1
|
Biophysical characterization of the interaction between M2-1 protein of hRSV and quercetin. Int J Biol Macromol 2016; 95:63-71. [PMID: 27851930 DOI: 10.1016/j.ijbiomac.2016.11.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/18/2016] [Accepted: 11/09/2016] [Indexed: 01/20/2023]
Abstract
hRSV is the major causative agent of acute respiratory infections. Among its eleven proteins, M2-1 is a transcription antiterminator, making it an interesting target for antivirals. Quercetin is a flavonol which inhibits some virus infectivity and replication. In the present work, the M2-1 gene was cloned, expressed and the protein was purified. Thermal stability and secondary structure were analyzed by circular dichroism and the interaction with Quercetin was evaluated by fluorescence spectroscopy. Molecular docking experiments were performed to understand this mechanism of interaction. The purified protein is mainly composed of α-helix, with a melting temperature of 328.6K (≈55°C). M2-1 titration with Quercetin showed it interacts with two sites, one with a strong constant association K1 (site 1≈1.5×106M-1) by electrostatic interactions, and another with a weak constant association K2 (site 2≈1.1×105M-1) by a hydrophobic interaction. Ligand's docking shows it interacts with the N-terminus face in a more polar pocket and, between the domains of oligomerization and RNA and P protein interaction, in a more hydrophobic pocket, as predicted by experimental data. Therefore, we postulated this ligand could be interacting with important domains of the protein, avoiding viral replication and budding.
Collapse
|
2
|
Phosphorylation of Human Metapneumovirus M2-1 Protein Upregulates Viral Replication and Pathogenesis. J Virol 2016; 90:7323-7338. [PMID: 27252537 DOI: 10.1128/jvi.00755-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 05/25/2016] [Indexed: 01/02/2023] Open
Abstract
UNLABELLED Human metapneumovirus (hMPV) is a major causative agent of upper- and lower-respiratory-tract infections in infants, the elderly, and immunocompromised individuals worldwide. Like all pneumoviruses, hMPV encodes the zinc binding protein M2-1, which plays important regulatory roles in RNA synthesis. The M2-1 protein is phosphorylated, but the specific role(s) of the phosphorylation in viral replication and pathogenesis remains unknown. In this study, we found that hMPV M2-1 is phosphorylated at amino acid residues S57 and S60. Subsequent mutagenesis found that phosphorylation is not essential for zinc binding activity and oligomerization, whereas inhibition of zinc binding activity abolished the phosphorylation and oligomerization of the M2-1 protein. Using a reverse genetics system, recombinant hMPVs (rhMPVs) lacking either one or both phosphorylation sites in the M2-1 protein were recovered. These recombinant viruses had a significant decrease in both genomic RNA replication and mRNA transcription. In addition, these recombinant viruses were highly attenuated in cell culture and cotton rats. Importantly, rhMPVs lacking phosphorylation in the M2-1 protein triggered high levels of neutralizing antibody and provided complete protection against challenge with wild-type hMPV. Collectively, these data demonstrated that phosphorylation of the M2-1 protein upregulates hMPV RNA synthesis, replication, and pathogenesis in vivo IMPORTANCE The pneumoviruses include many important human and animal pathogens, such as human respiratory syncytial virus (hRSV), hMPV, bovine RSV, and avian metapneumovirus (aMPV). Among these viruses, hRSV and hMPV are the leading causes of acute respiratory tract infection in infants and children. Currently, there is no antiviral or vaccine to combat these diseases. All known pneumoviruses encode a zinc binding protein, M2-1, which is a transcriptional antitermination factor. In this work, we found that phosphorylation of M2-1 is essential for virus replication and pathogenesis in vivo Recombinant hMPVs lacking phosphorylation in M2-1 exhibited limited replication in the upper and lower respiratory tract and triggered strong protective immunity in cotton rats. This work highlights the important role of M2-1 phosphorylation in viral replication and that inhibition of M2-1 phosphorylation may serve as a novel approach to develop live attenuated vaccines as well as antiviral drugs for pneumoviruses.
