1
|
How the Competition for Cysteine May Promote Infection of SARS-CoV-2 by Triggering Oxidative Stress. Antioxidants (Basel) 2023; 12:antiox12020483. [PMID: 36830041 PMCID: PMC9952211 DOI: 10.3390/antiox12020483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
SARS-CoV-2 induces a broad range of clinical manifestations. Besides the main receptor, ACE2, other putative receptors and co-receptors have been described and could become genuinely relevant to explain the different tropism manifested by new variants. In this study, we propose a biochemical model envisaging the competition for cysteine as a key mechanism promoting the infection and the selection of host receptors. The SARS-CoV-2 infection produces ROS and triggers a massive biosynthesis of proteins rich in cysteine; if this amino acid becomes limiting, glutathione levels are depleted and cannot control oxidative stress. Hence, infection succeeds. A receptor should be recognized as a marker of suitable intracellular conditions, namely the full availability of amino acids except for low cysteine. First, we carried out a comparative investigation of SARS-CoV-2 proteins and human ACE2. Then, using hierarchical cluster protein analysis, we searched for similarities between all human proteins and spike produced by the latest variant, Omicron BA.1. We found 32 human proteins very close to spike in terms of amino acid content. Most of these potential SARS-CoV-2 receptors have less cysteine than spike. We suggest that these proteins could signal an intracellular shortage of cysteine, predicting a burst of oxidative stress when used as viral entry mediators.
Collapse
|
2
|
Liu Q, Acharya P, Dolan MA, Zhang P, Guzzo C, Lu J, Kwon A, Gururani D, Miao H, Bylund T, Chuang GY, Druz A, Zhou T, Rice WJ, Wigge C, Carragher B, Potter CS, Kwong PD, Lusso P. Quaternary contact in the initial interaction of CD4 with the HIV-1 envelope trimer. Nat Struct Mol Biol 2017; 24:370-378. [PMID: 28218750 DOI: 10.1038/nsmb.3382] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 01/25/2017] [Indexed: 12/19/2022]
Abstract
Binding of the gp120 envelope (Env) glycoprotein to the CD4 receptor is the first step in the HIV-1 infectious cycle. Although the CD4-binding site has been extensively characterized, the initial receptor interaction has been difficult to study because of major CD4-induced structural rearrangements. Here we used cryogenic electron microscopy (cryo-EM) to visualize the initial contact of CD4 with the HIV-1 Env trimer at 6.8-Å resolution. A single CD4 molecule is embraced by a quaternary HIV-1-Env surface formed by coalescence of the previously defined CD4-contact region with a second CD4-binding site (CD4-BS2) in the inner domain of a neighboring gp120 protomer. Disruption of CD4-BS2 destabilized CD4-trimer interaction and abrogated HIV-1 infectivity by preventing the acquisition of coreceptor-binding competence. A corresponding reduction in HIV-1 infectivity occurred after the mutation of CD4 residues that interact with CD4-BS2. Our results document the critical role of quaternary interactions in the initial HIV-Env-receptor contact, with implications for treatment and vaccine design.
Collapse
Affiliation(s)
- Qingbo Liu
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Priyamvada Acharya
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA.,National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, New York, USA
| | - Michael A Dolan
- Bioinformatics and Computational Biosciences Branch, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Peng Zhang
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Christina Guzzo
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Jacky Lu
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Alice Kwon
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Deepali Gururani
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Huiyi Miao
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Tatsiana Bylund
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Gwo-Yu Chuang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Aliaksandr Druz
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - William J Rice
- National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, New York, USA
| | - Christoph Wigge
- National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, New York, USA
| | - Bridget Carragher
- National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, New York, USA
| | - Clinton S Potter
- National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, New York, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Paolo Lusso
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| |
Collapse
|
3
|
Optimal activation of Fc-mediated effector functions by influenza virus hemagglutinin antibodies requires two points of contact. Proc Natl Acad Sci U S A 2016; 113:E5944-E5951. [PMID: 27647907 DOI: 10.1073/pnas.1613225113] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Influenza virus strain-specific monoclonal antibodies (mAbs) provide protection independent of Fc gamma receptor (FcγR) engagement. In contrast, optimal in vivo protection achieved by broadly reactive mAbs requires Fc-FcγR engagement. Most strain-specific mAbs target the head domain of the viral hemagglutinin (HA), whereas broadly reactive mAbs typically recognize epitopes within the HA stalk. This observation has led to questions regarding the mechanism regulating the activation of Fc-dependent effector functions by broadly reactive antibodies. To dissect the molecular mechanism responsible for this dichotomy, we inserted the FLAG epitope into discrete locations on HAs. By characterizing the interactions of several FLAG-tagged HAs with a FLAG-specific antibody, we show that in addition to Fc-FcγR engagement mediated by the FLAG-specific antibody, a second intermolecular bridge between the receptor-binding region of the HA and sialic acid on effector cells is required for optimal activation. Inhibition of this second molecular bridge, through the use of an F(ab')2 or the mutation of the sialic acid-binding site, renders the Fc-FcγR interaction unable to optimally activate effector cells. Our findings indicate that broadly reactive mAbs require two molecular contacts to possibly stabilize the immunologic synapse and potently induce antibody-dependent cell-mediated antiviral responses: (i) the interaction between the Fc of a mAb bound to HA with the FcγR of the effector cell and (ii) the interaction between the HA and its sialic acid receptor on the effector cell. This concept might be broadly applicable for protective antibody responses to viral pathogens that have suitable receptors on effector cells.
Collapse
|
4
|
Blaas D. Viral entry pathways: the example of common cold viruses. Wien Med Wochenschr 2016; 166:211-26. [PMID: 27174165 PMCID: PMC4871925 DOI: 10.1007/s10354-016-0461-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 04/12/2016] [Indexed: 02/02/2023]
Abstract
For infection, viruses deliver their genomes into the host cell. These nucleic acids are usually tightly packed within the viral capsid, which, in turn, is often further enveloped within a lipid membrane. Both protect them against the hostile environment. Proteins and/or lipids on the viral particle promote attachment to the cell surface and internalization. They are likewise often involved in release of the genome inside the cell for its use as a blueprint for production of new viruses. In the following, I shall cursorily discuss the early more general steps of viral infection that include receptor recognition, uptake into the cell, and uncoating of the viral genome. The later sections will concentrate on human rhinoviruses, the main cause of the common cold, with respect to the above processes. Much of what is known on the underlying mechanisms has been worked out by Renate Fuchs at the Medical University of Vienna.
