1
|
Islam MR, Akash S, Jony MH, Alam MN, Nowrin FT, Rahman MM, Rauf A, Thiruvengadam M. Exploring the potential function of trace elements in human health: a therapeutic perspective. Mol Cell Biochem 2023; 478:2141-2171. [PMID: 36637616 DOI: 10.1007/s11010-022-04638-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 12/08/2022] [Indexed: 01/14/2023]
Abstract
A trace element, known as a minor element, is a chemical element whose concentration is very low. They are divided into essential and non-essential classes. Numerous physiological and metabolic processes in both plants and animals require essential trace elements. These essential trace elements are so directly related to the metabolic and physiologic processes of the organism that either their excess or deficiency can result in severe bodily malfunction or, in the worst situations, death. Elements can be found in nature in various forms and are essential for the body to carry out its varied functions. Trace elements are crucial for biological, chemical, and molecular cell activity. Nutritional deficits can lead to weakened immunity, increased susceptibility to oral and systemic infections, delayed physical and mental development, and lower productivity. Trace element enzymes are involved in many biological and chemical processes. These compounds act as co-factors for a number of enzymes and serve as centers for stabilizing the structures of proteins and enzymes, allowing them to mediate crucial biological processes. Some trace elements control vital biological processes by attaching to molecules on the cell membrane's receptor site or altering the structure of the membrane to prevent specific molecules from entering the cell. Some trace elements are engaged in redox reactions. Trace elements have two purposes. They are required for the regular stability of cellular structures, but when lacking, they might activate alternate routes and induce disorders. Therefore, thoroughly understanding these trace elements is essential for maintaining optimal health and preventing disease.
Collapse
Affiliation(s)
- Md Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207, Dhaka, Bangladesh
| | - Shopnil Akash
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207, Dhaka, Bangladesh
| | - Maruf Hossain Jony
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207, Dhaka, Bangladesh
| | - Md Noor Alam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207, Dhaka, Bangladesh
| | - Feana Tasmim Nowrin
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207, Dhaka, Bangladesh
| | - Md Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207, Dhaka, Bangladesh
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar, Khyber Pakhtunkhwa, Pakistan.
| | - Muthu Thiruvengadam
- Department of Applied Bioscience, College of Life and Environmental Sciences, Konkuk University, Seoul, 05029, South Korea.
- Department of Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Science, Chennai, 600077, Tamil Nadu, India.
| |
Collapse
|
2
|
Lo R, Gonçalves-Carneiro D. Sensing nucleotide composition in virus RNA. Biosci Rep 2023; 43:BSR20230372. [PMID: 37606964 PMCID: PMC10500230 DOI: 10.1042/bsr20230372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/10/2023] [Accepted: 08/22/2023] [Indexed: 08/23/2023] Open
Abstract
Nucleotide composition plays a crucial role in the structure, function and recognition of RNA molecules. During infection, virus RNA is exposed to multiple endogenous proteins that detect local or global compositional biases and interfere with virus replication. Recent advancements in RNA:protein mapping technologies have enabled the identification of general RNA-binding preferences in the human proteome at basal level and in the context of virus infection. In this review, we explore how cellular proteins recognise nucleotide composition in virus RNA and the impact these interactions have on virus replication. Protein-binding G-rich and C-rich sequences are common examples of how host factors detect and limit infection, and, in contrast, viruses may have evolved to purge their genomes from such motifs. We also give examples of how human RNA-binding proteins inhibit virus replication, not only by destabilising virus RNA, but also by interfering with viral protein translation and genome encapsidation. Understanding the interplay between cellular proteins and virus RNA composition can provide insights into host-virus interactions and uncover potential targets for antiviral strategies.
Collapse
Affiliation(s)
- Raymon Lo
- Imperial College London, Department of Infectious Disease, Imperial College London, London, U.K
| | | |
Collapse
|
3
|
Armas P, Coux G, Weiner AMJ, Calcaterra NB. What's new about CNBP? Divergent functions and activities for a conserved nucleic acid binding protein. Biochim Biophys Acta Gen Subj 2021; 1865:129996. [PMID: 34474118 DOI: 10.1016/j.bbagen.2021.129996] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 08/26/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND Cellular nucleic acid binding protein (CNBP) is a conserved single-stranded nucleic acid binding protein present in most eukaryotes, but not in plants. Expansions in the CNBP gene cause myotonic dystrophy type 2. Initially reported as a transcriptional regulator, CNBP was then also identified acting as a translational regulator. SCOPE OF REVIEW The focus of this review was to link the CNBP structural features and newly reported biochemical activities with the recently described biological functions, in the context of its pathological significance. MAJOR CONCLUSIONS Several post-translational modifications affect CNBP subcellular localization and activity. CNBP participates in the transcriptional and translational regulation of a wide range of genes by remodeling single-stranded nucleic acid secondary structures and/or by modulating the activity of trans-acting factors. CNBP is required for proper neural crest and heart development, and plays a role in cell proliferation control. Besides, CNBP has been linked with neurodegenerative, inflammatory, and congenital diseases, as well as with tumor processes. GENERAL SIGNIFICANCE This review provides an insight into the growing functions of CNBP in cell biology. A unique and robust mechanistic or biochemical connection among these roles has yet not been elucidated. However, the ability of CNBP to dynamically integrate signaling pathways and to act as nucleic acid chaperone may explain most of the roles and functions identified so far.
