1
|
Gupta T, Chahota R. Unique ankyrin repeat proteins in the genome of poxviruses-Boon or Wane, a critical review. Gene 2024; 927:148759. [PMID: 38992761 DOI: 10.1016/j.gene.2024.148759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/29/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024]
Abstract
Ankyrin repeat is a 33-amino acid motif commonly observed in eukaryotes and, to a lesser extent, in prokaryotes and archaea and rarely in viruses. This motif plays a crucial role in regulating various cellular processes like the cell cycle, transcription, cell signaling, and inflammatory responses through interactions between proteins. Poxviruses exhibit a distinctive feature of containing multiple ankyrin repeat proteins within their genomes. All the genera of poxviruses possess these proteins except molluscipox virus, crocodylidpox virus, and red squirrel poxvirus. An intriguing characteristic has generated notable interest in studying the functions of these proteins within poxvirus biology. Within poxviruses, ankyrin repeat proteins exhibit a distinct configuration, featuring ankyrin repeats in the N-terminal region and a cellular F-box homolog in the C-terminal region, which enables interactions with the cellular Skp, Cullin, F-box containing ubiquitin ligase complex. Through the examination of experimental evidences and discussions from current literature, this review elucidates the organization and role of ankyrin repeat proteins in poxviruses. Various research studies have highlighted the significant importance of these proteins in poxviral pathogenesis and, acting as factors that enhance virulence. Consequently, they represent viable targets for developing genetically altered viruses with decreased virulence, thus displaying potential as candidates for vaccines and antiviral therapeutic development contributing to safer and more effective strategies against poxviral infections.
Collapse
Affiliation(s)
- Tania Gupta
- Department of Veterinary Microbiology, Guru Angad Dev Veterinary and Animal Science University, Ludhiana, Punjab, 141012 India; Department of Veterinary Microbiology, DGCN College of Veterinary and Animal Sciences, CSK Himachal Pradesh Agricultural University, Palampur, 176062 India
| | - Rajesh Chahota
- Department of Veterinary Microbiology, DGCN College of Veterinary and Animal Sciences, CSK Himachal Pradesh Agricultural University, Palampur, 176062 India.
| |
Collapse
|
2
|
Nagy GÁ, Tombácz D, Prazsák I, Csabai Z, Dörmő Á, Gulyás G, Kemenesi G, Tóth GE, Holoubek J, Růžek D, Kakuk B, Boldogkői Z. Exploring the transcriptomic profile of human monkeypox virus via CAGE and native RNA sequencing approaches. mSphere 2024; 9:e0035624. [PMID: 39191390 PMCID: PMC11423596 DOI: 10.1128/msphere.00356-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/31/2024] [Indexed: 08/29/2024] Open
Abstract
In this study, we employed short- and long-read sequencing technologies to delineate the transcriptional architecture of the human monkeypox virus and to identify key regulatory elements that govern its gene expression. Specifically, we conducted a transcriptomic analysis to annotate the transcription start sites (TSSs) and transcription end sites (TESs) of the virus by utilizing Cap Analysis of gene expression sequencing on the Illumina platform and direct RNA sequencing on the Oxford Nanopore technology device. Our investigations uncovered significant complexity in the use of alternative TSSs and TESs in viral genes. In this research, we also detected the promoter elements and poly(A) signals associated with the viral genes. Additionally, we identified novel genes in both the left and right variable regions of the viral genome.IMPORTANCEGenerally, gaining insight into how the transcription of a virus is regulated offers insights into the key mechanisms that control its life cycle. The recent outbreak of the human monkeypox virus has underscored the necessity of understanding the basic biology of its causative agent. Our results are pivotal for constructing a comprehensive transcriptomic atlas of the human monkeypox virus, providing valuable resources for future studies.
Collapse
Affiliation(s)
- Gergely Ármin Nagy
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Dóra Tombácz
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - István Prazsák
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Zsolt Csabai
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Ákos Dörmő
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Gábor Gulyás
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Gábor Kemenesi
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Gábor E Tóth
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
- Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Hemorrhagic Fever Reference and Research, Hamburg, Germany
| | - Jiří Holoubek
- Veterinary Research Institute, Brno, Czechia
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czechia
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Daniel Růžek
- Veterinary Research Institute, Brno, Czechia
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czechia
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Balázs Kakuk
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Zsolt Boldogkői
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| |
Collapse
|
3
|
Tu SL, Upton C. Problems in the assembly and analysis of the kangaroopox virus-NSW isolate. Sci Rep 2024; 14:18753. [PMID: 39138330 PMCID: PMC11322540 DOI: 10.1038/s41598-024-68967-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 07/30/2024] [Indexed: 08/15/2024] Open
Affiliation(s)
- Shin-Lin Tu
- Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8W 3P6, Canada
| | - Chris Upton
- Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8W 3P6, Canada.
| |
Collapse
|
4
|
Szymanik KH, Hancks DC, Sullivan CS. Viral piracy of host RNA phosphatase DUSP11 by avipoxviruses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.06.606876. [PMID: 39211142 PMCID: PMC11361023 DOI: 10.1101/2024.08.06.606876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Proper recognition of viral pathogens is an essential part of the innate immune response. A common viral replicative intermediate and chemical signal that cells use to identify pathogens is the presence of a triphosphorylated 5' end (5'ppp) RNA, which activates the cytosolic RNA sensor RIG-I and initiates downstream antiviral signaling. While 5'pppRNA generated by viral RNA-dependent RNA polymerases (RdRps) can be a potent activator of the immune response, endogenous RNA polymerase III (RNAPIII) transcripts can retain the 5'pppRNA generated during transcription and induce a RIG-I-mediated immune response. We have previously shown that host RNA triphosphatase dual-specificity phosphatase 11 (DUSP11) can act on both host and viral RNAs, altering their levels and reducing their ability to induce RIG-I activation. Our previous work explored how artificially altered DUSP11 can impact immune activation, prompting further exploration into natural contexts of altered DUSP11. Here, we have identified viral DUSP11 homologs (vDUSP11s) present in some avipoxviruses. Consistent with the known functions of endogenous DUSP11, we have shown that expression of vDUSP11s: 1) reduces levels of endogenous RNAPIII transcripts, 2) reduces a cell's sensitivity to 5'pppRNA-mediated immune activation, and 3) restores virus infection defects seen in the absence of DUSP11. Our results identify a virus-relevant context where DUSP11 activity has been co-opted to alter RNA metabolism and influence the outcome of infection.
Collapse
|
5
|
Yang CH, Song AL, Qiu Y, Ge XY. Cross-species transmission and host range genes in poxviruses. Virol Sin 2024; 39:177-193. [PMID: 38272237 PMCID: PMC11074647 DOI: 10.1016/j.virs.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
The persistent epidemic of human mpox, caused by mpox virus (MPXV), raises concerns about the future spread of MPXV and other poxviruses. MPXV is a typical zoonotic virus which can infect human and cause smallpox-like symptoms. MPXV belongs to the Poxviridae family, which has a relatively broad host range from arthropods to vertebrates. Cross-species transmission of poxviruses among different hosts has been frequently reported and resulted in numerous epidemics. Poxviruses have a complex linear double-strand DNA genome that encodes hundreds of proteins. Genes related to the host range of poxvirus are called host range genes (HRGs). This review briefly introduces the taxonomy, phylogeny and hosts of poxviruses, and then comprehensively summarizes the current knowledge about the cross-species transmission of poxviruses. In particular, the HRGs of poxvirus are described and their impacts on viral host range are discussed in depth. We hope that this review will provide a comprehensive perspective about the current progress of researches on cross-species transmission and HRG variation of poxviruses, serving as a valuable reference for academic studies and disease control in the future.
Collapse
Affiliation(s)
- Chen-Hui Yang
- College of Biology, Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha, 410012, China
| | - A-Ling Song
- College of Biology, Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha, 410012, China
| | - Ye Qiu
- College of Biology, Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha, 410012, China.
| | - Xing-Yi Ge
- College of Biology, Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha, 410012, China.
| |
Collapse
|
6
|
Verma RK, Gangwar AK. Characterization of Fowlpox Virus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1451:55-74. [PMID: 38801571 DOI: 10.1007/978-3-031-57165-7_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The complex cytoplasmic DNA virus known as the fowlpox virus (FWPV) is a member of the avipoxvirus genus, Subfamily Chordopoxvirinae, and Family Poxviridae. The large genome size of FWPV makes it a potential vector for the creation of vaccines against a range of serious veterinary and human ailments. It also allows for multiple gene insertion and the generation of abortive infection in mammalian cells. The virus, which causes fowlpox in chickens and turkeys, is mainly transmitted to poultry through aerosols or biting insects. Fowlpox is a highly contagious disease that affects both domestic and wild birds, causing cutaneous and/or diphtheritic illnesses. To control the illness, strict hygiene practices and immunization with FWPV attenuated strains or antigenically similar pigeon pox virus vaccines are employed. Recent years have seen an increase in fowlpox outbreaks in chicken flocks, primarily due to the introduction of novel forms of FWPV. It is believed that the pathogenic characteristics of these strains are enhanced by the integration of reticuloendotheliosis virus sequences of variable lengths into the FWPV genome. The standard laboratory diagnosis of FPV involves histopathological analysis, electron microscopy, virus isolation on chorioallantoic membrane (CAM) of embryonated chicken eggs or cell cultures, and serologic techniques. For quick and consistent diagnosis, polymerase chain reaction (PCR) has proven to be the most sensitive method. PCR is used in concert with restriction endonuclease enzyme analysis (REA) to identify, differentiate, and characterize the molecular makeup of isolates of the fowlpox virus. Sequencing of the amplified fragments is then done.
