1
|
He Y, Zhang Q, Wang J, Zhou M, Fu M, Xu X. Full-length genome sequence analysis of enzootic nasal tumor virus isolated from goats in China. Virol J 2017; 14:141. [PMID: 28747230 PMCID: PMC5530571 DOI: 10.1186/s12985-017-0795-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 07/03/2017] [Indexed: 11/10/2022] Open
Abstract
Background Enzootic nasal tumor virus (ENTV) is a betaretrovirus of sheep (ENTV-1) and goats (ENTV-2) associated with neoplastic transformation of epithelial cells of the ethmoid turbinate. Confirmation of the role of ENTV in the pathogenesis of enzootic nasal adenocarcinoma (ENA) has yet to be resolved due to the inability to culture the virus. Very little is known about the prevalence of this disease, particularly in China. Methods To evaluate the genetic diversity of ENTV-2 from Shaanxi province of China, the complete genome sequence of four isolates from Shaanxi province was determined by RT-PCR. These sequences were analyzed to evaluate their genetic relatedness with other small ruminant betaretroviruses. Phylogenetic analyses based on the gag gene and env gene were performed. Results The ENTV-2-Shaanxi1 genome shared 97.0% sequence identity with ENTV-2-SC (accession number HM104174.1), and 89.6% sequence identity with the ENTV-2 sequences (accession number AY197548.1). ENTV-2 is closely related to the ENTV-1 and jaagsiekte retrovirus (JSRV). The main sequence differences between these viruses reside in LTR, two small regions of Gag, Orf-x, and the transmembrane (TM) region of Env. A stretch of 6 consecutive proline residues exists in VR1 of the ENTV-2-Shaanxi1 ~ 4 isolates. All the ENTV-2-Shaanxi isolates have the YXXM motif in the cytoplasmic tail of the Env. Phylogenetic analysis by nucleotide sequences showed that ENTV-2-Shaanxi1 ~ 4 isolates were closest related to two ENTV-2 isolates published in NCBI, especially with ENTV-2-SC strain. Conclusions This finding indicates that ENA most likely was introduced to Shaanxi province by the movement of contaminated goats from other areas in China. This study adds to understand the circulation, variation and distribution of ENTV-2, and may prove beneficial in future control or eradication programmes.
Collapse
Affiliation(s)
- Yapeng He
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Qi Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Jing Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Man Zhou
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Mingzhe Fu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| | - Xingang Xu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| |
Collapse
|
2
|
Lemaître C, Tsang J, Bireau C, Heidmann T, Dewannieux M. A human endogenous retrovirus-derived gene that can contribute to oncogenesis by activating the ERK pathway and inducing migration and invasion. PLoS Pathog 2017. [PMID: 28651004 PMCID: PMC5501692 DOI: 10.1371/journal.ppat.1006451] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Endogenous retroviruses are cellular genes of retroviral origin captured by their host during the course of evolution and represent around 8% of the human genome. Although most are defective and transcriptionally silenced, some are still able to generate retroviral-like particles and proteins. Among these, the HERV-K(HML2) family is remarkable since its members have amplified relatively recently and many of them still have full length coding genes. Furthermore, they are induced in cancers, especially in melanoma, breast cancer and germ cell tumours, where viral particles, as well as the envelope protein (Env), can be detected. Here we show that HERV-K(HML2) Env per se has oncogenic properties. Its expression in a non-tumourigenic human breast epithelial cell line induces epithelial to mesenchymal transition (EMT), often associated with tumour aggressiveness and metastasis. In our model, this is typified by key modifications in a set of molecular markers, changes in cell morphology and enhanced cell motility. Remarkably, microarrays performed in 293T cells reveal that HERV-K(HML2) Env is a strong inducer of several transcription factors, namely ETV4, ETV5 and EGR1, which are downstream effectors of the MAPK ERK1/2 and are associated with cellular transformation. We demonstrate that HERV-K(HML2) Env effectively activates the ERK1/2 pathway in our experimental setting and that this activation depends on the Env cytoplasmic tail. In addition, this phenomenon is very specific, being absent with every other retroviral Env tested, except for Jaagsiekte Sheep Retrovirus (JSRV) Env, which is already known to have transforming properties in vivo. Though HERV-K Env is not directly transforming by itself, the newly discovered properties of this protein may contribute to oncogenesis. Nearly half the DNA of mammals consists of reitarated, selfish elements that can move and amplify within the genome. With time, some of these elements are recruited by the host and the proteins they encode are used to fulfill physiological functions, whereas other elements have conserved some of their pathological properties and contribute to the development of diseases. The human HERV-K(HML2) elements originated from an ancestral infection of the primate germline by an infectious retrovirus that has been maintained and amplified in the human lineage. It is associated with several pathologies in modern humans, in particular cancer of the breast, germline and skin. We show that the HERV-K(HML2) envelope protein is able to activate a major cellular signalling pathway often involved in human cancers, and that its expression promotes a series of cellular changes that are characteristic of cancer development. Altogether, this study indicates that the expression of HERV-K(HML2) elements is not only a marker of cancer, but can also directly participate to tumourigenesis via the newly discovered oncogenic properties carried by the envelope protein.
Collapse
Affiliation(s)
- Cécile Lemaître
- CNRS, UMR 9196, Institut Gustave Roussy, Villejuif, France
- Université Paris-Sud, Orsay, France
- Université Paris Denis Diderot, Sorbonne Paris-Cité, Paris, France
| | - Jhen Tsang
- CNRS, UMR 9196, Institut Gustave Roussy, Villejuif, France
- Université Paris-Sud, Orsay, France
| | - Caroline Bireau
- CNRS, UMR 9196, Institut Gustave Roussy, Villejuif, France
- Université Paris-Sud, Orsay, France
| | - Thierry Heidmann
- CNRS, UMR 9196, Institut Gustave Roussy, Villejuif, France
- Université Paris-Sud, Orsay, France
- * E-mail: (MD); (TH)
| | - Marie Dewannieux
- CNRS, UMR 9196, Institut Gustave Roussy, Villejuif, France
- Université Paris-Sud, Orsay, France
- * E-mail: (MD); (TH)
| |
Collapse
|
3
|
Monot M, Archer F, Gomes M, Mornex JF, Leroux C. Advances in the study of transmissible respiratory tumours in small ruminants. Vet Microbiol 2015; 181:170-7. [PMID: 26340900 DOI: 10.1016/j.vetmic.2015.08.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Sheep and goats are widely infected by oncogenic retroviruses, namely Jaagsiekte Sheep RetroVirus (JSRV) and Enzootic Nasal Tumour Virus (ENTV). Under field conditions, these viruses induce transformation of differentiated epithelial cells in the lungs for Jaagsiekte Sheep RetroVirus or the nasal cavities for Enzootic Nasal Tumour Virus. As in other vertebrates, a family of endogenous retroviruses named endogenous Jaagsiekte Sheep RetroVirus (enJSRV) and closely related to exogenous Jaagsiekte Sheep RetroVirus is present in domestic and wild small ruminants. Interestingly, Jaagsiekte Sheep RetroVirus and Enzootic Nasal Tumour Virus are able to promote cell transformation, leading to cancer through their envelope glycoproteins. In vitro, it has been demonstrated that the envelope is able to deregulate some of the important signaling pathways that control cell proliferation. The role of the retroviral envelope in cell transformation has attracted considerable attention in the past years, but it appears to be highly dependent of the nature and origin of the cells used. Aside from its health impact in animals, it has been reported for many years that the Jaagsiekte Sheep RetroVirus-induced lung cancer is analogous to a rare, peculiar form of lung adenocarcinoma in humans, namely lepidic pulmonary adenocarcinoma. The implication of a retrovirus related to Jaagsiekte Sheep RetroVirus is still controversial and under investigation, but the identification of an infectious agent associated with the development of lepidic pulmonary adenocarcinomas might help us to understand cancer development. This review explores the mechanisms of induction of respiratory cancers in small ruminants and the possible link between retrovirus and lepidic pulmonary adenocarcinomas in humans.