Collapse
|
3
|
Zinc binding activity of human metapneumovirus M2-1 protein is indispensable for viral replication and pathogenesis in vivo. J Virol 2015; 89:6391-405. [PMID: 25855728 DOI: 10.1128/jvi.03488-14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 03/30/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Human metapneumovirus (hMPV) is a member of the Pneumovirinae subfamily in the Paramyxoviridae family that causes respiratory tract infections in humans. Unlike members of the Paramyxovirinae subfamily, the polymerase complex of pneumoviruses requires an additional cofactor, the M2-1 protein, which functions as a transcriptional antitermination factor. The M2-1 protein was found to incorporate zinc ions, although the specific role(s) of the zinc binding activity in viral replication and pathogenesis remains unknown. In this study, we found that the third cysteine (C21) and the last histidine (H25) in the zinc binding motif (CCCH) of hMPV M2-1 were essential for zinc binding activity, whereas the first two cysteines (C7 and C15) play only minor or redundant roles in zinc binding. In addition, the zinc binding motif is essential for the oligomerization of M2-1. Subsequently, recombinant hMPVs (rhMPVs) carrying mutations in the zinc binding motif were recovered. Interestingly, rhMPV-C21S and -H25L mutants, which lacked zinc binding activity, had delayed replication in cell culture and were highly attenuated in cotton rats. In contrast, rhMPV-C7S and -C15S strains, which retained 60% of the zinc binding activity, replicated as efficiently as rhMPV in cotton rats. Importantly, rhMPVs that lacked zinc binding activity triggered high levels of neutralizing antibody and provided complete protection against challenge with rhMPV. Taken together, these results demonstrate that zinc binding activity is indispensable for viral replication and pathogenesis in vivo. These results also suggest that inhibition of zinc binding activity may serve as a novel approach to rationally attenuate hMPV and perhaps other pneumoviruses for vaccine purposes. IMPORTANCE The pneumoviruses include many important human and animal pathogens, such as human respiratory syncytial virus (hRSV), hMPV, bovine RSV, and avian metapneumovirus (aMPV). Among these viruses, hRSV and hMPV are the leading causes of acute respiratory tract infection in infants and children. Despite major efforts, there is no antiviral or vaccine to combat these diseases. All known pneumoviruses encode a zinc binding protein, M2-1, which is a transcriptional antitermination factor. In this work, we found that the zinc binding activity of M2-1 is essential for virus replication and pathogenesis in vivo. Recombinant hMPVs that lacked zinc binding activity were not only defective in replication in the upper and lower respiratory tract but also triggered a strong protective immunity in cotton rats. Thus, inhibition of M2-1 zinc binding activity can lead to the development of novel, live attenuated vaccines, as well as antiviral drugs for pneumoviruses.
Collapse
|
4
|
Leyrat C, Renner M, Harlos K, Huiskonen JT, Grimes JM. Drastic changes in conformational dynamics of the antiterminator M2-1 regulate transcription efficiency in Pneumovirinae. eLife 2014; 3:e02674. [PMID: 24842877 PMCID: PMC4051120 DOI: 10.7554/elife.02674] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 05/15/2014] [Indexed: 12/24/2022] Open
Abstract
The M2-1 protein of human metapneumovirus (HMPV) is a zinc-binding transcription antiterminator which is highly conserved among pneumoviruses. We report the structure of tetrameric HMPV M2-1. Each protomer features a N-terminal zinc finger domain and an α-helical tetramerization motif forming a rigid unit, followed by a flexible linker and an α-helical core domain. The tetramer is asymmetric, three of the protomers exhibiting a closed conformation, and one an open conformation. Molecular dynamics simulations and SAXS demonstrate a dynamic equilibrium between open and closed conformations in solution. Structures of adenosine monophosphate- and DNA- bound M2-1 establish the role of the zinc finger domain in base-specific recognition of RNA. Binding to 'gene end' RNA sequences stabilized the closed conformation of M2-1 leading to a drastic shift in the conformational landscape of M2-1. We propose a model for recognition of gene end signals and discuss the implications of these findings for transcriptional regulation in pneumoviruses.DOI: http://dx.doi.org/10.7554/eLife.02674.001.