Collapse
Affiliation(s)
- Rajesh Kumar Verma
- Assistant Professor (Veterinary Microbiology), College of Veterinary Science and Animal Husbandry, Acharya Narendra Deva University of Agriculture and Technology, Kumarganj, Ayodhya, Uttar Pradesh, 224229, India.
| | - A K Gangwar
- Professor and Head Department of Veterinary Surgery and Radiology, College of Veterinary Science and Animal Husbandry, Acharya Narendra Deva University of Agriculture and Technology, Kumarganj, Ayodhya, Uttar Pradesh, 224229, India
| |
Collapse
|
7
|
Deng L, Liu C, Li L, Hao P, Wang M, Jin N, Yin R, Du S, Li C. Genomic characteristics of an avipoxvirus 282E4 strain. Virus Res 2023; 336:199218. [PMID: 37678517 PMCID: PMC10507152 DOI: 10.1016/j.virusres.2023.199218] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/02/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023]
Abstract
Avipoxvirus 282E4 strain was extensively applied into recombinant vaccine vector to prevent other infectious diseases. However, little information on the genomic background, functional and genetic evolutionary of the isolate 282E4 strain was clarified. The results showed that the linear genome of avipoxvirus 282E4 was 308,826 bp, containing 313 open reading frames (ORFs) and 12 new predicted ORFs. The 282E4 strain appears to encode two novel thymidine kinase proteins and two TGF-beta-like proteins that may be associated with the suppression of the host's antiviral response. Avipoxvirus 282E4 also encodes 57 ankyrin repeat proteins and 5 variola B22R-like proteins, which composed 7% of the avipoxvirus 282E4 genome. GO and KEGG analysis further revealed that 12 ORFs participate in viral transcription process, 7 ORFs may function during DNA repair, replication and biological synthesis, and ORF 208 is involved in the process of virus life cycle. Interestingly, phylogenetic analysis based on concatenated sequences p4b and DNA polymerase of avipoxviruses gene demonstrates that avipoxvirus 282E4 strain is divergent from known FWPV isolates and is similar to shearwater poxvirus (SWPV-1) that belongs to the CNPV-like virus. Sequencing avipoxvirus 282E4 is a significant step to judge the genetic position of avipoxviruses within the larger Poxviridae phylogenetic tree and provide a new insight into the genetic background of avipoxvirus 282E4 and interspecies transmission of poxviruses, meanwhile, explanation of gene function provides theoretical foundation for vaccine design with 282E4 strain as skeleton.
Collapse
Affiliation(s)
- Lingcong Deng
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Institute of Veterinary Medicine, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Cunxia Liu
- Institute of Poultry Science, Shandong Academy of Agricultural Sciences/Shandong Provincial Key Laboratory of Immunity and Diagnosis of Poultry Diseases, Jinan, 250100, China
| | - Letian Li
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Institute of Veterinary Medicine, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Pengfei Hao
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Institute of Veterinary Medicine, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Maopeng Wang
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Institute of Veterinary Medicine, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Ningyi Jin
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Institute of Veterinary Medicine, Chinese Academy of Agricultural Sciences, Changchun, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
| | - Ronglan Yin
- Academy of Animal Science and Veterinary Medicine in Jilin Province, Changchun, 130062, China.
| | - Shouwen Du
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Institute of Veterinary Medicine, Chinese Academy of Agricultural Sciences, Changchun, China.
| | - Chang Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Institute of Veterinary Medicine, Chinese Academy of Agricultural Sciences, Changchun, China.
| |
Collapse
|
8
|
He L, Zhang Y, Jia Y, Li Z, Li J, Shang K, Ding K, Yu H, Sarker S. A novel pathogenic avipoxvirus infecting oriental turtle dove ( Streptopelia orientalis) in China shows a high genomic and evolutionary proximity with the pigeon avipoxviruses isolated globally. Microbiol Spectr 2023; 11:e0119323. [PMID: 37750697 PMCID: PMC10581063 DOI: 10.1128/spectrum.01193-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 08/08/2023] [Indexed: 09/27/2023] Open
Abstract
Avipoxviruses are considered as significant viral pathogen infecting a wide range of domestic and wild bird species globally, yet the majority of avipoxviruses that infect the wild bird species remain uncharacterized and their genetic diversities remain unclear. In this study, we present a novel pathogenic avipoxvirus isolated from the cutaneous pox lesions of a wild oriental turtle dove (Streptopelia orientalis), tentatively named as turtle dovepox virus (TDPV). The avipoxvirus was isolated by using the chorioallantoic membranes of specific pathogen-free chicken embryos which showed characteristic focal pock lesions, followed by cytopathic effects in host cells infected with oriental turtle dovepox virus. An effort in sequencing the whole genome of the poxvirus using next-generation sequencing was given, and the first whole genome sequence of TDPV was obtained. The TDPV genome was 281,386 bp in length and contained 380 predicted open reading frames (ORFs). While 336 of the predicted ORFs showed homology to other characterized avipoxviruses, the other 44 ORFs were unique. Subsequent phylogenetic analyses showed that the novel TDPV shared the closest genetic evolutionary linkage with the avipoxviruses isolated from pigeon in South Africa and India, of which the TDPV genome had the highest sequence similarity (92.5%) with South African pigeonpox virus (FeP2). In conclusion, the sequenced TDPV is significantly different from any other avipoxviruses isolated from avian or other natural host species considering genomic architecture and observed sequence similarity index. Thus, it likely should be considered a separate species. IMPORTANCE Over the past few decades, avipoxviruses have been found in a number of wild bird species including the oriental turtle dove. However, there is no whole genome sequence information on avipoxviruses isolated from oriental turtle dove, leaving us unclear about the evolutionary linkage of avipoxviruses in oriental turtle dove and other wild bird species. Thus, we believe that our study makes a significant contribution because it is the first report of the whole genome sequence of TDPV isolated from a wild oriental turtle dove, which enriches the genomic information of the genus Avipoxvirus, furthermore, contributes to tracking the genetic evolution of avipoxviruses-infected oriental turtle dove species.
Collapse
Affiliation(s)
- Lei He
- The Key Lab of Animal Disease and Public Health /Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, Henan, China
| | - Yuhao Zhang
- The Key Lab of Animal Disease and Public Health /Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, Henan, China
| | - Yanyan Jia
- The Key Lab of Animal Disease and Public Health /Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, Henan, China
| | - Zedian Li
- The Key Lab of Animal Disease and Public Health /Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, Henan, China
| | - Jing Li
- The Key Lab of Animal Disease and Public Health /Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, Henan, China
| | - Ke Shang
- The Key Lab of Animal Disease and Public Health /Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, Henan, China
| | - Ke Ding
- The Key Lab of Animal Disease and Public Health /Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, Henan, China
| | - Haotong Yu
- The Key Lab of Animal Disease and Public Health /Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, Henan, China
| | - Subir Sarker
- Biomedical Sciences & Molecular Biology, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Australia
| |
Collapse
|
9
|
Moniruzzaman M, Erazo Garcia MP, Farzad R, Ha AD, Jivaji A, Karki S, Sheyn U, Stanton J, Minch B, Stephens D, Hancks DC, Rodrigues RAL, Abrahao JS, Vardi A, Aylward FO. Virologs, viral mimicry, and virocell metabolism: the expanding scale of cellular functions encoded in the complex genomes of giant viruses. FEMS Microbiol Rev 2023; 47:fuad053. [PMID: 37740576 PMCID: PMC10583209 DOI: 10.1093/femsre/fuad053] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/29/2023] [Accepted: 09/21/2023] [Indexed: 09/24/2023] Open
Abstract
The phylum Nucleocytoviricota includes the largest and most complex viruses known. These "giant viruses" have a long evolutionary history that dates back to the early diversification of eukaryotes, and over time they have evolved elaborate strategies for manipulating the physiology of their hosts during infection. One of the most captivating of these mechanisms involves the use of genes acquired from the host-referred to here as viral homologs or "virologs"-as a means of promoting viral propagation. The best-known examples of these are involved in mimicry, in which viral machinery "imitates" immunomodulatory elements in the vertebrate defense system. But recent findings have highlighted a vast and rapidly expanding array of other virologs that include many genes not typically found in viruses, such as those involved in translation, central carbon metabolism, cytoskeletal structure, nutrient transport, vesicular trafficking, and light harvesting. Unraveling the roles of virologs during infection as well as the evolutionary pathways through which complex functional repertoires are acquired by viruses are important frontiers at the forefront of giant virus research.
Collapse
Affiliation(s)
- Mohammad Moniruzzaman
- Rosenstiel School of Marine Atmospheric, and Earth Science, University of Miami, Coral Gables, FL 33149, United States
| | - Maria Paula Erazo Garcia
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA 24061, United States
| | - Roxanna Farzad
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA 24061, United States
| | - Anh D Ha
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA 24061, United States
| | - Abdeali Jivaji
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA 24061, United States
| | - Sangita Karki
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA 24061, United States
| | - Uri Sheyn
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA 24061, United States
| | - Joshua Stanton
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA 24061, United States
| | - Benjamin Minch
- Rosenstiel School of Marine Atmospheric, and Earth Science, University of Miami, Coral Gables, FL 33149, United States
| | - Danae Stephens
- Rosenstiel School of Marine Atmospheric, and Earth Science, University of Miami, Coral Gables, FL 33149, United States
| | - Dustin C Hancks
- Department of Immunology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, United States
| | - Rodrigo A L Rodrigues
- Laboratório de Vírus, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Jonatas S Abrahao
- Laboratório de Vírus, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Assaf Vardi
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Frank O Aylward
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA 24061, United States
- Center for Emerging, Zoonotic, and Arthropod-Borne Infectious Disease, Virginia Tech, Blacksburg, VA 24061, United States
| |
Collapse
|
10
|
Brennan G, Stoian AMM, Yu H, Rahman MJ, Banerjee S, Stroup JN, Park C, Tazi L, Rothenburg S. Molecular Mechanisms of Poxvirus Evolution. mBio 2023; 14:e0152622. [PMID: 36515529 PMCID: PMC9973261 DOI: 10.1128/mbio.01526-22] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Poxviruses are often thought to evolve relatively slowly because they are double-stranded DNA pathogens with proofreading polymerases. However, poxviruses have highly adaptable genomes and can undergo relatively rapid genotypic and phenotypic change, as illustrated by the recent increase in human-to-human transmission of monkeypox virus. Advances in deep sequencing technologies have demonstrated standing nucleotide variation in poxvirus populations, which has been underappreciated. There is also an emerging understanding of the role genomic architectural changes play in shaping poxvirus evolution. These mechanisms include homologous and nonhomologous recombination, gene duplications, gene loss, and the acquisition of new genes through horizontal gene transfer. In this review, we discuss these evolutionary mechanisms and their potential roles for adaption to novel host species and modulating virulence.