Collapse
Affiliation(s)
- M Monot
- INRA UMR754-Université Lyon 1, Retrovirus and Comparative Pathology, France; Université de Lyon, France
| | - F Archer
- INRA UMR754-Université Lyon 1, Retrovirus and Comparative Pathology, France; Université de Lyon, France
| | - M Gomes
- INRA UMR754-Université Lyon 1, Retrovirus and Comparative Pathology, France; Université de Lyon, France
| | - J-F Mornex
- INRA UMR754-Université Lyon 1, Retrovirus and Comparative Pathology, France; Université de Lyon, France; Hospices Civils de Lyon, France
| | - C Leroux
- INRA UMR754-Université Lyon 1, Retrovirus and Comparative Pathology, France; Université de Lyon, France.
| |
Collapse
|
4
|
Role for a Zinc Finger Protein (Zfp111) in Transformation of 208F Rat Fibroblasts by Jaagsiekte Sheep Retrovirus Envelope Protein. J Virol 2015; 89:10453-66. [PMID: 26246563 DOI: 10.1128/jvi.01631-15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 07/29/2015] [Indexed: 01/15/2023] Open
Abstract
UNLABELLED The native envelope gene (env) of Jaagsiekte sheep retrovirus (JSRV) also acts as an oncogene. To investigate the mechanism of transformation, we performed yeast 2-hybrid screening for cellular proteins that interact with Env. Among several candidates, we identified mouse or rat zinc finger protein 111 (zfp111). The interaction between Env and Zfp111 was confirmed through in vivo coimmunoprecipitation assays. Knockdown of endogenous Zfp111 caused a decrease in cell transformation by JSRV Env, while overexpression of Zfp111 increased overall Env transformation, supporting a role for Zfp111 in Env transformation. Knockdown of Zfp111 had no effect on the growth rate of parental rat 208F cells, while it decreased the proliferation rate of JSRV-transformed 208F cells, suggesting that JSRV-transformed cells became dependent on Zfp111. In addition, Zfp111 preferentially bound to a higher-mobility form of JSRV Env that has not been described previously. The higher-mobility form of Env (P70(env)) was found exclusively in the nuclear fraction, and size of its polypeptide backbone was the same as that of the cytoplasmic Env polyprotein (Pr80(env)). The differences in glycosylation between the two versions of Env were characterized. These results identify a novel cellular protein, Zfp111, that binds to the JSRV Env protein, and this binding plays a role in Env transformation. These results indicate that JSRV transformation also involves proteins and interactions in the nucleus. IMPORTANCE The envelope protein (Env) of Jaagsiekte sheep retrovirus (JSRV) is an oncogene, but its mechanism of cell transformation is still unclear. Here we identified seven candidate cellular proteins that can interact with JSRV Env by yeast two-hybrid screening. This study focused on one of the seven candidates, zinc finger protein 111 (Zfp111). Zfp111 was shown to interact with JSRV Env in cells and to be involved in JSRV transformation. Moreover, coexpression of JSRV Env and Zfp111 led to the identification of a novel nuclear form of the JSRV Env protein that binds Zfp111. Nuclear Env was found to differ by glycosylation from the cytoplasmic Env precursor to the virion envelope proteins. These results suggest that JSRV Env transformation may involve nuclear events such as an alteration in transcription mediated by Env-Zfp111 interactions.
Collapse
|
5
|
Pai JH, Kluckman K, Cowley DO, Bortner DM, Sims CE, Allbritton NL, Allbritton NL. Efficient division and sampling of cell colonies using microcup arrays. Analyst 2013; 138:220-8. [PMID: 23099535 PMCID: PMC3509232 DOI: 10.1039/c2an36065a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A microengineered array to sample clonal colonies is described. The cells were cultured on an array of individually releasable elements until the colonies expanded to cover multiple elements. Single elements were released using a laser-based system and collected to sample cells from individual colonies. A greater than an 85% rate in splitting and collecting colonies was achieved using a 3-dimensional cup-like design or "microcup". Surface modification using patterned titanium deposition of the glass substrate improved the stability of microcup adhesion to the glass while enabling minimization of the laser energy for splitting the colonies. Smaller microcup dimensions and slotting the microcup walls reduced the time needed for colonies to expand into multiple microcups. The stem cell colony retained on the array and the collected fraction within released microcups remained undifferentiated and viable. The colony samples were characterized by both reporter gene expression and a destructive assay (PCR) to identify target colonies. The platform is envisioned as a means to rapidly establish cell lines using a destructive assay to identify desired clones.
Collapse
Affiliation(s)
- Jeng-Hao Pai
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, Fax: +1 (919) 962-2388, Tel: +1 (919) 966-2291
| | | | - Dale O. Cowley
- TransViragen, Inc., PO Box 110301, Research Triangle Park, NC 27709
| | - Donna M. Bortner
- TransViragen, Inc., PO Box 110301, Research Triangle Park, NC 27709
| | - Christopher E. Sims
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, Fax: +1 (919) 962-2388, Tel: +1 (919) 966-2291
| | - Nancy L. Allbritton
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, Fax: +1 (919) 962-2388, Tel: +1 (919) 966-2291
| | - Nancy L. Allbritton
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC 27599, North Carolina State University, Raleigh, NC 27695
| |
Collapse
|
6
|
Murgia C, Caporale M, Ceesay O, Di Francesco G, Ferri N, Varasano V, de las Heras M, Palmarini M. Lung adenocarcinoma originates from retrovirus infection of proliferating type 2 pneumocytes during pulmonary post-natal development or tissue repair. PLoS Pathog 2011; 7:e1002014. [PMID: 21483485 PMCID: PMC3068994 DOI: 10.1371/journal.ppat.1002014] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 02/04/2011] [Indexed: 01/06/2023] Open
Abstract
Jaagsiekte sheep retrovirus (JSRV) is a unique oncogenic virus with distinctive biological properties. JSRV is the only virus causing a naturally occurring lung cancer (ovine pulmonary adenocarcinoma, OPA) and possessing a major structural protein that functions as a dominant oncoprotein. Lung cancer is the major cause of death among cancer patients. OPA can be an extremely useful animal model in order to identify the cells originating lung adenocarcinoma and to study the early events of pulmonary carcinogenesis. In this study, we demonstrated that lung adenocarcinoma in sheep originates from infection and transformation of proliferating type 2 pneumocytes (termed here lung alveolar proliferating cells, LAPCs). We excluded that OPA originates from a bronchioalveolar stem cell, or from mature post-mitotic type 2 pneumocytes or from either proliferating or non-proliferating Clara cells. We show that young animals possess abundant LAPCs and are highly susceptible to JSRV infection and transformation. On the contrary, healthy adult sheep, which are normally resistant to experimental OPA induction, exhibit a relatively low number of LAPCs and are resistant to JSRV infection of the respiratory epithelium. Importantly, induction of lung injury increased dramatically the number of LAPCs in adult sheep and rendered these animals fully susceptible to JSRV infection and transformation. Furthermore, we show that JSRV preferentially infects actively dividing cell in vitro. Overall, our study provides unique insights into pulmonary biology and carcinogenesis and suggests that JSRV and its host have reached an evolutionary equilibrium in which productive infection (and transformation) can occur only in cells that are scarce for most of the lifespan of the sheep. Our data also indicate that, at least in this model, inflammation can predispose to retroviral infection and cancer.
Collapse
Affiliation(s)
- Claudio Murgia
- Medical Research Council – University of Glasgow Centre for Virus Research, Institute of Infection, Inflammation and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
| | - Marco Caporale
- Medical Research Council – University of Glasgow Centre for Virus Research, Institute of Infection, Inflammation and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
- Istituto G. Caporale, Teramo, Italy
| | - Ousman Ceesay
- Medical Research Council – University of Glasgow Centre for Virus Research, Institute of Infection, Inflammation and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
| | | | | | - Vincenzo Varasano
- Dipartimento di Scienze Cliniche Veterinarie, Facolta' di Medicina Veterinaria, Universita' di Teramo, Italy
| | | | - Massimo Palmarini
- Medical Research Council – University of Glasgow Centre for Virus Research, Institute of Infection, Inflammation and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
| |
Collapse
|
7
|
The cellular protein La functions in enhancement of virus release through lipid rafts facilitated by murine leukemia virus glycosylated Gag. mBio 2011; 2:e00341-10. [PMID: 21343359 PMCID: PMC3042739 DOI: 10.1128/mbio.00341-10] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Murine leukemia viruses (MuLVs) encode two forms of Gag polyprotein: the precursor for the viral core proteins (Pr65gag for Moloney MuLV [M-MuLV]) and a longer glycosylated form (glyco-gag, or gPr80gag). gPr80gag is translated from the same unspliced viral RNA as Pr65gag, from an upstream in-frame CUG initiation codon. As a result, gPr80gag contains 88 unique N-terminal amino acids that include a signal peptide that conducts gPr80gag into the rough endoplasmic reticulum, where it is glycosylated, exported to the cell surface, and cleaved into two proteins of 55 and 40 kDa. The amino-terminal 55-kDa protein remains cell associated with the 88 unique amino acids exposed to the cytosol. We previously showed that gPr80gag facilitates efficient M-MuLV release through lipid rafts. In this report, we found that the unique N-terminal domain of gPr80gag is sufficient to facilitate enhanced M-MuLV particle release from transfected 293T cells. A search for cellular proteins involved in gPr80gag function led to cellular La protein. Overexpression of mouse or human La enhanced M-MuLV particle release in the absence of glyco-gag, and the released virus had a reduced buoyant density characteristic of increased cholesterol content. Moreover, small interfering RNA (siRNA) knockdown of human La abolished glyco-gag enhancement of M-MuLV release. These results implicate La as a cellular protein involved in M-MuLV glyco-gag function. We also found that overexpression of mouse or human La could enhance HIV-1 release in the absence of gPr80gag. Therefore, M-MuLV and HIV-1 may share a pathway for release through lipid rafts involving La. Retroviruses cause diseases such as leukemia and AIDS. An important aspect of viral replication is how viruses are released from infected cells. We previously found that a unique protein encoded by murine leukemia viruses (MuLVs), glyco-gag (or gPr80gag), enhances efficient virus release through cholesterol-rich membrane subdomains called lipid rafts. In this study, we found that the N-terminal domain of gPr80gag is sufficient to enhance viral release. A search for cellular proteins that participate in gPr80gag function led to cellular La protein. Overexpression of La phenocopied glyco-gag in enhancing M-MuLV release, and knockdown of La abolished glyco-gag function. M-MuLV glyco-gag also enhanced release of HIV-1, as did overexpression La in the absence of glyco-gag. Thus, M-MuLV and HIV-1 may share a cellular pathway for release through lipid rafts involving La. These results may also be relevant for other viruses that are released through lipid rafts.