Collapse
Affiliation(s)
- Pablo Armas
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONIeCET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Esmeralda y Ocampo 531, S2002LRK Rosario, Argentina
| | - Gabriela Coux
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONIeCET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Esmeralda y Ocampo 531, S2002LRK Rosario, Argentina
| | - Andrea M J Weiner
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONIeCET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Esmeralda y Ocampo 531, S2002LRK Rosario, Argentina
| | - Nora B Calcaterra
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONIeCET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Esmeralda y Ocampo 531, S2002LRK Rosario, Argentina.
| |
Collapse
|
4
|
Challier E, Lisa MN, Nerli BB, Calcaterra NB, Armas P. Novel high-performance purification protocol of recombinant CNBP suitable for biochemical and biophysical characterization. Protein Expr Purif 2013; 93:23-31. [PMID: 24161561 DOI: 10.1016/j.pep.2013.10.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 10/13/2013] [Indexed: 12/21/2022]
Abstract
Cellular nucleic acid binding protein (CNBP) is a highly conserved multi-zinc knuckle protein that enhances c-MYC expression, is related to certain human muscular diseases and is required for proper rostral head development. CNBP binds to single-stranded DNA (ssDNA) and RNA and acts as nucleic acid chaperone. Despite the advances made concerning CNBP biological roles, a full knowledge about the structure-function relationship has not yet been achieved, likely due to difficulty in obtaining pure and tag-free CNBP. Here, we report a fast, simple, reproducible, and high-performance expression and purification protocol that provides recombinant tag-free CNBP from Escherichia coli cultures. We determined that tag-free CNBP binds its molecular targets with higher affinity than tagged-CNBP. Furthermore, fluorescence spectroscopy revealed the presence of a unique and conserved tryptophan, which is exposed to the solvent and involved, directly or indirectly, in nucleic acid binding. Size-exclusion HPLC revealed that CNBP forms homodimers independently of nucleic acid binding and coexist with monomers as non-interconvertible forms or in slow equilibrium. Circular dichroism spectroscopy showed that CNBP has a secondary structure dominated by random-coil and β-sheet coincident with the sequence-predicted repetitive zinc knuckles motifs, which folding is required for CNBP structural stability and biochemical activity. CNBP structural stability increased in the presence of single-stranded nucleic acid targets similar to other unstructured nucleic acid chaperones. Altogether, data suggest that CNBP is a flexible protein with interspersed structured zinc knuckles, and acquires a more rigid structure upon nucleic acid binding.
Collapse
Affiliation(s)
- Emilse Challier
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, CCT-Rosario, Ocampo y Esmeralda, S2000FHQ Rosario, Argentina
| | | | | | | | | |
Collapse
|
5
|
Castiglione Morelli MA, Ostuni A, Cristinziano PL, Tesauro D, Bavoso A. Interaction of cisplatin with a CCHC zinc finger motif. J Pept Sci 2013; 19:227-32. [DOI: 10.1002/psc.2490] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 01/09/2013] [Accepted: 01/10/2013] [Indexed: 11/07/2022]
Affiliation(s)
| | - Angela Ostuni
- Dipartimento di Scienze; Università degli Studi della Basilicata; Via dell'Ateneo Lucano 10; 85100; Potenza; Italy
| | - Pier Luigi Cristinziano
- Dipartimento di Scienze; Università degli Studi della Basilicata; Via dell'Ateneo Lucano 10; 85100; Potenza; Italy
| | - Diego Tesauro
- Dipartimento delle Scienze Biologiche; CIRPeB Universita' degli Studi di Napoli ‘Federico II’, IBB CNR; Via Mezzocannone 16; 80134; Napoli; Italy
| | - Alfonso Bavoso
- Dipartimento di Scienze; Università degli Studi della Basilicata; Via dell'Ateneo Lucano 10; 85100; Potenza; Italy
| |
Collapse
|
6
|
Jalalirad M, Laughrea M. Formation of immature and mature genomic RNA dimers in wild-type and protease-inactive HIV-1: differential roles of the Gag polyprotein, nucleocapsid proteins NCp15, NCp9, NCp7, and the dimerization initiation site. Virology 2010; 407:225-36. [PMID: 20828778 DOI: 10.1016/j.virol.2010.08.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 08/06/2010] [Accepted: 08/13/2010] [Indexed: 12/22/2022]
Abstract
Formation of immature genomic RNA (gRNA) dimers is exquisitely nucleocapsid (NC)-dependent in protease-inactive (PR-in) HIV-1. This establishes that Pr55gag/Pr160gag-pol has NC-dependent chaperone activity within intact HIV-1. Mutations in the proximal zinc finger and the linker of the NC sequence of Pr55gag/Pr160gag-pol abolish gRNA dimerization in PR-in HIV-1. In wild type, where the NC of Pr55gag is processed into progressively smaller proteins termed NCp15 (NCp7-p1-p6), NCp9 (NCp7-p1) and NCp7, formation of immature dimers is much swifter than in PR-in HIV-1. NCp7 and NCp15 direct this rapid accumulation. NCp9 is sluggish in this process, but it stimulates the transition from immature to mature gRNA dimer as well as NCp7 and much better than NCp15. The amino-terminus, proximal zinc finger, linker, and distal zinc finger of NCp7 contribute to this maturation event in intact HIV-1. The DIS is a dimerization initiation site for all immature gRNA dimers, irrespective of their mechanism of formation.
