses and, thereby, facilitate their own spread and persistence in vivo. Long considered two variants of the same virus, HHV-6A and HHV-6B have recently been reclassified as distinct viral species, although the established nomenclature has been maintained. In this review, we summarize the distinctive profiles of interaction of these two viruses with the human immune system. Both HHV-6A and HHV-6B display a tropism for CD4+ T lymphocytes, but they can also infect, in a productive or nonproductive fashion, other cells of the immune system. However, there are important differences regarding the ability of each virus to infect cytotoxic effector cells, as HHV-6A has been shown to productively infect several of these cells, whereas HHV-6B infects them inefficiently at best. In addition to direct cytopathic effects, both HHV-6A and HHV-6B can interfere with immunologic functions to varying degrees via cytokine modulation, including blockade of IL-12 production by professional antigen-presenting cells, modulation of cell-surface molecules essential for T-cell activation, and expression of viral chemokines and chemokine receptors. Some of these effects are related to signaling through and downregulation of the viral receptor, CD46, a key molecule linking innate and adaptive immune responses. Increasing attention has recently been focused on the importance of viral interactions with dendritic cells, which may serve both as targets of virus-mediated immunosuppression and as vehicles for viral transfer to CD4+ T cells. Our deepening knowledge of the mechanisms developed by HHV-6A and HHV-6B to evade immunologic control may lead to new strategies for the prevention and treatment of the diseases associated with these viruses. Moreover, elucidation of these viral mechanisms may uncover new avenues to therapeutically manipulate or modulate the immune system in immunologically mediated human diseases.
Collapse
Affiliation(s)
- Lorenzo Dagna
- Department of Medicine & Clinical Immunology, Vita-Salute San Raffaele University, San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milano, Italy
| | | | - Paolo Lusso
- Viral Pathogenesis Section, Laboratory of Immunoregulation, NIAID, NIH, 9000 Rockville Pike, Bethesda, MD 20892, USA
| |
Collapse
|
30
|
de Pagter APJ, Boelens JJ, Scherrenburg J, Vroom-de Blank T, Tesselaar K, Nanlohy N, Sanders EAM, Schuurman R, van Baarle D. First analysis of human herpesvirus 6T-cell responses: specific boosting after HHV6 reactivation in stem cell transplantation recipients. Clin Immunol 2012; 144:179-89. [PMID: 22820131 DOI: 10.1016/j.clim.2012.06.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2012] [Accepted: 06/20/2012] [Indexed: 10/28/2022]
Abstract
Early human herpesvirus 6 (HHV6) reactivation after hematopoietic stem cell transplantation (HSCT) is associated with poor survival. We characterized HHV6 immuneresponses in HSCT patients during lymphopenia. Prospectively, HHV6 DNA-load was measured weekly by realtime-PCR. Numbers of IFNγ-producing HHV6-T-cells were retrospectively determined by enzyme-linked immunospot assay 2 months after HSCT. HHV6-specific T-cell proliferative capacity was analyzed with a newly developed assay using antigen-presenting autologous HHV6-infected PBMC. Fifty-six patients were included (median age 4.6 years; range 0.2-21.2 years). HHV6-reactivation occurred in 29/56 (52%) patients with a median time of 14 (range 1-41) days after HSCT. The median number of IFN-γ producing HHV6-specific T-cells at 2 months and the HHV6-specific CD8+ T-cell proliferative capacity at 6 months after HSCT was increased after HHV6-reactivation compared to non-reactivating patients (P=0.006 and p=0.019). In conclusion, HHV6-specific immuneresponses can be initiated during lymphopenia early after HSCT, which implicates a potential window for development of HHV6-specific (immuno)therapy.
Collapse
Affiliation(s)
- A P J de Pagter
- Dept. of Immunology, Hematology and SCT, University Medical Center Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Clotworthy M. The application of human tissue for drug discovery and development. Expert Opin Drug Discov 2012; 7:543-7. [DOI: 10.1517/17460441.2012.689282] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
32
|
Curriu M, Carrillo J, Massanella M, Garcia E, Cunyat F, Peña R, Wienberg P, Carrato C, Areal J, Bofill M, Clotet B, Blanco J, Cabrera C. Susceptibility of human lymphoid tissue cultured ex vivo to xenotropic murine leukemia virus-related virus (XMRV) infection. PLoS One 2012; 7:e37415. [PMID: 22616002 PMCID: PMC3353939 DOI: 10.1371/journal.pone.0037415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 04/19/2012] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Xenotropic murine leukemia virus-related virus (XMRV) was generated after a recombination event between two endogenous murine leukemia viruses during the production of a prostate cancer cell line. Although the associations of the XMRV infection with human diseases appear unlikely, the XMRV is a retrovirus of undefined pathogenic potential, able to replicate in human cells in vitro. Since recent studies using animal models for infection have yielded conflicting results, we set out an ex vivo model for XMRV infection of human tonsillar tissue to determine whether XMRV produced by 22Rv1 cells is able to replicate in human lymphoid organs. Tonsil blocks were infected and infection kinetics and its pathogenic effects were monitored RESULTS XMRV, though restricted by APOBEC, enters and integrates into the tissue cells. The infection did not result in changes of T or B-cells, immune activation, nor inflammatory chemokines. Infectious viruses could be recovered from supernatants of infected tonsils by reinfecting DERSE XMRV indicator cell line, although these supernatants could not establish a new infection in fresh tonsil culture, indicating that in our model, the viral replication is controlled by innate antiviral restriction factors. CONCLUSIONS Overall, the replication-competent retrovirus XMRV, present in a high number of laboratories, is able to infect human lymphoid tissue and produce infectious viruses, even though they were unable to establish a new infection in fresh tonsillar tissue. Hereby, laboratories working with cell lines producing XMRV should have knowledge and understanding of the potential biological biohazardous risks of this virus.