Collapse
|
8
|
Johnson C, Jahid S, Voelker DR, Fan H. Enhanced proliferation of primary rat type II pneumocytes by Jaagsiekte sheep retrovirus envelope protein. Virology 2011; 412:349-56. [PMID: 21316726 DOI: 10.1016/j.virol.2011.01.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 12/24/2010] [Accepted: 01/14/2011] [Indexed: 01/05/2023]
Abstract
Jaagsiekte sheep retrovirus (JSRV) is the causative agent of a contagious lung cancer in sheep. The envelope protein (Env) is the oncogene, as it can transform cell lines in culture and induce tumors in animals, although the mechanisms for transformation are not yet clear because a system to perform transformation assays in differentiated type II pneumocytes does not exist. In this study we report culture of primary rat type II pneumocytes in conditions that favor prolonged expression of markers for type II pneumocytes. Env-expressing cultures formed more colonies that were larger in size and were viable for longer periods of time compared to vector control samples. The cells that remained in culture longer were confirmed to be derived from type II pneumocytes because they expressed surfactant protein C, cytokeratin, displayed alkaline phosphatase activity and were positive for Nile red. This system will be useful to study JSRV Env in the targets of transformation.
Collapse
Affiliation(s)
- Chassidy Johnson
- Department of Molecular Biology and Biochemistry and Cancer Research Institute, University of California, Irvine, CA 92697, USA
| | | | | | | |
Collapse
|
9
|
Jaagsiekte sheep retrovirus biology and oncogenesis. Viruses 2010; 2:2618-48. [PMID: 21994634 PMCID: PMC3185594 DOI: 10.3390/v2122618] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 11/22/2010] [Accepted: 11/23/2010] [Indexed: 11/19/2022] Open
Abstract
Jaagsiekte sheep retrovirus (JSRV) is the causative agent of a lung cancer in sheep known as ovine pulmonary adenocarcinoma (OPA). The disease has been identified around the world in several breeds of sheep and goats, and JSRV infection typically has a serious impact on affected flocks. In addition, studies on OPA are an excellent model for human lung carcinogenesis. A unique feature of JSRV is that its envelope (Env) protein functions as an oncogene. The JSRV Env-induced transformation or oncogenesis has been studied in a variety of cell systems and in animal models. Moreover, JSRV studies have provided insights into retroviral genomic RNA export/expression mechanisms. JSRV encodes a trans-acting factor (Rej) within the env gene necessary for the synthesis of Gag protein from unspliced viral RNA. This review summarizes research pertaining to JSRV-induced pathogenesis, Env transformation, and other aspects of JSRV biology.
Collapse
|
10
|
Chitra E, Lin YW, Davamani F, Hsiao KN, Sia C, Hsieh SY, Wei OL, Chen JH, Chow YH. Functional interaction between Env oncogene from Jaagsiekte sheep retrovirus and tumor suppressor Sprouty2. Retrovirology 2010; 7:62. [PMID: 20678191 PMCID: PMC2922082 DOI: 10.1186/1742-4690-7-62] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Accepted: 08/02/2010] [Indexed: 11/10/2022] Open
Abstract
Background Jaagsiekte sheep retrovirus (JSRV) is a type D retrovirus capable of transforming target cells in vitro and in vivo. The Envelope (Env) gene from JSRV and from related retroviruses can induce oncogenic transformation, although the detailed mechanism is yet to be clearly understood. Host cell factors are envisaged to play a critical determining role in the regulation of Env-mediated cell transformation. Results JSRV Env-mediated transformation of a lung adenocarcinoma cell line induced rapid proliferation, anchorage-independent growth and tumor formation, but completely abrogated the migration ability. An analysis of the signaling scenario in the transformed cells suggested the involvement of the ERK pathway regulated by Sprouty2 in cell migration, and the PI3K-Akt and STAT3 pathways in proliferation and anchorage-independence. On the other hand, in a normal lung epithelial cell line, Env-mediated transformation only decreased the migration potential while the other functions remained unaltered. We observed that Env induced the expression of a tumor suppressor, Sprouty2, suggesting a correlation between Env-effect and Sprouty2 expression. Overexpression of Sprouty2 per se not only decreased the migratory potential and tumor formation potential of the target cells but also made them resistant to subsequent Env-mediated transformation. On the other hand, over expression of the functional mutants of Sprouty2 had no inhibitory effect, confirming the role of Sprouty2 as a tumor suppressor. Conclusions Our studies demonstrate that Env and Sprouty2 have a functional relationship, probably through shared signaling network. Sprouty2 functions as a tumor suppressor regulating oncogenic transformation of cells, and it therefore has the potential to be exploited as a therapeutic anti-cancer agent.
Collapse
Affiliation(s)
- Ebenezer Chitra
- Vaccine R&D Center, National Health Research Institutes, 35, Keyan Road, Zhunan, Miaoli County 350, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Jaagsiekte sheep retrovirus transformation in Madin-Darby canine kidney epithelial cell three-dimensional culture. J Virol 2010; 84:5379-90. [PMID: 20219922 DOI: 10.1128/jvi.02323-09] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Jaagsiekte sheep retrovirus (JSRV) is the causative agent of a contagious lung cancer in sheep that shares similarities with human bronchioloalveolar carcinoma (BAC). JSRV is unique because the envelope gene (env) is the oncogene, as it can transform cells in culture and induce tumors in animals. The phosphatidylinositol 3-kinase (PI3K)-Akt-mTOR and H/N-Ras-MEK-mitogen-activated protein kinase (MAPK) pathways have been shown to be critical for Env transformation. However, the question still remains of how disruption of these pathways relates to tumor formation. To address this, JSRV Env transformation was studied in the context of epithelial structure, using the polarized Madin-Darby canine kidney (MDCK) epithelial cell three-dimensional (3-D) culture system. The results indicated that JSRV Env-transformed MDCK cells were larger and had full or multiple lumens, in contrast to the single lumens observed in controls. The altered phenotype was largely mediated by an increase in proliferation, in addition to overcoming the proliferative suppression signal. JSRV Env was not found to disrupt polarity or tight junctions or to inhibit lumen apoptosis. The PI3K-Akt-mTOR pathway was important for Env transformation in MDCK cells, although the mechanisms of action differed in 3-D and monolayer cultures. PI3K-dependent signaling to mTOR occurred in monolayers, while PI3K-independent signaling to mTOR occurred in 3-D culture. In contrast, the H/N-Ras-MEK-MAPK pathway was found to be inhibitory to transformation in both normal and transformed MDCK cells in 3-D culture. However, in monolayer culture, inhibition of MEK reverted the transformed phenotype, suggesting a different mechanism(s) of action in monolayer versus 3-D culture.