Collapse
Affiliation(s)
- Cedric Leyrat
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, Oxford, United Kingdom
| | - Max Renner
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, Oxford, United Kingdom
| | - Karl Harlos
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, Oxford, United Kingdom
| | - Juha T Huiskonen
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, Oxford, United Kingdom
| | - Jonathan M Grimes
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, Oxford, United Kingdom Diamond Light Source Ltd, Didcot, United Kingdom
| |
Collapse
|
5
|
Esperante SA, Noval MG, Altieri TA, de Oliveira GAP, Silva JL, de Prat-Gay G. Fine modulation of the respiratory syncytial virus M2-1 protein quaternary structure by reversible zinc removal from its Cys(3)-His(1) motif. Biochemistry 2013; 52:6779-89. [PMID: 23984912 DOI: 10.1021/bi401029q] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Human respiratory syncytial virus (hRSV) is a worldwide distributed pathogen that causes respiratory disease mostly in infants and the elderly. The M2-1 protein of hRSV functions as a transcription antiterminator and partakes in virus particle budding. It is present only in Pneumovirinae, namely, Pneumovirus (RSV) and Metapneumovirus, making it an interesting target for specific antivirals. hRSV M2-1 is a tight tetramer bearing a Cys3-His1 zinc-binding motif, present in Ebola VP30 protein and some eukaryotic proteins, whose integrity was shown to be essential for protein function but without a biochemical mechanistic basis. We showed that removal of the zinc atom causes dissociation to a monomeric apo-M2-1 species. Surprisingly, the secondary structure and stability of the apo-monomer is indistinguishable from that of the M2-1 tetramer. Dissociation reported by a highly sensitive tryptophan residue is much increased at pH 5.0 compared to pH 7.0, suggesting a histidine protonation cooperating in zinc removal. The monomeric apo form binds RNA at least as well as the tetramer, and this interaction is outcompeted by the phosphoprotein P, the RNA polymerase cofactor. The role of zinc goes beyond stabilization of local structure, finely tuning dissociation to a fully folded and binding competent monomer. Removal of zinc is equivalent to the disruption of the motif by mutation, only that the former is potentially reversible in the cellular context. Thus, this process could be triggered by a natural chelator such as glutathione or thioneins, where reversibility strongly suggests a modulatory role in the participation of M2-1 in the assembly of the polymerase complex or in virion budding.
Collapse
Affiliation(s)
- Sebastián A Esperante
- Protein Structure-Function and Engineering Laboratory, Fundación Instituto Leloir and IIBA-Conicet , Patricias Argentinas 435, (1405) Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
6
|
Blondot ML, Dubosclard V, Fix J, Lassoued S, Aumont-Nicaise M, Bontems F, Eléouët JF, Sizun C. Structure and functional analysis of the RNA- and viral phosphoprotein-binding domain of respiratory syncytial virus M2-1 protein. PLoS Pathog 2012; 8:e1002734. [PMID: 22675274 PMCID: PMC3364950 DOI: 10.1371/journal.ppat.1002734] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 04/20/2012] [Indexed: 02/07/2023] Open
Abstract
Respiratory syncytial virus (RSV) protein M2-1 functions as an essential transcriptional cofactor of the viral RNA-dependent RNA polymerase (RdRp) complex by increasing polymerase processivity. M2-1 is a modular RNA binding protein that also interacts with the viral phosphoprotein P, another component of the RdRp complex. These binding properties are related to the core region of M2-1 encompassing residues S58 to K177. Here we report the NMR structure of the RSV M2-1(58-177) core domain, which is structurally homologous to the C-terminal domain of Ebola virus VP30, a transcription co-factor sharing functional similarity with M2-1. The partial overlap of RNA and P interaction surfaces on M2-1(58-177), as determined by NMR, rationalizes the previously observed competitive behavior of RNA versus P. Using site-directed mutagenesis, we identified eight residues located on these surfaces that are critical for an efficient transcription activity of the RdRp complex. Single mutations of these residues disrupted specifically either P or RNA binding to M2-1 in vitro. M2-1 recruitment to cytoplasmic inclusion bodies, which are regarded as sites of viral RNA synthesis, was impaired by mutations affecting only binding to P, but not to RNA, suggesting that M2-1 is associated to the holonucleocapsid by interacting with P. These results reveal that RNA and P binding to M2-1 can be uncoupled and that both are critical for the transcriptional antitermination function of M2-1.