Collapse
Affiliation(s)
- Greg Brennan
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, USA
| | - Ana M. M. Stoian
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, USA
| | - Huibin Yu
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, USA
| | - M. Julhasur Rahman
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, USA
| | - Shefali Banerjee
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, USA
| | - Jeannine N. Stroup
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, USA
| | - Chorong Park
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, USA
| | - Loubna Tazi
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, USA
| | - Stefan Rothenburg
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, USA
| |
Collapse
|
11
|
Sarker S, Raidal SR. A Novel Pathogenic Avipoxvirus Infecting Vulnerable Cook's Petrel ( Pterodroma cookii) in Australia Demonstrates a High Genomic and Evolutionary Proximity with South African Avipoxviruses. Microbiol Spectr 2023; 11:e0461022. [PMID: 36749064 PMCID: PMC10100368 DOI: 10.1128/spectrum.04610-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/06/2023] [Indexed: 02/08/2023] Open
Abstract
Avipoxviruses are assumed to be restricted to avian hosts and are considered to be important viral pathogens that may impact the conservation of many vulnerable or endangered birds. Recent reports of avipoxvirus-like viruses from reptiles suggest that cross-species transmission may be possible within birds and other species. Most of the avipoxviruses in wild and sea birds remain uncharacterized, and their genetic variability is unclear. Here, cutaneous pox lesions were used to recover a novel, full-length Cook's petrelpox virus (CPPV) genome from a vulnerable Cook's petrel (Pterodroma cookii), and this was followed by the detection of immature virions using transmission electron microscopy (TEM). The CPPV genome was 314,065 bp in length and contained 357 predicted open-reading frames (ORFs). While 323 of the ORFs of the CPPV genome had the greatest similarity with the gene products of other avipoxviruses, a further 34 ORFs were novel. Subsequent phylogenetic analyses showed that the CPPV was most closely related to other avipoxviruses that were isolated mostly from South African bird species and demonstrated the highest sequence similarity with a recently isolated flamingopox virus (88.9%) in South Africa. Considering the sequence similarity observed between CPPV and other avipoxviruses, TEM evidence of poxvirus particles, and phylogenetic position, this study concluded that CPPV is a distinct candidate of avipoxviruses. IMPORTANCE Emerging viral disease is a significant concern with potential consequences for human, animal, and environmental health. Over the past several decades, multiple novel viruses have been found in wildlife species, including birds, and they can pose a threat to vulnerable and endangered species. Cook's petrel is currently listed as vulnerable. The threats to the species vary, but are, to a large degree, due to anthropogenic impacts, such as climate change, habitat loss, pollution, and other disturbances by humans. Knowledge of viral pathogens, including poxvirus of Cook's petrel is currently virtually nonexistent.
Collapse
Affiliation(s)
- Subir Sarker
- Department of Microbiology, Anatomy, Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Victoria, Australia
| | - Shane R. Raidal
- School of Agricultural, Environmental and Veterinary Sciences, Faculty of Science and Health, Charles Sturt University, Wagga, New South Wales, Australia
| |
Collapse
|
12
|
Kim HR, Jang I, Song HS, Kim SH, Kim HS, Kwon YK. Genetic Diversity of Fowlpox Virus and Putative Genes Involved in Its Pathogenicity. Microbiol Spectr 2022; 10:e0141522. [PMID: 36073826 PMCID: PMC9603804 DOI: 10.1128/spectrum.01415-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 08/12/2022] [Indexed: 12/30/2022] Open
Abstract
To determine the genomic variations of fowlpox virus (FPV)-the largest, very ancient, and still harmful avian virus-the complete genomes of 21 FPVs were analyzed. The genomes showed low genetic diversity relative to their overall size. Our studies revealed that FPVs could phylogenetically be divided into two clades, based on their regional distribution, and comparative analysis showed that 40 putative proteins of FPV were associated with geographic differences in viruses, viral pathogenicity, or the onset of diphtheritic lesions. The strain, classified into a subgroup different from others in the genomic analysis, showed relatively low pathogenicity in chickens, and the onset of diphtheritic lesions was observed to be caused only by the specific strain. Despite genetic differences, some commercial vaccines are protective against virulent strains, and intact reticuloendotheliosis virus inserted into field FPV strains was activated but there was no enhancement of the pathogenicity of FPV. These findings will expand our knowledge of the viral proteome and help us understand the pathogenicity of FPV. IMPORTANCE This study aims at determining molecular candidates using comparative genomics to differentiate between the diphtheritic and cutaneous forms of FPV infection, in addition to their association with the pathogenicity of the virus. Full-genomic analyses of multiple fowlpox strains, including field viruses, isolated between 1960s and 2019, and vaccine strains showed the genetic diversity due to regional differences. Comparative genomic analysis offered the clues related to viral virulence. We believe that our study makes a significant contribution to the literature because we are the first to perform such an elaborate study that compares 21 FPVs to study and highlight their diversity, despite the high level of homology between them. Our results shall help provide insights for tackling FPV that has been taking a toll on the poultry for years now.
Collapse
Affiliation(s)
- Hye-Ryoung Kim
- Avian Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si, Gyeongsangbuk-do, Republic of Korea
| | - Il Jang
- Avian Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si, Gyeongsangbuk-do, Republic of Korea
| | - Hye-Soon Song
- Avian Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si, Gyeongsangbuk-do, Republic of Korea
| | - Si-Hyeon Kim
- Avian Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si, Gyeongsangbuk-do, Republic of Korea
| | - Hyeon-Su Kim
- Avian Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si, Gyeongsangbuk-do, Republic of Korea
| | - Yong-Kuk Kwon
- Avian Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si, Gyeongsangbuk-do, Republic of Korea
| |
Collapse
|
13
|
Molecular characterisation of a novel pathogenic avipoxvirus from an Australian little crow (Corvus bennetti) directly from the clinical sample. Sci Rep 2022; 12:15053. [PMID: 36064742 PMCID: PMC9445014 DOI: 10.1038/s41598-022-19480-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/30/2022] [Indexed: 11/29/2022] Open
Abstract
Avipoxviruses are thought to be restricted to avian hosts and considered significant pathogens that may impact the conservation of many birds. However, reports of avipoxvirus-like viruses from reptiles suggest that cross-species transmission, within birds and other species, may be possible. The vast majority of avipoxviruses in wild birds remain uncharacterised and their genetic variability is unclear. Here, cutaneous pox lesions were used to recover a novel full-length crowpox virus genome from an Australian little crow (Corvus bennetti), followed by the detection of immature and intracellular mature virions using electron microscopy. The CRPV genome was 328,768 bp in length and contained 403 predicted open-reading frames. While 356 of the ORFs of CRPV genome had the greatest similarity with other avipoxviruses gene products, a further 47 ORFs were novel. Subsequent phylogenetic analyses showed that the CRPV was most closely related to other avipoxviruses isolated from passerine and marine bird species and demonstrated the highest sequence similarity with an albatrosspox virus (84.4%). Considering the sequence similarity observed between CRPV and other avipoxviruses and phylogenetic position, this study concluded that the CRPV to be a distinct available candidate of avipoxviruses.
Collapse
|
14
|
Poxviral ANKR/F-box Proteins: Substrate Adapters for Ubiquitylation and More. Pathogens 2022; 11:pathogens11080875. [PMID: 36014996 PMCID: PMC9414399 DOI: 10.3390/pathogens11080875] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 02/01/2023] Open
Abstract
Poxviruses are double-stranded DNA viruses that infect insects and a variety of vertebrate species. The large genomes of poxviruses contain numerous genes that allow these viruses to successfully establish infection, including those that help evade the host immune response and prevent cell death. Ankyrin-repeat (ANKR)/F-box proteins are almost exclusively found in poxviruses, and they function as substrate adapters for Skp1-Cullin-1-F-box protein (SCF) multi-subunit E3 ubiquitin (Ub)-ligases. In this regard, they use their C-terminal F-box domain to bind Skp1, Cullin-1, and Roc1 to recruit cellular E2 enzymes to facilitate the ubiquitylation, and subsequent proteasomal degradation, of proteins bound to their N-terminal ANKRs. However, these proteins do not just function as substrate adapters as they also have Ub-independent activities. In this review, we examine both Ub-dependent and -independent activities of ANKR/F-box proteins and discuss how poxviruses use these proteins to counteract the host innate immune response, uncoat their genome, replicate, block cell death, and influence transcription. Finally, we consider important outstanding questions that need to be answered in order to better understand the function of this versatile protein family.
Collapse
|
15
|
Xia Y, Cheng H, Zhong J. Hybrid Sequencing Resolved Inverted Terminal Repeats in the Genome of Megavirus Baoshan. Front Microbiol 2022; 13:831659. [PMID: 35620092 PMCID: PMC9127612 DOI: 10.3389/fmicb.2022.831659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/21/2022] [Indexed: 12/12/2022] Open
Abstract
Mimivirus is a group of amoeba-infecting DNA viruses with linear double-strand genome. It is found to be ubiquitous in nature worldwide. Here, we reported the complete genome of a new member of Mimivirus lineage C isolated from a fresh water pond in Shanghai, China. Its 1,224,839-bp genome encoded 1,062 predicted ORFs. Combining the results of Nanopore, Illumina, and Sanger sequencing technologies, two identical 23,919 bp inverted terminal repeats (ITRs) were identified at both extremities of the viral linear genome, one of which was missing in the draft assembly based on Illumina data only. The discovery of ITRs of Mimivirus provided a new insight into Mimivirus genome structure.
Collapse
Affiliation(s)
- Yucheng Xia
- Shanghai Public Health Clinical Center, State Key Laboratory of Genetic Engineering, Department of Microbiology and Immunology, School of Life Sciences, Fudan University, Shanghai, China
| | - Huanyu Cheng
- Shanghai Public Health Clinical Center, State Key Laboratory of Genetic Engineering, Department of Microbiology and Immunology, School of Life Sciences, Fudan University, Shanghai, China
| | - Jiang Zhong
- Shanghai Public Health Clinical Center, State Key Laboratory of Genetic Engineering, Department of Microbiology and Immunology, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
16
|
Sahu BP, Majee P, Singh RR, Sahoo N, Nayak D. Genome-wide identification and characterization of microsatellite markers within the Avipoxviruses. 3 Biotech 2022; 12:113. [PMID: 35497507 PMCID: PMC9008116 DOI: 10.1007/s13205-022-03169-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/19/2022] [Indexed: 11/01/2022] Open
Abstract
Microsatellite markers or Simple Sequence Repeats (SSRs) are gaining importance for molecular characterization of the virus as well as estimation of evolution patterns due to its high-polymorphic nature. The Avipoxvirus is the causative agent of pox-like lesions in more than 300 birds and one of the major diseases for the extinction of endangered avian species. Therefore, we conducted a genome-wide analysis to decipher the type, distribution pattern of 14 complete genomes derived from the Avipoxvirus genus. The in-silico screening deciphered the existence of 917-2632 SSRs per strain. In the case of compound SSRs (cSSRs), the value was obtained 44-255 per genome. Our analysis indicates that the di-nucleotide repeats (52.74%) are the most abundant, followed by the mononucleotides (34.79), trinucleotides (11.57%), tetranucleotides (0.64%), pentanucleotides (0.12%) and hexanucleotides (0.15%) repeats. The specific parameters like Relative Abundance (RA) and Relative Density (RD) of microsatellites ranged within 5.5-8.12 and 33.08-53.58 bp/kb. The analysis of RA and RD value of compound microsatellites resulted between 0.25-0.82 and 4.64-15.12 bp/kb. The analysis of motif composition of cSSR revealed that most of the compound microsatellites were made up of two microsatellites, with some unique duplicated pattern of the motif like, (TA)-x-(TA), (TCA)-x-(TCA), etc. and self-complementary motifs, such as (TA)-x-(AT). Finally, we validated forty sets of compound microsatellite markers through an in-vitro approach utilizing clinical specimens and mapping the sequencing products with the database through comparative genomics approaches. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03169-4.