Collapse
Affiliation(s)
- Marta Curriu
- IrsiCaixa-HIVACAT, Institut de Recerca en Ciències de la Salut Germans Trias i Pujol, Hospital Germans Trias, Universitat Autònoma de Barcelona, Carretera del Canyet S/N, Badalona, Barcelona, Spain
| | - Jorge Carrillo
- IrsiCaixa-HIVACAT, Institut de Recerca en Ciències de la Salut Germans Trias i Pujol, Hospital Germans Trias, Universitat Autònoma de Barcelona, Carretera del Canyet S/N, Badalona, Barcelona, Spain
| | - Marta Massanella
- IrsiCaixa-HIVACAT, Institut de Recerca en Ciències de la Salut Germans Trias i Pujol, Hospital Germans Trias, Universitat Autònoma de Barcelona, Carretera del Canyet S/N, Badalona, Barcelona, Spain
| | - Elisabet Garcia
- IrsiCaixa-HIVACAT, Institut de Recerca en Ciències de la Salut Germans Trias i Pujol, Hospital Germans Trias, Universitat Autònoma de Barcelona, Carretera del Canyet S/N, Badalona, Barcelona, Spain
| | - Francesc Cunyat
- IrsiCaixa-HIVACAT, Institut de Recerca en Ciències de la Salut Germans Trias i Pujol, Hospital Germans Trias, Universitat Autònoma de Barcelona, Carretera del Canyet S/N, Badalona, Barcelona, Spain
| | - Ruth Peña
- IrsiCaixa-HIVACAT, Institut de Recerca en Ciències de la Salut Germans Trias i Pujol, Hospital Germans Trias, Universitat Autònoma de Barcelona, Carretera del Canyet S/N, Badalona, Barcelona, Spain
| | - Peter Wienberg
- Department of Otorhinolaryngology, Hospital Universitari Sant Joan de Déu, Passeig Sant Joan de Déu, Esplugues, Barcelona, Spain
| | - Cristina Carrato
- Department of Pathology, Hospital Universitari Germans Trias i Pujol, Carretera del Canyet S/N, Badalona, Barcelona, Spain
| | - Joan Areal
- Urology Department, Hospital Universitari Germans Trias i Pujol, Carretera del Canyet S/N, Badalona, Barcelona, Spain
| | - Margarita Bofill
- IrsiCaixa-HIVACAT, Institut de Recerca en Ciències de la Salut Germans Trias i Pujol, Hospital Germans Trias, Universitat Autònoma de Barcelona, Carretera del Canyet S/N, Badalona, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Bonaventura Clotet
- IrsiCaixa-HIVACAT, Institut de Recerca en Ciències de la Salut Germans Trias i Pujol, Hospital Germans Trias, Universitat Autònoma de Barcelona, Carretera del Canyet S/N, Badalona, Barcelona, Spain
- Lluita contra la SIDA Foundation, Institut de Recerca en Ciències de la Salut Germans Trias i Pujol, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Carretera del Canyet S/N, Badalona, Barcelona, Spain
| | - Julià Blanco
- IrsiCaixa-HIVACAT, Institut de Recerca en Ciències de la Salut Germans Trias i Pujol, Hospital Germans Trias, Universitat Autònoma de Barcelona, Carretera del Canyet S/N, Badalona, Barcelona, Spain
| | - Cecilia Cabrera
- IrsiCaixa-HIVACAT, Institut de Recerca en Ciències de la Salut Germans Trias i Pujol, Hospital Germans Trias, Universitat Autònoma de Barcelona, Carretera del Canyet S/N, Badalona, Barcelona, Spain
| |
Collapse
|
33
|
Landi A, Iannucci V, Nuffel AV, Meuwissen P, Verhasselt B. One protein to rule them all: modulation of cell surface receptors and molecules by HIV Nef. Curr HIV Res 2012; 9:496-504. [PMID: 22103833 PMCID: PMC3290772 DOI: 10.2174/157016211798842116] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 09/02/2011] [Accepted: 09/17/2011] [Indexed: 01/30/2023]
Abstract
The HIV-1, HIV-2 and SIV Nef protein are known to modulate the expression of several cell surface receptors and molecules to escape the immune system, to alter T cell activation, to enhance viral replication, infectivity and transmission and overall to ensure the optimal environment for infection outcome. Consistent and continuous efforts have been made over the years to characterize the modulation of expression of each of these molecules, in the hope that a better understanding of these processes essential for HIV infection and/or pathogenesis will eventually highlight new therapeutic targets. In this article we provide an extensive review of the knowledge gained so far on this important and evolving topic.