Collapse
|
12
|
Chitra E, Yu SL, Hsiao KN, Shao HY, Sia C, Chen IH, Hsieh SY, Chen JH, Chow YH. Generation and characterization of JSRV envelope transgenic mice in FVB background. Virology 2009; 393:120-6. [DOI: 10.1016/j.virol.2009.07.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Revised: 05/29/2009] [Accepted: 07/22/2009] [Indexed: 01/23/2023]
|
13
|
Jaagsiekte sheep retrovirus encodes a regulatory factor, Rej, required for synthesis of Gag protein. J Virol 2009; 83:12483-98. [PMID: 19776124 DOI: 10.1128/jvi.01747-08] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Retroviruses express Gag and Pol proteins by translation of unspliced genome-length viral RNA. For some retroviruses, transport of unspliced viral RNA to the cytoplasm is mediated by small regulatory proteins such as human immunodeficiency virus Rev, while other retroviruses contain constitutive transport elements in their RNAs that allow transport without splicing. In this study, we found that the betaretrovirus Jaagsiekte sheep retrovirus (JSRV) encodes within the env gene a trans-acting factor (Rej) necessary for the synthesis of Gag protein from unspliced viral RNA. Deletion of env sequences from a JSRV proviral expression plasmid (pTN3) abolished its ability to produce Gag polyprotein in transfected 293T cells, and Gag synthesis could be restored by cotransfection of an env expression plasmid (DeltaGP). Deletion analysis localized the complementing activity (Rej) to the putative Env signal peptide, and a signal peptide expression construct showed Rej activity. Two other betaretroviruses, mouse mammary tumor virus (MMTV) and human endogenous retrovirus type K, encode analogous factors (Rem and Rec, respectively) that are encoded from doubly spliced env mRNAs. Reverse transcriptase-PCR cloning and sequencing identified alternate internal splicing events in the 5' end of JSRV env that could signify analogous doubly spliced Rej mRNAs, and cDNA clones expressing two of them also showed Rej activity. The predicted Rej proteins contain motifs similar to those found in MMTV Rem and other analogous retroviral regulatory proteins. Interestingly, in most cell lines, JSRV expression plasmids with Rej deleted showed normal transport of unspliced JSRV RNA to the cytoplasm; however, in 293T cells Rej modestly enhanced export of unspliced viral RNA (2.8-fold). Metabolic labeling experiments with [(35)S]methionine indicated that JSRV Rej is required for the synthesis of viral Gag polyprotein. Thus, in most cell lines, the predominant function of Rej is to facilitate translation of unspliced viral mRNA.
Collapse
|
14
|
Identification and mutational analysis of a Rej response element in Jaagsiekte sheep retrovirus RNA. J Virol 2009; 83:12499-511. [PMID: 19776134 DOI: 10.1128/jvi.01754-08] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Jaagsiekte sheep retrovirus (JSRV) is a simple betaretrovirus causing a contagious lung cancer of sheep. JSRV encodes unspliced and spliced viral RNAs, among which unspliced RNA encodes Gag and Pol proteins and a singly spliced mRNA encodes Env protein. In another study we found that JSRV encodes a regulatory protein, Rej, that is responsible for synthesis of Gag polyprotein from unspliced viral RNA. Rej is encoded in the 5' end of env, and it enhances nuclear export or accumulation of cytoplasmic unspliced viral RNA in 293T cells but not in most other cell lines (A. Hofacre, T. Nitta, and H. Fan, J. Virol. 83:12483-12498, 2009). In this study, we found that mutations in the 3' end of env in the context of a cytomegalovirus-driven full-length JSRV expression construct abolished Gag protein synthesis and released viruses in 293T cells. These mutants also showed deficits in accumulation of unspliced viral RNA in the cytoplasm. These mutants defined a Rej-responsive element (RejRE). Inhibition of CRM1 but not Tap function prevented nuclear export/accumulation of cytoplasmic unspliced RNA in 293T cells, similarly to other complex retroviruses that express analogous regulator proteins (e.g., human immunodeficiency virus Rev). Structural modeling of the RejRE with Zuker M-fold indicated a region with a predicted stable secondary structure. Mutational analysis in this region indicated the importance of both secondary structures and primary nucleotide sequences in a central stem-bulge-stem structure. In contrast to 293T cells, mutations in the RejRE did not affect the levels of cytoplasmic unspliced RNA in 293 cells, although the unspliced RNA showed partial degradation, perhaps due to lack of translation. RejRE-containing RNA relocalized Rej protein from the nucleus to the cytoplasm in 293 and rat 208F cells, suggesting binding of Rej to the RejRE.
Collapse
|
15
|
Maeda N, Fan H, Yoshikai Y. Oncogenesis by retroviruses: old and new paradigms. Rev Med Virol 2008; 18:387-405. [PMID: 18729235 DOI: 10.1002/rmv.592] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Retroviruses are associated with a variety of diseases including an array of malignancies, immunodeficiencies and neurological disorders. In particular, studies of oncogenic retroviruses established fundamental principles of modern molecular cancer biology. Studies of avian Rous sarcoma virus (RSV) led to the discovery of the viral oncogene src, and this was followed by the discovery of other viral oncogenes in retroviruses of mammals including rodents, cats, monkeys and so forth. Studies of the viral oncogenes in turn led to the discovery of cellular proto-oncogenes in the host genome; cellular oncogenes have been shown to be activated in a variety of human cancers, including those with no viral involvement. Oncogenic animal retroviruses can be divided into two groups based on their mechanisms of tumourigenesis, acute transforming retroviruses and nonacute retroviruses. Acute transforming retroviruses are typically replication defective and they induce tumours rapidly due to expression of their viral oncogenes. Nonacute retroviruses are replication competent and they induce tumours with longer latencies, by activating cellular proto-oncogenes in the tumour cells; this results from insertion of proviral DNA in the vicinity of the activated proto-oncogene. More recently, human T-cell leukaemia virus type I (HTLV-I) was discovered as an etiological agent of human cancer (adult T-cell leukaemia [ATL]); this virus also encodes regulatory genes some of which are important for its oncogenic potential. Most recently, the retroviral structural protein Envelope (Env) has been shown to be directly involved in oncogenic transformation for certain retroviruses. Env-induced transformation is a new paradigm for retroviral oncogenesis. In this review, we will summarise research on retrovirus oncogenic transformation over the past 100 years since the first published report of an oncogenic virus with particular attention to Env-induced transformation.
Collapse
Affiliation(s)
- Naoyoshi Maeda
- Division of Host Defense, Research Center for Prevention of Infectious Diseases, Medical Institute of Bioregulation, Kyushu University, Higashi-ku, Fukuoka, Japan.
| | | | | |
Collapse
|
16
|
Saeed MF, Kolokoltsov AA, Freiberg AN, Holbrook MR, Davey RA. Phosphoinositide-3 kinase-Akt pathway controls cellular entry of Ebola virus. PLoS Pathog 2008; 4:e1000141. [PMID: 18769720 PMCID: PMC2516934 DOI: 10.1371/journal.ppat.1000141] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Accepted: 08/01/2008] [Indexed: 11/18/2022] Open
Abstract
The phosphoinositide-3 kinase (PI3K) pathway regulates diverse cellular activities related to cell growth, migration, survival, and vesicular trafficking. It is known that Ebola virus requires endocytosis to establish an infection. However, the cellular signals that mediate this uptake were unknown for Ebola virus as well as many other viruses. Here, the involvement of PI3K in Ebola virus entry was studied. A novel and critical role of the PI3K signaling pathway was demonstrated in cell entry of Zaire Ebola virus (ZEBOV). Inhibitors of PI3K and Akt significantly reduced infection by ZEBOV at an early step during the replication cycle. Furthermore, phosphorylation of Akt-1 was induced shortly after exposure of cells to radiation-inactivated ZEBOV, indicating that the virus actively induces the PI3K pathway and that replication was not required for this induction. Subsequent use of pseudotyped Ebola virus and/or Ebola virus-like particles, in a novel virus entry assay, provided evidence that activity of PI3K/Akt is required at the virus entry step. Class 1A PI3Ks appear to play a predominant role in regulating ZEBOV entry, and Rac1 is a key downstream effector in this regulatory cascade. Confocal imaging of fluorescently labeled ZEBOV indicated that inhibition of PI3K, Akt, or Rac1 disrupted normal uptake of virus particles into cells and resulted in aberrant accumulation of virus into a cytosolic compartment that was non-permissive for membrane fusion. We conclude that PI3K-mediated signaling plays an important role in regulating vesicular trafficking of ZEBOV necessary for cell entry. Disruption of this signaling leads to inappropriate trafficking within the cell and a block in steps leading to membrane fusion. These findings extend our current understanding of Ebola virus entry mechanism and may help in devising useful new strategies for treatment of Ebola virus infection.
Collapse
Affiliation(s)
- Mohammad F. Saeed
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Western Regional Center of Excellence in Biodefense and Emerging Infectious Diseases Research, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Andrey A. Kolokoltsov
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Alexander N. Freiberg
- Western Regional Center of Excellence in Biodefense and Emerging Infectious Diseases Research, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Michael R. Holbrook
- Western Regional Center of Excellence in Biodefense and Emerging Infectious Diseases Research, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Institute of Human Infection and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Robert A. Davey
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Western Regional Center of Excellence in Biodefense and Emerging Infectious Diseases Research, University of Texas Medical Branch, Galveston, Texas, United States of America
- Institute of Human Infection and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
- * E-mail:
| |
Collapse
|
17
|
[New molecular mechanisms of virus-mediated carcinogenesis: oncogenic transformation of cells by retroviral structural protein Envelope]. Uirusu 2008; 57:159-70. [PMID: 18357754 DOI: 10.2222/jsv.57.159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
RNA tumor viruses as classified in Retroviruses have been isolated and identified to induce tumors in a variety of animals including chickens, mice, and rats, or even in human in the last 100 years, since the first one has been reported in 1908. The RNA tumor viruses have been historically classified into two groups, acute transforming RNA tumor viruses and nonacute RNA tumor viruses. Acute transforming RNA tumor viruses are basically replication-defective and rapidly induce tumors by expressing the viral oncogenes captured from cellular genome in host cells. The first oncogene derived from Rous sarcoma virus was the src non-receptor tyrosine kinase, which has been identified to play the significant roles for signal transduction. On the other hand, nonacute RNA tumor viruses, which consist of only gag, pro, pol, and env regions but do not carry oncogenes, are replication-competent and could activate the cellular proto-oncogenes by inserting the viral long terminal repeat close to the proto-oncogenes to induce tumors with a long incubation period, as is termed a promoter insertion. These molecular mechanisms have been thought to induce tumors. However, very recently several reports have described that the retroviral structural protein Envelope could directly induce tumors in vivo and transform cells in vitro. These are very unusual examples of native retroviral structural proteins with transformation potential. In this review we look back over the history of oncogenic retrovirus research and summarize recent progress for our understanding of the molecular mechanisms of oncogenic transformation by retrovirus Envelope proteins.