Collapse
Affiliation(s)
- Mohammad Jalalirad
- McGill AIDS Center, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal QC, Canada H3T 1E2
| | | |
Collapse
|
7
|
Cellular nucleic-acid-binding protein, a transcriptional enhancer of c-Myc, promotes the formation of parallel G-quadruplexes. Biochem J 2010; 428:491-8. [DOI: 10.1042/bj20100038] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
G-rich sequences that contain stretches of tandem guanines can form four-stranded, intramolecular stable DNA structures called G-quadruplexes (termed G4s). Regulation of the equilibrium between single-stranded and G4 DNA in promoter regions is essential for control of gene expression in the cell. G4s are highly stable structures; however, their folding kinetics are slow under physiological conditions. CNBP (cellular nucleic-acid-binding protein) is a nucleic acid chaperone that binds the G4-forming G-rich sequence located within the NHE (nuclease hypersensitivity element) III of the c-Myc proto-oncogene promoter. Several reports have demonstrated that CNBP enhances the transcription of c-Myc in vitro and in vivo; however, none of these reports have assessed the molecular mechanisms responsible for this control. In the present study, by means of Taq polymerase stop assays, electrophoretic mobility-shift assays and CD spectroscopy, we show that CNBP promotes the formation of parallel G4s to the detriment of anti-parallel G4s, and its nucleic acid chaperone activity is required for this effect. These findings are the first to implicate CNBP as a G4-folding modulator and, furthermore, assign CNBP a novel mode-of-action during c-Myc transcriptional regulation.
Collapse
|
8
|
Armas P, Agüero TH, Borgognone M, Aybar MJ, Calcaterra NB. Dissecting CNBP, a zinc-finger protein required for neural crest development, in its structural and functional domains. J Mol Biol 2008; 382:1043-56. [PMID: 18703071 DOI: 10.1016/j.jmb.2008.07.079] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Revised: 07/25/2008] [Accepted: 07/28/2008] [Indexed: 01/18/2023]
Abstract
Cellular nucleic-acid-binding protein (CNBP) plays an essential role in forebrain and craniofacial development by controlling cell proliferation and survival to mediate neural crest expansion. CNBP binds to single-stranded nucleic acids and displays nucleic acid chaperone activity in vitro. The CNBP family shows a conserved modular organization of seven Zn knuckles and an arginine-glycine-glycine (RGG) box between the first and second Zn knuckles. The participation of these structural motifs in CNBP biochemical activities has still not been addressed. Here, we describe the generation of CNBP mutants that dissect the protein into regions with structurally and functionally distinct properties. Mutagenesis approaches were followed to generate: (i) an amino acid replacement that disrupted the fifth Zn knuckle; (ii) N-terminal deletions that removed the first Zn knuckle and the RGG box, or the RGG box alone; and (iii) a C-terminal deletion that eliminated the three last Zn knuckles. Mutant proteins were overexpressed in Escherichia coli, purified, and used to analyze their biochemical features in vitro, or overexpressed in Xenopus laevis embryos to study their function in vivo during neural crest cell development. We found that the Zn knuckles are required, but not individually essential, for CNBP biochemical activities, whereas the RGG box is essential for RNA-protein binding and nucleic acid chaperone activity. Removal of the RGG box allowed CNBP to preserve a weak single-stranded-DNA-binding capability. A mutant mimicking the natural N-terminal proteolytic CNBP form behaved as the RGG-deleted mutant. By gain-of-function and loss-of-function experiments in Xenopus embryos, we confirmed the participation of CNBP in neural crest development, and we demonstrated that the CNBP mutants lacking the N-terminal region or the RGG box alone may act as dominant negatives in vivo. Based on these data, we speculate about the existence of a specific proteolytic mechanism for the regulation of CNBP biochemical activities during neural crest development.