Collapse
Affiliation(s)
- Dieter Blaas
- Max F. Perutz Laboratories, Department of Medical Biochemistry, Medical University of Vienna, Vienna Biocenter, Dr. Bohr Gasse 9/3, 1030, Vienna, Austria.
| |
Collapse
|
5
|
Yakovlev S, Medved L. Interaction of Fibrin with the Very Low Density Lipoprotein Receptor: Further Characterization and Localization of the Fibrin-Binding Site. Biochemistry 2015; 54:4751-61. [PMID: 26153297 DOI: 10.1021/acs.biochem.5b00582] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Our recent study revealed that fibrin interacts with the very low density lipoprotein receptor (VLDLR) on endothelial cells through its βN domains, and this interaction promotes transendothelial migration of leukocytes and thereby inflammation. The major aims of this study were to further characterize this interaction and localize the fibrin-binding site in the VLDLR. To localize the fibrin-binding site, we expressed a soluble extracellular portion of this receptor, sVLDLRHT, its N- and C-terminal regions, VLDLR(1-8)HT and des(1-8)VLDLRHT, respectively, and a number of VLDLR fragments containing various combinations of CR domains and confirmed their proper folding by fluorescence spectroscopy. Interaction of these fragments with the (β15-66)2 fragment corresponding to a pair of VLDLR-binding βN domains of fibrin was tested by different methods. Our experiments performed by an enzyme-linked immunosorbent assay and surface plasmon resonance revealed that the VLDLR(1-8)HT fragment containing eight CR domains of VLDLR and its subfragments, VLDLR(1-4)HT and VLDLR(2-4)HT, interact with (β15-66)2 with practically the same affinity as sVLDLRHT while the affinity of VLDLR(2-3)HT was ∼2-fold lower. In contrast, des(1-8)VLDLRHT exhibited no binding. Formation of the complex in solution between the fibrin-binding fragments of VLDLR and (β15-66)2 was detected by fluorescence spectroscopy. In addition, formation of a complex between VLDLR(2-4)HT and (β15-66)2 in solution was confirmed by size-exclusion chromatography. Thus, the results obtained indicate that minimal fibrin-binding structures are located within the second and third CR domains of the VLDL receptor and the presence of the fourth CR domain is required for high-affinity binding. They also indicate that tryptophan residues of CR domains are involved in this binding.
Collapse
Affiliation(s)
- Sergiy Yakovlev
- Center for Vascular and Inflammatory Diseases and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - Leonid Medved
- Center for Vascular and Inflammatory Diseases and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| |
Collapse
|
6
|
Yamayoshi S, Fujii K, Koike S. Receptors for enterovirus 71. Emerg Microbes Infect 2014; 3:e53. [PMID: 26038749 PMCID: PMC4126179 DOI: 10.1038/emi.2014.49] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 04/05/2014] [Accepted: 05/05/2014] [Indexed: 11/10/2022]
Abstract
Enterovirus 71 (EV71) is one of the major causative agents of hand, foot and mouth disease (HFMD). Occasionally, EV71 infection is associated with severe neurological diseases, such as acute encephalitis, acute flaccid paralysis and cardiopulmonary failure. Several molecules act as cell surface receptors that stimulate EV71 infection, including scavenger receptor B2 (SCARB2), P-selectin glycoprotein ligand-1 (PSGL-1), sialylated glycan, heparan sulfate and annexin II (Anx2). SCARB2 plays critical roles in attachment, viral entry and uncoating, and it can facilitate efficient EV71 infection. The three-dimensional structures of the mature EV71 virion, procapsid and empty capsid, as well as the exofacial domain of SCARB2, have been elucidated. This structural information has greatly increased our understanding of the early steps of EV71 infection. Furthermore, SCARB2 plays essential roles in the development of EV71 neurological disease in vivo. Adult mice are not susceptible to infection by EV71, but transgenic mice that express human SCARB2 become susceptible to EV71 infection and develop similar neurological diseases to those found in humans. This mouse model facilitates the in vivo investigation of many issues related to EV71. PSGL-1, sialylated glycan, heparan sulfate and Anx2 are attachment receptors, which enhance viral infection by retaining the virus on the cell surface. These molecules also contribute to viral infection in vitro either by interacting with SCARB2 or independently of SCARB2. However, the cooperative effects of these receptors, and their contribution to EV71 pathogenicity in vivo, remain to be elucidated.
Collapse
Affiliation(s)
- Seiya Yamayoshi
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, The University of Tokyo , Tokyo 108-8639, Japan
| | - Ken Fujii
- Neurovirology Project, Tokyo Metropolitan Institute of Medical Science , Tokyo 156-8506, Japan
| | - Satoshi Koike
- Neurovirology Project, Tokyo Metropolitan Institute of Medical Science , Tokyo 156-8506, Japan
| |
Collapse
|
7
|
Uncoating of common cold virus is preceded by RNA switching as determined by X-ray and cryo-EM analyses of the subviral A-particle. Proc Natl Acad Sci U S A 2013; 110:20063-8. [PMID: 24277846 DOI: 10.1073/pnas.1312128110] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
During infection, viruses undergo conformational changes that lead to delivery of their genome into host cytosol. In human rhinovirus A2, this conversion is triggered by exposure to acid pH in the endosome. The first subviral intermediate, the A-particle, is expanded and has lost the internal viral protein 4 (VP4), but retains its RNA genome. The nucleic acid is subsequently released, presumably through one of the large pores that open at the icosahedral twofold axes, and is transferred along a conduit in the endosomal membrane; the remaining empty capsids, termed B-particles, are shuttled to lysosomes for degradation. Previous structural analyses revealed important differences between the native protein shell and the empty capsid. Nonetheless, little is known of A-particle architecture or conformation of the RNA core. Using 3D cryo-electron microscopy and X-ray crystallography, we found notable changes in RNA-protein contacts during conversion of native virus into the A-particle uncoating intermediate. In the native virion, we confirmed interaction of nucleotide(s) with Trp(38) of VP2 and identified additional contacts with the VP1 N terminus. Study of A-particle structure showed that the VP2 contact is maintained, that VP1 interactions are lost after exit of the VP1 N-terminal extension, and that the RNA also interacts with residues of the VP3 N terminus at the fivefold axis. These associations lead to formation of a well-ordered RNA layer beneath the protein shell, suggesting that these interactions guide ordered RNA egress.
Collapse
|
8
|
Productive entry pathways of human rhinoviruses. Adv Virol 2012; 2012:826301. [PMID: 23227049 PMCID: PMC3513715 DOI: 10.1155/2012/826301] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Accepted: 10/18/2012] [Indexed: 12/20/2022] Open
Abstract
Currently, complete or partial genome sequences of more than 150 human rhinovirus (HRV) isolates are known. Twelve species A use members of the low-density lipoprotein receptor family for cell entry, whereas the remaining HRV-A and all HRV-B bind ICAM-1. HRV-Cs exploit an unknown receptor. At least all A and B type viruses depend on receptor-mediated endocytosis for infection. In HeLa cells, they are internalized mainly by a clathrin- and dynamin-dependent mechanism. Upon uptake into acidic compartments, the icosahedral HRV capsid expands by ~4% and holes open at the 2-fold axes, close to the pseudo-3-fold axes and at the base of the star-shaped dome protruding at the vertices. RNA-protein interactions are broken and new ones are established, the small internal myristoylated capsid protein VP4 is expelled, and amphipathic N-terminal sequences of VP1 become exposed. The now hydrophobic subviral particle attaches to the inner surface of endosomes and transfers its genomic (+) ssRNA into the cytosol. The RNA leaves the virus starting with the poly(A) tail at its 3′-end and passes through a membrane pore contiguous with one of the holes in the capsid wall. Alternatively, the endosome is disrupted and the RNA freely diffuses into the cytoplasm.