Collapse
|
18
|
Cloning and sequence analysis of genome from the Inner Mongolia strain of the endogenous betaretroviruses (enJSRV). Virol Sin 2008. [DOI: 10.1007/s12250-008-2876-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
19
|
Arnaud F, Caporale M, Varela M, Biek R, Chessa B, Alberti A, Golder M, Mura M, Zhang YP, Yu L, Pereira F, DeMartini JC, Leymaster K, Spencer TE, Palmarini M. A paradigm for virus-host coevolution: sequential counter-adaptations between endogenous and exogenous retroviruses. PLoS Pathog 2008; 3:e170. [PMID: 17997604 PMCID: PMC2065879 DOI: 10.1371/journal.ppat.0030170] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Accepted: 09/26/2007] [Indexed: 11/18/2022] Open
Abstract
Endogenous retroviruses (ERVs) are remnants of ancient retroviral infections of the host germline transmitted vertically from generation to generation. It is hypothesized that some ERVs are used by the host as restriction factors to block the infection of pathogenic retroviruses. Indeed, some ERVs efficiently interfere with the replication of related exogenous retroviruses. However, data suggesting that these mechanisms have influenced the coevolution of endogenous and/or exogenous retroviruses and their hosts have been more difficult to obtain. Sheep are an interesting model system to study retrovirus-host coevolution because of the coexistence in this animal species of two exogenous (i.e., horizontally transmitted) oncogenic retroviruses, Jaagsiekte sheep retrovirus and Enzootic nasal tumor virus, with highly related and biologically active endogenous retroviruses (enJSRVs). Here, we isolated and characterized the evolutionary history and molecular virology of 27 enJSRV proviruses. enJSRVs have been integrating in the host genome for the last 5–7 million y. Two enJSRV proviruses (enJS56A1 and enJSRV-20), which entered the host genome within the last 3 million y (before and during speciation within the genus Ovis), acquired in two temporally distinct events a defective Gag polyprotein resulting in a transdominant phenotype able to block late replication steps of related exogenous retroviruses. Both transdominant proviruses became fixed in the host genome before or around sheep domestication (∼ 9,000 y ago). Interestingly, a provirus escaping the transdominant enJSRVs has emerged very recently, most likely within the last 200 y. Thus, we determined sequentially distinct events during evolution that are indicative of an evolutionary antagonism between endogenous and exogenous retroviruses. This study strongly suggests that endogenization and selection of ERVs acting as restriction factors is a mechanism used by the host to fight retroviral infections. The genome of all vertebrates is heavily colonized by “endogenous” retroviruses (ERVs). ERVs derive from retrovirus infections of the germ cells of the host during evolution, leading to permanent integration of the viral genome into the host DNA. Because ERVs are integrated in the host genome, they are transmitted to subsequent generations like any other host gene. The function of endogenous retroviruses is not completely clear, but some ERVs can block the replication cycle of horizontally transmitted “exogenous” pathogenic retroviruses. These observations lead to the hypothesis that ERVs have protected the host during evolution against incoming pathogenic retroviruses. Here, by characterizing the evolutionary history and molecular virology of a particular group of endogenous betaretroviruses of sheep (enJSRVs) we show a fascinating series of events unveiling the endless struggle between host and retroviruses. In particular, we discovered that: (i) two enJSRV loci that entered the host genome before speciation within the genus Ovis (∼ 3 million y ago) acquired, after their integration, a mutated defective viral protein capable of blocking exogenous related retroviruses; (ii) both these transdominant enJSRV loci became fixed in the host genome before or around sheep domestication (∼ 10,000 y ago); (iii) the invasion of the sheep genome by ERVs of the JSRV/enJSRVs group is still in progress; and (iv) new viruses have recently emerged (less than 200 y ago) that can escape the transdominant enJSRV loci. This study strongly suggests that endogenization and selection of ERVs acting as restriction factors is a mechanism used by the host to fight retroviral infections.
Collapse
Affiliation(s)
- Frederick Arnaud
- Institute of Comparative Medicine, University of Glasgow Veterinary School, Glasgow, Scotland
| | - Marco Caporale
- Institute of Comparative Medicine, University of Glasgow Veterinary School, Glasgow, Scotland
| | - Mariana Varela
- Institute of Comparative Medicine, University of Glasgow Veterinary School, Glasgow, Scotland
| | - Roman Biek
- Division of Environmental and Evolutionary Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow, Scotland
| | - Bernardo Chessa
- Sezione di Malattie Infettive del Dipartimento di Patologia e Clinica Veterinaria, University of Sassari, Sassari, Italy
| | - Alberto Alberti
- Sezione di Malattie Infettive del Dipartimento di Patologia e Clinica Veterinaria, University of Sassari, Sassari, Italy
| | - Matthew Golder
- Institute of Comparative Medicine, University of Glasgow Veterinary School, Glasgow, Scotland
| | - Manuela Mura
- Institute of Comparative Medicine, University of Glasgow Veterinary School, Glasgow, Scotland
| | - Ya-ping Zhang
- State Key Laboratory of Genetic Resources, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Li Yu
- Laboratory for Conservation and Utilization of Bioresources, Yunnan University, Kunming, China
| | - Filipe Pereira
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
- Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - James C DeMartini
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Kreg Leymaster
- United States Meat Animal Research Center, Clay Center, Nebraska, United States of America
| | - Thomas E Spencer
- Center for Animal Biotechnology and Genomics, Department of Animal Science, Texas A&M University, College Station, Texas, United States of America
| | - Massimo Palmarini
- Institute of Comparative Medicine, University of Glasgow Veterinary School, Glasgow, Scotland
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
20
|
Maeda N, Fan H. Signal transduction pathways utilized by enzootic nasal tumor virus (ENTV-1) envelope protein in transformation of rat epithelial cells resemble those used by jaagsiekte sheep retrovirus. Virus Genes 2008; 36:147-55. [DOI: 10.1007/s11262-007-0193-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Accepted: 12/20/2007] [Indexed: 11/21/2022]
|
21
|
Varela M, Golder M, Archer F, de las Heras M, Leroux C, Palmarini M. A large animal model to evaluate the effects of Hsp90 inhibitors for the treatment of lung adenocarcinoma. Virology 2007; 371:206-15. [PMID: 17961623 DOI: 10.1016/j.virol.2007.09.041] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2007] [Revised: 09/06/2007] [Accepted: 09/24/2007] [Indexed: 10/22/2022]
Abstract
Ovine pulmonary adenocarcinoma (OPA) is a naturally occurring lung cancer of sheep caused by Jaagsiekte sheep retrovirus (JSRV). The JSRV envelope glycoprotein (Env) functions as a dominant oncoprotein in vitro and in vivo. In order to develop the basis for the use of OPA as a lung cancer model, we screened a variety of signal transduction inhibitors for their ability to block transformation by the JSRV Env. Most inhibitors were not effective in blocking JSRV Env-induced transformation. On the contrary, various Hsp90 inhibitors efficiently blocked JSRV transformation. This phenomenon was at least partly due to Akt degradation, which is activated in JSRV-transformed cells. Hsp90 was found expressed in tumor cells of sheep with naturally occurring OPA. In addition, Hsp90 inhibitors specifically inhibited proliferation of immortalized and moreover primary cells derived from OPA tumors. Thus, OPA could be used as a large animal model for comprehensive studies investigating the effects of Hsp90 inhibitors in lung adenocarcinoma.