Collapse
Affiliation(s)
- Pablo Armas
- División Biología del Desarrollo, Instituto de Biología Molecular y Celular de Rosario, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, Argentina
| | | | | | | | | |
Collapse
|
9
|
Armas P, Nasif S, Calcaterra NB. Cellular nucleic acid binding protein binds G-rich single-stranded nucleic acids and may function as a nucleic acid chaperone. J Cell Biochem 2008; 103:1013-36. [PMID: 17661353 DOI: 10.1002/jcb.21474] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cellular nucleic acid binding protein (CNBP) is a small single-stranded nucleic acid binding protein made of seven Zn knuckles and an Arg-Gly rich box. CNBP is strikingly conserved among vertebrates and was reported to play broad-spectrum functions in eukaryotic cells biology. Neither its biological function nor its mechanisms of action were elucidated yet. The main goal of this work was to gain further insights into the CNBP biochemical and molecular features. We studied Bufo arenarum CNBP (bCNBP) binding to single-stranded nucleic acid probes representing the main reported CNBP putative targets. We report that, although bCNBP is able to bind RNA and single-stranded DNA (ssDNA) probes in vitro, it binds RNA as a preformed dimer whereas both monomer and dimer are able to bind to ssDNA. A systematic analysis of variant probes shows that the preferred bCNBP targets contain unpaired guanosine-rich stretches. These data expand the knowledge about CNBP binding stoichiometry and begins to dissect the main features of CNBP nucleic acid targets. Besides, we show that bCNBP presents a highly disordered predicted structure and promotes the annealing and melting of nucleic acids in vitro. These features are typical of proteins that function as nucleic acid chaperones. Based on these data, we propose that CNBP may function as a nucleic acid chaperone through binding, remodeling, and stabilizing nucleic acids secondary structures. This novel CNBP biochemical activity broadens the field of study about its biological function and may be the basis to understand the diverse ways in which CNBP controls gene expression.
Collapse
Affiliation(s)
- Pablo Armas
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Dpto. de Ciencias Biológicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Argentina
| | | | | |
Collapse
|
10
|
Chatel-Chaix L, Boulay K, Mouland AJ, Desgroseillers L. The host protein Staufen1 interacts with the Pr55Gag zinc fingers and regulates HIV-1 assembly via its N-terminus. Retrovirology 2008; 5:41. [PMID: 18498651 PMCID: PMC2409373 DOI: 10.1186/1742-4690-5-41] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2008] [Accepted: 05/22/2008] [Indexed: 01/07/2023] Open
Abstract
Background The formation of new infectious human immunodeficiency type 1 virus (HIV-1) mainly relies on the homo-multimerization of the viral structural polyprotein Pr55Gag and on the recruitment of host factors. We have previously shown that the double-stranded RNA-binding protein Staufen 1 (Stau1), likely through an interaction between its third double-stranded RNA-binding domain (dsRBD3) and the nucleocapsid (NC) domain of Pr55Gag, participates in HIV-1 assembly by influencing Pr55Gag multimerization. Results We now report the fine mapping of Stau1/Pr55Gag association using co-immunoprecipitation and live cell bioluminescence resonance energy transfer (BRET) assays. On the one hand, our results show that the Stau1-Pr55Gag interaction requires the integrity of at least one of the two zinc fingers in the NC domain of Pr55Gag but not that of the NC N-terminal basic region. Disruption of both zinc fingers dramatically impeded Pr55Gag multimerization and virus particle release. In parallel, we tested several Stau1 deletion mutants for their capacity to influence Pr55Gag multimerization using the Pr55Gag/Pr55Gag BRET assay in live cells. Our results revealed that a molecular determinant of 12 amino acids at the N-terminal end of Stau1 is necessary to increase Pr55Gag multimerization and particle release. However, this region is not required for Stau1 interaction with the viral polyprotein Pr55Gag. Conclusion These data highlight that Stau1 is a modular protein and that Stau1 influences Pr55Gag multimerization via 1) an interaction between its dsRBD3 and Pr55Gag zinc fingers and 2) a regulatory domain within the N-terminus that could recruit host machineries that are critical for the completion of new HIV-1 capsids.