Collapse
Affiliation(s)
- Alessia Landi
- Department of Clinical Biology, Immunology and Microbiology, Ghent University, Gent, Belgium
| | | | | | | | | |
Collapse
|
34
|
Replication of Epstein-Barr virus primary infection in human tonsil tissue explants. PLoS One 2011; 6:e25490. [PMID: 21998663 PMCID: PMC3187765 DOI: 10.1371/journal.pone.0025490] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 09/06/2011] [Indexed: 12/15/2022] Open
Abstract
Epstein-Barr virus (EBV) may cause a variety of virus-associated diseases, but no antiviral agents have yet been developed against this virus. Animal models are thus indispensable for the pathological analysis of EBV-related infections and the elucidation of therapeutic methods. To establish a model system for the study of EBV infection, we tested the ability of B95–8 virus and recombinant EBV expressing enhanced green fluorescent protein (EGFP) to replicate in human lymphoid tissue. Human tonsil tissues that had been surgically removed during routine tonsillectomy were sectioned into small blocks and placed on top of collagen sponge gels in culture medium at the air-interface, then a cell-free viral suspension was directly applied to the top of each tissue block. Increasing levels of EBV DNA in culture medium were observed after 12–15 days through 24 days post-infection in tissue models infected with B95–8 and EGFP-EBV. Expression levels of eight EBV-associated genes in cells collected from culture medium were increased during culture. EBV-encoded small RNA-positive cells were detected in the interfollicular areas in paraffin-embedded sections. Flow cytometric analyses revealed that most EGFP+ cells were CD3− CD56− CD19+ HLA-DR+, and represented both naïve (immunoglobulin D+) and memory (CD27+) B cells. Moreover, EBV replication in this model was suppressed by acyclovir treatment in a dose-dependent manner. These data suggest that this model has potential for use in the pathological analysis of local tissues at the time of primary infection, as well as for screening novel antiviral agents.
Collapse
|
35
|
Thomasini RL, Bonon SH, Durante P, Costa SCB. Correlation of cytomegalovirus and human herpesvirus 7 with CD3+ and CD3+ CD4+ cells in chronic periodontitis patients. J Periodontal Res 2011; 47:114-20. [PMID: 21895663 DOI: 10.1111/j.1600-0765.2011.01413.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND OBJECTIVE Human chronic periodontitis is an inflammatory process characterized by dense accumulation of immune cells in the periodontal tissue. The periodontitis can lead to loss of teeth in the patient and the pathogenesis of this disease is not completely known. This study tested the hypothesis that chronic periodontitis-affected sites can harbor betaherpesviruses and that viruses are linked to a profile of the inflammatory infiltrate. MATERIAL AND METHODS Biopsies of periodontal tissue were taken from periodontitis-affected patients and from healthy subjects. Immunohistochemistry was performed to count CD19(+) B cells, CD3(+) total T cells, T-CD4(+) and T-CD8(+) cell subsets, and PCR was performed to detect cytomegalovirus and human herpesvirus 6 and 7 in the samples. One slide of each sample was stained with Giemsa for histopathological examination and to evaluate the quality of the cellular infiltrate. RESULTS As expected, tissues collected from healthy subjects presented no significant level of inflammatory infiltration and were therefore excluded from immunostaining procedures. Results showed that CD19(+) B cells were in higher number than CD3(+) T cells in the periodontitis-affected tissue, but this was not statistically significant. The T-CD4(+) lymphocyte subset was significantly higher than the T-CD8(+) lymphocyte subset (p = 0.004) in the samples. Cytomegalovirus and human herpesvirus 7 were found at periodontitis-affected sites, but not in tissue collected from healthy subjects (p = 0.04 and p = 0.04, respectively). Human herpesvirus 6 was rarely detected. We found a correlation between cytomegalovirus and lower CD19(+) /CD3(+) ratios (ratio < 0.9, p = 0.003) and between human herpesvirus 7 and lower CD19(+) /CD3(+) ratios (ratio < 0.9, p = 0.003) and higher CD4(+) /CD8(+) ratios (ratio > 1.1, p = 0.002). CONCLUSION This study shows that cytomegalovirus and human herpesvirus 7 can be present at periodontitis-affected sites but are uncommon at healthy periodontal sites. Moreover, our data suggest that cytomegalovirus can be related to an inflammatory infiltrate with predominance of CD3(+) T cells, whereas human herpesvirus 7 can be associated with an infiltrate with predominance of T-CD4(+) cells. However, further studies are necessary to support this hypothesis. Herpesviruses could play a role in human chronic periodontitis by modulation of the T cell response.