Collapse
|
9
|
Garriga D, Pickl-Herk A, Luque D, Wruss J, Castón JR, Blaas D, Verdaguer N. Insights into minor group rhinovirus uncoating: the X-ray structure of the HRV2 empty capsid. PLoS Pathog 2012; 8:e1002473. [PMID: 22241997 PMCID: PMC3252380 DOI: 10.1371/journal.ppat.1002473] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 11/21/2011] [Indexed: 01/05/2023] Open
Abstract
Upon attachment to their respective receptor, human rhinoviruses (HRVs) are internalized into the host cell via different pathways but undergo similar structural changes. This ultimately results in the delivery of the viral RNA into the cytoplasm for replication. To improve our understanding of the conformational modifications associated with the release of the viral genome, we have determined the X-ray structure at 3.0 Å resolution of the end-stage of HRV2 uncoating, the empty capsid. The structure shows important conformational changes in the capsid protomer. In particular, a hinge movement around the hydrophobic pocket of VP1 allows a coordinated shift of VP2 and VP3. This overall displacement forces a reorganization of the inter-protomer interfaces, resulting in a particle expansion and in the opening of new channels in the capsid core. These new breaches in the capsid, opening one at the base of the canyon and the second at the particle two-fold axes, might act as gates for the externalization of the VP1 N-terminus and the extrusion of the viral RNA, respectively. The structural comparison between native and empty HRV2 particles unveils a number of pH-sensitive amino acid residues, conserved in rhinoviruses, which participate in the structural rearrangements involved in the uncoating process. Human Rhinoviruses (HRVs), members of the Picornaviridae family, are small non-enveloped viruses possessing an icosahedral capsid that protects the single-stranded RNA genome. Although much is known about their binding to cell receptors and their uptake into the host cell, the mechanism by which their genomic RNA leaves the capsid and arrives to the cytosol to initiate replication is poorly understood. In HRV2, a member of the minor group HRVs, upon binding to lipoprotein receptors (LDL-R) on the cell surface virions are taken up into vesicles and directed to early endosomes. The low pH conditions found in the endosome, and not the binding to LDL-R, catalyze the delivery of the viral genome. The crystal structure of the HRV2 empty particle, representing the last stage of the uncoating process, unveils the structural rearrangements produced in the viral capsid during the externalization of the VP1 N-terminus and the delivery of the genomic RNA. We propose that RNA exit occurs through large capsid disruptions that are produced at the particle two-fold symmetry axes. Our data also suggests that the VP1 N-terminus would be externalized through a new pore, opening at the canyon floor.
Collapse
Affiliation(s)
- Damià Garriga
- Institut de Biologia Molecular de Barcelona (CSIC), Parc Científic de Barcelona, Barcelona, Spain
| | - Angela Pickl-Herk
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Vienna Biocenter, Medical University of Vienna, Vienna, Austria
| | - Daniel Luque
- Centro Nacional de Biotecnología (CSIC), Cantoblanco, Madrid, Spain
| | - Jürgen Wruss
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Vienna Biocenter, Medical University of Vienna, Vienna, Austria
| | - José R. Castón
- Centro Nacional de Biotecnología (CSIC), Cantoblanco, Madrid, Spain
| | - Dieter Blaas
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Vienna Biocenter, Medical University of Vienna, Vienna, Austria
| | - Núria Verdaguer
- Institut de Biologia Molecular de Barcelona (CSIC), Parc Científic de Barcelona, Barcelona, Spain
- * E-mail:
| |
Collapse
|
10
|
An externalized polypeptide partitions between two distinct sites on genome-released poliovirus particles. J Virol 2011; 85:9974-83. [PMID: 21775460 DOI: 10.1128/jvi.05013-11] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
During cell entry, native poliovirus (160S) converts to a cell-entry intermediate (135S) particle, resulting in the externalization of capsid proteins VP4 and the amino terminus of VP1 (residues 1 to 53). Externalization of these entities is followed by release of the RNA genome (uncoating), leaving an empty (80S) particle. The antigen-binding fragment (Fab) of a monospecific peptide 1 (P1) antibody, which was raised against a peptide corresponding to amino-terminal residues 24 to 40 of VP1, was utilized to track the location of the amino terminus of VP1 in the 135S and 80S states of poliovirus particles via cryogenic electron microscopy (cryo-EM) and three-dimensional image reconstruction. On 135S, P1 Fabs bind to a prominent feature on the external surface known as the "propeller tip." In contrast, our initial 80S-P1 reconstruction showed P1 Fabs also binding to a second site, at least 50 Å distant, at the icosahedral 2-fold axes. Further analysis showed that the overall population of 80S-P1 particles consisted of three kinds of capsids: those with P1 Fabs bound only at the propeller tips, P1 Fabs bound only at the 2-fold axes, or P1 Fabs simultaneously bound at both positions. Our results indicate that, in 80S particles, a significant fraction of VP1 can deviate from icosahedral symmetry. Hence, this portion of VP1 does not change conformation synchronously when switching from the 135S state. These conclusions are compatible with previous observations of multiple conformations of the 80S state and suggest that movement of the amino terminus of VP1 has a role in uncoating. Similar deviations from icosahedral symmetry may be biologically significant during other viral transitions.
Collapse
|
11
|
Phillips T, Jenkinson L, McCrae C, Thong B, Unitt J. Development of a high-throughput human rhinovirus infectivity cell-based assay for identifying antiviral compounds. J Virol Methods 2011; 173:182-8. [PMID: 21300110 DOI: 10.1016/j.jviromet.2011.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 01/25/2011] [Accepted: 02/01/2011] [Indexed: 10/18/2022]
Abstract
Asthma and chronic obstructive pulmonary disease exacerbations are associated with human rhinovirus (HRV) lung infections for which there are no current effective antiviral therapies. To date, HRV infectivity of cells in vitro has been measured by a variety of biochemical and immunological methods. This paper describes the development of a high-throughput HRV infectivity assay using HeLa OHIO cells and a chemiluminescent-based ATP cell viability system, CellTiter-Glo from Promega, to measure HRV-induced cytopathic effect (CPE). This CellTiter-Glo assay was validated with standard antiviral agents and employed to screen AstraZeneca compounds for potential antiviral activity. Compound potency values in this assay correlated well with the quantitative RT-PCR assay measuring HRV infectivity and replication in human primary airway epithelial cells. In order to improve pan-HRV screening capability, compound potency was also measured in the CellTiter-Glo assay with a combination of 3 different HRV serotypes. This HRV serotype combination assay could be used to identify quickly compounds with desirable broad spectrum antiviral activity.