Collapse
|
11
|
Nikolaitchik OA, Gorelick RJ, Leavitt MG, Pathak VK, Hu WS. Functional complementation of nucleocapsid and late domain PTAP mutants of human immunodeficiency virus type 1 during replication. Virology 2008; 375:539-49. [PMID: 18353416 DOI: 10.1016/j.virol.2008.02.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Revised: 01/02/2008] [Accepted: 02/21/2008] [Indexed: 01/16/2023]
Abstract
During human immunodeficiency virus type 1 (HIV-1) assembly, the nucleocapsid (NC) and the PTAP motif in p6 of Gag play important roles in RNA encapsidation and virus release, respectively. We have previously demonstrated that functional complementation occurs between an NC mutant and a PTAP mutant to rescue viral replication. In this report, we examined the amounts of functional NC and PTAP motif that are required during virus replication. When NC and PTAP mutants were coexpressed at 5:1, 5:5, and 1:5 ratios, virus titers were rescued at 5%, 51%, and 86% of the wild-type level, respectively. These results indicate that HIV-1 requires a small amount of functional PTAP motif but far more functional NC to complete efficient replication. Further analyses reveal that RNA packaging can be significantly rescued in viruses containing a small amount of functional NC. However, most of the NC proteins must be functional to generate the wild-type level of R-U5 DNA product. Once the R-U5 product is generated, viruses containing half of the functional NC can complete reverse transcription and DNA integration at near-wild-type efficiency. These results define the quantitative requirements of NC and p6 during HIV-1 replication and provide insights into the requirement for the development of anti-HIV strategies using NC and p6 as targets.
Collapse
|
12
|
Kafaie J, Song R, Abrahamyan L, Mouland AJ, Laughrea M. Mapping of nucleocapsid residues important for HIV-1 genomic RNA dimerization and packaging. Virology 2008; 375:592-610. [PMID: 18343475 DOI: 10.1016/j.virol.2008.02.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2007] [Revised: 01/14/2008] [Accepted: 02/01/2008] [Indexed: 11/26/2022]
Abstract
Retroviral genomic RNA (gRNA) dimerization appears essential for viral infectivity, and the nucleocapsid protein (NC) of human immunodeficiency virus type 1 (HIV-1) facilitates HIV-1 gRNA dimerization. To identify the relevant and dispensable positions of NC, 34 of its 55 residues were mutated, individually or in small groups, in a panel of 40 HIV-1 mutants prepared by site-directed mutagenesis. It was found that the amino-terminus, the proximal zinc finger, the linker, and the distal zinc finger of NC each contributed roughly equally to efficient HIV-1 gRNA dimerization. The N-terminal and linker segments appeared to play predominantly electrostatic and steric roles, respectively. Mutating the hydrophobic patch of either zinc finger, or substituting alanines for their glycine doublet, was as disabling as deleting the corresponding finger. Replacing the CysX(2)CysX(4)HisX(4)Cys motif of either finger by CysX(2)CysX(4)CysX(4)Cys or CysX(2)CysX(4)HisX(4)His, interchanging the zinc fingers or, replacing one zinc finger by a copy of the other one, had generally intermediate effects; among these mutations, the His23-->Cys substitution in the N-terminal zinc finger had the mildest effect. The charge of NC could be increased or decreased by up to 18%, that of the linker could be reduced by 75% or increased by 50%, and one or two electric charges could be added or subtracted from either zinc finger, without affecting gRNA dimerization. Shortening, lengthening, or making hydrophobic the linker was as disabling as deleting the N-terminal or the C-terminal zinc finger, but a neutral and polar linker was innocuous. The present work multiplies by 4 and by 33 the number of retroviral and lentiviral NC mutations known to inhibit gRNA dimerization, respectively. It shows the first evidence that gRNA dimerization can be inhibited by: 1) mutations in the N-terminus or the linker of retroviral NC; 2) mutations in the proximal zinc finger of lentiviral NC; 3) mutations in the hydrophobic patch or the conserved glycines of the proximal or the distal retroviral zinc finger. Some NC mutations impaired gRNA dimerization more than mutations inactivating the viral protease, indicating that gRNA dimerization may be stimulated by the NC component of the Gag polyprotein. Most, but not all, mutations inhibited gRNA packaging; some had a strong effect on virus assembly or stability.
Collapse
Affiliation(s)
- Jafar Kafaie
- McGill AIDS Center, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada
| | | | | | | | | |
Collapse
|
13
|
Turpin JA, Schito ML, Jenkins LMM, Inman JK, Appella E. Topical microbicides: a promising approach for controlling the AIDS pandemic via retroviral zinc finger inhibitors. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2008; 56:229-56. [PMID: 18086414 DOI: 10.1016/s1054-3589(07)56008-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Affiliation(s)
- Jim A Turpin
- Preventions Sciences Program, Division of AIDS, NIAID, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
14
|
Chatel-Chaix L, Abrahamyan L, Fréchina C, Mouland AJ, DesGroseillers L. The host protein Staufen1 participates in human immunodeficiency virus type 1 assembly in live cells by influencing pr55Gag multimerization. J Virol 2007; 81:6216-30. [PMID: 17428849 PMCID: PMC1900086 DOI: 10.1128/jvi.00284-07] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) requires the sequential activities of virus-encoded proteins during replication. The activities of several host cell proteins and machineries are also critical to the completion of virus assembly and the release of infectious virus particles from cells. One of these proteins, the double-stranded RNA-binding protein Staufen1 (Stau1), selectively associates with the HIV-1 genomic RNA and the viral precursor Gag protein, pr55Gag. In this report, we tested whether Stau1 modulates pr55Gag assembly using a new and specific pr55Gag oligomerization assay based on bioluminescence resonance energy transfer (BRET) in both live cells and extracts after cell fractionation. Our results show that both the overexpression and knockdown of Stau1 increase the pr55Gag-pr55Gag BRET levels, suggesting a role for Stau1 in regulating pr55Gag oligomerization during assembly. This effect of Stau1 on pr55Gag oligomerization was observed only in membranes, a cellular compartment in which pr55Gag assembly primarily occurs. Consistently, expression of Stau1 harboring a vSrc myristylation signal led to a 6.5-fold enrichment of Stau1 in membranes and a corresponding enhancement in the Stau1-mediated effect on pr55Gag-pr55Gag BRET, demonstrating that Stau1 acts on assembly when targeted to membranes. A role for Stau1 in the formation of particles is further supported by the detection of membrane-associated detergent-resistant pr55Gag complexes and the increase of virus-like particle release when Stau1 expression levels are modulated. Our results indicate that Stau1 influences HIV-1 assembly by modulating pr55Gag-pr55Gag interactions, as shown in a live cell interaction assay. This likely occurs when Stau1 interacts with membrane-associated assembly intermediates.
