1
|
Hossain FMA, Bappy MNI, Robin TB, Ahmad I, Patel H, Jahan N, Rabbi MGR, Roy A, Chowdhury W, Ahmed N, Prome AA, Rani NA, Khan P, Zinnah KMA. A review on computational studies and bioinformatics analysis of potential drugs against monkeypox virus. J Biomol Struct Dyn 2024; 42:6091-6107. [PMID: 37403283 DOI: 10.1080/07391102.2023.2231542] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 06/23/2023] [Indexed: 07/06/2023]
Abstract
Monkeypox, a viral disease that is caused by monkeypox virus and occurs mainly in central and western Africa. However, recently it is spreading worldwide and took the focus of the scientific world towards it. Therefore, we made an attempt to cluster all the related information that may make it easy for the researchers to get the information easily and carry out their research smoothly to find prophylaxis against this emerging virus. There are very few researches found available on monkeypox. Almost all the studies were focused on smallpox virus and the recommended vaccines and therapeutics for monkeypox virus were originally developed for smallpox virus. Though these are recommended for emergency cases, they are not fully effective and specific against monkeypox. For this, here we also took the help of bioinformatics tools to screen potential drug candidates against this growing burden. Some potential antiviral plant metabolites, inhibitors and available drugs were scrutinized that can block the essential survival proteins of this virus. All the compounds Amentoflavone, Pseudohypericin, Adefovirdipiboxil, Fialuridin, Novobiocin and Ofloxacin showed elite binding efficiency with suitable ADME properties and Amentoflavone and Pseudohypericin showed stability in MD simulation study indicating their potency as probable drugs against this emerging virus.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ferdaus Mohd Altaf Hossain
- Faculty of Veterinary, Animal and Biomedical Science, Sylhet Agricultural University, Sylhet, Bangladesh
- Department of Dairy Science, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Md Nazmul Islam Bappy
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, Bangladesh
- Department of Animal and Fish Biotechnology, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Tanjin Barketullah Robin
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Iqrar Ahmad
- Department of Pharmaceutical Chemistry, Prof. Ravindra Nikam College of Pharmacy, Dhule, Maharashtra, India
| | - Harun Patel
- Department of Pharmaceutical Chemistry, Division of Computer Aided Drug Design, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
| | - Nusrat Jahan
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Md Gulam Rabbany Rabbi
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Anindita Roy
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Wasima Chowdhury
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Nadim Ahmed
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Anindita Ash Prome
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Nurul Amin Rani
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Parvez Khan
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Kazi Md Ali Zinnah
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, Bangladesh
- Department of Animal and Fish Biotechnology, Sylhet Agricultural University, Sylhet, Bangladesh
| |
Collapse
|
2
|
Mirzakhanyan Y, Gershon P. The Vaccinia virion: Filling the gap between atomic and ultrastructure. PLoS Pathog 2019; 15:e1007508. [PMID: 30615658 PMCID: PMC6336343 DOI: 10.1371/journal.ppat.1007508] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 01/17/2019] [Accepted: 12/06/2018] [Indexed: 01/19/2023] Open
Abstract
We have investigated the molecular-level structure of the Vaccinia virion in situ by protein-protein chemical crosslinking, identifying 4609 unique-mass crosslink ions at an effective FDR of 0.33%, covering 2534 unique pairs of crosslinked protein positions, 625 of which were inter-protein. The data were statistically non-random and rational in the context of known structures, and showed biological rationality. Crosslink density strongly tracked the individual proteolytic maturation products of p4a and p4b, the two major virion structural proteins, and supported the prediction of transmembrane domains within membrane proteins. A clear sub-network of four virion structural proteins provided structural insights into the virion core wall, and proteins VP8 and A12 formed a strongly-detected crosslinked pair with an apparent structural role. A strongly-detected sub-network of membrane proteins A17, H3, A27 and A26 represented an apparent interface of the early-forming virion envelope with structures added later during virion morphogenesis. Protein H3 seemed to be the central hub not only for this sub-network but also for an 'attachment protein' sub-network comprising membrane proteins H3, ATI, CAHH(D8), A26, A27 and G9. Crosslinking data lent support to a number of known interactions and interactions within known complexes. Evidence is provided for the membrane targeting of genome telomeres. In covering several orders of magnitude in protein abundance, this study may have come close to the bottom of the protein-protein crosslinkome of an intact organism, namely a complex animal virus.
Collapse
Affiliation(s)
- Yeva Mirzakhanyan
- Department of Molecular Biology & Biochemistry, UC-Irvine, Irvine, California, United States of America
| | - Paul Gershon
- Department of Molecular Biology & Biochemistry, UC-Irvine, Irvine, California, United States of America
| |
Collapse
|
3
|
Luteijn RD, Drexler I, Smith GL, Lebbink RJ, Wiertz EJHJ. Mutagenic repair of double-stranded DNA breaks in vaccinia virus genomes requires cellular DNA ligase IV activity in the cytosol. J Gen Virol 2018; 99:790-804. [PMID: 29676720 PMCID: PMC7614823 DOI: 10.1099/jgv.0.001034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Poxviruses comprise a group of large dsDNA viruses that include members relevant to human and animal health, such as variola virus, monkeypox virus, cowpox virus and vaccinia virus (VACV). Poxviruses are remarkable for their unique replication cycle, which is restricted to the cytoplasm of infected cells. The independence from the host nucleus requires poxviruses to encode most of the enzymes involved in DNA replication, transcription and processing. Here, we use the CRISPR/Cas9 genome engineering system to induce DNA damage to VACV (strain Western Reserve) genomes. We show that targeting CRISPR/Cas9 to essential viral genes limits virus replication efficiently. Although VACV is a strictly cytoplasmic pathogen, we observed extensive viral genome editing at the target site; this is reminiscent of a non-homologous end-joining DNA repair mechanism. This pathway was not dependent on the viral DNA ligase, but critically involved the cellular DNA ligase IV. Our data show that DNA ligase IV can act outside of the nucleus to allow repair of dsDNA breaks in poxvirus genomes. This pathway might contribute to the introduction of mutations within the genome of poxviruses and may thereby promote the evolution of these viruses.
Collapse
Affiliation(s)
- Rutger David Luteijn
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands.,Present address: Department of Molecular and Cell Biology, University of California, Berkeley, USA
| | - Ingo Drexler
- Institute for Virology, University Hospital Düsseldorf, Düsseldorf, Germany
| | | | - Robert Jan Lebbink
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Emmanuel J H J Wiertz
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
4
|
Bernstock JD, Ye D, Gessler FA, Lee YJ, Peruzzotti-Jametti L, Baumgarten P, Johnson KR, Maric D, Yang W, Kögel D, Pluchino S, Hallenbeck JM. Topotecan is a potent inhibitor of SUMOylation in glioblastoma multiforme and alters both cellular replication and metabolic programming. Sci Rep 2017; 7:7425. [PMID: 28785061 PMCID: PMC5547153 DOI: 10.1038/s41598-017-07631-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 06/28/2017] [Indexed: 12/30/2022] Open
Abstract
Protein SUMOylation is a dynamic post-translational modification shown to be involved in a diverse set of physiologic processes throughout the cell. SUMOylation has also been shown to play a role in the pathobiology of myriad cancers, one of which is glioblastoma multiforme (GBM). As such, the clinical significance and therapeutic utility offered via the selective control of global SUMOylation is readily apparent. There are, however, relatively few known/effective inhibitors of global SUMO-conjugation. Herein we describe the identification of topotecan as a novel inhibitor of global SUMOylation. We also provide evidence that inhibition of SUMOylation by topotecan is associated with reduced levels of CDK6 and HIF-1α, as well as pronounced changes in cell cycle progression and cellular metabolism, thereby highlighting its putative role as an adjuvant therapy in defined GBM patient populations.