Collapse
Affiliation(s)
- Marie-Lise Blondot
- Unité de Virologie et Immunologie Moléculaires (UR892), INRA, Jouy-en-Josas, France
| | - Virginie Dubosclard
- Unité de Virologie et Immunologie Moléculaires (UR892), INRA, Jouy-en-Josas, France
| | - Jenna Fix
- Unité de Virologie et Immunologie Moléculaires (UR892), INRA, Jouy-en-Josas, France
| | - Safa Lassoued
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Gif-sur-Yvette, France
| | | | - François Bontems
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Gif-sur-Yvette, France
| | - Jean-François Eléouët
- Unité de Virologie et Immunologie Moléculaires (UR892), INRA, Jouy-en-Josas, France
- * E-mail:
| | - Christina Sizun
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Gif-sur-Yvette, France
| |
Collapse
|
7
|
Dubosclard V, Blondot ML, Eléouët JF, Bontems F, Sizun C. 1H, 13C, and 15N resonance assignment of the central domain of hRSV transcription antitermination factor M2-1. BIOMOLECULAR NMR ASSIGNMENTS 2011; 5:237-239. [PMID: 21523439 DOI: 10.1007/s12104-011-9308-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2011] [Accepted: 04/14/2011] [Indexed: 05/30/2023]
Abstract
M2-1 is an essential co-factor of the respiratory syncytial virus, an important respiratory pathogen in infants and calves. It acts as a transcription antitermination factor which enhances the processivity of the polymerase. Within the polymerase complex, M2-1 interacts with a second co-factor, the phosphoprotein P. It has been shown previously that P and RNA bind to M2-1 in a competitive manner in vitro and that these properties are related to a central domain located between residues Glu59 and Lys177. Here we report the almost complete (1)H, (13)C and (15)N assignment of a fragment of M2-1 corresponding to this region, for further structure determination and interaction studies.
Collapse
Affiliation(s)
- Virginie Dubosclard
- Unité de Virologie et Immunologie Moléculaires, INRA UR0892, 78350, Jouy-en-Josas, France
| | | | | | | | | |
Collapse
|
8
|
The respiratory syncytial virus M2-1 protein forms tetramers and interacts with RNA and P in a competitive manner. J Virol 2009; 83:6363-74. [PMID: 19386701 DOI: 10.1128/jvi.00335-09] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The respiratory syncytial virus (RSV) M2-1 protein is an essential cofactor of the viral RNA polymerase complex and functions as a transcriptional processivity and antitermination factor. M2-1, which exists in a phosphorylated or unphosphorylated form in infected cells, is an RNA-binding protein that also interacts with some of the other components of the viral polymerase complex. It contains a CCCH motif, a putative zinc-binding domain that is essential for M2-1 function, at the N terminus. To gain insight into its structural organization, M2-1 was produced as a recombinant protein in Escherichia coli and purified to >95% homogeneity by using a glutathione S-transferase (GST) tag. The GST-M2-1 fusion proteins were copurified with bacterial RNA, which could be eliminated by a high-salt wash. Circular dichroism analysis showed that M2-1 is largely alpha-helical. Chemical cross-linking, dynamic light scattering, sedimentation velocity, and electron microscopy analyses led to the conclusion that M2-1 forms a 5.4S tetramer of 89 kDa and approximately 7.6 nm in diameter at micromolar concentrations. By using a series of deletion mutants, the oligomerization domain of M2-1 was mapped to a putative alpha-helix consisting of amino acid residues 32 to 63. When tested in an RSV minigenome replicon system using a luciferase gene as a reporter, an M2-1 deletion mutant lacking this region showed a significant reduction in RNA transcription compared to wild-type M2-1, indicating that M2-1 oligomerization is essential for the activity of the protein. We also show that the region encompassing amino acid residues 59 to 178 binds to P and RNA in a competitive manner that is independent of the phosphorylation status of M2-1.
Collapse
|
9
|
Saikia P, Shaila MS. Identification of functional domains of phosphoproteins of two morbilliviruses using chimeric proteins. Virus Genes 2008; 37:1-8. [PMID: 18427968 DOI: 10.1007/s11262-008-0231-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Accepted: 04/08/2008] [Indexed: 11/25/2022]
Abstract
The paramyxovirus P protein is an essential component of the transcriptase and replicase complex along with L protein. In this article, we have examined the functional roles of different domains of P proteins of two closely related morbilliviruses, Rinderpest virus (RPV) and Peste des petits ruminants virus (PPRV). The PPRV P protein physically interacts with RPV L as well as RPV N protein when expressed in transfected cells, as shown by co-immunoprecipitation. The heterologous L-P complex is biologically active when tested in a RPV minigenome replication/transcription system, only when used with PPRV N protein but not with RPV N protein. Employing chimeric PPRV/RPV cDNAs having different coding regions of P protein in the minigenome replication/transcription system, we identified a region between 290 and 346 aa in RPV P protein necessary for transcription of the minigenome.