Collapse
|
17
|
Chapman R, van Diepen M, Douglass N, Galant S, Jaffer M, Margolin E, Ximba P, Hermanus T, Moore PL, Williamson AL. Assessment of an LSDV-Vectored Vaccine for Heterologous Prime-Boost Immunizations against HIV. Vaccines (Basel) 2021; 9:1281. [PMID: 34835214 PMCID: PMC8620012 DOI: 10.3390/vaccines9111281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/18/2021] [Accepted: 10/27/2021] [Indexed: 11/18/2022] Open
Abstract
The modest protective effects of the RV144 HIV-1 vaccine trial have prompted the further exploration of improved poxvirus vector systems that can yield better immune responses and protection. In this study, a recombinant lumpy skin disease virus (LSDV) expressing HIV-1 CAP256.SU gp150 (Env) and a subtype C mosaic Gag was constructed (LSDVGC5) and compared to the equivalent recombinant modified vaccinia Ankara (MVAGC5). In vitro characterization confirmed that cells infected with recombinant LSDV produced Gag virus-like particles containing Env, and that Env expressed on the surface of the cells infected with LSDV was in a native-like conformation. This candidate HIV-1 vaccine (L) was tested in a rabbit model using different heterologous vaccination regimens, in combination with DNA (D) and MVA (M) vectors expressing the equivalent HIV-1 antigens. The four different vaccination regimens (DDMMLL, DDMLML, DDLMLM, and DDLLMM) all elicited high titers of binding and Tier 1A neutralizing antibodies (NAbs), and some regimens induced Tier 1B NAbs. Furthermore, two rabbits in the DDLMLM group developed low levels of autologous Tier 2 NAbs. The humoral immune responses elicited against HIV-1 Env by the recombinant LSDVGC5 were comparable to those induced by MVAGC5.
Collapse
Affiliation(s)
- Ros Chapman
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Science, University of Cape Town, Cape Town 7925, South Africa; (M.v.D.); (N.D.); (S.G.); (E.M.); (P.X.); (A.-L.W.)
- Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town 7925, South Africa
| | - Michiel van Diepen
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Science, University of Cape Town, Cape Town 7925, South Africa; (M.v.D.); (N.D.); (S.G.); (E.M.); (P.X.); (A.-L.W.)
- Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town 7925, South Africa
| | - Nicola Douglass
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Science, University of Cape Town, Cape Town 7925, South Africa; (M.v.D.); (N.D.); (S.G.); (E.M.); (P.X.); (A.-L.W.)
- Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town 7925, South Africa
| | - Shireen Galant
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Science, University of Cape Town, Cape Town 7925, South Africa; (M.v.D.); (N.D.); (S.G.); (E.M.); (P.X.); (A.-L.W.)
- Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town 7925, South Africa
| | - Mohamed Jaffer
- Electron Microscope Unit, University of Cape Town, Rondebosch 7701, South Africa;
| | - Emmanuel Margolin
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Science, University of Cape Town, Cape Town 7925, South Africa; (M.v.D.); (N.D.); (S.G.); (E.M.); (P.X.); (A.-L.W.)
- Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town 7925, South Africa
| | - Phindile Ximba
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Science, University of Cape Town, Cape Town 7925, South Africa; (M.v.D.); (N.D.); (S.G.); (E.M.); (P.X.); (A.-L.W.)
- Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town 7925, South Africa
| | - Tandile Hermanus
- Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg 2131, South Africa; (T.H.); (P.L.M.)
- Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2050, South Africa
| | - Penny L. Moore
- Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg 2131, South Africa; (T.H.); (P.L.M.)
- Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2050, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Congella, Durban 4013, South Africa
| | - Anna-Lise Williamson
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Science, University of Cape Town, Cape Town 7925, South Africa; (M.v.D.); (N.D.); (S.G.); (E.M.); (P.X.); (A.-L.W.)
- Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town 7925, South Africa
| |
Collapse
|
18
|
Umar BN, Adamu J, Ahmad MT, Ahmad KH, Sada A, Orakpoghenor O. Fowlpox virus: an overview of its classification, morphology and genome, replication mechanisms, uses as vaccine vector and disease dynamics. WORLD POULTRY SCI J 2021. [DOI: 10.1080/00439339.2021.1959278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- B. N. Umar
- Virology and Immunology Unit, Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria
| | - J Adamu
- Virology and Immunology Unit, Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria
| | - M. T Ahmad
- Avian and Fish Health Unit, Veterinary Teaching Hospital, Ahmadu Bello University, Zaria, Nigeria
| | - K. H. Ahmad
- Diagnostic Laboratory, Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria
| | - A. Sada
- Virology and Immunology Unit, Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria
- Central Diagnostic Unit, National Veterinary Research Institute (NVRI), Vom, Nigeria
| | - O. Orakpoghenor
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria
| |
Collapse
|
19
|
Lant S, Maluquer de Motes C. Poxvirus Interactions with the Host Ubiquitin System. Pathogens 2021; 10:pathogens10081034. [PMID: 34451498 PMCID: PMC8399815 DOI: 10.3390/pathogens10081034] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 12/16/2022] Open
Abstract
The ubiquitin system has emerged as a master regulator of many, if not all, cellular functions. With its large repertoire of conjugating and ligating enzymes, the ubiquitin system holds a unique mechanism to provide selectivity and specificity in manipulating protein function. As intracellular parasites viruses have evolved to modulate the cellular environment to facilitate replication and subvert antiviral responses. Poxviruses are a large family of dsDNA viruses with large coding capacity that is used to synthetise proteins and enzymes needed for replication and morphogenesis as well as suppression of host responses. This review summarises our current knowledge on how poxvirus functions rely on the cellular ubiquitin system, and how poxviruses exploit this system to their own advantage, either facilitating uncoating and genome release and replication or rewiring ubiquitin ligases to downregulate critical antiviral factors. Whilst much remains to be known about the intricate interactions established between poxviruses and the host ubiquitin system, our knowledge has revealed crucial viral processes and important restriction factors that open novel avenues for antiviral treatment and provide fundamental insights on the biology of poxviruses and other virus families.
Collapse
|
20
|
Genomic characterisation of a novel avipoxvirus, magpiepox virus 2, from an Australian magpie (Gymnorhina tibicen terraereginae). Virology 2021; 562:121-127. [PMID: 34315102 DOI: 10.1016/j.virol.2021.07.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 10/20/2022]
Abstract
Avipoxviruses are large, double-stranded DNA viruses and are considered significant pathogens that may impact on the conservation of numerous bird species. The vast majority of avipoxviruses in wild birds remain uncharacterised and their genetic variability is unclear. Here, we fully sequenced a novel avipoxvirus, magpiepox virus 2 (MPPV2), which was isolated 62 years ago (in 1956) from an Australian black-backed magpie. The MPPV2 genome was 298,392 bp in length and contained 419 predicted open-reading frames (ORFs). While 43 ORFs were novel, a further 24 ORFs were absent compared with another magpiepox virus (MPPV) characterised in 2018. The MPPV2 genome contained an additional ten genes that were homologs to shearwaterpox virus 2 (SWPV2). Subsequent phylogenetic analyses showed that the novel MPPV2 was most closely related to other avipoxviruses isolated from passerine and shearwater bird species, and demonstrated a high degree of sequence similarity (95.0%) with MPPV.
Collapse
|
21
|
Genomic Characterisation of a Novel Avipoxvirus Isolated from an Endangered Northern Royal Albatross ( Diomedea sanfordi). Pathogens 2021; 10:pathogens10050575. [PMID: 34065100 PMCID: PMC8151833 DOI: 10.3390/pathogens10050575] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 12/13/2022] Open
Abstract
Marine bird populations have been declining globally with the factors driving this decline not fully understood. Viral diseases, including those caused by poxviruses, are a concern for endangered seabird species. In this study we have characterised a novel avipoxvirus, tentatively designated albatrosspox virus (ALPV), isolated from a skin lesion of an endangered New Zealand northern royal albatross (Diomedea sanfordi). The ALPV genome was 351.9 kbp in length and contained 336 predicted genes, seven of which were determined to be unique. The highest number of genes (313) in the ALPV genome were homologs of those in shearwaterpox virus 2 (SWPV2), while a further 10 were homologs to canarypox virus (CNPV) and an additional six to shearwaterpox virus 1 (SWPV1). Phylogenetic analyses positioned the ALPV genome within a distinct subclade comprising recently isolated avipoxvirus genome sequences from shearwater, penguin and passerine bird species. This is the first reported genome sequence of ALPV from a northern royal albatross and will help to track the evolution of avipoxvirus infections in this endangered species.