Collapse
Affiliation(s)
- Joshua D Bernstock
- Stroke Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA. .,Wellcome Trust-Medical Research Council Stem Cell Institute, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
| | - Daniel Ye
- Stroke Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Florian A Gessler
- Wellcome Trust-Medical Research Council Stem Cell Institute, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.,Department of Neurosurgery, Johann Wolfgang Goethe-Universität, Frankfurt am Main, Germany
| | - Yang-Ja Lee
- Stroke Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Luca Peruzzotti-Jametti
- Wellcome Trust-Medical Research Council Stem Cell Institute, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Peter Baumgarten
- Edinger Institute, Johann Wolfgang Goethe-Universität, Frankfurt am Main, Germany
| | - Kory R Johnson
- Bioinformatics Section, Information Technology & Bioinformatics Program, Division of Intramural Research (DIR), (NINDS/NIH), Bethesda, MD, USA
| | - Dragan Maric
- Flow Cytometry Core Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NINDS/NIH), Bethesda, MD, USA
| | - Wei Yang
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Donat Kögel
- Department of Neurosurgery, Johann Wolfgang Goethe-Universität, Frankfurt am Main, Germany
| | - Stefano Pluchino
- Wellcome Trust-Medical Research Council Stem Cell Institute, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - John M Hallenbeck
- Stroke Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
5
|
Deletion of the Vaccinia Virus I2 Protein Interrupts Virion Morphogenesis, Leading to Retention of the Scaffold Protein and Mislocalization of Membrane-Associated Entry Proteins. J Virol 2017; 91:JVI.00558-17. [PMID: 28490596 DOI: 10.1128/jvi.00558-17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 05/05/2017] [Indexed: 11/20/2022] Open
Abstract
The I2L open reading frame of vaccinia virus (VACV) encodes a conserved 72-amino-acid protein with a putative C-terminal transmembrane domain. Previous studies with a tetracycline-inducible mutant demonstrated that I2-deficient virions are defective in cell entry. The purpose of the present study was to determine the step of replication or entry that is affected by loss of the I2 protein. Fluorescence microscopy experiments showed that I2 colocalized with a major membrane protein of immature and mature virions. We generated a cell line that constitutively expressed I2 and allowed construction of the VACV I2L deletion mutant vΔI2. As anticipated, vΔI2 was unable to replicate in cells that did not express I2. Unexpectedly, morphogenesis was interrupted at a stage after immature virion formation, resulting in the accumulation of dense spherical particles instead of brick-shaped mature virions with well-defined core structures. The abnormal particles retained the D13 scaffold protein of immature virions, were severely deficient in the transmembrane proteins that comprise the entry fusion complex (EFC), and had increased amounts of unprocessed membrane and core proteins. Total lysates of cells infected with vΔI2 also had diminished EFC proteins due to instability attributed to their hydrophobicity and failure to be inserted into viral membranes. A similar instability of EFC proteins had previously been found with unrelated mutants blocked earlier in morphogenesis that also accumulated viral membranes retaining the D13 scaffold. We concluded that I2 is required for virion morphogenesis, release of the D13 scaffold, and the association of EFC proteins with viral membranes.IMPORTANCE Poxviruses comprise a large family that infect vertebrates and invertebrates, cause disease in both in humans and in wild and domesticated animals, and are being engineered as vectors for vaccines and cancer therapy. In addition, investigations of poxviruses have provided insights into many aspects of cell biology. The I2 protein is conserved in all poxviruses that infect vertebrates, suggesting an important role. The present study revealed that this protein is essential for vaccinia virus morphogenesis and that its absence results in an accumulation of deformed virus particles retaining the scaffold protein and deficient in surface proteins needed for cell entry.
Collapse
|
6
|
Jesus DM, Moussatche N, McFadden BBD, Nielsen CP, D'Costa SM, Condit RC. Vaccinia virus protein A3 is required for the production of normal immature virions and for the encapsidation of the nucleocapsid protein L4. Virology 2015; 481:1-12. [PMID: 25765002 DOI: 10.1016/j.virol.2015.02.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 02/12/2015] [Accepted: 02/13/2015] [Indexed: 10/23/2022]
Abstract
Maturation of the vaccinia virion is an intricate process that results in the organization of the viroplasm contained in immature virions into the lateral bodies, core wall and nucleocapsid observed in the mature particles. It is unclear how this organization takes place and studies with mutants are indispensable in understanding this process. By characterizing an inducible mutant in the A3L gene, we revealed that A3, an inner core wall protein, is important for formation of normal immature viruses and also for the correct localization of L4, a nucleocapsid protein. L4 did not accumulate in the viral factories in the absence of A3 and was not encapsidated in the particles that do not contain A3. These data strengthen our previously suggested hypothesis that A3 and L4 interact and that this interaction is critical for proper formation of the core wall and nucleocapsid.
Collapse
Affiliation(s)
- Desyree Murta Jesus
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA.
| | - Nissin Moussatche
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| | - Baron B D McFadden
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| | - Casey Paulasue Nielsen
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| | - Susan M D'Costa
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| | - Richard C Condit
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
7
|
Liu L, Cooper T, Howley PM, Hayball JD. From crescent to mature virion: vaccinia virus assembly and maturation. Viruses 2014; 6:3787-808. [PMID: 25296112 PMCID: PMC4213562 DOI: 10.3390/v6103787] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 09/29/2014] [Accepted: 10/02/2014] [Indexed: 01/22/2023] Open
Abstract
Vaccinia virus (VACV) has achieved unprecedented success as a live viral vaccine for smallpox which mitigated eradication of the disease. Vaccinia virus has a complex virion morphology and recent advances have been made to answer some of the key outstanding questions, in particular, the origin and biogenesis of the virion membrane, the transformation from immature virion (IV) to mature virus (MV), and the role of several novel genes, which were previously uncharacterized, but have now been shown to be essential for VACV virion formation. This new knowledge will undoubtedly contribute to the rational design of safe, immunogenic vaccine candidates, or effective antivirals in the future. This review endeavors to provide an update on our current knowledge of the VACV maturation processes with a specific focus on the initiation of VACV replication through to the formation of mature virions.
Collapse
Affiliation(s)
- Liang Liu
- Experimental Therapeutics Laboratory, Hanson Institute and Sansom Institute, Adelaide, 5000, SA, Australia.
| | - Tamara Cooper
- Experimental Therapeutics Laboratory, Hanson Institute and Sansom Institute, Adelaide, 5000, SA, Australia.
| | - Paul M Howley
- Experimental Therapeutics Laboratory, Hanson Institute and Sansom Institute, Adelaide, 5000, SA, Australia.
| | - John D Hayball
- Experimental Therapeutics Laboratory, Hanson Institute and Sansom Institute, Adelaide, 5000, SA, Australia.
| |
Collapse
|
8
|
Vaccinia virus mutations in the L4R gene encoding a virion structural protein produce abnormal mature particles lacking a nucleocapsid. J Virol 2014; 88:14017-29. [PMID: 25253347 DOI: 10.1128/jvi.02126-14] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
UNLABELLED Electron micrographs from the 1960s revealed the presence of an S-shaped tubular structure in the center of the vaccinia virion core. Recently, we showed that packaging of virus transcription enzymes is necessary for the formation of the tubular structure, suggesting that the structure is equivalent to a nucleocapsid. Based on this study and on what is known about nucleocapsids of other viruses, we hypothesized that in addition to transcription enzymes, the tubular structure also contains the viral DNA and a structural protein as a scaffold. The vaccinia virion structural protein L4 stands out as the best candidate for the role of a nucleocapsid structural protein because it is abundant, it is localized in the center of the virion core, and it binds DNA. In order to gain more insight into the structure and relevance of the nucleocapsid, we analyzed thermosensitive and inducible mutants in the L4R gene. Using a cryo-fixation method for electron microscopy (high-pressure freezing followed by freeze-substitution) to preserve labile structures like the nucleocapsid, we were able to demonstrate that in the absence of functional L4, mature particles with defective internal structures are produced under nonpermissive conditions. These particles do not contain a nucleocapsid. In addition, the core wall of these virions is abnormal. This suggests that the nucleocapsid interacts with the core wall and that the nucleocapsid structure might be more complex than originally assumed. IMPORTANCE The vaccinia virus nucleocapsid has been neglected since the 1960s due to a lack of electron microscopy techniques to preserve this labile structure. With the advent of cryo-fixation techniques, like high-pressure freezing/freeze-substitution, we are now able to consistently preserve and visualize the nucleocapsid. Because vaccinia virus early transcription is coupled to the viral core structure, detailing the structure of the nucleocapsid is indispensable for determining the mechanisms of vaccinia virus core-directed transcription. The present study represents our second attempt to understand the structure and biological significance of the nucleocapsid. We demonstrate the importance of the protein L4 for the formation of the nucleocapsid and reveal in addition that the nucleocapsid and the core wall may be associated, suggesting a higher level of complexity of the nucleocapsid than predicted. In addition, we prove the utility of high-pressure freezing in preserving the vaccinia virus nucleocapsid.
Collapse
|
9
|
Sieckmann DG, Jaffe H, Golech S, Cai D, Hallenbeck JM, McCarron RM. Anti-lymphoproliferative activity of alpha-2-macroglobulin in the plasma of hibernating 13-lined ground squirrels and woodchucks. Vet Immunol Immunopathol 2014; 161:1-11. [PMID: 25113962 DOI: 10.1016/j.vetimm.2014.05.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 03/14/2014] [Accepted: 05/10/2014] [Indexed: 11/19/2022]
Abstract
Plasma from hibernating (HIB) woodchucks (Marmota monax) or 13-lined ground squirrels (Ictidomys tridecemlineatus) suppressed (3)H-thymidine uptake in mouse spleen cell cultures stimulated with Concanavalin A (ConA); plasma from non-hibernating animals were only slightly inhibitory. Maximum inhibition occurred when HIB plasma was added to the cultures prior to ConA. After HPLC size exclusion chromatography of the HIB ground squirrel plasma, a single fraction (fraction-14) demonstrated inhibitory activity. Assay of fraction-14 from 8 HIB squirrels showed inhibition ranging from 13 to 95%; inhibition was correlated to the time the squirrels were exposed to cold prior to hibernation. Western blot analysis showed the factor to be a large molecular weight protein (>300 kDa), and mass spectrometry identified sequences that were 100% homologous with alpha-2-macroglobulin from humans and other species. These findings indicate a hibernation-related protein that may be responsible for immune system down regulation.