Collapse
Affiliation(s)
- R L Thomasini
- Department of Clinical Medicine, State University of Campinas, UNICAMP, Campinas, São Paulo, Brazil.
| | | | | | | |
Collapse
|
36
|
Hernádi K, Csoma E, Ádám B, Szalmás A, Gyöngyösi E, Veress G, Ildikó-Márton, Kónya J. Association of human herpesvirus 6 subtypes with symptomatic apical periodontitis. ACTA ACUST UNITED AC 2011; 112:401-6. [DOI: 10.1016/j.tripleo.2011.02.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 02/07/2011] [Accepted: 02/08/2011] [Indexed: 10/18/2022]
|
37
|
Myoung J, Ganem D. Infection of primary human tonsillar lymphoid cells by KSHV reveals frequent but abortive infection of T cells. Virology 2011; 413:1-11. [PMID: 21353276 DOI: 10.1016/j.virol.2010.12.036] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Revised: 12/02/2010] [Accepted: 12/20/2010] [Indexed: 01/24/2023]
Abstract
The lymphotropic herpesvirus KSHV principally infects B cells in vivo and is linked to several human B cell lymphoproliferative syndromes. Here we examine the susceptibility of primary tonsillar lymphocytes to infection by a recombinant KSHV (rKSHV.219) that constitutively expresses GFP. At an MOI of ~1, ca. 5-10% of CD19+ B cells became GFP-positive. Surprisingly, in the same culture many more T cells became infected. However, in contrast to isolated B cells, isolated infected T cells did not support correct viral transcription and did not produce infectious virus, indicating the presence of one or more post-entry blocks to lytic KSHV replication in T cells. No immortalization or transformation has yet been observed in either B or T cells. These results affirm the feasibility of studying KSHV infection in primary lymphoid cells, and help to rationalize the detection of KSHV DNA in rare human T cell lymphomas in vivo.
Collapse
Affiliation(s)
- Jinjong Myoung
- Howard Hughes Medical Institute, Departments of Microbiology & Medicine and GW Hooper Foundation, University of California, San Francisco, CA 94143, USA.
| | | |
Collapse
|
38
|
Pashov A, Garimalla S, Monzavi-Karbassi B, Kieber-Emmons T. Carbohydrate targets in HIV vaccine research: lessons from failures. Immunotherapy 2011; 1:777-94. [PMID: 20636023 DOI: 10.2217/imt.09.44] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Learning from the successes of other vaccines that enhance natural and existing protective responses to pathogens, the current effort in HIV vaccine research is directed toward inducing cytotoxic responses. Nevertheless, antibodies are fundamental players in vaccine development and are still considered in the context of passive specific immunotherapy of HIV, especially since several broadly neutralizing monoclonals are available. Special interest is directed toward antibodies binding to the glycan array on gp120 since they have the potential of broader reactivity and cross-clade neutralizing capacity. Humoral responses to carbohydrate antigens have proven effective against other pathogens, why not HIV? The variability of the epitope targets on HIV may not be the only problem to developing active or passive immunotherapeutic strategies. The dynamics of the infected immune system leads to ambiguous effects of most of the effector mechanisms calling for new approaches; some may already be available, while others are in the making.
Collapse
Affiliation(s)
- Anastas Pashov
- Department of Pathology & Winthrop P Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, 4301 West Markham St, #824 Little Rock, AR 72205, USA
| | | | | | | |
Collapse
|
39
|
Merbah M, Introini A, Fitzgerald W, Grivel JC, Lisco A, Vanpouille C, Margolis L. Cervico-vaginal tissue ex vivo as a model to study early events in HIV-1 infection. Am J Reprod Immunol 2011; 65:268-78. [PMID: 21223429 DOI: 10.1111/j.1600-0897.2010.00967.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Vaginal intercourse remains the most prevalent route of infection of women. In spite of many efforts, the detailed mechanisms of HIV-1 transmission in the female lower genital tract remain largely unknown. With all the obvious restrictions on studying these mechanisms in humans, their understanding depends on the development of adequate experimental models. Isolated cell cultures do not faithfully reproduce important aspects of cell-cell interactions in living tissues and tissue responses to pathogens. Explants and other types of ex vivo tissue models serve as a bridge between cell culture and tissues in vivo. Herein, we discuss various cervico-vaginal tissue models and their use in studying HIV vaginal transmission and consider future directions of such studies.