Collapse
Affiliation(s)
- Tim Phillips
- Bioscience, AstraZeneca R&D Charnwood, Loughborough, Bakewell Road, Leicestershire LE11 5RH, United Kingdom.
| | | | | | | | | |
Collapse
|
12
|
Abstract
Echovirus 7 (EV7) belongs to the Enterovirus genus within the family Picornaviridae. Many picornaviruses use IgG-like receptors that bind in the viral canyon and are required to initiate viral uncoating during infection. However, in addition, some of the enteroviruses use an alternative or additional receptor that binds outside the canyon. Decay-accelerating factor (DAF) has been identified as a cellular receptor for EV7. The crystal structure of EV7 has been determined to 3.1-Å resolution and used to interpret the 7.2-Å-resolution cryo-electron microscopy reconstruction of EV7 complexed with DAF. Each DAF binding site on EV7 is near a 2-fold icosahedral symmetry axis, which differs from the binding site of DAF on the surface of coxsackievirus B3, indicating that there are independent evolutionary processes by which DAF was selected as a picornavirus accessory receptor. This suggests that there is an advantage for these viruses to recognize DAF during the initial process of infection.
Collapse
|
13
|
Querol-Audí J, Konecsni T, Pous J, Carugo O, Fita I, Verdaguer N, Blaas D. Minor group human rhinovirus-receptor interactions: geometry of multimodular attachment and basis of recognition. FEBS Lett 2008; 583:235-40. [PMID: 19073182 DOI: 10.1016/j.febslet.2008.12.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Accepted: 12/05/2008] [Indexed: 11/19/2022]
Abstract
X-ray structures of human rhinovirus 2 (HRV2) in complex with soluble very-low-density lipoprotein receptors encompassing modules 1, 2, and 3 (V123) and five V3 modules arranged in tandem (V33333) demonstrates multi-modular binding around the virion's five-fold axes. Occupancy was 60% for V123 and 100% for V33333 explaining the high-avidity of the interaction. Surface potentials of 3D-models of all minor group HRVs and K-type major group HRVs were compared; hydrophobic interactions between a conserved lysine in the viruses and a tryptophan in the receptor modules together with coulombic attraction via diffuse opposite surface potentials determine minor group HRV receptor specificity.
Collapse
Affiliation(s)
- Jordi Querol-Audí
- Institut de Biologia Molecular de Barcelona (CSIC), Parc Científic de Barcelona, Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
14
|
McErlean P, Shackelton LA, Andrews E, Webster DR, Lambert SB, Nissen MD, Sloots TP, Mackay IM. Distinguishing molecular features and clinical characteristics of a putative new rhinovirus species, human rhinovirus C (HRV C). PLoS One 2008; 3:e1847. [PMID: 18382652 PMCID: PMC2268738 DOI: 10.1371/journal.pone.0001847] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2007] [Accepted: 02/21/2008] [Indexed: 11/26/2022] Open
Abstract
Background Human rhinoviruses (HRVs) are the most frequently detected pathogens in acute respiratory tract infections (ARTIs) and yet little is known about the prevalence, recurrence, structure and clinical impact of individual members. During 2007, the complete coding sequences of six previously unknown and highly divergent HRV strains were reported. To catalogue the molecular and clinical features distinguishing the divergent HRV strains, we undertook, for the first time, in silico analyses of all available polyprotein sequences and performed retrospective reviews of the medical records of cases in which variants of the prototype strain, HRV-QPM, had been detected. Methodology/Principle Findings Genomic analyses revealed that the six divergent strains, residing within a clade we previously called HRV A2, had the shortest polyprotein of all picornaviruses investigated. Structure-based amino acid alignments identified conserved motifs shared among members of the genus Rhinovirus as well as substantive deletions and insertions unique to the divergent strains. Deletions mostly affected regions encoding proteins traditionally involved in antigenicity and serving as HRV and HEV receptor footprints. Because the HRV A2 strains cannot yet be cultured, we created homology models of predicted HRV-QPM structural proteins. In silico comparisons confirmed that HRV-QPM was most closely related to the major group HRVs. HRV-QPM was most frequently detected in infants with expiratory wheezing or persistent cough who had been admitted to hospital and required supplemental oxygen. It was the only virus detected in 65% of positive individuals. These observations contributed to an objective clinical impact ranging from mild to severe. Conclusions The divergent strains did not meet classification requirements for any existing species of the genus Rhinovirus or Enterovirus. HRV A2 strains should be partitioned into at least one new species, putatively called Human rhinovirus C, populated by members detected with high frequency, from individuals with respiratory symptoms requiring hospital admission.