Collapse
Affiliation(s)
- Donna G Sieckmann
- Naval Medical Research Center, Silver Spring, MD 20910, United States.
| | - Howard Jaffe
- LNC-NINDS Protein/Peptide Sequencing Facility, NINDS, NIH, Bethesda, MD 20892, United States
| | - Susanne Golech
- Naval Medical Research Center, Silver Spring, MD 20910, United States
| | - DeCheng Cai
- Stroke Branch, NINDS, NIH, Bethesda, MD 20892, United States
| | | | - Richard M McCarron
- Naval Medical Research Center, Silver Spring, MD 20910, United States; Department of Pathology, USUHS, Bethesda, MD 20814, United States.
| |
Collapse
|
10
|
|
11
|
Maruri-Avidal L, Weisberg AS, Bisht H, Moss B. Analysis of viral membranes formed in cells infected by a vaccinia virus L2-deletion mutant suggests their origin from the endoplasmic reticulum. J Virol 2013; 87:1861-71. [PMID: 23192873 PMCID: PMC3554160 DOI: 10.1128/jvi.02779-12] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 11/20/2012] [Indexed: 12/17/2022] Open
Abstract
Assembly of the poxvirus immature virion (IV) membrane is a poorly understood event that occurs within the cytoplasm. At least eight viral proteins participate in formation of the viral membrane. Of these, A14, A17, and D13 are structural components whereas A6, A11, F10, H7, and L2 participate in membrane biogenesis. L2, the object of this study, is conserved in all chordopoxviruses, expressed early in infection, and associated with the endoplasmic reticulum (ER) throughout the cell and at the edges of crescent-shaped IV precursors. Previous studies with an inducible L2 mutant revealed abortive formation of the crescent membrane. However, possible low-level L2 synthesis under nonpermissive conditions led to ambiguity in interpretation. Here, we constructed a cell line that expresses L2, which allowed the creation of an L2-deletion mutant. In noncomplementing cells, replication was aborted prior to formation of mature virions and two types of aberrant structures were recognized. One consisted of short crescents, at the surface of dense masses of viroplasm, which were labeled with antibodies to the A11, A14, A17, and D13 proteins. The other structure consisted of "empty" IV-like membranes, also labeled with antibodies to the viral proteins, which appeared to be derived from adjacent calnexin-containing ER. A subset of 25 proteins examined, exemplified by components of the entry-fusion complex, were greatly diminished in amount. The primary role of L2 may be to recruit ER and modulate its transformation to viral membranes in juxtaposition with the viroplasm, simultaneously preventing the degradation of viral proteins dependent on viral membranes for stability.
Collapse
Affiliation(s)
- Liliana Maruri-Avidal
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | | | | | | |
Collapse
|
12
|
Prichard MN, Kern ER. Orthopoxvirus targets for the development of new antiviral agents. Antiviral Res 2012; 94:111-25. [PMID: 22406470 PMCID: PMC3773844 DOI: 10.1016/j.antiviral.2012.02.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 02/10/2012] [Accepted: 02/21/2012] [Indexed: 12/29/2022]
Abstract
Investments in the development of new drugs for orthopoxvirus infections have fostered new avenues of research, provided an improved understanding of orthopoxvirus biology and yielded new therapies that are currently progressing through clinical trials. These broad-based efforts have also resulted in the identification of new inhibitors of orthopoxvirus replication that target many different stages of viral replication cycle. This review will discuss progress in the development of new anti-poxvirus drugs and the identification of new molecular targets that can be exploited for the development of new inhibitors. The prototype of the orthopoxvirus group is vaccinia virus and its replication cycle will be discussed in detail noting specific viral functions and their associated gene products that have the potential to serve as new targets for drug development. Progress that has been achieved in recent years should yield new drugs for the treatment of these infections and might also reveal new approaches for antiviral drug development with other viruses.
Collapse
Affiliation(s)
- Mark N Prichard
- Department of Pediatrics, The University of Alabama at Birmingham, Birmingham, AL 35233-1711, United States.
| | | |
Collapse
|
13
|
Maruri-Avidal L, Weisberg AS, Moss B. Vaccinia virus L2 protein associates with the endoplasmic reticulum near the growing edge of crescent precursors of immature virions and stabilizes a subset of viral membrane proteins. J Virol 2011; 85:12431-41. [PMID: 21917978 PMCID: PMC3209352 DOI: 10.1128/jvi.05573-11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 09/04/2011] [Indexed: 12/11/2022] Open
Abstract
The initial step in poxvirus morphogenesis, the formation of crescent membranes, occurs within cytoplasmic factories. L2 is one of several vaccinia virus proteins known to be necessary for formation of crescents and the only one synthesized early in infection. Virus replication was unaffected when the L2R open reading frame was replaced by L2R containing an N-terminal epitope tag while retaining the original promoter. L2 colocalized with the endoplasmic reticulum (ER) protein calnexin throughout the cytoplasm of infected and transfected cells. Topological studies indicated that the N terminus of L2 is exposed to the cytoplasm with the hydrophobic C terminus anchored in the ER. Using immunogold labeling and electron microscopy, L2 was detected in tubular membranes outside factories and inside factories near crescents and close to the edge or rim of crescents; a similar labeling pattern was found for the ER luminal protein disulfide isomerase (PDI). The phenotype of L2 conditional lethal mutants and the localization of L2 suggest that it participates in elongation of crescents by the addition of ER membrane to the growing edge. Small amounts of L2 and PDI were detected within immature and mature virions, perhaps trapped during assembly. The repression of L2, as well as A11 and A17, two other proteins that are required for viral crescent formation, profoundly decreased the stability of a subset of viral membrane proteins including those comprising the entry-fusion complex. To avoid degradation, these unstable membrane proteins may need to directly insert into the viral membrane or be rapidly shunted there from the ER.
Collapse
Affiliation(s)
- Liliana Maruri-Avidal
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892-3210
| | - Andrea S. Weisberg
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892-3210
| | - Bernard Moss
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892-3210
| |
Collapse
|
14
|
Chlanda P, Carbajal MA, Kolovou A, Hamasaki M, Cyrklaff M, Griffiths G, Krijnse-Locker J. Vaccinia virus lacking A17 induces complex membrane structures composed of open membrane sheets. Arch Virol 2011; 156:1647-53. [PMID: 21590268 DOI: 10.1007/s00705-011-1012-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2010] [Accepted: 04/27/2011] [Indexed: 10/18/2022]
Abstract
The vaccinia virus (VACV) precursor membrane, the crescent, consists of an open membrane sheet and is formed by rupture of a cellular compartment. Here, we asked whether A17, a viral membrane protein, plays a role in membrane rupture. Without A17 synthesis, crescents are not formed, and instead, tubular and vesicular membranes accumulate (Rodriguez et al. in J Virol 69:4640-4648, 1). We used electron tomography (ET) to analyze whether the viral membranes lacking A17 consist of open membrane sheets. Tubular, vesicular and so far not described onion-shaped membranes, which consisted of open membrane sheets, were seen. Thus, the data show that membrane rupture occurs independently of the A17 protein.
Collapse
Affiliation(s)
- Petr Chlanda
- European Molecular Biology Laboratory, Heidelberg, Meyerhofstraße 1, 69117 Heidelberg, Germany.
| | | | | | | | | | | | | |
Collapse
|
15
|
Structure/Function analysis of the vaccinia virus F18 phosphoprotein, an abundant core component required for virion maturation and infectivity. J Virol 2010; 84:6846-60. [PMID: 20392848 DOI: 10.1128/jvi.00399-10] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Poxvirus virions, whose outer membrane surrounds two lateral bodies and a core, contain at least 70 different proteins. The F18 phosphoprotein is one of the most abundant core components and is essential for the assembly of mature virions. We report here the results of a structure/function analysis in which the role of conserved cysteine residues, clusters of charged amino acids and clusters of hydrophobic/aromatic amino acids have been assessed. Taking advantage of a recombinant virus in which F18 expression is IPTG (isopropyl-beta-d-thiogalactopyranoside) dependent, we developed a transient complementation assay to evaluate the ability of mutant alleles of F18 to support virion morphogenesis and/or to restore the production of infectious virus. We have also examined protein-protein interactions, comparing the ability of mutant and WT F18 proteins to interact with WT F18 and to interact with the viral A30 protein, another essential core component. We show that F18 associates with an A30-containing multiprotein complex in vivo in a manner that depends upon clusters of hydrophobic/aromatic residues in the N' terminus of the F18 protein but that it is not required for the assembly of this complex. Finally, we confirmed that two PSSP motifs within F18 are the sites of phosphorylation by cellular proline-directed kinases in vitro and in vivo. Mutation of both of these phosphorylation sites has no apparent impact on virion morphogenesis but leads to the assembly of virions with significantly reduced infectivity.
Collapse
|
16
|
The E6 protein from vaccinia virus is required for the formation of immature virions. Virology 2010; 399:201-11. [PMID: 20116821 DOI: 10.1016/j.virol.2010.01.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Revised: 01/04/2010] [Accepted: 01/07/2010] [Indexed: 11/22/2022]
Abstract
An IPTG-inducible mutant in the E6R gene of vaccinia virus was used to study the role of the E6 virion core protein in viral replication. In the absence of the inducer, the mutant exhibited a normal pattern DNA replication, concatemer resolution and late gene expression, but it showed an inhibition of virion structural protein processing it failed to produce infectious particles. Electron microscopic analysis showed that in the absence of IPTG viral morphogenesis was arrested before IV formation: crescents, aberrant or empty IV-like structures, and large aggregated virosomes were observed throughout the cytoplasm. The addition of IPTG to release a 12-h block showed that virus infectious particles could be formed in the absence of de novo DNA synthesis. Our observations show that in the absence of E6 the association of viroplasm with viral membrane crescents is impaired.