Collapse
Affiliation(s)
- Laurent Chatel-Chaix
- Département de biochimie, Université de Montréal, and HIV-1 RNA Trafficking Laboratory, Lady Davis Institute for Medical Research-Sir Mortimer B. Davis Jewish General Hospital, Montréal, QC, Canada H3C 3J7
| | | | | | | | | |
Collapse
|
15
|
Thomas JA, Ott DE, Gorelick RJ. Efficiency of human immunodeficiency virus type 1 postentry infection processes: evidence against disproportionate numbers of defective virions. J Virol 2007; 81:4367-70. [PMID: 17267494 PMCID: PMC1866140 DOI: 10.1128/jvi.02357-06] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The vast majority of human immunodeficiency virus type 1 particles are claimed to be noninfectious, but there is disagreement as to whether they are defective or simply lack the opportunity to initiate an infection. We have examined the efficiencies of reverse transcription and integration and find that approximately 1 of every 8 virions that initiate reverse transcription form proviruses, a quantity significantly different from the commonly reported ratio of 1 in 1,000. In addition, results from two different infectivity assays demonstrate that the titers are not equivalent to the number of infectious particles. The apparent predominance of noninfectious particles is due to infrequent occurrences of successful virus-cell interactions.
Collapse
Affiliation(s)
- James A Thomas
- AIDS Vaccine Program, SAIC-Frederick, Inc., Building 535, 4th Floor, National Cancer Institute, Frederick, MD 21702, USA
| | | | | |
Collapse
|
16
|
Lombardo VA, Armas P, Weiner AMJ, Calcaterra NB. In vitro embryonic developmental phosphorylation of the cellular nucleic acid binding protein by cAMP-dependent protein kinase, and its relevance for biochemical activities. FEBS J 2006; 274:485-97. [PMID: 17166179 DOI: 10.1111/j.1742-4658.2006.05596.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The zinc-finger cellular nucleic acid binding protein (CNBP) is a strikingly conserved single-stranded nucleic acid binding protein essential for normal forebrain formation during mouse and chick embryogenesis. CNBP cDNAs from a number of vertebrates have been cloned and analysed. CNBP is mainly conformed by seven retroviral Cys-Cys-His-Cys zinc-knuckles and a glycine/arginine rich region box. CNBP amino acid sequences show a putative Pro-Glu-Ser-Thr site of proteolysis and several putative phosphorylation sites. In this study, we analysed CNBP phosphorylation by embryonic kinases and its consequences on CNBP biochemical activities. We report that CNBP is differentially phosphorylated by Danio rerio embryonic extracts. In vitro CNBP phosphorylation is basal and constant at early embryonic developmental stages, it begins to increase after mid-blastula transition stage reaching the highest level at 48 hours postfertilization stage, and decreases thereafter to basal levels at 5 days postfertilization. The cAMP-dependent protein kinase (PKA) was identified as responsible for phosphorylation on the unique CNBP conserved putative phosphorylation site. Site-directed mutagenesis replacing the PKA phospho-acceptor amino acid residue impairs CNBP phosphorylation, suggesting that phosphorylation may not only exist in D. rerio but also in other vertebrates. CNBP phosphorylation does not change single-stranded nucleic acid binding capability. Instead, it promotes in vitro the annealing of complementary oligonucleotides representing the CT element (CCCTCCCC) from the human cellular myelocytomatosis oncogene (c-myc) promoter, an element responsible for c-myc enhancer transcription. Our results suggest that phosphorylation might be a conserved post-translational modification that allows CNBP to perform a fine tune expression regulation of a group of target genes, including c-myc, during vertebrate embryogenesis.