Collapse
Affiliation(s)
- Peter McErlean
- Queensland Paediatric Infectious Diseases Laboratory, Sir Albert Sakzewski Virus Research Centre, Royal Children's Hospital, Brisbane, Queensland, Australia
- Clinical and Medical Virology Centre, University of Queensland, Brisbane, Queensland, Australia
| | - Laura A. Shackelton
- Mueller Laboratory, Center for Infectious Disease Dynamics, Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Emily Andrews
- Queensland Paediatric Infectious Diseases Laboratory, Sir Albert Sakzewski Virus Research Centre, Royal Children's Hospital, Brisbane, Queensland, Australia
- Clinical and Medical Virology Centre, University of Queensland, Brisbane, Queensland, Australia
| | - Dale R. Webster
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
- Biological and Medical Informatics Program, University of California San Francisco, San Francisco, California, United States of America
- Howard Hughes Medical Institute, University of California, San Francisco, California, United States of America
| | - Stephen B. Lambert
- Queensland Paediatric Infectious Diseases Laboratory, Sir Albert Sakzewski Virus Research Centre, Royal Children's Hospital, Brisbane, Queensland, Australia
- Clinical and Medical Virology Centre, University of Queensland, Brisbane, Queensland, Australia
| | - Michael D. Nissen
- Queensland Paediatric Infectious Diseases Laboratory, Sir Albert Sakzewski Virus Research Centre, Royal Children's Hospital, Brisbane, Queensland, Australia
- Clinical and Medical Virology Centre, University of Queensland, Brisbane, Queensland, Australia
- Division of Microbiology, Queensland Health Pathology Service, Royal Brisbane Hospitals Campus, Brisbane, Queensland, Australia
- Department of Paediatrics and Child Health, Royal Children's Hospitals, Brisbane, Queensland, Australia
| | - Theo P. Sloots
- Queensland Paediatric Infectious Diseases Laboratory, Sir Albert Sakzewski Virus Research Centre, Royal Children's Hospital, Brisbane, Queensland, Australia
- Clinical and Medical Virology Centre, University of Queensland, Brisbane, Queensland, Australia
- Division of Microbiology, Queensland Health Pathology Service, Royal Brisbane Hospitals Campus, Brisbane, Queensland, Australia
- Department of Paediatrics and Child Health, Royal Children's Hospitals, Brisbane, Queensland, Australia
| | - Ian M. Mackay
- Queensland Paediatric Infectious Diseases Laboratory, Sir Albert Sakzewski Virus Research Centre, Royal Children's Hospital, Brisbane, Queensland, Australia
- Clinical and Medical Virology Centre, University of Queensland, Brisbane, Queensland, Australia
- * E-mail:
| |
Collapse
|
15
|
Virus analysis by electrophoresis on a microfluidic chip. J Chromatogr B Analyt Technol Biomed Life Sci 2007; 860:173-9. [DOI: 10.1016/j.jchromb.2007.10.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Revised: 10/16/2007] [Accepted: 10/17/2007] [Indexed: 12/24/2022]
|
16
|
Kolivoška V, Weiss VU, Kremser L, Gaš B, Blaas D, Kenndler E. Electrophoresis on a microfluidic chip for analysis of fluorescence-labeled human rhinovirus. Electrophoresis 2007; 28:4734-40. [PMID: 18008310 PMCID: PMC7163641 DOI: 10.1002/elps.200700397] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Indexed: 11/11/2022]
Abstract
We report the analysis of human rhinovirus serotype 2 (HRV2) on a commercially available lab-on-a-chip instrument. Due to lack of sufficient native fluorescence, the proteinaceous capsid of HRV2 was labeled with Cy5 for detection by the red laser (lambda ex 630 nm) implemented in the instrument. On the microdevice, electrophoresis of the labeled virus was possible in a BGE without stabilizing detergents, which is in contrast to conventional CE; moreover, analysis times were drastically shortened to the few 10 s range. Resolution of the sample constituents (virions, a contaminant present in all virus preparations, and excess dye) was improved upon adaptation of the separation conditions, mainly by adjusting the SDS concentration of the BGE. Purity of fractions from size-exclusion chromatography after labeling of virus was assessed, and affinity complex formation of the labeled virus with various recombinant very-low-density lipoprotein receptor derivatives differing in the number of concatenated V3 ligand binding repeats was monitored. Virus analysis on microchip devices is of particular interest for experiments with infectious material because of easy containment and disposal of samples. Thus, the employment of microchip devices in routine analysis of viruses appears to be exceptionally attractive.
Collapse
Affiliation(s)
- Viliam Kolivoška
- Institute for Analytical Chemistry, University of Vienna, Vienna, Austria
- Department of Physical and Macromolecular Chemistry, Charles University, Prague, Czech Republic
| | - Victor U. Weiss
- Institute for Analytical Chemistry, University of Vienna, Vienna, Austria
| | - Leopold Kremser
- Institute for Analytical Chemistry, University of Vienna, Vienna, Austria
| | - Bohuslav Gaš
- Department of Physical and Macromolecular Chemistry, Charles University, Prague, Czech Republic
| | - Dieter Blaas
- Max F. Perutz Laboratories, Medical University Vienna, Vienna, Austria
| | - Ernst Kenndler
- Institute for Analytical Chemistry, University of Vienna, Vienna, Austria
| |
Collapse
|
17
|
Hafenstein S, Bowman VD, Chipman PR, Bator Kelly CM, Lin F, Medof ME, Rossmann MG. Interaction of decay-accelerating factor with coxsackievirus B3. J Virol 2007; 81:12927-35. [PMID: 17804498 PMCID: PMC2169128 DOI: 10.1128/jvi.00931-07] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many entero-, parecho-, and rhinoviruses use immunoglobulin (Ig)-like receptors that bind into the viral canyon and are required to initiate viral uncoating during infection. However, some of these viruses use an alternative or additional receptor that binds outside the canyon. Both the coxsackievirus-adenovirus receptor (CAR), an Ig-like molecule that binds into the viral canyon, and decay-accelerating factor (DAF) have been identified as cellular receptors for coxsackievirus B3 (CVB3). A cryoelectron microscopy reconstruction of a variant of CVB3 complexed with DAF shows full occupancy of the DAF receptor in each of 60 binding sites. The DAF molecule bridges the canyon, blocking the CAR binding site and causing the two receptors to compete with one another. The binding site of DAF on CVB3 differs from the binding site of DAF on the surface of echoviruses, suggesting independent evolutionary processes.
Collapse
Affiliation(s)
- Susan Hafenstein
- Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, IN 47907-2054, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Kiang D, Yagi S, Kantardjieff KA, Kim EJ, Louie JK, Schnurr DP. Molecular characterization of a variant rhinovirus from an outbreak associated with uncommonly high mortality. J Clin Virol 2007; 38:227-37. [PMID: 17276135 DOI: 10.1016/j.jcv.2006.12.016] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2006] [Revised: 12/12/2006] [Accepted: 12/19/2006] [Indexed: 10/23/2022]
Abstract
BACKGROUND Human rhinoviruses (HRVs) are the most frequent cause of acute upper respiratory tract infection, however, they are also known to replicate in the lower respiratory tract and associate with more severe respiratory illnesses. An outbreak of HRV occurred in a long-term facility in Santa Cruz, California with unusually high morbidity and mortality. OBJECTIVES To identify viral characteristics associated with this unique outbreak, genetic relationships between these clinical isolates (SCRVs) and prototype strains of rhinovirus were investigated. STUDY DESIGN Sequence homology and phylogenetic analyses of the SCRV VP4/VP2 region were performed in conjunction with all HRV prototypes. Due to the importance of the 5'noncoding region (NCR) and the structural genes to viral replication and host immune responses, respectively, we focused on a segment of the HRV genome which includes these regions. Molecular models of SCRV were also assessed. RESULTS SCRV showed closest similarity to HRV82 with some divergence from the prototype. Amino acid differences were concentrated within predicted neutralization epitopes within VP2, VP3 and VP1. CONCLUSION Sequence analyses and differences in cell culture growth characteristics suggest that this virus is a variant of HRV which has distinctive properties from its respective prototype strain.
Collapse
Affiliation(s)
- David Kiang
- Viral and Rickettsial Disease Laboratories, California State Department of Health Services, 850 Marina Bay Parkway, Richmond, CA 94804, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Hewat EA, Blaas D. Nonneutralizing human rhinovirus serotype 2-specific monoclonal antibody 2G2 attaches to the region that undergoes the most dramatic changes upon release of the viral RNA. J Virol 2006; 80:12398-401. [PMID: 17005641 PMCID: PMC1676314 DOI: 10.1128/jvi.01399-06] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The monoclonal antibody 2G2 has been used extensively for detection and quantification of structural changes of human rhinovirus serotype 2 during infection. It recognizes exclusively A and B subviral particles, not native virus. We have elucidated the basis of this selectivity by determining the footprint of 2G2. Since viral escape mutants obviously cannot be obtained, the structures of complexes between Fab fragments of 2G2 and 80S subviral B particles were determined by cryoelectron microscopy. The footprint of the antibody corresponds to the capsid region that we predicted would undergo the most dramatic changes upon RNA release.