Collapse
|
17
|
Borovkov A, Magee DM, Loskutov A, Cano JA, Selinsky C, Zsemlye J, Lyons CR, Sykes K. New classes of orthopoxvirus vaccine candidates by functionally screening a synthetic library for protective antigens. Virology 2009; 395:97-113. [PMID: 19800089 DOI: 10.1016/j.virol.2009.09.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Revised: 07/22/2009] [Accepted: 09/05/2009] [Indexed: 10/20/2022]
Abstract
The licensed smallpox vaccine, comprised of infectious vaccinia, is no longer popular as it is associated with a variety of adverse events. Safer vaccines have been explored such as further attenuated viruses and component designs. However, these alternatives typically provide compromised breadth and strength of protection. We conducted a genome-level screening of cowpox, the ancestral poxvirus, in the broadly immune-presenting C57BL/6 mouse as an approach to discovering novel components with protective capacities. Cowpox coding sequences were synthetically built and directly assayed by genetic immunization for open-reading frames that protect against lethal pulmonary infection. Membrane and non-membrane antigens were identified that partially protect C57BL/6 mice against cowpox and vaccinia challenges without adjuvant or regimen optimization, whereas the 4-pox vaccine did not. New vaccines might be developed from productive combinations of these new and existing antigens to confer potent, broadly efficacious protection and be contraindicated for none.
Collapse
Affiliation(s)
- Alexandre Borovkov
- Center for Innovations in Medicine at The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Cidofovir inhibits genome encapsidation and affects morphogenesis during the replication of vaccinia virus. J Virol 2009; 83:11477-90. [PMID: 19726515 DOI: 10.1128/jvi.01061-09] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cidofovir (CDV) is one of the most effective antiorthopoxvirus drugs, and it is widely accepted that viral DNA replication is the main target of its activity. In the present study, we report a detailed analysis of CDV effects on the replicative cycles of distinct vaccinia virus (VACV) strains: Cantagalo virus, VACV-IOC, and VACV-WR. We show that despite the approximately 90% inhibition of production of virus progeny, virus DNA accumulation was reduced only 30%, and late gene expression and genome resolution were unaltered. The level of proteolytic cleavage of the major core proteins was diminished in CDV-treated cells. Electron microscopic analysis of virus-infected cells in the presence of CDV revealed reductions as great as 3.5-fold in the number of mature forms of virus particles, along with a 3.2-fold increase in the number of spherical immature particles. A detailed analysis of purified virions recovered from CDV-treated cells demonstrated the accumulation of unprocessed p4a and p4b and nearly 67% inhibition of DNA encapsidation. However, these effects of CDV on virus morphogenesis resulted from a primary effect on virus DNA synthesis, which led to later defects in genome encapsidation and virus assembly. Analysis of virus DNA by atomic force microscopy revealed that viral cytoplasmic DNA synthesized in the presence of CDV had an altered structure, forming aggregates with increased strand overlapping not observed in the absence of the drug. These aberrant DNA aggregations were not encapsidated into virus particles.
Collapse
|
19
|
Using fluorescent proteins to study poxvirus morphogenesis. Methods Mol Biol 2009. [PMID: 19378136 DOI: 10.1007/978-1-59745-559-6_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Fluorescent protein (FP) fusions not only allow for the convenient visualization of a protein of -interest's subcellular localization but also permit the real-time monitoring of their subcellular trafficking. The subcellular fluorescent pattern of FP-fusions can also serve as a visual marker for various subcellular processes using either live or static microscopy. We have employed FP-fusions for the study of poxvirus morphogenesis. Fusion of FP with either a viral core protein or an extracellular virion-specific protein can serve as a visual read-out for normal poxvirus morphogenesis at the subcellular level. Recombinant viruses expressing a FP-fusion, in conjunction with the deletion of a gene involved in either morphogenesis or egress, usually display an aberrant FP pattern. Functional domains in the missing protein are then mapped by complementation in-trans followed by fluorescent microscopy for analysis of the FP pattern. The methods presented here describe how to infect and transfect cells for trans-complementation for the purpose of functional domain mapping. The imaging and analysis of these cells is described.
Collapse
|
20
|
Inhibition of vaccinia virus replication by two small interfering RNAs targeting B1R and G7L genes and their synergistic combination with cidofovir. Antimicrob Agents Chemother 2009; 53:2579-88. [PMID: 19307376 DOI: 10.1128/aac.01626-08] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In view of the threat of the potential use of variola virus in a terrorist attack, considerable efforts have been performed to develop new antiviral strategies against orthopoxviruses. Here we report on the use of RNA interference, either alone or in combination with cidofovir, as an approach to inhibit orthopoxvirus replication. Two selected small interfering RNAs (siRNAs), named siB1R-2 and siG7L-1, and a previously reported siRNA, i.e., siD5R-2 (which targets the viral D5R mRNA), were evaluated for antiviral activity against vaccinia virus (VACV) by plaque reduction and virus yield assays. siB1R-2 and siG7L-1, administered before or after viral infection, reduced VACV replication by more than 90%. Also, these two siRNAs decreased monkeypox virus replication by 95% at a concentration of 1 nM. siB1R-2 and siG7L-1 were demonstrated to specifically silence their corresponding transcripts, i.e., B1R and G7L mRNAs, without induction of a beta interferon response. Strong synergistic effects were observed when siB1R-2, siG7L-1, or siD5R-2 was combined with cidofovir. In addition, the antiviral activities of these three siRNAs were evaluated against VACV resistant to cidofovir and other acyclic nucleoside phosphonates. siG7L-1 and siD5R-2 remained active against four of five VACV mutants, while siB1R-2 showed activity against only one of the mutants. Our results showed that siRNAs are potent inhibitory agents in vitro, not only against wild-type VACV but also against several cidofovir-resistant VACV. Furthermore, we showed that a combined therapy using siRNA and cidofovir may be useful in the treatment of poxvirus infections.
Collapse
|
21
|
Resch W, Weisberg AS, Moss B. Expression of the highly conserved vaccinia virus E6 protein is required for virion morphogenesis. Virology 2009; 386:478-85. [PMID: 19217136 DOI: 10.1016/j.virol.2009.01.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 01/05/2009] [Accepted: 01/09/2009] [Indexed: 11/29/2022]
Abstract
The vaccinia virus E6R gene (VACVWR062) is conserved in all members of the poxvirus family and encodes a protein associated with the mature virion. We confirmed this association and provided evidence for an internal location. An inducible mutant that conditionally expresses E6 was constructed. In the absence of inducer, plaque formation and virus production were severely inhibited in several cell lines, whereas some replication occurred in others. This difference could be due to variation in the stringency of repression, since we could not isolate a stable deletion mutant even in the more "permissive" cells. Under non-permissive conditions, viral late proteins were synthesized but processing of core proteins was inefficient, indicative of an assembly block. Transmission electron microscopy of sections of cells infected with the mutant in the absence of inducer revealed morphogenetic defects with crescents and empty immature virions adjacent to dense inclusions of viroplasm. Mature virions were infrequent and cores appeared to have lucent centers.
Collapse
Affiliation(s)
- Wolfgang Resch
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-3210, USA
| | | | | |
Collapse
|
22
|
Unger B, Nichols RJ, Stanitsa ES, Traktman P. Functional characterization of the vaccinia virus I5 protein. Virol J 2008; 5:148. [PMID: 19077320 PMCID: PMC2621143 DOI: 10.1186/1743-422x-5-148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Accepted: 12/15/2008] [Indexed: 12/05/2022] Open
Abstract
The I5L gene is one of ~90 genes that are conserved throughout the chordopoxvirus family, and hence are presumed to play vital roles in the poxvirus life cycle. Previous work had indicated that the VP13 protein, a component of the virion membrane, was encoded by the I5L gene, but no additional studies had been reported. Using a recombinant virus that encodes an I5 protein fused to a V5 epitope tag at the endogenous locus (vI5V5), we show here that the I5 protein is expressed as a post-replicative gene and that the ~9 kDa protein does not appear to be phosphorylated in vivo. I5 does not appear to traffic to any cellular organelle, but ultrastructural and biochemical analyses indicate that I5 is associated with the membranous components of assembling and mature virions. Intact virions can be labeled with anti-V5 antibody as assessed by immunoelectron microscopy, indicating that the C' terminus of the protein is exposed on the virion surface. Using a recombinant virus which encodes only a TET-regulated copy of the I5V5 gene (vΔindI5V5), or one in which the I5 locus has been deleted (vΔI5), we also show that I5 is dispensable for replication in tissue culture. Neither plaque size nor the viral yield produced in BSC40 cells or primary human fibroblasts are affected by the absence of I5 expression.
Collapse
Affiliation(s)
- Bethany Unger
- Department of Microbiology & Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | | | | | | |
Collapse
|
23
|
The C-terminal region of envelope protein VP38 from white spot syndrome virus is indispensable for interaction with VP24. Arch Virol 2008; 153:2103-6. [PMID: 18932021 DOI: 10.1007/s00705-008-0221-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Accepted: 09/30/2008] [Indexed: 10/21/2022]
Abstract
White spot syndrome virus (WSSV) is a large, rod-shaped, enveloped double-stranded DNA virus. In this study, VP38, a viral envelope protein, was expressed as a glutathione S-transferase (GST) fusion protein, and a polyclonal antibody against VP38 was obtained. Far-Western blotting and GST pull-down showed that VP38 interacted directly with VP24, a major WSSV envelope protein. In addition, to delineate the interaction region of VP38 with VP24, GST-VP38n (aa 1-142) and GST-VP38c (aa 143-309) were expressed. The GST pull-down assay revealed that VP38 binds via its C-terminal region to VP24. The result implies that VP38 may participate in the formation of the WSSV envelope.