Collapse
Affiliation(s)
- Verónica A Lombardo
- División Biología del Desarrollo, IBR-CONICET, Area Biología General, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Argentina
| | | | | | | |
Collapse
|
17
|
Narayanan N, Gorelick RJ, DeStefano JJ. Structure/function mapping of amino acids in the N-terminal zinc finger of the human immunodeficiency virus type 1 nucleocapsid protein: residues responsible for nucleic acid helix destabilizing activity. Biochemistry 2006; 45:12617-28. [PMID: 17029416 PMCID: PMC4829079 DOI: 10.1021/bi060925c] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The nucleocapsid protein (NC) of HIV-1 is 55 amino acids in length and possesses two CCHC-type zinc fingers. Finger one (N-terminal) contributes significantly more to helix destabilizing activity than finger two (C-terminal). Five amino acids differ between the two zinc fingers. To determine at the amino acid level the reason for the apparent distinction between the fingers, each different residue in finger one was incrementally replaced by the one at the corresponding location in finger two. Mutants were analyzed in annealing assays with unstructured and structured substrates. Three groupings emerged: (1) those similar to wild-type levels (N17K, A25M), (2) those with diminished activity (I24Q, N27D), and (3) mutant F16W, which had substantially greater helix destabilizing activity than that of the wild type. Unlike I24Q and the other mutants, N27D was defective in DNA binding. Only I24Q and N27D showed reduced strand transfer in in vitro assays. Double and triple mutants F16W/I24Q, F16W/N27D, and F16W/I24Q/N27D all showed defects in DNA binding, strand transfer, and helix destabilization, suggesting that the I24Q and N27D mutations have a dominant negative effect and abolish the positive influence of F16W. Results show that amino acid differences at positions 24 and 27 contribute significantly to finger one's helix destabilizing activity.
Collapse
Affiliation(s)
- Nirupama Narayanan
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD
| | - Robert J. Gorelick
- AIDS Vaccine Program, SAIC-Frederick, Inc., NCI at Frederick, Frederick, MD
| | - Jeffrey J. DeStefano
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD
| |
Collapse
|
18
|
Thomas JA, Shulenin S, Coren LV, Bosche WJ, Gagliardi TD, Gorelick RJ, Oroszlan S. Characterization of human immunodeficiency virus type 1 (HIV-1) containing mutations in the nucleocapsid protein at a putative HIV-1 protease cleavage site. Virology 2006; 354:261-70. [PMID: 16904152 DOI: 10.1016/j.virol.2006.07.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2006] [Revised: 03/24/2006] [Accepted: 07/10/2006] [Indexed: 10/24/2022]
Abstract
The HIV-1 nucleocapsid protein (NC) has been hypothesized to be cleaved by the viral protease (PR) during early infection. Characterization of viruses, with amino-acid substitutions that modulate PR cleavage of NC in vitro, was performed in cell culture. Two of the NC mutants, NCN17F and NCN17G, had decreased infectivity and exhibited severe H9 replication defects. Examination of viral DNA after infections revealed defects in reverse transcription and integration, although integration defects were cell-type dependent. However, while the defects in reverse transcription and integration correlate with lowered infectivity in a single-round of infection, they did not approach the magnitude of the replication defect measured in H9 cells over multiple rounds. Importantly, we fail to see evidence that H9 cells are re-infected with the NCN17G and NCN17F viruses 24 h after the initial infection, which suggests that the principal defect caused by these NC mutations occurs during late events of viral replication.
Collapse
Affiliation(s)
- James A Thomas
- AIDS Vaccine Program, SAIC-Frederick, Inc NCI-Frederick, Bldg 535, Room 410, PO Box B, Frederick, MD 21702-1201, USA.
| | | | | | | | | | | | | |
Collapse
|
19
|
Wellensiek BP, Sundaravaradan V, Ramakrishnan R, Ahmad N. Molecular characterization of the HIV-1 gag nucleocapsid gene associated with vertical transmission. Retrovirology 2006; 3:21. [PMID: 16600029 PMCID: PMC1459197 DOI: 10.1186/1742-4690-3-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2005] [Accepted: 04/06/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The human immunodeficiency virus type 1 (HIV-1) nucleocapsid (NC) plays a pivotal role in the viral lifecycle: including encapsulating the viral genome, aiding in strand transfer during reverse transcription, and packaging two copies of the viral genome into progeny virions. Another gag gene product, p6, plays an integral role in successful viral budding from the plasma membrane and inclusion of the accessory protein Vpr within newly budding virions. In this study, we have characterized the gag NC and p6 genes from six mother-infant pairs following vertical transmission by performing phylogenetic analysis and by analyzing the degree of genetic diversity, evolutionary dynamics, and conservation of functional domains. RESULTS Phylogenetic analysis of 168 gag NC and p6 genes sequences revealed six separate subtrees that corresponded to each mother-infant pair, suggesting that epidemiologically linked individuals were closer to each other than epidemiologically unlinked individuals. A high frequency (92.8%) of intact open reading frames of NC and p6 with patient and pair specific sequence motifs were conserved in mother-infant pairs' sequences. Nucleotide and amino acid distances showed a lower degree of viral heterogeneity, and a low degree of estimates of genetic diversity was also found in NC and p6 sequences. The NC and p6 sequences from both mothers and infants were found to be under positive selection pressure. The two important functional motifs within NC, the zinc-finger motifs, were highly conserved in most of the sequences, as were the gag p6 Vpr binding, AIP1 and late binding domains. Several CTL recognition epitopes identified within the NC and p6 genes were found to be mostly conserved in 6 mother-infant pairs' sequences. CONCLUSION These data suggest that the gag NC and p6 open reading frames and functional domains were conserved in mother-infant pairs' sequences following vertical transmission, which confirms the critical role of these gene products in the viral lifecycle.