Collapse
Affiliation(s)
- Melanie Merbah
- Section of Intercellular Interactions, Program in Physical Biology, Eunice-Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Razonable RR, Lautenschlager I. Impact of human herpes virus 6 in liver transplantation. World J Hepatol 2010; 2:345-53. [PMID: 21161019 PMCID: PMC2998978 DOI: 10.4254/wjh.v2.i9.345] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 07/14/2010] [Accepted: 07/21/2010] [Indexed: 02/06/2023] Open
Abstract
Human herpes virus 6 (HHV-6) infects > 95% of humans. Primary infection which occurs mostly during the first 2 years of life in the form of roseola infantum, non-specific febrile illness, or an asymptomatic illness, results in latency. Reactivation of latent HHV-6 is common after liver transplantation. Since the majority of human beings harbor the latent virus, HHV-6 infections after liver transplantation are most probably caused by endogenous reactivation or superinfection. In a minority of cases, primary HHV-6 infection may occur when an HHV-6-seronegative individual receives a liver allograft from an HHV-6-seropositive donor. The vast majority of HHV-6 infections after liver transplantation are asymptomatic. Only in a minority of cases, when HHV-6 causes a febrile illness associated with rash and myelosuppression, hepatitis, gastroenteritis, pneumonitis, and encephalitis after liver transplantation. In addition, HHV-6 has been implicated in a variety of indirect effects, such as allograft rejection and increased predisposition to and severity of other infections, including cytomegalovirus, hepatitis C virus, and opportunistic fungi. Because of the uncommon nature of the clinical illnesses directly attributed to HHV-6, there is currently no recommended HHV-6-specific approach prevention after liver transplantation. Asymptomatic HHV-6 infection does not require antiviral treatment, while treatment of established HHV-6 disease is treated with intravenous ganciclovir, foscarnet, or cidofovir and this should be complemented by a reduction in immunosuppression.
Collapse
Affiliation(s)
- Raymund R Razonable
- Raymund R Razonable, Division of Infectious Diseases, Department of Medicine, and the William J von Liebig Transplant Center, College of Medicine, Mayo Clinic, Rochester, MN 55905, United States
| | | |
Collapse
|
41
|
Comar M, Grasso D, dal Molin G, Zocconi E, Campello C. HHV-6 infection of tonsils and adenoids in children with hypertrophy and upper airway recurrent infections. Int J Pediatr Otorhinolaryngol 2010; 74:47-9. [PMID: 19926147 DOI: 10.1016/j.ijporl.2009.10.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Revised: 10/06/2009] [Accepted: 10/08/2009] [Indexed: 10/20/2022]
Abstract
OBJECTIVE Human herpes virus 6 (HHV-6), the agent of a self-limiting exanthematic disease in childhood, persists in a silent state in the secondary lymphoid organs and the reactivation is characterized by HHV-6-induced inflammatory cytokines. This study investigates the possible etiological role of HHV-6 in children affected by tonsil and adenoid hypertrophy. METHODS 55 tonsils, 80 adenoids fresh tissues and 74 blood samples were collected from 80 children (mean age 4.8 years, 43.5% female) undergoing elective tonsillectomy and/or adenoidectomy for tissue hypertrophy. Moreover, patients with <5 years old documented upper airway recurrent infections not related to relapsing of acute tonsillitis. Specific IgG antibodies and virus detection (by PCR, variant A/B enzymatic genotyping and real-time PCR) were performed. RESULTS In our series, HHV-6 seroprevalence was tested at 50%. HHV-6 variant B was the unique strain finding in 25% of adenoids, in 12.7% of tonsils and in 4% of peripheral blood mononuclear cells (PBMCs). HHV-6-B was prevalent in tonsils of children affected by upper airway infections (17.8% vs 7.4%) while the adenoids represented the more frequent reservoir (30.7% vs 19.5%) in patients with hypertrophy. HHV-6 viral load was low, ranging from 80 to 600 copies/10(6) cells suggesting a latent/persistent phase of infection. CONCLUSION These results reinforce the role of the secondary lymphoid organs as an important reservoir for HHV-6B. Nevertheless, infection of lymphoid cells, sustained by a low level of replication, could be sufficient to increase the local injury through an autologous mechanism of inflammation.
Collapse
Affiliation(s)
- Manola Comar
- Department of Public Medicine Sciences, UCO Hygiene and Preventive Medicine, University of Trieste and IRCCS Burlo Garofolo, Via dell'Istria no. 65/1, 34100 Trieste, Italy.
| | | | | | | | | |
Collapse
|
42
|
Abstract
Modulation of T-cell receptor expression and signaling is essential to the survival of many viruses. The U24 protein expressed by human herpesvirus 6A, a ubiquitous human pathogen, has been previously shown to downregulate the T-cell receptor. Here, we show that U24 also mediates cell surface downregulation of a canonical early endosomal recycling receptor, the transferrin receptor, indicating that this viral protein acts by blocking early endosomal recycling. We present evidence that U24 is a C-tail-anchored protein that is dependent for its function on TRC40/Asna-1, a component of a posttranslational membrane insertion pathway. Finally, we find that U24 proteins from other roseoloviruses have a similar genetic organization and a conserved function that is dependent on a proline-rich motif. Inhibition of a basic cellular process by U24 has interesting implications not only for the pathogenicity of roseoloviruses but also for our understanding of the biology of endosomal transport.