Collapse
|
24
|
Senkevich TG, Wyatt LS, Weisberg AS, Koonin EV, Moss B. A conserved poxvirus NlpC/P60 superfamily protein contributes to vaccinia virus virulence in mice but not to replication in cell culture. Virology 2008; 374:506-14. [PMID: 18281072 DOI: 10.1016/j.virol.2008.01.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2007] [Revised: 01/02/2008] [Accepted: 01/07/2008] [Indexed: 10/22/2022]
Abstract
Of the vaccinia virus genes that are conserved in all sequenced poxviruses, each one except for VACWR084 (G6R) has been at least partially characterized. The poxvirus protein encoded by G6R belongs to the NlpC/P60 superfamily, which consists of proteins with a papain-like fold and known or predicted protease, amidase or acyltransferase activity. The G6 protein was synthesized late in infection and localized to the interior of virions, primarily between the membrane and core. Unlike other conserved poxvirus genes, G6R was not required for virus propagation and spread in a variety of cells. Nevertheless, G6R null mutants caused less severe disease in mice than the parent or revertant virus. Moreover, mutation of the predicted catalytic cysteine led to the same level of attenuation as a null mutant, suggesting that the G6 protein has enzymatic activity that is important in vivo. Conservation of G6R amongst poxviruses and the disparity between its role in vitro and in vivo imply that the protein is involved in an aspect of the virus-host interaction that is common to vertebrates and insects.
Collapse
Affiliation(s)
- Tatiana G Senkevich
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
25
|
Netherton C, Moffat K, Brooks E, Wileman T. A guide to viral inclusions, membrane rearrangements, factories, and viroplasm produced during virus replication. Adv Virus Res 2007; 70:101-82. [PMID: 17765705 PMCID: PMC7112299 DOI: 10.1016/s0065-3527(07)70004-0] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Virus replication can cause extensive rearrangement of host cell cytoskeletal and membrane compartments leading to the “cytopathic effect” that has been the hallmark of virus infection in tissue culture for many years. Recent studies are beginning to redefine these signs of viral infection in terms of specific effects of viruses on cellular processes. In this chapter, these concepts have been illustrated by describing the replication sites produced by many different viruses. In many cases, the cellular rearrangements caused during virus infection lead to the construction of sophisticated platforms in the cell that concentrate replicase proteins, virus genomes, and host proteins required for replication, and thereby increase the efficiency of replication. Interestingly, these same structures, called virus factories, virus inclusions, or virosomes, can recruit host components that are associated with cellular defences against infection and cell stress. It is possible that cellular defence pathways can be subverted by viruses to generate sites of replication. The recruitment of cellular membranes and cytoskeleton to generate virus replication sites can also benefit viruses in other ways. Disruption of cellular membranes can, for example, slow the transport of immunomodulatory proteins to the surface of infected cells and protect against innate and acquired immune responses, and rearrangements to cytoskeleton can facilitate virus release.
Collapse
Affiliation(s)
- Christopher Netherton
- Vaccinology Group, Pirbright Laboratories, Institute for Animal Health, Surrey, United Kingdom
| | | | | | | |
Collapse
|
26
|
Yang SJ, Hruby DE. Vaccinia virus A12L protein and its AG/A proteolysis play an important role in viral morphogenic transition. Virol J 2007; 4:73. [PMID: 17625005 PMCID: PMC1947960 DOI: 10.1186/1743-422x-4-73] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Accepted: 07/11/2007] [Indexed: 01/25/2023] Open
Abstract
Like the major vaccinia virus (VV) core protein precursors, p4b and p25K, the 25 kDa VV A12L late gene product (p17K) is proteolytically maturated at the conserved Ala-Gly-Ala motif. However, the association of the precursor and its cleavage product with the core of mature virion suggests that both of the A12L proteins may be required for virus assembly. Here, in order to test the requirement of the A12L protein and its proteolysis in viral replication, a conditional lethal mutant virus (vvtetOA12L) was constructed to regulate A12L expression by the presence or absence of an inducer, tetracycline. In the absence of tetracycline, replication of vvtetOA12L was inhibited by 80% and this inhibition could be overcome by transient expression of the wild-type copy of the A12L gene. In contrast, mutation of the AG/A site abrogated the ability of the transfected A12L gene to rescue, indicating that A12L proteolysis plays an important role in viral replication. Electron microscopy analysis of the A12L deficient virus demonstrated the aberrant virus particles, which were displayed by the AG/A site mutation. Thus, we concluded that the not only A12L protein but also its cleavage processing plays an essential role in virus morphogenic transition.
Collapse
Affiliation(s)
- Su Jung Yang
- Department of Microbiology, Oregon State University, Corvallis, Oregon 97331-3804, USA
| | - Dennis E Hruby
- Department of Microbiology, Oregon State University, Corvallis, Oregon 97331-3804, USA
| |
Collapse
|
27
|
Characterization of a novel envelope protein WSV010 of shrimp white spot syndrome virus and its interaction with a major viral structural protein VP24. Virology 2007; 364:208-13. [PMID: 17400271 DOI: 10.1016/j.virol.2007.02.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2006] [Revised: 02/07/2007] [Accepted: 02/28/2007] [Indexed: 11/28/2022]
Abstract
White spot syndrome virus is one of the most serious viral pathogens causing huge mortality in shrimp farming. Here we report characterization of WSV010, a novel structural protein identified by our recent shotgun proteomics study. Its ORF contains 294 nucleotides encoding 97 amino acids. Transcription analysis using RT-PCR showed that wsv010 is a late gene. Localization analyses by Western blot and immunoelectron microscopy demonstrated that WSV010 is a viral envelope protein. Furthermore, the pull-down assay revealed that WSV010 could interact with VP24, which is a major envelope protein. Since WSV010 lacks a transmembrane domain, these results suggest that WSV010 may anchor to the envelope through interaction with VP24. Previous studies indicated that VP24 could also interact with VP28 and VP26. Therefore, we propose that VP24 may act as a linker protein to associate these envelope proteins together to form a complex, which may play an important role in viral morphogenesis and viral infection.
Collapse
|
28
|
Bluetongue virus RNA binding protein NS2 is a modulator of viral replication and assembly. BMC Mol Biol 2007; 8:4. [PMID: 17241458 PMCID: PMC1794256 DOI: 10.1186/1471-2199-8-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2006] [Accepted: 01/22/2007] [Indexed: 11/16/2022] Open
Abstract
Background Bluetongue virus (BTV) particles consist of seven structural proteins that are organized into two capsids. In addition, BTV also encodes three non-structural (NS) proteins of which protein 2 (NS2) is the RNA binding protein and is also the major component of virus encoded inclusion bodies (VIBs), which are believed to be virus assembly sites. To investigate the contribution of NS2 in virus replication and assembly we have constructed inducible mammalian cell lines expressing full-length NS2. In addition, truncated NS2 fragments were also generated in an attempt to create dominant negative mutants for NS2 function. Results Our data revealed that expression of full-length NS2 was sufficient for the formation of inclusion bodies (IBs) that were morphologically similar to the VIBs formed during BTV infection. By using either, individual BTV proteins or infectious virions, we found that while the VP3 of the inner capsid (termed as "core") that surrounds the transcription complex was closely associated with both NS2 IBs and BTV VIBs, the surface core protein VP7 co-localized with NS2 IBs only in the presence of VP3. In contrast to the inner core proteins, the outer capsid protein VP2 was not associated with either IBs or VIBs. Like the core proteins, newly synthesized BTV RNAs also accumulated in VIBs. Unlike full-length NS2, neither the amino-, nor carboxyl-terminal fragments formed complete IB structures and each appeared to interfere in overall virus replication when similarly expressed. Conclusion Together, these data demonstrate that NS2 is sufficient and necessary for IB formation and a key player in virus replication and core assembly. Perturbation of NS2 IB formation resulted in reduced virus synthesis and both the N terminal (NS2-1) and C terminal (NS2-2) fragments act as dominant negative mutants of NS2 function.
Collapse
|
29
|
Resch W, Hixson KK, Moore RJ, Lipton MS, Moss B. Protein composition of the vaccinia virus mature virion. Virology 2006; 358:233-47. [PMID: 17005230 DOI: 10.1016/j.virol.2006.08.025] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2006] [Revised: 08/03/2006] [Accepted: 08/18/2006] [Indexed: 10/24/2022]
Abstract
The protein content of vaccinia virus mature virions, purified by rate zonal and isopycnic centrifugations and solubilized by SDS or a solution of urea and thiourea, was determined by the accurate mass and time tag technology which uses both tandem mass spectrometry and Fourier transform-ion cyclotron resonance mass spectrometry to detect tryptic peptides separated by high-resolution liquid chromatography. Eighty vaccinia virus-encoded proteins representing 37% of the 218 genes annotated in the complete genome sequence were detected in at least three analyses. Ten proteins accounted for approximately 80% of the virion mass. Thirteen identified proteins were not previously reported as components of virions. On the other hand, 8 previously described virion proteins were not detected here, presumably due to technical reasons including small size and hydrophobicity. In addition to vaccinia virus-encoded proteins, 24 host proteins omitting isoforms were detected. The most abundant of these were cytoskeletal proteins, heat shock proteins and proteins involved in translation.