Collapse
|
22
|
Emergence of a Novel Pathogenic Poxvirus Infection in the Endangered Green Sea Turtle ( Chelonia mydas) Highlights a Key Threatening Process. Viruses 2021; 13:v13020219. [PMID: 33572619 PMCID: PMC7911307 DOI: 10.3390/v13020219] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 01/22/2021] [Accepted: 01/28/2021] [Indexed: 01/23/2023] Open
Abstract
Emerging viral disease is a significant concern, with potential consequences for human, animal and environmental health. Over the past several decades, multiple novel viruses have been found in wildlife species, including reptiles, and often pose a major threat to vulnerable species. However, whilst a large number of viruses have been described in turtles, information on poxvirus in cheloniids remains scarce, with no molecular sequence data available to date. This study characterizes, for the first time, a novel poxvirus, here tentatively designated cheloniid poxvirus 1 (ChePV-1). The affected cutaneous tissue, recovered from a green sea turtle (Chelonia mydas) captured off the Central Queensland coast of Australia, underwent histological examination, transmission electron microscopy (TEM), DNA extraction and genomic sequencing. The novel ChePV-1 was shown to be significantly divergent from other known poxviruses and showed the highest sequence similarity (89.3%) to avipoxviruses (shearwater poxvirus 2 (SWPV2)). This suggests the novel ChePV-1 may have originated from a common ancestor that diverged from an avipoxvirus-like progenitor. The genome contained three predicted unique genes and a further 15 genes being truncated/fragmented compared to SWPV2. This is the first comprehensive study that demonstrates evidence of poxvirus infection in a marine turtle species, as well as a rare example of an avipoxvirus crossing the avian-host barrier. This finding warrants further investigations into poxvirus infections between species in close physical proximity, as well as in vitro and in vivo studies of pathogenesis and disease.
Collapse
|
23
|
Genomic Characterisation of a Novel Avipoxvirus Isolated from an Endangered Yellow-Eyed Penguin ( Megadyptes antipodes). Viruses 2021; 13:v13020194. [PMID: 33525382 PMCID: PMC7911368 DOI: 10.3390/v13020194] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/25/2021] [Accepted: 01/25/2021] [Indexed: 01/05/2023] Open
Abstract
Emerging viral diseases have become a significant concern due to their potential consequences for animal and environmental health. Over the past few decades, it has become clear that viruses emerging in wildlife may pose a major threat to vulnerable or endangered species. Diphtheritic stomatitis, likely to be caused by an avipoxvirus, has been recognised as a significant cause of mortality for the endangered yellow-eyed penguin (Megadyptes antipodes) in New Zealand. However, the avipoxvirus that infects yellow-eyed penguins has remained uncharacterised. Here, we report the complete genome of a novel avipoxvirus, penguinpox virus 2 (PEPV2), which was derived from a virus isolate obtained from a skin lesion of a yellow-eyed penguin. The PEPV2 genome is 349.8 kbp in length and contains 327 predicted genes; five of these genes were found to be unique, while a further two genes were absent compared to shearwaterpox virus 2 (SWPV2). In comparison with penguinpox virus (PEPV) isolated from an African penguin, there was a lack of conservation within the central region of the genome. Subsequent phylogenetic analyses of the PEPV2 genome positioned it within a distinct subclade comprising the recently isolated avipoxvirus genome sequences from shearwater, canary, and magpie bird species, and demonstrated a high degree of sequence similarity with SWPV2 (96.27%). This is the first reported genome sequence of PEPV2 from a yellow-eyed penguin and will help to track the evolution of avipoxvirus infections in this rare and endangered species.
Collapse
|
24
|
Sarker S, Athukorala A, Raidal SR. Molecular characterisation of a novel pathogenic avipoxvirus from an Australian passerine bird, mudlark (Grallina cyanoleuca). Virology 2020; 554:66-74. [PMID: 33385935 DOI: 10.1016/j.virol.2020.12.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/17/2020] [Accepted: 12/17/2020] [Indexed: 11/25/2022]
Abstract
Avipoxviruses have been recognised as significant pathogens in the conservation of numerous bird species. However, the vast majority of the avipoxviruses that infect wild birds remain uncharacterised. Here, we characterise a novel avipoxvirus, mudlarkpox virus (MLPV) isolated from an Australian passerine bird, mudlark (Grallina cyanoleuca). In this study, tissues with histopathologically confirmed lesions consistent with avian pox were used for transmission electron microscopy, and showed characteristic ovoid to brick-shaped virions, indicative of infectious particles. The MLPV genome was >342.7 Kbp in length and contained six predicted novel genes and a further six genes were missing compared to shearwaterpox virus-2 (SWPV-2). Subsequent phylogenetic analyses of the MLPV genome positioned the virus within a distinct subclade also containing recently characterised avipoxvirus genomes from shearwater, canary and magpie bird species, and demonstrated a high degree of sequence similarity with SWPV-2 (94.92%).
Collapse
Affiliation(s)
- Subir Sarker
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Bundoora, VIC, 3086, Australia.
| | - Ajani Athukorala
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Shane R Raidal
- School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia
| |
Collapse
|
25
|
Lawler C, Brady G. Poxviral Targeting of Interferon Regulatory Factor Activation. Viruses 2020; 12:v12101191. [PMID: 33092186 PMCID: PMC7590177 DOI: 10.3390/v12101191] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/15/2020] [Accepted: 10/15/2020] [Indexed: 12/21/2022] Open
Abstract
As viruses have a capacity to rapidly evolve and continually alter the coding of their protein repertoires, host cells have evolved pathways to sense viruses through the one invariable feature common to all these pathogens-their nucleic acids. These genomic and transcriptional pathogen-associated molecular patterns (PAMPs) trigger the activation of germline-encoded anti-viral pattern recognition receptors (PRRs) that can distinguish viral nucleic acids from host forms by their localization and subtle differences in their chemistry. A wide range of transmembrane and cytosolic PRRs continually probe the intracellular environment for these viral PAMPs, activating pathways leading to the activation of anti-viral gene expression. The activation of Nuclear Factor Kappa B (NFκB) and Interferon (IFN) Regulatory Factor (IRF) family transcription factors are of central importance in driving pro-inflammatory and type-I interferon (TI-IFN) gene expression required to effectively restrict spread and trigger adaptive responses leading to clearance. Poxviruses evolve complex arrays of inhibitors which target these pathways at a variety of levels. This review will focus on how poxviruses target and inhibit PRR pathways leading to the activation of IRF family transcription factors.
Collapse
|
26
|
Romanutti C, Keller L, Zanetti FA. Current status of virus-vectored vaccines against pathogens that affect poultry. Vaccine 2020; 38:6990-7001. [PMID: 32951939 DOI: 10.1016/j.vaccine.2020.09.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 08/12/2020] [Accepted: 09/02/2020] [Indexed: 01/04/2023]
Abstract
The most effective strategies for the control of disease in poultry are vaccination and biosecurity. Vaccines useful against pathogens affecting poultry must be safe, effective with a single dose, inexpensive, applicable by mass vaccination methods, and able to induce a protective immune response in the presence of maternal antibodies. Viral vector meet some of these characteristics and if the attenuated virus used as vector infects birds, the vaccine will have the advantage of being bivalent. Thus, viral vectors are currently a tool of choice for the development of new poultry vaccines. This review describes the main viruses used as vectors for the delivery and in vivo expression of antigens of poultry pathogens. It also presents the methodologies most frequently used to obtain recombinant viral vectors and summarizes the state-of-the-art related to vectored vaccines in poultry (some of them currently licensed), the pathogens targeted and their antigens, and the ability of these vaccines to induce an effective immune response. Finally, the review discusses the results of a few studies comparing recombinant viral vector vaccines and live-attenuated vaccines in vaccine matching challenges, and mentions strategies and future researches that can help to improve the efficacy of vectored vaccines in poultry birds.
Collapse
Affiliation(s)
- Carina Romanutti
- Centro de Virología Animal (CEVAN), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Saladillo 2468 (C1440FFX), Ciudad Autónoma de Buenos Aires, Argentina.
| | - Leticia Keller
- Instituto de Ciencia y Tecnología "Dr. Cesar Milstein", CONICET, Saladillo 2468 (C1440FFX), Ciudad Autónoma de Buenos Aires, Argentina.
| | - Flavia Adriana Zanetti
- Instituto de Ciencia y Tecnología "Dr. Cesar Milstein", CONICET, Saladillo 2468 (C1440FFX), Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
27
|
Molecular Detection of Reticuloendotheliosis Virus 5' Long Terminal Repeat Integration in the Genome of Avipoxvirus Field Strains from Different Avian Species in Egypt. BIOLOGY 2020; 9:biology9090257. [PMID: 32878059 PMCID: PMC7563266 DOI: 10.3390/biology9090257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 11/17/2022]
Abstract
Avipoxviruses (APVs) are among the most complex viruses that infect a wide range of birds’ species. The infection by APVs is often associated with breathing and swallowing difficulties, reduced growth, decreased egg production, and high mortalities in domestic poultry. In the present study, 200 cutaneous nodular samples were collected from different avian species (chicken, pigeon, turkey, and canary) suspected to be infected with APVs from Dakahlia Governorate, Egypt. Pooled samples (n = 40) were prepared and inoculated in embryonated chicken eggs (ECEs). APVs were then identified by polymerase chain reaction (PCR) and sequence analysis of the APV P4b gene. Furthermore, the forty strains of APVs were screened for the presence of reticuloendotheliosis virus (REV)-5′LTR in their genomes. Interestingly, the phylogenic tree of the APV P4b gene was separated into 2 clades: clade 1, in which our fowlpox virus (FWPV), turkeypox virus (TKPV), and canarypox virus (CNPV) isolates were grouped, along with reference FWPVs and TKPVs retrieved from GenBank, whereas, in clade2, the pigeonpox virus (PGPV) isolate was grouped with PGPVs retrieved from GenBank. Likewise, REV-5′LTR was amplified from 30 strains isolated from chicken, turkey, and canary, while PGPV strains were free from REV-5′LTR integration. To the best of our knowledge, this study involved the detection and characterization of REV-5′LTR insertions in the APVs field isolates in Egypt for the first time. Given the above information, further future research seems recommended to understand the impact of the resulting REV-5′LTR insertions on the pathogenesis, virulence, and inadequate vaccine protection against APVs.