Collapse
|
43
|
Biancotto A, Grivel JC, Lisco A, Vanpouille C, Markham PD, Gallo RC, Margolis LB, Lusso P. Evolution of SIV toward RANTES resistance in macaques rapidly progressing to AIDS upon coinfection with HHV-6A. Retrovirology 2009; 6:61. [PMID: 19573243 DOI: 10.1186/1742-4690-6-61] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Accepted: 07/02/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Progression to AIDS is often associated with the evolution of HIV-1 toward increased virulence and/or pathogenicity. Evidence suggests that a virulence factor for HIV-1 is resistance to CCR5-binding chemokines, most notably RANTES, which are believed to play a role in HIV-1 control in vivo. HIV-1 can achieve RANTES resistance either by phenotypic switching from an exclusive CCR5 usage to an expanded coreceptor specificity, or by the acquisition of alternative modalities of CCR5 usage. An infectious agent that might promote the evolution of HIV-1 toward RANTES resistance is human herpesvirus 6A (HHV-6A), which is frequently reactivated in HIV-1-infected patients and is a potent RANTES inducer in lymphoid tissue. RESULTS SIV isolates obtained from pig-tailed macaques (M. nemestrina) after approximately one year of single infection with SIV(smE660) or dual infection with SIV(smE660) and HHV-6A(GS) were characterized for their growth capacity and sensitivity to HHV-6A- and RANTES-mediated inhibition in human or macaque lymphoid tissues ex vivo. Four out of 4 HHV-6A-coinfected macaques, all of which progressed to full-blown AIDS within 2 years of infection, were found to harbor SIV variants with a reduced sensitivity to both HHV-6A and RANTES, despite maintaining an exclusive CCR5 coreceptor specificity; viruses derived from two of these animals replicated even more vigorously in the presence of exogenous HHV-6A or RANTES. The SIV variants that emerged in HHV-6A-coinfected macaques showed an overall reduced ex vivo replication capacity that was partially reversed upon addition of exogenous RANTES, associated with suppressed IL-2 and enhanced IFN-gamma production. In contrast, SIV isolates obtained from two singly-infected macaques, none of which progressed to AIDS, maintained HHV-6A/RANTES sensitivity, whereas the only AIDS progressor among singly-infected macaques developed an SIV variant with partial HHV-6A/RANTES resistance and increased replication capacity, associated with expanded coreceptor usage. CONCLUSION These results provide in vivo evidence of SIV evolution toward RANTES resistance in macaques rapidly progressing to AIDS. RANTES resistance may represent a common virulence factor allowing primate immunodeficiency retroviruses to evade a critical mechanism of host antiviral defense.
Collapse
Affiliation(s)
- Angélique Biancotto
- Laboratory of Molecular and Cellular Biophysics, National Institute of Child Health and Human Development, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Human herpesvirus 6 (HHV-6) infections occur in > 95% of humans. Primary infection, which occurs in early childhood as an asymptomatic illness or manifested clinically as roseola infantum, leads to a state of subclinical viral persistence and latency. Reactivation of latent HHV-6 is common after liver transplantation, possibly induced and facilitated by allograft rejection and immunosuppressive therapy. Since the vast majority of humans harbor the virus in a latent state, HHV-6 infections after liver transplantation are believed to be mostly due to endogenous reactivation or superinfection (reactivation in the transplanted organ). In a minority of cases, however, primary HHV-6 infection may occur when an HHV-6 negative individual receives a liver allograft from an HHV-6 positive donor. The vast majority of documented HHV-6 infections after liver transplantation are asymptomatic. In a minority of cases, HHV-6 has been implicated as a cause of febrile illness with rash and myelosuppression, hepatitis, pneumonitis, and encephalitis after liver transplantation. In addition, HHV-6 has been associated with a variety of indirect effects such as allograft rejection, and increased predisposition and severity of other infections including cytomegalovirus (CMV), hepatitis C virus, and opportunistic fungi. Because of the uncommon nature of the clinical illnesses directly attributed to HHV-6, there is currently no recommended HHV-6-specific approach to prevention. However, ganciclovir and valganciclovir, which are primarily intended for the prevention of CMV disease, are also active against HHV-6 and may prevent its reactivation after transplantation. The treatment of established HHV-6 disease is usually with intravenous ganciclovir, cidofovir, or foscarnet, complemented by reduction in the degree of immunosuppression. This article reviews the current advances in the pathogenesis, clinical diagnosis, and therapeutic modalities against HHV6 in the setting of liver transplantation.