Collapse
Affiliation(s)
- Mariana Varela
- Institute of Comparative Medicine, University of Glasgow Veterinary School, 464 Bearsden Road, Glasgow, G61 1QH, Scotland, UK
| | | | | | | | | | | |
Collapse
|
22
|
Cousens C, Maeda N, Murgia C, Dagleish MP, Palmarini M, Fan H. In vivo tumorigenesis by Jaagsiekte sheep retrovirus (JSRV) requires Y590 in Env TM, but not full-length orfX open reading frame. Virology 2007; 367:413-21. [PMID: 17610928 PMCID: PMC2065845 DOI: 10.1016/j.virol.2007.06.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2007] [Revised: 05/15/2007] [Accepted: 06/07/2007] [Indexed: 12/15/2022]
Abstract
Jaagsiekte retrovirus (JSRV) causes ovine pulmonary adenocarcinoma (OPA), a transmissible lung cancer of sheep. The envelope (Env) glycoprotein protein of JSRV functions as a dominant oncoprotein in vitro and in vivo. An SH2 binding domain (YXXM) in the cytoplasmic tail of the JSRV Env is one of the main determinants of viral transformation at least in vitro. In these studies, we report the first in vivo tests of site-specific mutants of JSRV in their natural host, the sheep. We show that, in vivo, JSRV(21) with the cytoplasmic tail YXXM mutated to DXXM did not cause disease nor detectable infection, indicating that this motif is absolutely required for virus replication and possibly transformation in vivo. In contrast, mutation of the JSRV open reading frame orfX, for which no function has yet been attributed, did not alter the disease induced by JSRV(21).
Collapse
Affiliation(s)
- Chris Cousens
- Moredun Research Institute, Pentlands Science Park, Penicuik, Edinburgh, UK.
| | | | | | | | | | | |
Collapse
|
23
|
Leroux C, Girard N, Cottin V, Greenland T, Mornex JF, Archer F. Jaagsiekte Sheep Retrovirus (JSRV): from virus to lung cancer in sheep. Vet Res 2007; 38:211-28. [PMID: 17257570 DOI: 10.1051/vetres:2006060] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2006] [Accepted: 11/23/2006] [Indexed: 01/16/2023] Open
Abstract
Jaagsiekte Sheep Retrovirus (JSRV) is a betaretrovirus infecting sheep. This virus is responsible for a pulmonary adenocarcinoma, by transformation of epithelial cells from the bronchioli and alveoli. This animal cancer is similar to human bronchioloalveolar cancer (BAC), a specific form of human lung cancer for which a viral aetiology has not yet been identified. JSRV interacts with target cells through the membrane receptor Hyal2. The JSRV genome is simple and contains no recognised oncogene. It is now well established that the viral envelope protein is oncogenic by itself, via the cytoplasmic domain of the transmembrane glycoprotein and some domains of the surface glycoprotein. Activation of the PI3K/Akt and MAPK pathways participates in the envelope-induced transformation. Tumour development is associated with telomerase activation. This review will focus on the induction of cancer by JSRV.
Collapse
Affiliation(s)
- Caroline Leroux
- Université de Lyon 1, INRA, UMR754, Ecole Nationale Vétérinaire de Lyon, IFR 128, F-69007, Lyon, France.
| | | | | | | | | | | |
Collapse
|
24
|
Dakessian RM, Inoshima Y, Fan H. Tumors in mice transgenic for the envelope protein of Jaagsiekte sheep retrovirus. Virus Genes 2006; 35:73-80. [PMID: 17043760 DOI: 10.1007/s11262-006-0031-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2006] [Accepted: 08/11/2006] [Indexed: 12/26/2022]
Abstract
Jaagsiekte sheep retrovirus (JSRV) is the causative agent of ovine pulmonary adenocarcinoma (OPA), a contagious lung cancer in sheep. Previous studies have shown that the JSRV envelope protein (Env) functions as an oncogene, in that it can morphologically transform rodent fibroblast and epithelial cell lines. To obtain a small animal model for JSRV-induced OPA, we generated a transgene expressing an epitope-tagged JSRV Env under control of the lung-specific Surfactant Protein A (SPA) promoter. Transgenic mice containing the SPA-Env-HA transgene showed low efficiency but specific expression in the lung. F1 male progeny from one transgenic founder developed subdermal lipomas that expressed the transgene. These results indicate that the JSRV Env protein is capable of inducing tumors in transgenic mice, and in other cell types besides lung epithelial cells.
Collapse
Affiliation(s)
- Raffy M Dakessian
- Department of Molecular Biology and Biochemistry, and Cancer Research Institute, University of California, Irvine, CA,92697-3905, USA
| | | | | |
Collapse
|
25
|
Hull S, Fan H. Mutational analysis of the cytoplasmic tail of jaagsiekte sheep retrovirus envelope protein. J Virol 2006; 80:8069-80. [PMID: 16873263 PMCID: PMC1563818 DOI: 10.1128/jvi.00013-06] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Jaagsiekte sheep retrovirus (JSRV) is the etiologic agent of a transmissible lung cancer in sheep, ovine pulmonary adenocarcinoma. JSRV is unique in that the envelope protein functions as an oncogene, since it can morphologically transform fibroblast and epithelial cells in culture and can induce lung tumors in mice. Previous studies indicated that the transmembrane (TM) protein is essential for transformation, and particular attention has focused on a YXXM motif in the cytoplasmic tail. In this study, we carried out systematic mutagenesis of the cytoplasmic tail of JSRV Env. Alanine scanning mutagenesis revealed four classes of mutants: mutants in which transformation was abrogated, those in which transformation was not affected, those with reduced transformation, and those with increased transformation (supertransformers). In general, the alanine mutations did not affect Env protein production or its localization to the plasma membrane. Three functional domains of the cytoplasmic tail were identified: an amphipathic helix at the N-terminal (juxtamembrane) side, a nonessential C-terminal region, and an internal region (including the YXXM motif) where mutations resulted in abrogation, decreases, or increases in transformation. Alanine mutations in the amphipathic helix in both the hydrophobic and hydrophilic faces generally abolished transformation. The mutation R591A showed partial transformation that was consistent with loss of signaling through the Akt-mTOR pathway and signaling predominantly through the Ras-Raf-MEK1/2-extracellular signal-regulated kinase 1/2 pathway. The supertransforming mutants generally showed increased signaling through Akt and reduced activation of p38 MAPK that is inhibitory for transformation. These mutants provide further insight into the role of the TM cytoplasmic tail in JSRV transformation.
Collapse
Affiliation(s)
- Stacey Hull
- Cancer Research Institute, Sprague Hall, University of California Irvine, Irvine, CA 92697-3900, USA
| | | |
Collapse
|
26
|
Abstract
Retroviruses have played profound roles in our understanding of the genetic and molecular basis of cancer. Jaagsiekte sheep retrovirus (JSRV) is a simple retrovirus that causes contagious lung tumors in sheep, known as ovine pulmonary adenocarcinoma (OPA). Intriguingly, OPA resembles pulmonary adenocarcinoma in humans, and may provide a model for this frequent human cancer. Distinct from the classical mechanisms of retroviral oncogenesis by insertional activation of or virus capture of host oncogenes, the native envelope (Env) structural protein of JSRV is itself the active oncogene. A major pathway for Env transformation involves interaction of the Env cytoplasmic tail with as yet unidentified cellular adaptor(s), leading to the activation of PI3K/Akt and MAPK signaling cascades. Another potential mechanism involves the cell-entry receptor for JSRV, Hyaluronidase 2 (Hyal2), and the RON receptor tyrosine kinase, but the exact roles of these proteins in JSRV Env transformation remain to be better understood. Recently, a mouse model of lung cancer induced by JSRV Env has been developed, and the tumors in mice resemble those seen in sheep infected with JSRV and in humans. In this review, we summarize recent progress in our understanding the molecular mechanisms of oncogenic transformation by JSRV Env protein, and discuss the relevance to human lung cancer.
Collapse
Affiliation(s)
- S-L Liu
- Department of Microbiology and Immunology, McGill University, Montreal, Canada.
| | | |
Collapse
|
27
|
De Las Heras M, Ortín A, Benito A, Summers C, Ferrer LM, Sharp JM. In-situ Demonstration of Mitogen-activated Protein Kinase Erk 1/2 Signalling Pathway in Contagious Respiratory Tumours of Sheep and Goats. J Comp Pathol 2006; 135:1-10. [PMID: 16814801 DOI: 10.1016/j.jcpa.2006.02.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2005] [Accepted: 02/02/2006] [Indexed: 11/19/2022]
Abstract
Ovine pulmonary adenocarcinoma (OPA) and enzootic nasal adenocarcinoma (ENA) are two contagious neoplastic diseases of secretory epithelial cells in the respiratory system of sheep and goats. Jaagsiekte sheep retrovirus (JSRV) is the aetiological agent of OPA, and enzootic nasal tumour virus (ENTV) is associated with ENA. The genomes of these retroviruses do not contain known oncogenes but products of the env gene are important in the generation of transforming stimuli. However, the cell signalling pathways activated in vivo are not completely understood. This study was based on the use of activation stage antibodies specifically detecting proteins of the extracellular signal regulated kinase Erk 1/2 cell signalling pathway and transcription factors. Tissue sections were collected from four natural cases of OPA, four experimentally induced OPA tumours, four ENA tumours in sheep, four ENA tumours in goats, two normal sheep lungs and two lungs with chronic inflammation. Routine immunohistochemical procedures with phosphorylation stage-specific antibodies were carried out. Representative proteins of the Erk1/2 pathway (Raf-1, Mek1/2 and p44/42MAPK) were activated in natural cases of OPA and ENA in sheep and goats and also in experimentally induced OPA. Transcription factors 90Rsk and Elk-1 were activated in OPA and ENA tumours. However, c-Myc was activated only in OPA tumours. In contagious respiratory neoplasms of sheep and goats the Erk1/2 pathway appears to be important for the in-vivo generation of the transforming stimuli.