Collapse
Affiliation(s)
- Wolfgang Resch
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 4 Center Drive, MSC 0445, Bethesda, MD 20892-0445, USA
| | | | | | | | | |
Collapse
|
30
|
Moerdyk MJ, Byrd CM, Hruby DE. Analysis of vaccinia virus temperature-sensitive I7L mutants reveals two potential functional domains. Virol J 2006; 3:64. [PMID: 16945137 PMCID: PMC1570340 DOI: 10.1186/1743-422x-3-64] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Accepted: 08/31/2006] [Indexed: 11/23/2022] Open
Abstract
As an approach to initiating a structure-function analysis of the vaccinia virus I7L core protein proteinase, a collection of conditional-lethal mutants in which the mutation had been mapped to the I7L locus were subjected to genomic sequencing and phenotypic analyses. Mutations in six vaccinia virus I7L temperature sensitive mutants fall into two groups: changes at three positions at the N-terminal end between amino acids 29 and 37 and two different substitutions at amino acid 344, near the catalytic domain. Regardless of the position of the mutation, mutants at the non-permissive temperature failed to cleave core protein precursors and had their development arrested prior to core condensation. Thus it appears that the two clusters of mutations may affect two different functional domains required for proteinase activity.
Collapse
Affiliation(s)
- Megan J Moerdyk
- Department of Microbiology, Oregon State University, Corvallis, OR, 97331, USA
| | - Chelsea M Byrd
- SIGA Technologies, Inc., 4575 SW Research Way, Corvallis, OR, 97333, USA
| | - Dennis E Hruby
- Department of Microbiology, Oregon State University, Corvallis, OR, 97331, USA
- SIGA Technologies, Inc., 4575 SW Research Way, Corvallis, OR, 97333, USA
| |
Collapse
|
31
|
Abstract
Poxviruses comprise a large family of viruses characterized by a large, linear dsDNA genome, a cytoplasmic site of replication and a complex virion morphology. The most notorious member of the poxvirus family is variola, the causative agent of smallpox. The laboratory prototype virus used for the study of poxviruses is vaccinia, the virus that was used as a live, naturally attenuated vaccine for the eradication of smallpox. Both the morphogenesis and structure of poxvirus virions are unique among viruses. Poxvirus virions apparently lack any of the symmetry features common to other viruses such as helical or icosahedral capsids or nucleocapsids. Instead poxvirus virions appear as "brick shaped" or "ovoid" membrane-bound particles with a complex internal structure featuring a walled, biconcave core flanked by "lateral bodies." The virion assembly pathway involves a remarkable fabrication of membrane-containing crescents and immature virions, which evolve into mature virions in a process that is unparalleled in virology. As a result of significant advances in poxvirus genetics and molecular biology during the past 15 years, we can now positively identify over 70 specific gene products contained in poxvirus virions, and we can describe the effects of mutations in over 50 specific genes on poxvirus assembly. This review summarizes these advances and attempts to assemble them into a comprehensible and thoughtful picture of poxvirus structure and assembly.
Collapse
Affiliation(s)
- Richard C Condit
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, 32610, USA
| | | | | |
Collapse
|
32
|
Xie X, Xu L, Yang F. Proteomic analysis of the major envelope and nucleocapsid proteins of white spot syndrome virus. J Virol 2006; 80:10615-23. [PMID: 16928742 PMCID: PMC1641770 DOI: 10.1128/jvi.01452-06] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
White spot syndrome virus (WSSV) virions were purified from the tissues of infected Procambarus clarkii (crayfish) isolates. Pure WSSV preparations were subjected to Triton X-100 treatment to separate into the envelope and nucleocapsid fractions, which were subsequently separated by 12% sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The major envelope and nucleocapsid proteins were identified by either matrix-assisted laser desorption ionization-time of flight mass spectrometry or defined antibody. A total of 30 structural proteins of WSSV were identified in this study; 22 of these were detected in the envelope fraction, 7 in the nucleocapsid fraction, and 1 in both the envelope and the nucleocapsid fractions. With the aid of specific antibodies, the localizations of eight proteins were further studied. The analysis of posttranslational modifications revealed that none of the WSSV structural proteins was glycosylated and that VP28 and VP19 were threonine phosphorylated. In addition, far-Western and coimmunoprecipitation experiments showed that VP28 interacted with both VP26 and VP24. In summary, the data obtained in this study should provide an important reference for future molecular studies of WSSV morphogenesis.
Collapse
Affiliation(s)
- Xixian Xie
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, SOA, 178 Daxue Rd., Xiamen 361005, People's Republic of China
| | | | | |
Collapse
|
33
|
Xie X, Yang F. White spot syndrome virus VP24 interacts with VP28 and is involved in virus infection. J Gen Virol 2006; 87:1903-1908. [PMID: 16760392 DOI: 10.1099/vir.0.81570-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
White spot syndrome virus (WSSV) is one of the most virulent pathogens causing high mortality in shrimp. Herein, the characterization of VP24, a major structural protein of WSSV, is described. When purified virions were subjected to Nonidet P-40 treatment to separate the envelopes from the nucleocapsids, VP24 was found to be present exclusively in the envelope fraction. Triton X-114 extraction also indicated that VP24 behaves as an envelope protein. Immunoelectron microscopy further confirmed that VP24 is located in the virion envelope. Far-Western experiments showed that VP24 interacts with VP28, another major envelope protein of the WSSV virion. To investigate the function of VP24, WSSV was neutralized with various amounts of anti-VP24 IgG and injected into crayfish. The results showed that anti-VP24 IgG could partially attenuate infection with WSSV. It is concluded that VP24 is an envelope protein and functions at an early stage in virus infection.
Collapse
Affiliation(s)
- Xixian Xie
- School of Life Science, Xiamen University, 178 Daxue Road, Xiamen 361005, People's Republic of China
| | - Feng Yang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Xiamen, People's Republic of China
| |
Collapse
|
34
|
Yoder JD, Chen TS, Gagnier CR, Vemulapalli S, Maier CS, Hruby DE. Pox proteomics: mass spectrometry analysis and identification of Vaccinia virion proteins. Virol J 2006; 3:10. [PMID: 16509968 PMCID: PMC1540416 DOI: 10.1186/1743-422x-3-10] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2006] [Accepted: 03/01/2006] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Although many vaccinia virus proteins have been identified and studied in detail, only a few studies have attempted a comprehensive survey of the protein composition of the vaccinia virion. These projects have identified the major proteins of the vaccinia virion, but little has been accomplished to identify the unknown or less abundant proteins. Obtaining a detailed knowledge of the viral proteome of vaccinia virus will be important for advancing our understanding of orthopoxvirus biology, and should facilitate the development of effective antiviral drugs and formulation of vaccines. RESULTS In order to accomplish this task, purified vaccinia virions were fractionated into a soluble protein enriched fraction (membrane proteins and lateral bodies) and an insoluble protein enriched fraction (virion cores). Each of these fractions was subjected to further fractionation by either sodium dodecyl sulfate-polyacrylamide gel electophoresis, or by reverse phase high performance liquid chromatography. The soluble and insoluble fractions were also analyzed directly with no further separation. The samples were prepared for mass spectrometry analysis by digestion with trypsin. Tryptic digests were analyzed by using either a matrix assisted laser desorption ionization time of flight tandem mass spectrometer, a quadrupole ion trap mass spectrometer, or a quadrupole-time of flight mass spectrometer (the latter two instruments were equipped with electrospray ionization sources). Proteins were identified by searching uninterpreted tandem mass spectra against a vaccinia virus protein database created by our lab and a non-redundant protein database. CONCLUSION Sixty three vaccinia proteins were identified in the virion particle. The total number of peptides found for each protein ranged from 1 to 62, and the sequence coverage of the proteins ranged from 8.2% to 94.9%. Interestingly, two vaccinia open reading frames were confirmed as being expressed as novel proteins: E6R and L3L.
Collapse
Affiliation(s)
- Jennifer D Yoder
- Oregon State University, Department of Microbiology, 220 Nash Hall, Corvallis, OR 97331-3804, USA
| | - Tsefang S Chen
- Oregon State University, Department of Microbiology, 220 Nash Hall, Corvallis, OR 97331-3804, USA
| | - Cliff R Gagnier
- Oregon State University, Department of Microbiology, 220 Nash Hall, Corvallis, OR 97331-3804, USA
| | - Srilakshmi Vemulapalli
- Oregon State University, Applied Biotechnology Program, 2082 Cordley Hall, Corvallis, OR 97331-8530, USA
| | - Claudia S Maier
- Oregon State University, Department of Chemistry, 153 Gilbert Hall, Corvallis, OR 97331-4003, USA
| | - Dennis E Hruby
- Oregon State University, Department of Microbiology, 220 Nash Hall, Corvallis, OR 97331-3804, USA
| |
Collapse
|
35
|
Chung CS, Chen CH, Ho MY, Huang CY, Liao CL, Chang W. Vaccinia virus proteome: identification of proteins in vaccinia virus intracellular mature virion particles. J Virol 2006; 80:2127-40. [PMID: 16474121 PMCID: PMC1395410 DOI: 10.1128/jvi.80.5.2127-2140.2006] [Citation(s) in RCA: 206] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2005] [Accepted: 12/05/2005] [Indexed: 12/17/2022] Open
Abstract
Vaccinia virus is a large enveloped poxvirus with more than 200 genes in its genome. Although many poxvirus genomes have been sequenced, knowledge of the host and viral protein components of the virions remains incomplete. In this study, we used gel-free liquid chromatography and tandem mass spectroscopy to identify the viral and host proteins in purified vaccinia intracellular mature virions (IMV). Analysis of the proteins in the IMV showed that it contains 75 viral proteins, including structural proteins, enzymes, transcription factors, and predicted viral proteins not known to be expressed or present in the IMV. We also determined the relative abundances of the individual protein components in the IMV. Finally, 23 IMV-associated host proteins were also identified. This study provides the first comprehensive structural analysis of the infectious vaccinia virus IMV.