Collapse
Affiliation(s)
- Elizabeth A Hewat
- Institut de Biologie Structurale Jean-Pierre Ebel, UMR 5057, CEA-CNRS-UJF, 41 rue Jules Horowitz, 38027 Grenoble, France.
| | | |
Collapse
|
20
|
Laine P, Blomqvist S, Savolainen C, Andries K, Hovi T. Alignment of capsid protein VP1 sequences of all human rhinovirus prototype strains: conserved motifs and functional domains. J Gen Virol 2006; 87:129-138. [PMID: 16361425 DOI: 10.1099/vir.0.81137-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An alignment was made of the deduced amino acid sequences of the entire capsid protein VP1 of all human rhinovirus (HRV) prototype strains to examine conserved motifs in the primary structure. A set of previously proposed crucially important amino acids in the footprints of the two known receptor molecules was not conserved in a receptor group-specific way. In contrast, VP1 and VP3 amino acids in the minor receptor-group strains corresponding to most of the predicted ICAM-1 footprint definitely differed from those of the ICAM-1-using major receptor-group strains. Previous antiviral-sensitivity classification showed an almost-complete agreement with the species classification and a fair correlation with amino acids aligning in the antiviral pocket. It was concluded that systematic alignment of sequences of related virus strains can be used to test hypotheses derived from molecular studies of individual model viruses and to generate ideas for future studies on virus structure and replication.
Collapse
Affiliation(s)
- Pia Laine
- Enterovirus Laboratory, Department of Viral Diseases and Immunology, National Public Health Institute (KTL), Mannerheimintie 166, 00300 Helsinki, Finland
| | - Soile Blomqvist
- Enterovirus Laboratory, Department of Viral Diseases and Immunology, National Public Health Institute (KTL), Mannerheimintie 166, 00300 Helsinki, Finland
| | - Carita Savolainen
- Enterovirus Laboratory, Department of Viral Diseases and Immunology, National Public Health Institute (KTL), Mannerheimintie 166, 00300 Helsinki, Finland
| | - Koen Andries
- Johnson & Johnson Pharmaceutical Research and Development, Beerse, Belgium
| | - Tapani Hovi
- Enterovirus Laboratory, Department of Viral Diseases and Immunology, National Public Health Institute (KTL), Mannerheimintie 166, 00300 Helsinki, Finland
| |
Collapse
|
21
|
Nizet S, Wruss J, Landstetter N, Snyers L, Blaas D. A mutation in the first ligand-binding repeat of the human very-low-density lipoprotein receptor results in high-affinity binding of the single V1 module to human rhinovirus 2. J Virol 2006; 79:14730-6. [PMID: 16282473 PMCID: PMC1287599 DOI: 10.1128/jvi.79.23.14730-14736.2005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Minor group human rhinoviruses (HRVs) bind members of the low-density lipoprotein receptor family for cell entry. The ligand-binding domains of these membrane proteins are composed of various numbers of direct repeats of about 40 amino acids in length. Residues involved in binding of module 3 (V3) of the very-low-density lipoprotein receptor (VLDLR) to HRV2 have been identified by X-ray crystallography (N. Verdaguer, I. Fita, M. Reithmayer, R. Moser, and D. Blaas, Nat. Struct. Mol. Biol. 11:429-434, 2004). Sequence comparisons of the eight repeats of VLDLR with respect to the residues implicated in the interaction between V3 and HRV2 suggested that (in addition to V3) V1, V2, V5, and V6 also fulfill the requirements for interacting with the virus. Using a highly sensitive binding assay employing phage display, we demonstrate that single modules V2, V3, and V5 indeed bind HRV2. However, V1 does not. A single mutation from threonine 17 to proline converted the nonbinding wild-type form of V1 into a very strong binder. We interpret the dramatic increase in affinity by the generation of a hydrophobic patch between virus and receptor; in the presence of threonine, the contact area might be disturbed. This demonstrates that the interaction between virus and its natural receptors can be strongly enhanced by mutation.
Collapse
Affiliation(s)
- Stephane Nizet
- Max F. Perutz Laboratories, University Departments at the Vienna Biocenter, Medical University of Vienna, Dr. Bohr Gasse 9/3, A-1030 Vienna, Austria
| | | | | | | | | |
Collapse
|
22
|
Moser R, Snyers L, Wruss J, Angulo J, Peters H, Peters T, Blaas D. Neutralization of a common cold virus by concatemers of the third ligand binding module of the VLDL-receptor strongly depends on the number of modules. Virology 2005; 338:259-69. [PMID: 15950998 DOI: 10.1016/j.virol.2005.05.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2005] [Revised: 04/22/2005] [Accepted: 05/13/2005] [Indexed: 10/25/2022]
Abstract
Concatemers of various numbers of the third ligand binding repeat of human very-low density lipoprotein receptor arranged in tandem were fused to maltose-binding protein and expressed as soluble polypeptides. These artificial receptors protected HeLa cells against infection with human rhinovirus serotype 2 (HRV2) to a degree that strongly increased with the number of repeats present; maximal protection was seen for the pentameric concatemer (MBP-V33333). This V3 pentamer neutralized HRV2 more efficiently than a recombinant protein with the entire ligand binding domain of the native receptor encompassing all 8 non-identical repeats. A concatemer of seven V3 modules (MBP-V3333333) was also less neutralizing. Neutralization was correlated with the degree of inhibition of virus binding to the cell surface. The results were in agreement with kinetic measurements using Biacore instrumentation demonstrating an increase in avidity with the number of modules present. At low concentrations of the receptor fragments, a 1:1 Langmuir kinetics was observed which became of complex type in the higher concentration range. This is most likely a consequence of receptor molecules simultaneously binding via several modules. Since there is no viral aggregation, neutralization of viral infectivity results from blockage of the receptor binding sites and possibly from inhibition of viral uncoating by crosslinking the viral capsid subunits via multi-module binding. Finally, the low affinity of the single V3 module allowed demonstrating the possibility of mapping the binding epitope of the V3 receptor fragment by saturation transfer difference nuclear magnetic resonance methodology.