Collapse
|
45
|
Abstract
The study of human cell-cell and cell-pathogen interactions that occur in the context of complex tissue cytoarchitecture is critical for deciphering the mechanisms of many normal and pathogenic processes. This protocol describes methods for culturing and infecting explants of human tissues to study the pathogenesis of human infectious agents and their local interactions. The protocol relies on the use of fresh human tissues dissected into small blocks or biopsies that are cultured at the liquid-air interface on collagen rafts. These tissue blocks retain their cytoarchitecture and support productive infection of various pathogens without exogenous stimulation. Experimental details for setting up cultures of human tonsils, lymph nodes and cervicovaginal and rectosigmoid tissues, including protocols for their infection with HIV-1 and other pathogens, are described here. Using this protocol, culture and infections can be set up in 3-6 h and be maintained for 2-3 weeks, depending on the tissue used.
Collapse
|
46
|
Ohtsuki Y, Daibata M, Bandobashi K, Lee GH, Furihata M, Yokoyama A, Miyoshi I. Ultrastructural study of the morphogenesis of human herpesvirus 6 type B in human T-lymphotropic virus type I-producing lymphoid cells. Med Mol Morphol 2008; 41:204-10. [PMID: 19107610 DOI: 10.1007/s00795-008-0413-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Accepted: 07/23/2008] [Indexed: 12/17/2022]
Abstract
A few studies of the morphogenesis of human herpesvirus (HHV) 6 type A and B (HHV-6A, -6B) have been performed using neurogenic, lymphoid, or epithelial cells. When human MT-4 T-lymphotropic virus type I (HTLV-I)-producing lymphoid cells were coinfected with HHV-6B in vitro, viral-specific proteins were clearly detected. We therefore attempted to detect virus particles at the ultrastructural level, focusing on the morphogenesis of such particles. Ultrastructurally, HHV-6B virus particles could be observed in the nuclei, cytoplasm, and extracellular spaces of MT-4 cells, in addition to extracellular HTLV-I particles of C type. In the nuclei, dense-cored or doughnut-shaped viral capsids were found, as well as peculiar tubular rods. When budding to perinuclear spaces, these intranuclear capsids exhibited a thin tegument on their surfaces. Distinct teguments were found in the intracytoplasmic particles, which budded into cytoplasmic vacuoles during the process of maturation. The mature particles were detected in the extracellular spaces and the intracytoplasmic vacuoles, with a distinct tegument and surface spikes. An electron-dense layer in the outer part of the tegument was found in some mature particles located in the extracellular space, but no such layer was detected in mature particles in intracytoplasmic vacuoles. No annulate lamellae, but intranuclear tubular rods, were found in the cytoplasm of MT-4 cells. These observations indicate that HHV-6B in MT-4 cells is similar to HHV-6A in fine structure, but differs from HHV-7 and HHV-8 in ultrastructural characteristics. Further comparisons of HHV-6B with HHV-6A, HHV-7, and HHV-8 are needed with regard to functional activity.
Collapse
Affiliation(s)
- Yuji Ohtsuki
- Division of Pathology, Matsuyama-shimin Hospital, Matsuyama, Ehime, 790-0067, Japan.
| | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Therapeutic options aimed at tackling the HIV pandemic face many obstacles. The lack of readily accessible and affordable therapies means that most of those affected go untreated. The array of escape mechanisms used by HIV has undermined the efficiency of many antiviral products and continually represents a barrier to the development of an effective vaccine. Recent developments have seen a shift away from a cytopathic viral model of HIV pathogenesis towards the crucial role of immunopathogenic features--notably generalised immune activation--in the development of AIDS. As conventional vaccine strategies have sought to promote viral neutralisation and suppressive cellular responses, novel strategies that aim to address HIV immunopathogenesis should be sought. We review current opinion on HIV-induced pathogenic immune activation and strategies aimed at eliminating HIV, including a potential role for non-neutralising antibodies as part of a therapeutic vaccine option.