Collapse
Affiliation(s)
- Che-Sheng Chung
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China
| | | | | | | | | | | |
Collapse
|
36
|
Parrish S, Moss B. Characterization of a vaccinia virus mutant with a deletion of the D10R gene encoding a putative negative regulator of gene expression. J Virol 2006; 80:553-61. [PMID: 16378957 PMCID: PMC1346865 DOI: 10.1128/jvi.80.2.553-561.2006] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The D9 and D10 proteins of vaccinia virus are 25% identical to each other, contain a mutT motif characteristic of nudix hydrolases, and are conserved in all sequenced poxviruses. Previous studies indicated that overexpression of D10 and, to a lesser extent, D9 decreased the levels of capped mRNAs and their translation products. Here, we further characterized the D10 protein and showed that only trace amounts are associated with purified virions and that it is expressed exclusively at late times after vaccinia virus infection. A viable deletion mutant (vdeltaD10) produced smaller plaques and lower virus yields than either wild-type virus or a D9R deletion mutant (vdeltaD9). Purified vdeltaD10 virions appeared normal by microscopic examination and biochemical analysis but produced 6- to 10-fold-fewer plaques at the same concentration as wild-type or vdeltaD9 virions. When 4 PFU per cell of wild-type or vdeltaD9 virions or equal numbers of vdeltaD10 virions were used for inoculation, nearly all cells were infected in each case, but viral early and late transcription was initiated more slowly in vdeltaD10-infected cells than in the others. However, viral early transcripts accumulated to higher levels in vdeltaD10-infected cells than in cells infected with the wild type or vdeltaD9. In addition, viral early and late mRNAs and cellular actin mRNA persisted longer in vdeltaD10-infected cells than in others. Furthermore, analysis of pulse-labeled proteins indicated prolonged synthesis of cellular and viral early proteins. These results are consistent with a role for D10 in regulating RNA levels in poxvirus-infected cells.
Collapse
Affiliation(s)
- Susan Parrish
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-0445, USA
| | | |
Collapse
|
37
|
Chiu WL, Szajner P, Moss B, Chang W. Effects of a temperature sensitivity mutation in the J1R protein component of a complex required for vaccinia virus assembly. J Virol 2005; 79:8046-56. [PMID: 15956550 PMCID: PMC1143739 DOI: 10.1128/jvi.79.13.8046-8056.2005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Vaccinia virus J1R protein is required for virion morphogenesis (W. L. Chiu and W. Chang, J. Virol. 76:9575-9587, 2002). In this work, we further characterized the J1R protein of wild-type vaccinia virus and compared it with the protein encoded by the temperature-sensitive mutant virus Cts45. The mutant Cts45 was found to contain a Pro-to-Ser substitution at residue 132 of the J1R open reading frame, which is responsible for a loss-of-function phenotype. The half-life of the J1R-P132S mutant protein was comparable at both 31 and 39 degrees C, indicating that the P132S mutation did not affect the stability of the J1R protein. We also showed that the J1R protein interacts with itself in the virus-infected cells. The N-terminal region of the J1R protein, amino acids (aa) 1 to 77, interacted with the C-terminal region, aa 84 to 153, and the P132 mutation did not abolish this interaction, as determined by two-hybrid analysis. Furthermore, we demonstrated that J1R protein is part of a viral complex containing the A30L, G7L, and F10L proteins in virus-infected cells. In immunofluorescence analyses, wild-type J1R protein colocalized with the A30L, G7L, and F10L proteins in virus-infected cells but the loss-of-function P132 mutant did not. Furthermore, without a functional J1R protein, rapid degradation of A30L and the 15-kDa forms of the G7L and F10L proteins was observed in cells infected with Cts45 at 39 degrees C. This study thus demonstrated the importance of the J1R protein in the formation of a viral assembly complex required for morphogenesis.
Collapse
Affiliation(s)
- Wen-Ling Chiu
- Institute of Molecular Biology, Academia Sinica, 128, Sec. 2, Academia Road, Nankang, Taipei 11529, Taiwan, Republic of China
| | | | | | | |
Collapse
|
38
|
Punjabi A, Traktman P. Cell biological and functional characterization of the vaccinia virus F10 kinase: implications for the mechanism of virion morphogenesis. J Virol 2005; 79:2171-90. [PMID: 15681420 PMCID: PMC546551 DOI: 10.1128/jvi.79.4.2171-2190.2005] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The vaccinia virus F10 protein is one of two virally encoded protein kinases. A phenotypic analysis of infections involving a tetracycline-inducible recombinant (vDeltaiF10) indicated that F10 is involved in the early stages of virion morphogenesis, as previously reported for the mutants ts28 and ts15. The proteins encoded by ts28 and ts15 have primary defects in enzymatic activity and thermostability, respectively. Using a transient complementation assay, we demonstrated that the enzymatic activity of F10 is essential for its biological function and that both its enzymatic and biological functions depend upon N-terminal sequences that precede the catalytic domain. An execution point analysis indicated that in addition to its role at the onset of morphogenesis, F10 is also required at later stages, when membrane crescents surround virosomal contents and develop into immature virions. The F10 protein is phosphorylated in vivo, appears to be tightly associated with intracellular membranes, and can bind to specific phosphoinositides in vitro. When F10 is repressed or impaired, the phosphorylation of several cellular and viral proteins appears to increase in intensity, suggesting that F10 may normally intersect with cellular signaling cascades via the activation of a phosphatase or the inhibition of another kinase. These cascades may drive the F10-induced remodeling of membranes that accompanies virion biogenesis. Upon the release of ts28-infected cultures from a 40 degrees C-induced block, a synchronous resumption of morphogenesis that culminates in the production of infectious virus can be observed. The pharmacological agents H89 and cerulenin, which are inhibitors of endoplasmic reticulum exit site formation and de novo lipid synthesis, respectively, block this recovery.
Collapse
Affiliation(s)
- Almira Punjabi
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, 8701 Watertown Plank Rd., BSB-273, Milwaukee, WI 53226, USA
| | | |
Collapse
|
39
|
Mercer J, Traktman P. Genetic and cell biological characterization of the vaccinia virus A30 and G7 phosphoproteins. J Virol 2005; 79:7146-61. [PMID: 15890954 PMCID: PMC1112092 DOI: 10.1128/jvi.79.11.7146-7161.2005] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The vaccinia virus proteins A30 and G7 are known to play essential roles in early morphogenesis, acting prior to the formation of immature virions. Their repression or inactivation results in the accumulation of large virosomes, detached membrane crescents, and empty immature virions. We have undertaken further study of these proteins to place them within the context of the F10 kinase, the A14 membrane protein, and the H5 phosphoprotein, which have been the focus of previous studies within our laboratory. Here we confirm that both A30 and G7 undergo F10 kinase-dependent phosphorylation in vivo and recapitulate that modification of A30 in vitro. Although the detached crescents observed upon loss of A30 or G7 echo those seen upon repression of A14, no interaction between A30/G7 and A14 could be detected. We did, however, determine that the A30 and G7 proteins are unstable during nonpermissive tsH5 infections, suggesting that the loss of A30/G7 is the underlying cause for the formation of lacy or curdled virosomes. We also determined that the temperature-sensitive phenotype of the Cts11 virus is due to mutations in two codons of the G7L gene. Phenotypic analysis of nonpermissive Cts11 infections indicated that these amino acid substitutions compromise G7 function without impairing the stability of either G7 or A30. Utilizing Cts11 in conjunction with a rifampin release assay, we determined that G7 acts at multiple stages of virion morphogenesis that can be distinguished both by ultrastructural analysis and by monitoring the phosphorylation status of several viral proteins that undergo F10-mediated phosphorylation.
Collapse
Affiliation(s)
- Jason Mercer
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Paula Traktman
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
- Corresponding author. Mailing address: Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, 8701 Watertown Plank Rd., BSB-273, Milwaukee, WI 53226. Phone: (414) 456-8253. Fax: (414) 456-6535. E-mail:
| |
Collapse
|
40
|
Szajner P, Jaffe H, Weisberg AS, Moss B. A complex of seven vaccinia virus proteins conserved in all chordopoxviruses is required for the association of membranes and viroplasm to form immature virions. Virology 2005; 330:447-59. [PMID: 15567438 DOI: 10.1016/j.virol.2004.10.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2004] [Revised: 09/28/2004] [Accepted: 10/05/2004] [Indexed: 10/26/2022]
Abstract
Early events in vaccinia virus (VAC) morphogenesis, particularly the formation of viral membranes and their association with viroplasm, are poorly understood. Recently, we showed that repression of A30 or G7 expression results in the accumulation of normal viral membranes that form empty-looking immature virions (IV), which are separated from large masses of electron-dense viroplasm. In addition, A30 and G7 physically and functionally interact with each other and with the F10 protein kinase. To identify other proteins involved in early morphogenesis, proteins from cells that had been infected with vaccinia virus expressing an epitope-tagged copy of F10 were purified by immunoaffinity chromatography and analyzed by gel electrophoresis. In addition to F10, A30, and G7, viral proteins A15, D2, D3, and J1 were identified by mass spectrometry of tryptic peptides. Further evidence for the complex was obtained by immunopurification of proteins associated with epitope-tagged A15, D2, and D3. The previously unstudied A15, like other proteins in the complex, was expressed late in infection, associated with virus cores, and required for the stability and kinase activity of F10. Biochemical and electron microscopic analyses indicated that mutants in which A15 or D2 expression was regulated by the Escherichia coli lac operator system exhibited phenotypes characterized by the presence of large numbers of empty immature virions, similar to the results obtained with inducible A30 and G7 mutants. Empty immature virions were also seen by electron microscopy of cells infected with temperature-sensitive mutants of D2 or D3, though the numbers of membrane forms were reduced perhaps due to additional effects of high temperature.