Collapse
|
28
|
The Bcl-2 Family: Ancient Origins, Conserved Structures, and Divergent Mechanisms. Biomolecules 2020; 10:biom10010128. [PMID: 31940915 PMCID: PMC7022251 DOI: 10.3390/biom10010128] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/18/2019] [Accepted: 01/09/2020] [Indexed: 12/13/2022] Open
Abstract
Intrinsic apoptosis, the response to intracellular cell death stimuli, is regulated by the interplay of the B-cell lymphoma 2 (Bcl-2) family and their membrane interactions. Bcl-2 proteins mediate a number of processes including development, homeostasis, autophagy, and innate and adaptive immune responses and their dysregulation underpins a host of diseases including cancer. The Bcl-2 family is characterized by the presence of conserved sequence motifs called Bcl-2 homology motifs, as well as a transmembrane region, which form the interaction sites and intracellular location mechanism, respectively. Bcl-2 proteins have been recognized in the earliest metazoans including Porifera (sponges), Placozoans, and Cnidarians (e.g., Hydra). A number of viruses have gained Bcl-2 homologs and subvert innate immunity and cellular apoptosis for their replication, but they frequently have very different sequences to their host Bcl-2 analogs. Though most mechanisms of apoptosis initiation converge on activation of caspases that destroy the cell from within, the numerous gene insertions, deletions, and duplications during evolution have led to a divergence in mechanisms of intrinsic apoptosis. Currently, the action of the Bcl-2 family is best understood in vertebrates and nematodes but new insights are emerging from evolutionarily earlier organisms. This review focuses on the mechanisms underpinning the activity of Bcl-2 proteins including their structures and interactions, and how they have changed over the course of evolution.
Collapse
|
29
|
Rodrigues TCS, Subramaniam K, Varsani A, McFadden G, Schaefer AM, Bossart GD, Romero CH, Waltzek TB. Genome characterization of cetaceanpox virus from a managed Indo-Pacific bottlenose dolphin (Tursiops aduncus). Virus Res 2020; 278:197861. [PMID: 31923559 DOI: 10.1016/j.virusres.2020.197861] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/03/2020] [Accepted: 01/03/2020] [Indexed: 01/08/2023]
Abstract
Cetaceanpox viruses (CePVs) are associated with a cutaneous disease in cetaceans often referred to as "tattoo" lesions. To date, only partial genomic data are available for CePVs, and thus, they remain unclassified members of the subfamily Chordopoxvirinae within the family Poxviridae. Herein, we describe the first complete CePV genome sequenced from the tattoo lesion of a managed Indo-Pacific bottlenose dolphin (Tursiops aduncus), using next-generation sequencing. The T. aduncus CePV genome (CePV-TA) was determined to encode 120 proteins, including eight genes unique to the CePV-TA and five genes predicted to function as immune-evasion genes. The results of CePV-TA genetic analyses supported the creation of a new chordopoxvirus genus for CePVs. The complete sequencing of a CePV represents an important first step in unraveling the evolutionary relationship and taxonomy of CePVs, and significantly increases our understanding of the genomic characteristics of these chordopoxviruses.
Collapse
Affiliation(s)
- Thaís C S Rodrigues
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, 2187 Mowry Road, 32611 Gainesville, Florida, USA
| | - Kuttichantran Subramaniam
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, 2187 Mowry Road, 32611 Gainesville, Florida, USA
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine and School of Life Sciences, Arizona State University, 85287 Tempe, Arizona, USA; Structural Biology Research Unit, Department of Clinical Laboratory Sciences, University of Cape Town, Cape Town, Western Cape 7701, South Africa
| | - Grant McFadden
- Center for Immunotherapy, Vaccines, and Virotherapy (CIVV), The Biodesign Institute, Arizona State University, 85287 Tempe, Arizona, USA
| | - Adam M Schaefer
- Harbor Branch Oceanographic Institute at Florida Atlantic University, 5600 US 1, North, 34946 Fort Pierce, Florida, USA
| | - Gregory D Bossart
- Georgia Aquarium, 225 Baker Street, 30313 Atlanta, Georgia, USA; University of Miami, PO Box 016960 (R-46), 33101 Miami, Florida, USA
| | - Carlos H Romero
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, 2187 Mowry Road, 32611 Gainesville, Florida, USA
| | - Thomas B Waltzek
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, 2187 Mowry Road, 32611 Gainesville, Florida, USA.
| |
Collapse
|
30
|
Sahu BP, Majee P, Mishra C, Dash M, Biswal S, Sahoo N, Nayak D. The emergence of subclades A1 and A3 avipoxviruses in India. Transbound Emerg Dis 2019; 67:510-517. [PMID: 31692237 DOI: 10.1111/tbed.13413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 10/21/2019] [Accepted: 11/01/2019] [Indexed: 12/23/2022]
Abstract
During the years 2010-2018, avipoxvirus (APV) outbreaks were observed in the domestic chickens and pigeons present in the eastern Indian state of Odisha. Based on typical pox lesions, followed by molecular techniques, the overall morbidity was found to be 18%-19.23% and 16.92%-23% in chickens and pigeons, respectively. The cutaneous forms of the disease were observed with varied rates of mortality, being 47.36%-52.77% in chickens and 39.13%-92% in pigeons. PCR amplification targeting the viral P4b core protein-coding gene and the DNA polymerase gene confirmed the presence of APV strains in 10 birds. Subsequent phylogenetic analysis of these two genes confirmed that the circulating strains were members of APV clade A. The subclade analysis revealed the introduction of A1 and A3 subclades in Indian chickens and pigeons, respectively. This study is the first molecular record of APVs circulating in eastern Indian birds (Odisha) and involves the first use of the polymerase gene to reveal the circulating clades of Indian APVs.
Collapse
Affiliation(s)
- Basanta Pravas Sahu
- Discipline of Bioscience and Biomedical Engineering, Indian Institute of Technology Indore, India
| | - Prativa Majee
- Discipline of Bioscience and Biomedical Engineering, Indian Institute of Technology Indore, India
| | - Chinmayee Mishra
- Department of Epidemiology and Preventive Medicine, Odisha University of Agriculture and Technology, Bhubaneswar, India
| | - Manojita Dash
- Department of Epidemiology and Preventive Medicine, Odisha University of Agriculture and Technology, Bhubaneswar, India
| | - Sangram Biswal
- Department of Epidemiology and Preventive Medicine, Odisha University of Agriculture and Technology, Bhubaneswar, India
| | - Niranjan Sahoo
- Department of Epidemiology and Preventive Medicine, Odisha University of Agriculture and Technology, Bhubaneswar, India
| | - Debasis Nayak
- Discipline of Bioscience and Biomedical Engineering, Indian Institute of Technology Indore, India
| |
Collapse
|
31
|
Sarker S, Batinovic S, Talukder S, Das S, Park F, Petrovski S, Forwood JK, Helbig KJ, Raidal SR. Molecular characterisation of a novel pathogenic avipoxvirus from the Australian magpie (Gymnorhina tibicen). Virology 2019; 540:1-16. [PMID: 31726310 DOI: 10.1016/j.virol.2019.11.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 11/05/2019] [Accepted: 11/05/2019] [Indexed: 11/18/2022]
Abstract
Avipoxviruses are significant pathogens infecting a wide range of wild and domestic bird species globally. Here, we describe a novel genome sequence of magpiepox virus (MPPV) isolated from an Australian magpie. In the present study, histopathologically confirmed cutaneous pox lesions were used for transmission electron microscopic analysis, which demonstrated brick-shaped virions with regular spaced thread-like ridges, indicative of likely infectious particles. Subsequent analysis of the recovered MPPV genome positioned phylogenetically to a distinct sub-clade with the recently isolated avipoxvirus genome sequences from shearwater and canary bird species, and demonstrates a high degree of sequence similarity with CNPV (96.14%) and SWPV-2 (95.87%). The novel MPPV complete genome is missing 19 genes with a further 41 genes being truncated/fragmented compared to SWPV-2 and contains nine predicted unique genes. This is the first avipoxvirus complete genome sequence that infects Australian magpie.
Collapse
Affiliation(s)
- Subir Sarker
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Bundoora, VIC, 3086, Australia.
| | - Steven Batinovic
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Saranika Talukder
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Victoria, Australia, 3010
| | - Shubhagata Das
- School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia
| | - Fiona Park
- Canley Heights Veterinary Clinic, Canley Heights, NSW, 2166, Australia
| | - Steve Petrovski
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Jade K Forwood
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia
| | - Karla J Helbig
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Shane R Raidal
- School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia
| |
Collapse
|
32
|
A distinct lineage of giant viruses brings a rhodopsin photosystem to unicellular marine predators. Proc Natl Acad Sci U S A 2019; 116:20574-20583. [PMID: 31548428 PMCID: PMC6789865 DOI: 10.1073/pnas.1907517116] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Giant viruses are remarkable for their large genomes, often rivaling those of small bacteria, and for having genes thought exclusive to cellular life. Most isolated to date infect nonmarine protists, leaving their strategies and prevalence in marine environments largely unknown. Using eukaryotic single-cell metagenomics in the Pacific, we discovered a Mimiviridae lineage of giant viruses, which infects choanoflagellates, widespread protistan predators related to metazoans. The ChoanoVirus genomes are the largest yet from pelagic ecosystems, with 442 of 862 predicted proteins lacking known homologs. They are enriched in enzymes for modifying organic compounds, including degradation of chitin, an abundant polysaccharide in oceans, and they encode 3 divergent type-1 rhodopsins (VirR) with distinct evolutionary histories from those that capture sunlight in cellular organisms. One (VirRDTS) is similar to the only other putative rhodopsin from a virus (PgV) with a known host (a marine alga). Unlike the algal virus, ChoanoViruses encode the entire pigment biosynthesis pathway and cleavage enzyme for producing the required chromophore, retinal. We demonstrate that the rhodopsin shared by ChoanoViruses and PgV binds retinal and pumps protons. Moreover, our 1.65-Å resolved VirRDTS crystal structure and mutational analyses exposed differences from previously characterized type-1 rhodopsins, all of which come from cellular organisms. Multiple VirR types are present in metagenomes from across surface oceans, where they are correlated with and nearly as abundant as a canonical marker gene from Mimiviridae Our findings indicate that light-dependent energy transfer systems are likely common components of giant viruses of photosynthetic and phagotrophic unicellular marine eukaryotes.