Collapse
Affiliation(s)
- Rosita Moser
- Max F. Perutz Laboratories, University Departments at the Vienna Biocenter, Department of Medical Biochemistry, Medical University of Vienna, Dr. Bohr Gasse 9/3, A-1030 Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
23
|
Nicodemou A, Petsch M, Konecsni T, Kremser L, Kenndler E, Casasnovas JM, Blaas D. Rhinovirus-stabilizing activity of artificial VLDL-receptor variants defines a new mechanism for virus neutralization by soluble receptors. FEBS Lett 2005; 579:5507-11. [PMID: 16213497 DOI: 10.1016/j.febslet.2005.09.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2005] [Revised: 08/23/2005] [Accepted: 09/06/2005] [Indexed: 11/18/2022]
Abstract
Members of the low-density lipoprotein receptor family possess various numbers of ligand binding repeats that non-equally contribute to binding of minor group human rhinoviruses. Using an artificial concatemer of five copies of repeat 3 of the human very-low density lipoprotein receptor, we demonstrate protection of HRV2 against low-pH mediated uncoating and inhibition of penetration of an RNA-specific fluorescent dye into the intact virion. This indicates that the recombinant receptor inhibits viral breathing and irreversible conformational modifications of the capsid that precede RNA release, providing a new mechanism for rhinovirus neutralization by soluble receptor molecules.
Collapse
|
24
|
Briggs JAG, Huiskonen JT, Fernando KV, Gilbert RJC, Scotti P, Butcher SJ, Fuller SD. Classification and three-dimensional reconstruction of unevenly distributed or symmetry mismatched features of icosahedral particles. J Struct Biol 2005; 150:332-9. [PMID: 15890281 DOI: 10.1016/j.jsb.2005.03.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2004] [Revised: 02/03/2005] [Accepted: 03/24/2005] [Indexed: 10/25/2022]
Abstract
Methods for the three-dimensional reconstruction of icosahedral particles, such as spherical viruses, from electron micrographs are well established. These methods take advantage of the 60-fold symmetry of the icosahedral group. Several features within these particles, however, may deviate from icosahedral symmetry. Examples include viral genomes, symmetry mismatched vertex proteins, unique DNA packaging vertices, flexible proteins, and proteins that are present at less than 100% occupancy. Such asymmetrically distributed features are smeared in the final density map when icosahedral symmetry is applied. Here, we describe a novel approach to classifying, analysing, and obtaining three-dimensional reconstructions of such features. The approach uses the orientation information derived from the icosahedral orientation search to facilitate multivariate statistical analysis and to limit the orientational degrees of freedom for reconstruction. We demonstrate the application of this approach to images of Kelp fly Virus. In this case, each virion may have two different types of fivefold vertex. We use our approach to produce independent reconstructions of the two types of vertex.
Collapse
Affiliation(s)
- John A G Briggs
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Headington, Oxford OX3 7BN, UK
| | | | | | | | | | | | | |
Collapse
|
25
|
Kremser L, Konecsni T, Blaas D, Kenndler E. Fluorescence labeling of human rhinovirus capsid and analysis by capillary electrophoresis. Anal Chem 2005; 76:4175-81. [PMID: 15253660 DOI: 10.1021/ac049842x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The capsid of human rhinovirus serotype 2, consisting of four viral proteins, was fluorescence-labeled with fluorescein isothiocyanate and analyzed by capillary electrophoresis using UV and laser-induced fluorescence detection. Heat denaturation, proteolytic digestion, and receptor binding were applied for confirmation of the identity of the peak with the labeled virus. Incomplete derivatization with the fluorophore preserved the affinity of the virus for its receptor, indicating that its cell entry pathway is unperturbed by this chemical modification; indeed, an infectivity assay confirms that the labeled virus samples are infectious. The results show that fluorescence labeling of the viral capsid might lead to a valuable probe for studying infection processes in the living cell.
Collapse
Affiliation(s)
- Leopold Kremser
- Institute of Analytical Chemistry, University of Vienna, Währingerstrasse 38, A-1090 Vienna, Austria
| | | | | | | |
Collapse
|
26
|
Querol-Audí J, Fita I, Verdaguer N. X-ray crystallography of virus-receptor complexes: structure of a minor group rhinovirus bound to its cellular receptor protein. CRYSTALLOGR REV 2005. [DOI: 10.1080/08893110500078704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
27
|
Konecsni T, Kremser L, Snyers L, Rankl C, Kilár F, Kenndler E, Blaas D. Twelve receptor molecules attach per viral particle of human rhinovirus serotype 2 via multiple modules. FEBS Lett 2004; 568:99-104. [PMID: 15196928 DOI: 10.1016/j.febslet.2004.05.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2004] [Revised: 05/04/2004] [Accepted: 05/12/2004] [Indexed: 11/29/2022]
Abstract
The crystallographic T = 1 (pseudo T = 3) icosahedral symmetry of the human rhinovirus capsid dictates the presence of 60 identical, symmetry related surface structures that are available for antibody and receptor binding. X-ray crystallography has shown that 60 individual very-low density lipoprotein receptor (VLDLR) modules bind to HRV2. Their arrangement around the fivefold axes of the virion suggested that tandem oligomers of such modules could attach simultaneously to symmetry-related sites. By resolving virus particles carrying various numbers of artificial recombinant concatemers of VLDLR repeat 3 (V33333) by capillary electrophoresis and extrapolation of the measured mobilities to that at saturation of all binding sites, we present evidence for up to 12 molecules of the concatemer to bind one single virion.
Collapse
Affiliation(s)
- Tünde Konecsni
- Institute for Analytical Chemistry, University of Vienna, Währingerstr. 38, A 1090 Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
28
|
Herdy B, Snyers L, Reithmayer M, Hinterdorfer P, Blaas D. Identification of the human rhinovirus serotype 1A binding site on the murine low-density lipoprotein receptor by using human-mouse receptor chimeras. J Virol 2004; 78:6766-74. [PMID: 15194751 PMCID: PMC421654 DOI: 10.1128/jvi.78.13.6766-6774.2004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Human rhinovirus serotype 1A (HRV1A) binds more strongly to the mouse low-density lipoprotein receptor (LDLR) than to the human homologue (M. Reithmayer, A. Reischl, L. Snyers, and D. Blaas, J. Virol. 76:6957-6965, 2002). Here, we used this fact to determine the binding site of HRV1A by replacing selected ligand binding modules of the human receptor with the corresponding ligand binding modules of the mouse receptor. The chimeric proteins were expressed in mouse fibroblasts deficient in endogenous LDLR and LDLR-related protein, both used by minor group HRVs for cell entry. Binding was assessed by virus overlay blots, by immunofluorescence microscopy, and by measuring cell attachment of radiolabeled virus. Replacement of ligand binding repeat 5 of the human LDLR with the corresponding mouse sequence resulted in a substantial increase in HRV1A binding, whereas substitution of repeats 3 and 4 was without effect. Replacement of human receptor repeats 1 and 2 with the murine homologues also increased virus binding. Finally, murine receptor modules 1, 2, and 5 simultaneously introduced into the human receptor resulted in HRV1A binding indistinguishable from mouse wild-type receptor. Thus, repeats 1 and/or 2 and repeat 5 are involved in HRV1A attachment. Changing CDGGPD in the acidic cluster of module 5 in the human receptor to CDGEAD present in the mouse receptor led to substantially increased binding of HRV1A, indicating an important role of the glutamate residue in HRV1A recognition.