Collapse
Affiliation(s)
- Patricia Szajner
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
41
|
da Fonseca FG, Weisberg AS, Caeiro MF, Moss B. Vaccinia virus mutants with alanine substitutions in the conserved G5R gene fail to initiate morphogenesis at the nonpermissive temperature. J Virol 2004; 78:10238-48. [PMID: 15367589 PMCID: PMC516429 DOI: 10.1128/jvi.78.19.10238-10248.2004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The initial characterization of the product of the vaccinia virus G5R gene, which is conserved in all poxviruses sequenced to date, is described. The G5 protein was detected in the core fraction of purified virions, and transcription and translation of the G5R open reading frame occurred early in infection, independently of DNA replication. Attempts to delete the G5R gene and isolate a replication-competent virus were unsuccessful, suggesting that G5R encodes an essential function. We engineered vaccinia virus mutants with clusters of charged amino acids changed to alanines and determined that several were unable to replicate at 40 degrees C but grew well at 37 degrees C. At the nonpermissive temperature, viral gene expression and DNA replication and processing were unperturbed. However, tyrosine phosphorylation and proteolytic cleavage of the A17 membrane protein and proteolytic cleavage of core proteins were inhibited at 40 degrees C, suggesting an assembly defect. The cytoplasm of cells that had been infected at the nonpermissive temperature contained large granular areas devoid of cellular organelles or virus structures except for occasional short crescent-shaped membranes and electron-dense lacy structures. The temperature-sensitive phenotype of the G5R mutants closely resembled the phenotypes of vaccinia virus mutants carrying conditionally lethal F10R protein kinase and H5R mutations. F10, although required for phosphorylation of A17 and viral membrane formation, was synthesized by the G5R mutants under nonpermissive conditions. An intriguing possibility is that G5 participates in the formation of viral membranes, a poorly understood event in poxvirus assembly.
Collapse
Affiliation(s)
- Flavio G da Fonseca
- Laboratory of Viral Diseases, National Institutes of Health, 4 Center Dr., MSC 0445, Bethesda, MD 20892-0445, USA
| | | | | | | |
Collapse
|
42
|
Chen K, Ochalski PG, Tran TS, Sahir N, Schubert M, Pramatarova A, Howell BW. Interaction between Dab1 and CrkII is promoted by Reelin signaling. J Cell Sci 2004; 117:4527-36. [PMID: 15316068 DOI: 10.1242/jcs.01320] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Reelin-induced Dab1 tyrosine phosphorylation has been implicated in the regulation of neuronal positioning during brain development. The downstream consequences of Dab1 tyrosine phosphorylation are not fully understood, however. Here we identify CrkII, CrkL and Dock1 in complexes bound to tyrosine-phosphorylated Dab1, through mass spectrometry. The CrkII-Dab1 interaction requires tyrosine phosphorylation of Dab1 at residues 220 or 232 and is promoted by Reelin treatment of embryonic forebrain neurons. Unlike other CrkII binding proteins, such as paxillin and p130Cas, expression of Dab1 interfered with CrkII-dependent cell migration of Nara Bladder Tumor II (NBT-II) cells, in a tyrosine phosphorylation-site dependent manner. Overexpression of CrkIIGFP rescued the migration of these cells, suggesting that Dab1 makes Crk a limiting factor for migration. The Dock1-Dab1 association is indirect and requires CrkII. In organisms such as Drosophila melanogaster and Caenorhabditis elegans, signaling complexes, which contain Crk and Dock1 family members are conserved and act through Rac. We show that a rough-eye phenotype in Drosophila caused by exogenous expression of tyrosine-phosphorylated mouse Dab1RFP is partially rescued by a loss-of-function mutation in myoblast city, a Dock1-like gene in Drosophila. We propose a model that tyrosine-phosphorylated Dab1 engages the conserved Crk-Dock1-Rac signaling cassette, but when bound to Dab1 this signaling complex does not support migration.
Collapse
Affiliation(s)
- Kelian Chen
- Neurogenetics Branch, NINDS/NIH, 10 Center Drive, Bethesda, MD 20892-1250, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Ansarah-Sobrinho C, Moss B. Vaccinia virus G1 protein, a predicted metalloprotease, is essential for morphogenesis of infectious virions but not for cleavage of major core proteins. J Virol 2004; 78:6855-63. [PMID: 15194761 PMCID: PMC421688 DOI: 10.1128/jvi.78.13.6855-6863.2004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genes encoding orthologs of the vaccinia virus G1 protein are present in all poxviruses for which sequence information is available, yet neither the role of the protein nor its requirement for virus replication is known. G1 was predicted to be involved in the cleavage of core proteins, based on a transfection study and the presence of an HXXEH motif found in a subset of metallopeptidases. In the present study, we engineered a recombinant vaccinia virus containing a single copy of the G1L gene with a C-terminal epitope tag that is stringently regulated by the Escherichia coli lac repressor. In the absence of inducer, expression of G1 was repressed and virus replication was inhibited. Rescue of infectious virus was achieved by expression of wild-type G1 in trans, but not when the putative protease active site residues histidine-41, glutamate-44, or histidine-45 were mutated. Nevertheless, the synthesis and proteolytic processing of major core and membrane proteins appeared unaffected under nonpermissive conditions, distinguishing the phenotype of the G1L mutant from one in which the gene encoding the I7 protease was repressed. Noninfectious virus particles, assembled in the absence of inducer, did not attain the oval shape or characteristic core structure of mature virions. The polypeptide composition of these particles, however, closely resembled that of wild-type virus. Full-length and shorter forms of the G1 protein were found in the core fraction of virus particles assembled in the presence of inducer, suggesting that G1 is processed by self-cleavage or by another protease.
Collapse
Affiliation(s)
- Camilo Ansarah-Sobrinho
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institues of Health, Bethesda, MD 20892-0445, USA
| | | |
Collapse
|
44
|
Szajner P, Weisberg AS, Moss B. Evidence for an essential catalytic role of the F10 protein kinase in vaccinia virus morphogenesis. J Virol 2004; 78:257-65. [PMID: 14671107 PMCID: PMC303407 DOI: 10.1128/jvi.78.1.257-265.2004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Temperature-sensitive mutants of vaccinia virus, with genetic changes that map to the open reading frame encoding the F10 protein kinase, exhibit a defect at an early stage of viral morphogenesis. To further study the role of the enzyme, we constructed recombinant vaccinia virus vF10V5i, which expresses inducible V5 epitope-tagged F10 and is dependent on a chemical inducer for plaque formation and replication. In the absence of inducer, viral membrane formation was delayed and crescents and occasional immature forms were detected only late in infection. When the temperature was raised from 37 to 39 degrees C, the block in membrane formation persisted throughout the infection. The increased stringency may be explained by a mild temperature sensitivity of the wild-type F10 kinase, which reduced the activity of the very small amount expressed in the absence of inducer, or by the thermolability of an unphosphorylated kinase substrate or uncomplexed F10-interacting protein. Further analyses demonstrated that tyrosine and threonine phosphorylation of the A17 membrane component was inhibited in the absence of inducer. The phosphorylation defect could be overcome by transfection of plasmids that express wild-type F10, but not by plasmids that express F10 with single amino acid substitutions that abolished catalytic activity. Although the mutated forms of F10 were stable and concentrated in viral factories, only the wild-type protein complemented the assembly and replication defects of vF10V5i in the absence of inducer. These studies provide evidence for an essential catalytic role of the F10 kinase in vaccinia virus morphogenesis.
Collapse
Affiliation(s)
- Patricia Szajner
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
45
|
Szajner P, Weisberg AS, Moss B. Physical and functional interactions between vaccinia virus F10 protein kinase and virion assembly proteins A30 and G7. J Virol 2004; 78:266-74. [PMID: 14671108 PMCID: PMC303406 DOI: 10.1128/jvi.78.1.266-274.2004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2003] [Accepted: 09/12/2003] [Indexed: 11/20/2022] Open
Abstract
An early step in vaccinia virus morphogenesis, the association of crescent membranes with electron-dense granular material, is perturbed when expression of the viral protein encoded by the A30L or G7L open reading frame is repressed. Under these conditions, we found that phosphorylation of the A17 membrane protein, which is mediated by the F10 kinase, was severely reduced. Furthermore, A30 and G7 stimulated F10-dependent phosphorylation of A17 in the absence of other viral late proteins. Evidence for physical interactions between A30, G7, and F10 was obtained by their coimmunoprecipitation with antibody against A30 or F10. In addition, phosphorylation of A30 was dependent on the F10 kinase and autophosphorylation of F10 was stimulated by A30 and G7. Nevertheless, the association of A30, G7, and F10 occurred even with mutated, catalytically inactive forms of F10. Just as A30 and G7 are mutually dependent on each other for stability, F10 was nearly undetectable in the absence of A30 and G7. The reverse is not true, however, as repression of F10 did not diminish A30 or G7. Interaction of F10 with A30 and G7 presumably occurred within the virus factory areas of the cytoplasm, where each was concentrated. F10 localized predominantly in the cortical region of immature virions, beneath the membrane where A17 is located. F10 remained associated with the particulate core fraction of mature virions after treatment with a nonionic detergent and reducing agent. The formation of protein complexes such as the one involving A30, G7, and F10 may be a mechanism for the regulated packaging and processing of virion components.
Collapse
Affiliation(s)
- Patricia Szajner
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|