Collapse
|
33
|
Characterization of Iranian canarypox and pigeonpox virus strains. Arch Virol 2019; 164:2049-2059. [PMID: 31123965 DOI: 10.1007/s00705-019-04277-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 04/08/2019] [Indexed: 10/26/2022]
Abstract
Avipoxviruses (APVs) are large DNA viruses that are detected widely in many species of birds. Little information is available regarding genetic variations in these host-specific viruses. In the present study, nine canarypox virus and five pigeonpox virus isolates were collected from northeastern Iran and isolated via the chorioallantoic membrane of chicken embryos. Further investigations were conducted using analysis of virus growth in chicken embryo fibroblasts, histopathology, electron microscopy, and molecular techniques such as polymerase chain reaction (PCR) combined with sequencing and phylogenetic analysis to investigate variations in the highly conserved P4b gene of poxviruses. Virus replication and pock lesions were evident, and microscopic examination revealed eosinophilic intracytoplasmic inclusion bodies and biconcave enveloped virus particles with randomly arranged surface filaments, which are characteristic features of poxviruses. PCR results confirmed the presence of an APV-specific 578-bp fragment in all of the samples. Sequence analysis and phylogenetic analysis of 578-bp P4b fragments of eight isolates confirmed that our canary and pigeon isolates clustered with previously reported isolates. The similarity between the nucleotide sequences of most of our isolates and those isolated previously in other countries could be due to the high degree of conservation of these fragments. However, the FZRC6V isolate from a canary in this study did not have a canarypox virus origin according to the sequence analysis, and might have originated from cross-infection with different strains of avipoxviruses.
Collapse
|
34
|
Yeo G, Wang Y, Chong SM, Humaidi M, Lim XF, Mailepessov D, Chan S, How CB, Lin YN, Huangfu T, Fernandez CJ, Hapuarachchi HC, Yap G. Characterization of Fowlpox virus in chickens and bird-biting mosquitoes: a molecular approach to investigating Avipoxvirus transmission. J Gen Virol 2019; 100:838-850. [PMID: 30907721 DOI: 10.1099/jgv.0.001209] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Avian pox is a highly contagious avian disease, yet relatively little is known about the epidemiology and transmission of Avipoxviruses. Using a molecular approach, we report evidence for a potential link between birds and field-caught mosquitoes in the transmission of Fowlpox virus (FWPV) in Singapore. Comparison of fpv167 (P4b), fpv126 (VLTF-1), fpv175-176 (A11R-A12L) and fpv140 (H3L) gene sequences revealed close relatedness between FWPV strains obtained from cutaneous lesions of a chicken and four pools of Culex pseudovishnui, Culex spp. (vishnui group) and Coquellitidea crassipes caught in the vicinity of the study site. Chicken-derived viruses characterized during two separate infections two years later were also identical to those detected in the first event, suggesting repeated transmission of closely related FWPV strains in the locality. Since the study location is home to resident and migratory birds, we postulated that wild birds could be the source of FWPV and that bird-biting mosquitoes could act as bridging mechanical vectors. Therefore, we determined whether the FWPV-positive mosquito pools (n=4) were positive for avian DNA using a polymerase chain reaction-sequencing assay. Our findings confirmed the presence of avian host DNA in all mosquito pools, suggesting a role for Cx. pseudovishnui, Culex spp. (vishnui group) and Cq. crassipes mosquitoes in FWPV transmission. Our study exemplifies the utilization of molecular tools to understand transmission networks of pathogens affecting avian populations, which has important implications for the design of effective control measures to minimize disease burden and economic loss.
Collapse
Affiliation(s)
- Gladys Yeo
- 1Environmental Health Institute, National Environment Agency, 11, Biopolis Way, #06-05-08, Singapore 138667, Singapore
| | - Yifan Wang
- 2Agri-Food and Veterinary Authority of Singapore, Animal and Plant Health Centre, 6, Perahu Road, Singapore 718827, Singapore
| | - Shin Min Chong
- 2Agri-Food and Veterinary Authority of Singapore, Animal and Plant Health Centre, 6, Perahu Road, Singapore 718827, Singapore
| | - Mahathir Humaidi
- 1Environmental Health Institute, National Environment Agency, 11, Biopolis Way, #06-05-08, Singapore 138667, Singapore
| | - Xiao Fang Lim
- 1Environmental Health Institute, National Environment Agency, 11, Biopolis Way, #06-05-08, Singapore 138667, Singapore.,†Present address: Duke-NUS Medical School, 8, College Road, Singapore 169857, Singapore
| | - Diyar Mailepessov
- 1Environmental Health Institute, National Environment Agency, 11, Biopolis Way, #06-05-08, Singapore 138667, Singapore
| | - Sharon Chan
- 3Sungei Buloh Wetlands Reserve, National Parks Board, 301, Neo Tiew Cresent, 301, Neo Tiew Cresent, Singapore 718925, Singapore.,‡Present address: Conservation Division, Central Nature Reserve, National Parks Board, 6, Island Club Road, Singapore 578775, Singapore
| | - Choon Beng How
- 3Sungei Buloh Wetlands Reserve, National Parks Board, 301, Neo Tiew Cresent, 301, Neo Tiew Cresent, Singapore 718925, Singapore
| | - Yueh Nuo Lin
- 2Agri-Food and Veterinary Authority of Singapore, Animal and Plant Health Centre, 6, Perahu Road, Singapore 718827, Singapore
| | - Taoqi Huangfu
- 2Agri-Food and Veterinary Authority of Singapore, Animal and Plant Health Centre, 6, Perahu Road, Singapore 718827, Singapore
| | - Charlene Judith Fernandez
- 2Agri-Food and Veterinary Authority of Singapore, Animal and Plant Health Centre, 6, Perahu Road, Singapore 718827, Singapore
| | | | - Grace Yap
- 1Environmental Health Institute, National Environment Agency, 11, Biopolis Way, #06-05-08, Singapore 138667, Singapore.,§Present address: Control of Operations Branch 2, National Environment Agency, 40, Scotts Road, Singapore 228231, Singapore
| |
Collapse
|
35
|
Saito K, Haridy M, Abdo W, El-Morsey A, Kasem S, Watanabe Y, Yanai T. Poxvirus infection in a Steller's sea eagle (Haliaeetus pelagicus). J Vet Med Sci 2019; 81:338-342. [PMID: 30606906 PMCID: PMC6395218 DOI: 10.1292/jvms.18-0566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A severely emaciated adult Steller’s sea eagle (Haliaeetus pelagicus)
was found dead with electrocution-induced severe wing laceration, and with multiple
cutaneous pock nodules at the periocular regions of both sides nearby the medial canthi
and rhamphotheca. Histopathological examination of the nodules revealed hyperplasia of the
epidermis with vacuolar degeneration and intracytoplasmic inclusion bodies (Bollinger
bodies). The proventriculus was severely affected by nematodes and was ulcerated.
Nucleotide sequencing of a PCR-amplified product of Avipoxvirus 4b core
gene revealed 100% identity to the sequence of Avipoxvirus derived from
other eagle species. This report describes the first detection of
Avipoxvirus clade A from a Steller’s sea eagle.
Collapse
Affiliation(s)
- Keisuke Saito
- Institute for Raptor Biomedicine Japan (IRBJ), 2-2 Hokuto, Kushiro, Hokkaido 084-0922, Japan
| | - Mohie Haridy
- Department of Pathology & Clinical Pathology, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt
| | - Walied Abdo
- Department of Pathology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Ahmed El-Morsey
- Department of Parasitology and Animal Diseases, Veterinary Research Division, National Research Centre, 33 El -Bohouth St., Dokki, Giza 12622, Egypt
| | - Samy Kasem
- Department of Virology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Yukiko Watanabe
- Institute for Raptor Biomedicine Japan (IRBJ), 2-2 Hokuto, Kushiro, Hokkaido 084-0922, Japan
| | - Tokuma Yanai
- Department of Pathogenetic Veterinary Science, United Graduated School of Veterinary Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| |
Collapse
|
36
|
Novel Class of Viral Ankyrin Proteins Targeting the Host E3 Ubiquitin Ligase Cullin-2. J Virol 2018; 92:JVI.01374-18. [PMID: 30258003 PMCID: PMC6232478 DOI: 10.1128/jvi.01374-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 09/11/2018] [Indexed: 02/07/2023] Open
Abstract
Ankyrin repeat (ANK) domains are among the most abundant motifs in eukaryotic proteins. ANK proteins are rare amongst viruses, with the exception of poxviruses, which presumably acquired them from the host via horizontal gene transfer. The architecture of poxvirus ANK proteins is, however, different from that of their cellular counterparts, and this precludes a direct acquisition event. Here we combine bioinformatics analysis and quantitative proteomics to discover a new class of viral ANK proteins with a domain organization that relates to cellular ANK proteins. These noncanonical viral ANK proteins, termed ANK/BC, interact with host Cullin-2 via a C-terminal BC box resembling that of cellular Cullin-2 substrate adaptors such as the von Hippel-Lindau protein. Mutagenesis of the BC box-like sequence abrogates binding to Cullin-2, whereas fusion of this motif to an ANK-only protein confers Cullin-2 association. We demonstrated that these viral ANK/BC proteins are potent immunomodulatory proteins suppressing the activation of the proinflammatory transcription factors NF-κB and interferon (IFN)-responsive factor 3 (IRF-3) and the production of cytokines and chemokines, including interferon, and that association with Cullin-2 is required for optimal inhibitory activity. ANK/BC proteins exist in several orthopoxviruses and cluster into 2 closely related orthologue groups in a phylogenetic lineage that is separate from that of canonical ANK/F-box proteins. Given the existence of cellular proteins with similar architecture, viral ANK/BC proteins may be closely related to the original ANK gene acquired by an ancestral orthopoxvirus. These findings uncover a novel viral strategy to antagonize innate immunity and shed light on the origin of the poxviral ANK protein family.IMPORTANCE Viruses encode multiple proteins aimed at modulating cellular homeostasis and antagonizing the host antiviral response. Most of these genes were originally acquired from the host and subsequently adapted to benefit the virus. ANK proteins are common in eukaryotes but are unusual amongst viruses, with the exception of poxviruses, where they represent one of the largest protein families. We report here the existence of a new class of viral ANK proteins, termed ANK/BC, that provide new insights into the origin of poxvirus ANK proteins. ANK/BC proteins target the host E3 ubiquitin ligase Cullin-2 via a C-terminal BC box domain and are potent suppressors of the production of inflammatory cytokines, including interferon. The existence of cellular ANK proteins whose architecture is similar suggests the acquisition of a host ANK/BC gene by an ancestral orthopoxvirus and its subsequent duplication and adaptation to widen the repertoire of immune evasion strategies.