Collapse
|
48
|
Wang LR, Dong LJ, Zhang MJ, Lu DP. Correlations of human herpesvirus 6B and CMV infection with acute GVHD in recipients of allogeneic haematopoietic stem cell transplantation. Bone Marrow Transplant 2008; 42:673-7. [DOI: 10.1038/bmt.2008.238] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
49
|
de Pagter PJA, Schuurman R, Visscher H, de Vos M, Bierings M, van Loon AM, Uiterwaal CSPM, van Baarle D, Sanders EAM, Boelens J. Human herpes virus 6 plasma DNA positivity after hematopoietic stem cell transplantation in children: an important risk factor for clinical outcome. Biol Blood Marrow Transplant 2008; 14:831-9. [PMID: 18541204 DOI: 10.1016/j.bbmt.2008.04.016] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Accepted: 04/30/2008] [Indexed: 11/25/2022]
Abstract
Human herpes virus 6 (HHV6) is known to reactivate after hematopoietic stem cell transplantation (HSCT), and has been suggested to be associated with severe clinical manifestations in adults. The clinical significance in children remains unclear. We investigated the incidence of HHV6 reactivation in relation to HSCT-associated morbidity and mortality in children. Between January 2004 and May 2006, 58 pediatric patients, median age 7.6 years (range: 0.1-18.1 years), received their first allogeneic HSCT. After HSCT, HHV6, Epstein Barr Virus (EBV), cytomegalovirus (CMV), and adenovirus (AdV)-plasma loads were weekly measured by quantitative PCR. Clinical features, engraftment, graft-versus-host disease (GVHD), and HSCT-associated mortality and morbidity were monitored. HHV6 reactivations were classified in group I (no reactivation), group II (loads <1000 cp/mL) and group III (loads >1000 cp/mL). CMV, EBV, Herpes Simpex Virus, Varicella Zoster Virus, and AdV-reactivations were treated according to local guidelines. HHV6 was treated only when there was clinical suspicion of disease. Thirty-six HLA-identical and 22 HLA nonidentical grafts were transplanted of which 43 were bone marrow or peripheral blood stem cells grafts and 15 were cord blood (CB) grafts. Median follow-up of the patients was 15.5 (1-35) months. HHV6 reactivation occurred in 39 of 58 (67%) patients with 31 of 39 (80%) occurring within the first 30 days post-HSCT. In 26 of 58 (45%) patients (group III), HHV 6 reactivation was significantly associated with higher nonrelapse mortality (P = .02), using multivariate Cox proportional hazard models and grade 2-4 acute GVHD (P = .03) and chronic GVHD (P = .05) in a multivariate logistic regression analysis. HHV6 reactivation is very common after HSCT in children and is associated with serious transplantation-related morbidity and mortality. Although the exact role of HHV6 reactivation after HSCT has to be elucidated, early detection and initiation of therapy might be of benefit.
Collapse
Affiliation(s)
- P J Anne de Pagter
- Department of Immunology/Haematology and BMT, University Medical Center Utrecht, Utrecht, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Biancotto A, Iglehart SJ, Lisco A, Vanpouille C, Grivel JC, Lurain NS, Reichelderfer PS, Margolis LB. Upregulation of human cytomegalovirus by HIV type 1 in human lymphoid tissue ex vivo. AIDS Res Hum Retroviruses 2008; 24:453-62. [PMID: 18327985 DOI: 10.1089/aid.2007.0155] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
HIV-1 copathogens are believed to play a critical role in progression to AIDS. Human cytomegalovirus (HCMV) has a high prevalence in the general population and is a common copathogen in HIV-1-infected individuals. Important events in copathogen interactions with HIV-1 take place in lymphoid tissue where critical events in HIV-1 disease occur. Here, we used an experimental system of human lymphoid tissue ex vivo to investigate interactions of HCMV with HIV-1. We inoculated ex vivo blocks of human lymphoid tissue with a recombinant strain of HCMV, expressing the green fluorescent protein, and HIV-1 and monitored viral replication and the phenotype of productively infected cells. HCMV readily replicated in tissue blocks as revealed by the release of HCMV viral DNA and an increasing number of viral-positive cells. Immunophenotyping of HCMV-infected cells showed a preferential infection of activated lymphocytes. The number of these cells significantly increased in HIV-1-coinfected tissues. Accordingly, HCMV replication was enhanced 2- to-3 fold. This upregulation occurred in tissues infected with either CXCR4- or CCR5-utilizing HIV-1. Thus, HIV-1 creates new targets for HCMV, which may explain the strong association of HCMV with HIV-1 infection in vivo. Ex vivo-infected human lymphoid tissue constitutes a model to study the mechanisms of HCMV tissue pathogenesis and its interactions with HIV-1 and this model may provide new targets for anti-HIV-1 therapy.
Collapse
Affiliation(s)
- Angélique Biancotto
- Laboratory of Cellular and Molecular Biophysics, National Institute of Child Health and Human Development, Bethesda, Maryland 20892
| | - Sarah J. Iglehart
- Laboratory of Cellular and Molecular Biophysics, National Institute of Child Health and Human Development, Bethesda, Maryland 20892
| | - Andrea Lisco
- Laboratory of Cellular and Molecular Biophysics, National Institute of Child Health and Human Development, Bethesda, Maryland 20892
| | - Christophe Vanpouille
- Laboratory of Cellular and Molecular Biophysics, National Institute of Child Health and Human Development, Bethesda, Maryland 20892
| | - Jean-Charles Grivel
- Laboratory of Cellular and Molecular Biophysics, National Institute of Child Health and Human Development, Bethesda, Maryland 20892
| | - Nell S. Lurain
- Department of Immunology/Microbiology, Rush University Medical Center, Chicago, Illinois 60612
| | - Patricia S. Reichelderfer
- Laboratory of Cellular and Molecular Biophysics, National Institute of Child Health and Human Development, Bethesda, Maryland 20892
| | - Leonid B. Margolis
- Laboratory of Cellular and Molecular Biophysics, National Institute of Child Health and Human Development, Bethesda, Maryland 20892
| |
Collapse
|