Collapse
Affiliation(s)
- Paramananda Saikia
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | | |
Collapse
|
10
|
Melero JA. Molecular Biology of Human Respiratory Syncytial Virus. RESPIRATORY SYNCYTIAL VIRUS 2006. [DOI: 10.1016/s0168-7069(06)14001-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
11
|
García-Barreno B, Steel J, Payá M, Martínez-Sobrido L, Delgado T, Yeo RP, Melero JA. Epitope mapping of human respiratory syncytial virus 22K transcription antitermination factor: role of N-terminal sequences in protein folding. J Gen Virol 2005; 86:1103-1107. [PMID: 15784904 DOI: 10.1099/vir.0.80712-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The reactivity of a panel of 12 monoclonal antibodies raised against the human respiratory syncytial virus 22 kDa (22K) protein was tested by Western blotting with a set of 22K deletion mutants. The results obtained identified sequences in the C-terminal half of the 22K polypeptide required for integrity of most antibody epitopes, except for epitope 112, which was lost in mutants with short N-terminal deletions. This antibody, in contrast to the others, failed to immunoprecipitate the native 22K protein, indicating that the N terminus of this protein is buried in the native molecule and exposed only under the denaturing conditions of Western blotting. In addition, N-terminal deletions that abolished reactivity with monoclonal antibody 112 also inhibited phosphorylation of the 22K protein previously identified at Ser-58 and Ser-61, suggesting that the N terminus is important in regulating the 22K protein phosphorylation status, most likely as a result of its requirement for protein folding.
Collapse
MESH Headings
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/metabolism
- Antibodies, Viral/immunology
- Antibodies, Viral/metabolism
- Blotting, Western
- Epitope Mapping
- Gene Deletion
- Gene Expression Regulation, Viral
- Humans
- Mutation
- Protein Folding
- Respiratory Syncytial Virus, Human/chemistry
- Respiratory Syncytial Virus, Human/genetics
- Respiratory Syncytial Virus, Human/immunology
- Respiratory Syncytial Virus, Human/metabolism
- Transcription, Genetic
- Viral Proteins/chemistry
- Viral Proteins/genetics
- Viral Proteins/immunology
- Viral Proteins/metabolism
Collapse
Affiliation(s)
- Blanca García-Barreno
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| | - John Steel
- MRC Virology Unit, Institute for Virology, Church Street, Glasgow G11 5JR, UK
| | - Monica Payá
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| | - Luis Martínez-Sobrido
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| | - Teresa Delgado
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| | - Robert P Yeo
- The Centre for Infectious Diseases, Wolfson Institute, University of Durham, Queen's Campus, Stockton-on-Tees TS17 6BH, UK
| | - José A Melero
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| |
Collapse
|
12
|
Stokes HL, Easton AJ, Marriott AC. Chimeric pneumovirus nucleocapsid (N) proteins allow identification of amino acids essential for the function of the respiratory syncytial virus N protein. J Gen Virol 2003; 84:2679-2683. [PMID: 13679601 DOI: 10.1099/vir.0.19370-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The nucleocapsid (N) protein of the pneumovirus respiratory syncytial virus (RSV) is a major structural protein which encapsidates the RNA genome and is essential for replication and transcription of the RSV genome. The N protein of the related virus pneumonia virus of mice (PVM) is functionally unable to replace the RSV N protein in a minigenome replication assay. Using chimeric proteins, in which the immediate C-terminal part of the RSV N protein was replaced with the equivalent region of the PVM N protein, it was shown that six amino acid residues near the C terminus of the N protein (between residues 352-369) are essential for its function in replication and for the ability of the N protein to bind to the viral phosphoprotein, P.
Collapse
Affiliation(s)
- H L Stokes
- University of Warwick, Department of Biological Sciences, Coventry CV4 7AL, UK
| | - A J Easton
- University of Warwick, Department of Biological Sciences, Coventry CV4 7AL, UK
| | - A C Marriott
- University of Warwick, Department of Biological Sciences, Coventry CV4 7AL, UK
| |
Collapse
|