Collapse
Affiliation(s)
- M De Las Heras
- Departamento de Patología Animal, Facultad de Veterinaria, Universidad de Zaragoza, C/ Miguel Servet 177, 50013 Zaragoza, Spain.
| | | | | | | | | | | |
Collapse
|
28
|
Philbey AW, Cousens C, Bishop JV, Gill CA, DeMartini JC, Sharp JM. Multiclonal pattern of Jaagsiekte sheep retrovirus integration sites in ovine pulmonary adenocarcinoma. Virus Res 2005; 117:254-63. [PMID: 16310879 DOI: 10.1016/j.virusres.2005.10.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2005] [Revised: 10/25/2005] [Accepted: 10/31/2005] [Indexed: 11/21/2022]
Abstract
Insertional mutagenesis and envelope (Env)-mediated oncogenesis are hypothesized mechanisms by which Jaagsiekte sheep retrovirus (JSRV) causes ovine pulmonary adenocarcinoma (OPA). Twenty-eight JSRV integration sites in lung tumors (LTs) from four sheep with OPA were cloned and sequenced by a multiple step gene walking technique. Using nested PCR, clonal expansion of these integration sites could be detected, if at all, only in the localized regions of LT from which the integration sites were derived. One sheep had a viral integration site in a sequence with 85 and 81% identity, respectively, over 100 bp to exon 2 of the human and mouse receptor protein tyrosine phosphatase gamma genes. Clonal integration of Jaagsiekte sheep retrovirus in this gene was demonstrated by nested PCR and Southern blot hybridization in the DNA sample from which the integration site was cloned, but not in other LT or kidney DNA samples from the same sheep. OPA may develop from multiple independent oncogenic events and a role for insertional mutagenesis cannot be ruled out.
Collapse
|
29
|
Dunlap KA, Palmarini M, Adelson DL, Spencer TE. Sheep Endogenous Betaretroviruses (enJSRVs) and the Hyaluronidase 2 (HYAL2) Receptor in the Ovine Uterus and Conceptus. Biol Reprod 2005; 73:271-9. [PMID: 15788753 DOI: 10.1095/biolreprod.105.039776] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The ovine genome contains approximately 20 copies of endogenous betaretroviruses (enJSRVs) that are highly related to two exogenous oncogenic viruses, Jaagsiekte sheep retrovirus (JSRV) and Enzootic nasal tumor virus. The cellular receptor for both JSRV and the enJSRVs is hyaluronidase 2 (HYAL2). In this study, we assessed expression of enJSRVs envelope (env) and HYAL2 mRNAs in the ovine uterus and conceptus (embryo/fetus and extraembryonic membranes) throughout gestation. By reverse transcription-polymerase chain reaction analyses, enJSRVs env were found to be expressed beginning in the Day 12 conceptus, whereas HYAL2 was expressed from Day 16. HYAL2 mRNA was detected throughout gestation in the placentome but not in the endometrium, whereas enJSRVs env expression was detected throughout gestation in endometrium and placentomes. The enJSRVs env mRNA was specifically expressed in the endometrial lumenal epithelium (LE) and glandular epithelium (GE) as well as the trophoblast giant binucleate cells (BNC) and multinucleated syncytia of the placenta. HYAL2 mRNA was only detected in the BNC and multinucleated syncytial plaques of the placentome. Partial sequencing of the transcriptionally active enJSRVs from sheep endometrium, placentomes, and placenta revealed expression of many enJSRV loci. Cloning of the expressed enJSRVs env mRNA from ovine uteroplacental tissues found sequences similar to the previously identified enJS5F16 and enJS56A1 gene with an intact open reading frame, although the polypeptides they encode were not studied. Collectively, results provide further support for our hypothesis that the enJSRVs Env have been beneficial to the host and are involved in protection of the uterus from viral infection and regulators of placental morphogenesis and function.
Collapse
Affiliation(s)
- Kathrin A Dunlap
- Center for Animal Biotechnology and Genomics, Department of Animal Science, Texas A&M University, College Station, Texas 77843-2471, USA
| | | | | | | |
Collapse
|
30
|
Sinn PL, Burnight ER, Shen H, Fan H, McCray PB. Inclusion of Jaagsiekte sheep retrovirus proviral elements markedly increases lentivirus vector pseudotyping efficiency. Mol Ther 2005; 11:460-9. [PMID: 15727943 DOI: 10.1016/j.ymthe.2004.10.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2004] [Revised: 10/11/2004] [Accepted: 10/26/2004] [Indexed: 11/23/2022] Open
Abstract
Retroviral pseudotyping for gene transfer applications endeavors to alter vector tropism and maintain a suitable titer. We investigated the compatibility of the Jaagsiekte sheep retrovirus (JSRV) envelope glycoprotein with the feline immunodeficiency virus (FIV) vector. A construct consisting of the minimal JSRV env coding region expressed from a standard mammalian expression plasmid generated FIV vector titers of approximately 10(4) TU/ml following standard triple transfection, collection of supernatants, and concentration by centrifuge. Interestingly, retention of the native proviral 5' and 3' flanking regions surrounding the JSRV env resulted in exceptional titers of approximately 10(8) TU/ml following the same viral preparation. To discern the regions necessary to achieve this 10,000-fold increase in titer, additional constructs were designed and tested. Our results indicate that the enhanced vector titer correlates with an increase in steady-state levels of envelope RNA that results from a combination of RNA splicing and stability, leading to increased envelope protein production. Expression of four other glycoproteins in an expression plasmid retaining the enhancing elements from the JSRV proviral sequence increased FIV vector titers from 0- to 100-fold. These novel data demonstrate that optimization of the envelope expression construct can profoundly influence titers for lentivirus vectors.
Collapse
Affiliation(s)
- Patrick L Sinn
- Department of Pediatrics, Program in Gene Therapy, Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | |
Collapse
|
31
|
Maeda N, Fu W, Ortin A, de las Heras M, Fan H. Roles of the Ras-MEK-mitogen-activated protein kinase and phosphatidylinositol 3-kinase-Akt-mTOR pathways in Jaagsiekte sheep retrovirus-induced transformation of rodent fibroblast and epithelial cell lines. J Virol 2005; 79:4440-50. [PMID: 15767444 PMCID: PMC1061532 DOI: 10.1128/jvi.79.7.4440-4450.2005] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Jaagsiekte sheep retrovirus (JSRV) is the causative agent of ovine pulmonary adenocarcinoma (OPA), a transmissible lung cancer of sheep. The virus can induce tumors rapidly, and we previously found that the JSRV envelope protein (Env) functions as an oncogene, because it can transform mammalian and avian fibroblast cell lines. (N. Maeda, Proc. Natl. Acad. Sci. USA 98:4449-4454, 2001). The molecular mechanisms of JSRV Env transformation are of considerable interest. Several reports suggested that the phosphatidylinositol 3-kinase/Akt pathway is important for transformation of mammalian fibroblasts but not for chicken fibroblasts. In this study, we found that Akt/mTOR is involved in JSRV transformation of mouse NIH 3T3 fibroblasts, because treatment with the mTOR inhibitor rapamycin reduced transformation. We also found that H/N-Ras inhibitor FTI-277 and MEK1/2 inhibitors PD98059 and U0126 strongly inhibited JSRV transformation of NIH 3T3 fibroblasts, suggesting that the H/N-Ras-MEK-mitogen-activated protein kinase (MAPK) p44/42 pathway is necessary for the transformation. In RK3E epithelial cells, the MEK1/2 inhibitors also eliminated transformation, but FTI-277 only partially inhibited transformation. It was noteworthy that p38 MAPK inhibitors enhanced JSRV transformation in both fibroblasts and epithelial cells. Treatment of transformed cells with p38 inhibitors both increased levels of phospho-MEK1/2 and phospho-p44/42 and induced rapid enhancement of the transformed phenotype. Immunohistochemical staining of tumor tissues from naturally and experimentally induced OPA and naturally occurring enzootic nasal adenocarcinoma revealed strong activation of MAPK p44/42 in all cases examined. However, p38 activation was not generally observed. These results indicate that signaling through two pathways (in particular, H/N-Ras-MEK-MAPK and, to a lesser extent, Akt-mTOR) is important for JSRV-induced transformation and that p38 MAPK has a negative regulatory effect on transformation, perhaps via MEK1/2 and p44/42.