Collapse
Affiliation(s)
- Brian P Wellensiek
- Department of Microbiology and Immunology, College of Medicine, The University of Arizona Health Sciences Center, Tucson, Arizona, USA
| | - Vasudha Sundaravaradan
- Department of Microbiology and Immunology, College of Medicine, The University of Arizona Health Sciences Center, Tucson, Arizona, USA
| | - Rajesh Ramakrishnan
- Department of Microbiology and Immunology, College of Medicine, The University of Arizona Health Sciences Center, Tucson, Arizona, USA
| | - Nafees Ahmad
- Department of Microbiology and Immunology, College of Medicine, The University of Arizona Health Sciences Center, Tucson, Arizona, USA
| |
Collapse
|
20
|
Chaturvedi UC, Shrivastava R. Interaction of viral proteins with metal ions: role in maintaining the structure and functions of viruses. ACTA ACUST UNITED AC 2005; 43:105-14. [PMID: 15681139 PMCID: PMC7110337 DOI: 10.1016/j.femsim.2004.11.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2004] [Accepted: 11/17/2004] [Indexed: 01/29/2023]
Abstract
Metal ions are integral part of some viral proteins and play an important role in their survival and pathogenesis. Zinc, magnesium and copper are the commonest metal ion that binds with viral proteins. Metal ions participate in maturation of genomic RNA, activation and catalytic mechanisms, reverse transcription, initial integration process and protection of newly synthesized DNA, inhibition of proton translocation (M2 protein), minus‐ and plus‐strand transfer, enhance nucleic acid annealing, activation of transcription, integration of viral DNA into specific sites and act as a chaperone of nucleic acid. Metal ions are also required for nucleocapsid protein‐transactivation response (TAR)–RNA interactions. In certain situations more than one metal ion is required e.g. RNA cleavage by RNase H. This review underscores the importance of metal ions in the survival and pathogenesis of a large group of viruses and studies on structural basis for metal binding should prove useful in the early design and development of viral inhibitors.
Collapse
Affiliation(s)
- Umesh C Chaturvedi
- Biomembrane Division, Industrial Toxicology Research Centre, Mahatma Gandhi Marg, Lucknow 226001, India.
| | | |
Collapse
|
21
|
Armas P, Cachero S, Lombardo VA, Weiner A, Allende ML, Calcaterra NB. Zebrafish cellular nucleic acid-binding protein: gene structure and developmental behaviour. Gene 2004; 337:151-61. [PMID: 15276211 DOI: 10.1016/j.gene.2004.04.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2004] [Revised: 04/16/2004] [Accepted: 04/26/2004] [Indexed: 11/28/2022]
Abstract
Here we analyse the structural organisation and expression of the zebrafish cellular nucleic acid-binding protein (zCNBP) gene and protein. The gene is organised in five exons and four introns. A noteworthy feature of the gene is the absence of a predicted promoter region. The coding region encodes a 163-amino acid polypeptide with the highly conserved general structural organisation of seven CCHC Zn knuckle domains and an RGG box between the first and the second Zn knuckles. Although theoretical alternative splicing is possible, only one form of zCNBP is actually detected. This form is able to bind to single-stranded DNA and RNA probes in vitro. The analysis of zCNBP developmental expression shows a high amount of CNBP-mRNA in ovary and during the first developmental stages. CNBP-mRNA levels decrease while early development progresses until the midblastula transition (MBT) stage and increases again thereafter. The protein is localised in the cytoplasm of blastomeres whereas it is mainly nuclear in developmental stages after the MBT. These findings suggest that CNBP is a strikingly conserved single-stranded nucleic acid-binding protein which might interact with maternal mRNA during its storage in the embryo cell cytoplasm. It becomes nuclear once MBT takes place possibly in order to modulate zygotic transcription and/or to associate with newly synthesised transcripts.
Collapse
Affiliation(s)
- Pablo Armas
- División Biología del Desarrollo, IBR-CONICET, Area Biología General, FCByF-UNR., Suipacha 531, S2002LRK Rosario, Argentina
| | | | | | | | | | | |
Collapse
|