Collapse
Affiliation(s)
- Barbara Herdy
- Max F. Perutz Laboratories, University Departments at the Vienna Biocenter, Department of Medical Biochemistry, University of Vienna, A-1030 Vienna, Austria
| | | | | | | | | |
Collapse
|
29
|
Kienberger F, Zhu R, Moser R, Rankl C, Blaas D, Hinterdorfer P. Dynamic force microscopy for imaging of viruses under physiological conditions. Biol Proced Online 2004; 6:120-128. [PMID: 15243650 PMCID: PMC443560 DOI: 10.1251/bpo80] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2004] [Revised: 06/09/2004] [Accepted: 06/09/2004] [Indexed: 01/19/2023] Open
Abstract
Dynamic force microscopy (DFM) allows imaging of the structure and the assessment of the function of biological specimens in their physiological environment. In DFM, the cantilever is oscillated at a given frequency and touches the sample only at the end of its downward movement. Accordingly, the problem of lateral forces displacing or even destroying bio-molecules is virtually inexistent as the contact time and friction forces are reduced. Here, we describe the use of DFM in studies of human rhinovirus serotype 2 (HRV2) weakly adhering to mica surfaces. The capsid of HRV2 was reproducibly imaged without any displacement of the virus. Release of the genomic RNA from the virions was initiated by exposure to low pH buffer and snapshots of the extrusion process were obtained. In the following, the technical details of previous DFM investigations of HRV2 are summarized.
Collapse
Affiliation(s)
- Ferry Kienberger
- Institute for Biophysics, J. Kepler University, Altenbergerstr. 69, A-4040 Linz. Austria
| | - Rong Zhu
- Institute for Biophysics, J. Kepler University, Altenbergerstr. 69, A-4040 Linz, Austria and the Research Department Biomedical Nanotechnology, Upper Austrian Research GmbH, Scharitzerstr. 6-8, A-4020 Linz. Austria
| | - Rosita Moser
- Max F. Perutz Laboratories, University Departments at the Vienna Biocenter, Department of Medical Biochemistry, University of Vienna. Dr. Bohr Gasse 9/3, A-1030 Vienna. Austria
| | - Christian Rankl
- Institute for Biophysics, J. Kepler University, Altenbergerstr. 69, A-4040 Linz. Austria
| | - Dieter Blaas
- Max F. Perutz Laboratories, University Departments at the Vienna Biocenter, Department of Medical Biochemistry, University of Vienna. Dr. Bohr Gasse 9/3, A-1030 Vienna. Austria
| | - Peter Hinterdorfer
- Institute for Biophysics, J. Kepler University, Altenbergerstr. 69, A-4040 Linz. Austria
| |
Collapse
|
30
|
Kienberger F, Zhu R, Moser R, Blaas D, Hinterdorfer P. Monitoring RNA release from human rhinovirus by dynamic force microscopy. J Virol 2004; 78:3203-9. [PMID: 15016841 PMCID: PMC371065 DOI: 10.1128/jvi.78.7.3203-3209.2004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human rhinoviruses were imaged under physiological conditions by dynamic force microscopy. Topographical images revealed various polygonal areas on the surfaces of the 30-nm viral particles. RNA release was initiated by exposure to a low-pH buffer. The lengths of the RNAs that were released but still connected to the virus capsid varied between 40 and 330 nm, whereas RNA molecules that were completely released from the virus were observed with lengths up to 1 micro m. Fork-like structure elements with 30-nm extensions were sometimes resolved at one end of the RNA molecules. They possibly correspond to the characteristic multi-stem-loop conformation, the internal ribosomal entry site, located at the 5' region of the genome. This study demonstrates that dynamic force microscopy can be used to study viral RNA release in situ under physiological conditions.
Collapse
Affiliation(s)
- Ferry Kienberger
- Institute for Biophysics, J. Kepler University, A-4040 Linz, Austria
| | | | | | | | | |
Collapse
|
31
|
Verdaguer N, Fita I, Reithmayer M, Moser R, Blaas D. X-ray structure of a minor group human rhinovirus bound to a fragment of its cellular receptor protein. Nat Struct Mol Biol 2004; 11:429-34. [PMID: 15064754 DOI: 10.1038/nsmb753] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2003] [Accepted: 03/01/2004] [Indexed: 11/09/2022]
Abstract
Although many viral receptors have been identified, the ways in which they interact with their cognate viruses are not understood at the molecular level. We have determined the X-ray structure of a complex between calcium-containing modules of the very low-density lipoprotein receptor and the minor group human rhinovirus HRV2. The receptor binds close to the icosahedral five-fold vertex, with only one module per virus protomer. The binding face of this module is defined by acidic calcium-chelating residues and, in particular, by an exposed tryptophan that is highly conserved. The attachment site on the virus involves only residues from VP1, particularly a lysine strictly conserved in all minor group HRVs. The disposition of the attached ligand-binding repeats around the five-fold axis, together with the proximity of the N- and C-terminal ends of adjacent modules, suggests that more than one repeat in a single receptor molecule might attach simultaneously.
Collapse
Affiliation(s)
- Nuria Verdaguer
- Institut de Biologia Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, Jordi Girona 18-26, E-08034 Barcelona, Spain.
| | | | | | | | | |
Collapse
|
32
|
Liu QP, Jia ZS, Du DW, Li GY, Pan L, Wei X, Luo XD, Wang QC. Construction of human CD81 eukaryotic expression vector and expression of the gene segment in COS-7 cell line. Shijie Huaren Xiaohua Zazhi 2004; 12:590-593. [DOI: 10.11569/wcjd.v12.i3.590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To construct a human CD81 eukaryotic expression vector and to analyze the expression of CD81 in COS-7 cells.
METHODS: CD81 gene from the pMD18-T-CD81 vector with double-enzyme digestion was cloned into the pVAX1 eukaryotic expression vector, named pVAX1-CD81. The recombinant vector pVAX1-CD81 and pVAX1 as controls were transfected into COS-7 cells by lipofectamine, and the transient expression product on the transfected cells was analyzed with anti-CD81 monoclonal antibody by indirect immunofluorescence assay (IFA).
RESULTS: The identification of the eukaryotic expression vector pVAX1-CD81 by PCR and restriction enzyme analysis showed that CD81 gene was rightly inserted into the vector; and the product of the CD81 gene was successfully expressed on surface of COS-7 cells.
CONCLUSION: The eukaryotic expression vector with CD81 gene is constructed and efficiently expressed in COS-7 cells. The results indicate that the transfected CD81 cells will need to further studies on the roles of CD81 in the process of HCV infection and entrance to cells.
Collapse
|