Collapse
Affiliation(s)
- Naoyoshi Maeda
- Cancer Research Institute, University of California, Irvine, Irvine, CA 92697-3900, USA
| | | | | | | | | |
Collapse
|
32
|
Liu SL, Miller AD. Transformation of madin-darby canine kidney epithelial cells by sheep retrovirus envelope proteins. J Virol 2005; 79:927-33. [PMID: 15613321 PMCID: PMC538587 DOI: 10.1128/jvi.79.2.927-933.2005] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2004] [Accepted: 08/26/2004] [Indexed: 11/20/2022] Open
Abstract
Jaagsiekte sheep retrovirus (JSRV) and enzootic nasal tumor virus (ENTV) induce epithelial tumors in the airways of sheep and goats. In both of these simple retroviruses, the envelope (Env) protein is the active oncogene. Furthermore, JSRV Env can transform cultured cells by two distinct mechanisms. In rat and mouse fibroblasts, the cytoplasmic tail of JSRV Env is essential for transformation, which involves activation of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway, and the virus receptor hyaluronidase 2 (Hyal2) is not involved. In contrast, in the BEAS-2B human bronchial epithelial cell line, transformation is mediated by JSRV Env binding to Hyal2 followed by Hyal2 degradation and activation of the receptor tyrosine kinase RON, the activity of which is normally suppressed by Hyal2. Here we show that JSRV and ENTV Env proteins can also transform Madin-Darby canine kidney (MDCK) epithelial cells, but by a mechanism similar to that observed in fibroblast cell lines. In particular, the cytoplasmic tail of Env is required for transformation, the PI3K/Akt pathway is activated, expression of RON (which is not normally expressed in MDCK cells) does not affect transformation, and canine Hyal2 appears uninvolved. These results show that the JSRV and ENTV Env proteins can transform epithelial cells besides BEAS-2B cells and argue against a model for Env transformation involving different pathways that are uniquely active in fibroblasts or epithelial cells.
Collapse
Affiliation(s)
- Shan-Lu Liu
- Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Room C2-105, Seattle, WA 98109-1024, USA
| | | |
Collapse
|
33
|
Hofacre A, Fan H. Multiple domains of the Jaagsiekte sheep retrovirus envelope protein are required for transformation of rodent fibroblasts. J Virol 2004; 78:10479-89. [PMID: 15367614 PMCID: PMC516437 DOI: 10.1128/jvi.78.19.10479-10489.2004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Jaagsiekte sheep retrovirus (JSRV) is an exogenous retrovirus of sheep that induces a contagious lung cancer, ovine pulmonary adenocarcinoma. We previously showed that the gene encoding JSRV envelope protein (Env) appears to function as an oncogene, since it can transform mouse NIH 3T3 cells. The cytoplasmic tail of the Env transmembrane protein (TM) is necessary for the transformation. However, previous experiments did not exclude the involvement of the Env surface protein (SU) in transformation. In this study, we created a series of nested deletion mutants through the SU domain and assessed their ability to transform rodent fibroblasts. All SU deletion mutants downstream of the predicted signal peptide were unable to transform murine NIH 3T3 or rat 208F cells. Transport to the plasma membrane of selected deleted Env proteins was confirmed by confocal immunofluorescence microscopy of hemagglutinin-tagged versions. Additional sequential SU deletion mutants lacking 50-amino-acid (aa) blocks throughout SU also were unable to transform. Furthermore, minimal insertion mutants of two amino acids (Leu/Gln) at various positions in SU also abolished transformation. These data indicate that domains in SU facilitate efficient JSRV transformation. This could reflect a necessity of SU for appropriate configuration of the Env protein or independent activation by SU of a signaling pathway necessary for transformation. Complementation between SU and TM mutants for transformation supported the latter hypothesis. Cotransfection with DeltaGP Y590F (mutant in the TM cytoplasmic tail) with DeltaGP SUDelta103-352 (lacking most of SU) resulted in efficient transformation. The resulting transformants showed evidence for the presence and expression of both mutant plasmids.
Collapse
Affiliation(s)
- Andrew Hofacre
- Cancer Research Institute, Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697-3905, USA
| | | |
Collapse
|
34
|
Miller AD, Van Hoeven NS, Liu SL. Transformation and scattering activities of the receptor tyrosine kinase RON/Stk in rodent fibroblasts and lack of regulation by the jaagsiekte sheep retrovirus receptor, Hyal2. BMC Cancer 2004; 4:64. [PMID: 15363108 PMCID: PMC521489 DOI: 10.1186/1471-2407-4-64] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2004] [Accepted: 09/13/2004] [Indexed: 12/13/2022] Open
Abstract
Background The envelope (Env) protein of jaagsiekte sheep retrovirus (JSRV) can transform cells in culture and is likely to be the main factor responsible for lung cancer induction by JSRV in animals. A recent report indicates that the epithelial-cell transforming activity of JSRV Env depends on activation of the cell-surface receptor tyrosine kinase Mst1r (called RON for the human and Stk for the rodent orthologs). In the immortalized line of human epithelial cells used (BEAS-2B cells), the virus receptor Hyal2 was found to bind to and suppress the activity of RON. When Env was expressed it bound to Hyal2 causing its degradation, release of RON activity from Hyal2 suppression, and activation of pathways resulting in cell transformation. Methods Due to difficulty with reproducibility of the transformation assay in BEAS-2B cells, we have used more tractable rodent fibroblast models to further study Hyal2 modulation of RON/Stk transforming activity and potential effects of Hyal2 on RON/Stk activation by its natural ligand, macrophage stimulating protein (MSP). Results We did not detect transformation of NIH 3T3 cells by plasmids expressing RON or Stk, but did detect transformation of 208F rat fibroblasts by these plasmids at a very low rate. We were able to isolate 208F cell clones that expressed RON or Stk and that showed changes in morphology indicative of transformation. The parental 208F cells did not respond to MSP but 208F cells expressing RON or Stk showed obvious increases in scattering/transformation in response to MSP. Human Hyal2 had no effect on the basal or MSP-induced phenotypes of RON-expressing 208F cells, and human, mouse or rat Hyal2 had no effect on the basal or MSP-induced phenotypes of Stk-expressing 208F cells. Conclusions We have shown that RON or Stk expression in 208F rat fibroblasts results in a transformed phenotype that is enhanced by addition of the natural ligand for these proteins, MSP. Hyal2 does not directly modulate the basal or MSP-induced RON/Stk activity, although it is possible that adaptor proteins might mediate such signaling in other cell types.
Collapse
Affiliation(s)
- A Dusty Miller
- Division of Human Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109-1024, USA
| | - Neal S Van Hoeven
- Division of Human Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109-1024, USA
- Molecular and Cellular Biology Program, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109-1024, USA
| | - Shan-Lu Liu
- Division of Human Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109-1024, USA
| |
Collapse
|
35
|
Suzuki A, Lu J, Kusakai GI, Kishimoto A, Ogura T, Esumi H. ARK5 is a tumor invasion-associated factor downstream of Akt signaling. Mol Cell Biol 2004; 24:3526-35. [PMID: 15060171 PMCID: PMC381626 DOI: 10.1128/mcb.24.8.3526-3535.2004] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AMP-activated protein kinases (AMPKs) are a class of serine/threonine protein kinases that are activated by an increase in intracellular AMP concentration. They are a sensitive indicator of cellular energy status and have been found to promote tumor cell survival during nutrient starvation. We recently identified a novel AMPK catalytic subunit family member, ARK5, whose activation is directly regulated by Akt, which, in turn, has been reported to be a key player in tumor malignancy. In this study, we attempted to determine whether ARK5 is involved in tumor malignancy under regulation by Akt. Matrigel invasion assays demonstrated that both overexpressed and endogenous ARK5 showed strong activity dependent on Akt. In addition, ARK5 expression induced activation of matrix metalloproteinase 2 (MMP-2) and MMP-9 following new expression of membrane type 1 MMP (MT1-MMP), and the MT1-MMP expression induced by ARK5 was initiated by rapamycin-sensitive signaling. In nude mice, ARK5 expression was associated with a significant increase in tumor growth and significant suppression of necrosis in tumor tissue. Interestingly, only the ARK5-overexpressing PANC-1 cell line (P/ARK) tumor showed invasion and metastasis in nude mice, although Akt was activated in tumors derived from both P/ARK and its parental cell line. We report that a novel AMPK catalytic subunit family member, ARK5, plays a key role in tumor malignancy downstream of Akt.
Collapse
Affiliation(s)
- Atsushi Suzuki
- Investigative Treatment Division, National Cancer Center Research Institute East, Kashiwa, Chiba 277-8577, Japan
| | | | | | | | | | | |
Collapse
|