Collapse
|
37
|
Murer L, Westenhofen M, Kommers GD, Furian TQ, Borges KA, Kunert-Filho HC, Streck AF, Lovato M. Identification and phylogenetic analysis of clade C Avipoxvirus in a fowlpox outbreak in exotic psittacines in southern Brazil. J Vet Diagn Invest 2018; 30:946-950. [PMID: 30199325 DOI: 10.1177/1040638718775146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Fowlpox is one of the oldest diseases reported in birds. The causative genus Avipoxvirus affects ~232 domestic and wild species. We present herein the history, clinical findings, and macroscopic and histologic lesions caused by a clade C poxvirus in an exotic psittacine breeding colony in southern Brazil. Clinical signs included yellow nodular lesions at the commissure of the beak and on the periocular skin, loss of appetite, and death. Fifty birds were autopsied, and fragments of periocular skin, tongue, and trachea were examined histologically, which revealed hyperkeratosis associated with eosinophilic intracytoplasmic inclusion bodies. Tracheal fragments and periocular skin were subjected to nested PCR and phylogenetic analyses. The sequenced strain showed 99.58% identity with the nucleotide sequences of Avipoxvirus strains AY53011, KC018069, AM050383, and AM05382 isolated from birds in Germany, United States, and United Kingdom. The strain was grouped under clade C, which represents isolates exclusively from the Psittacidae family. The infection caused by clade C Avipoxvirus in the exotic psittacines examined ( Platycercus sp. and Psephotus haematonotus) demonstrates the circulation of this clade in this breeding colony.
Collapse
Affiliation(s)
- Laurete Murer
- Departments of Preventive Veterinary Medicine (Murer, Westenhofen, Lovato), Brazil.,Pathology (Kommers), Brazil.,Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul (RS), Brazil.,Center for Diagnosis and Research in Avian Pathology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil (Furian, Borges, Kunert-Filho).,Diagnostic in Veterinary Medicine, Universidade de Caxias do Sul, Caxias do Sul, RS, Brazil (Streck)
| | - Moisés Westenhofen
- Departments of Preventive Veterinary Medicine (Murer, Westenhofen, Lovato), Brazil.,Pathology (Kommers), Brazil.,Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul (RS), Brazil.,Center for Diagnosis and Research in Avian Pathology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil (Furian, Borges, Kunert-Filho).,Diagnostic in Veterinary Medicine, Universidade de Caxias do Sul, Caxias do Sul, RS, Brazil (Streck)
| | - Glaucia D Kommers
- Departments of Preventive Veterinary Medicine (Murer, Westenhofen, Lovato), Brazil.,Pathology (Kommers), Brazil.,Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul (RS), Brazil.,Center for Diagnosis and Research in Avian Pathology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil (Furian, Borges, Kunert-Filho).,Diagnostic in Veterinary Medicine, Universidade de Caxias do Sul, Caxias do Sul, RS, Brazil (Streck)
| | - Thales Q Furian
- Departments of Preventive Veterinary Medicine (Murer, Westenhofen, Lovato), Brazil.,Pathology (Kommers), Brazil.,Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul (RS), Brazil.,Center for Diagnosis and Research in Avian Pathology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil (Furian, Borges, Kunert-Filho).,Diagnostic in Veterinary Medicine, Universidade de Caxias do Sul, Caxias do Sul, RS, Brazil (Streck)
| | - Karen A Borges
- Departments of Preventive Veterinary Medicine (Murer, Westenhofen, Lovato), Brazil.,Pathology (Kommers), Brazil.,Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul (RS), Brazil.,Center for Diagnosis and Research in Avian Pathology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil (Furian, Borges, Kunert-Filho).,Diagnostic in Veterinary Medicine, Universidade de Caxias do Sul, Caxias do Sul, RS, Brazil (Streck)
| | - Hiran C Kunert-Filho
- Departments of Preventive Veterinary Medicine (Murer, Westenhofen, Lovato), Brazil.,Pathology (Kommers), Brazil.,Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul (RS), Brazil.,Center for Diagnosis and Research in Avian Pathology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil (Furian, Borges, Kunert-Filho).,Diagnostic in Veterinary Medicine, Universidade de Caxias do Sul, Caxias do Sul, RS, Brazil (Streck)
| | - André F Streck
- Departments of Preventive Veterinary Medicine (Murer, Westenhofen, Lovato), Brazil.,Pathology (Kommers), Brazil.,Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul (RS), Brazil.,Center for Diagnosis and Research in Avian Pathology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil (Furian, Borges, Kunert-Filho).,Diagnostic in Veterinary Medicine, Universidade de Caxias do Sul, Caxias do Sul, RS, Brazil (Streck)
| | - Maristela Lovato
- Departments of Preventive Veterinary Medicine (Murer, Westenhofen, Lovato), Brazil.,Pathology (Kommers), Brazil.,Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul (RS), Brazil.,Center for Diagnosis and Research in Avian Pathology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil (Furian, Borges, Kunert-Filho).,Diagnostic in Veterinary Medicine, Universidade de Caxias do Sul, Caxias do Sul, RS, Brazil (Streck)
| |
Collapse
|
38
|
Sasani TA, Cone KR, Quinlan AR, Elde NC. Long read sequencing reveals poxvirus evolution through rapid homogenization of gene arrays. eLife 2018; 7:35453. [PMID: 30156554 PMCID: PMC6115191 DOI: 10.7554/elife.35453] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 08/12/2018] [Indexed: 12/21/2022] Open
Abstract
Poxvirus adaptation can involve combinations of recombination-driven gene copy number variation and beneficial single nucleotide variants (SNVs) at the same loci. How these distinct mechanisms of genetic diversification might simultaneously facilitate adaptation to host immune defenses is unknown. We performed experimental evolution with vaccinia virus populations harboring a SNV in a gene actively undergoing copy number amplification. Using long sequencing reads from the Oxford Nanopore Technologies platform, we phased SNVs within large gene copy arrays for the first time. Our analysis uncovered a mechanism of adaptive SNV homogenization reminiscent of gene conversion, which is actively driven by selection. This study reveals a new mechanism for the fluid gain of beneficial mutations in genetic regions undergoing active recombination in viruses and illustrates the value of long read sequencing technologies for investigating complex genome dynamics in diverse biological systems.
Collapse
Affiliation(s)
- Thomas A Sasani
- Department of Human Genetics, University of Utah, Salt Lake, United States
| | - Kelsey R Cone
- Department of Human Genetics, University of Utah, Salt Lake, United States
| | - Aaron R Quinlan
- Department of Human Genetics, University of Utah, Salt Lake, United States
| | - Nels C Elde
- Department of Human Genetics, University of Utah, Salt Lake, United States
| |
Collapse
|
39
|
Abstract
Receptor tyrosine kinases (RTKs) are essential components of cell communication pathways utilized from the embryonic to adult stages of life. These transmembrane receptors bind polypeptide ligands, such as growth factors, inducing signalling cascades that control cellular processes such as proliferation, survival, differentiation, motility and inflammation. Many viruses have acquired homologs of growth factors encoded by the hosts that they infect. Production of growth factors during infection allows viruses to exploit RTKs for entry and replication in cells, as well as for host and environmental dissemination. This review describes the genetic diversity amongst virus-derived growth factors and the mechanisms by which RTK exploitation enhances virus survival, then highlights how viral ligands can be used to further understanding of RTK signalling and function during embryogenesis, homeostasis and disease scenarios.
Collapse
Affiliation(s)
- Zabeen Lateef
- a Department of Pharmacology and Toxicology, School of Biomedical Sciences , University of Otago , Dunedin , New Zealand
| | - Lyn M Wise
- a Department of Pharmacology and Toxicology, School of Biomedical Sciences , University of Otago , Dunedin , New Zealand
| |
Collapse
|
40
|
Carulei O, Douglass N, Williamson AL. Comparative analysis of avian poxvirus genomes, including a novel poxvirus from lesser flamingos (Phoenicopterus minor), highlights the lack of conservation of the central region. BMC Genomics 2017; 18:947. [PMID: 29207949 PMCID: PMC5718139 DOI: 10.1186/s12864-017-4315-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 11/17/2017] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Avian poxviruses are important pathogens of both wild and domestic birds. To date, seven isolates from subclades A and B and one from proposed subclade E, have had their genomes completely sequenced. The genomes of these isolates have been shown to exhibit typical poxvirus genome characteristics with conserved central regions and more variable terminal regions. Infection with avian poxviruses (APVs) has been reported in three species of captive flamingo, as well as a free-living, lesser flamingo at Kamfers dam, near Kimberley, South Africa. This study was undertaken to further characterise this virus which may have long term effects on this important and vulnerable, breeding population. RESULTS Gene content and synteny as well as percentage identities between conserved orthologues was compared between Flamingopox virus (FGPV) and the other sequenced APV genomes. Dotplot comparisons revealed major differences in central regions that have been thought to be conserved. Further analysis revealed five regions of difference, of differing lengths, spread across the central, conserved regions of the various genomes. Although individual gene identities at the nucleotide level did not vary greatly, gene content and synteny between isolates/species at these identified regions were more divergent than expected. CONCLUSION Basic comparative genomics revealed the expected similarities in genome architecture but an in depth, comparative, analysis showed all avian poxvirus genomes to differ from other poxvirus genomes in fundamental and unexpected ways. The reasons for these large genomic rearrangements in regions of the genome that were thought to be relatively conserved are yet to be elucidated. Sequencing and analysis of further avian poxvirus genomes will help characterise this complex genus of poxviruses.
Collapse
Affiliation(s)
- Olivia Carulei
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Nicola Douglass
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Anna-Lise Williamson
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- National Health Laboratory Service, Cape Town, South Africa
| |
Collapse
|
41
|
Oliveira GP, Rodrigues RAL, Lima MT, Drumond BP, Abrahão JS. Poxvirus Host Range Genes and Virus-Host Spectrum: A Critical Review. Viruses 2017; 9:E331. [PMID: 29112165 PMCID: PMC5707538 DOI: 10.3390/v9110331] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 10/30/2017] [Accepted: 11/06/2017] [Indexed: 01/01/2023] Open
Abstract
The Poxviridae family is comprised of double-stranded DNA viruses belonging to nucleocytoplasmic large DNA viruses (NCLDV). Among the NCLDV, poxviruses exhibit the widest known host range, which is likely observed because this viral family has been more heavily investigated. However, relative to each member of the Poxviridae family, the spectrum of the host is variable, where certain viruses can infect a large range of hosts, while others are restricted to only one host species. It has been suggested that the variability in host spectrum among poxviruses is linked with the presence or absence of some host range genes. Would it be possible to extrapolate the restriction of viral replication in a specific cell lineage to an animal, a far more complex organism? In this study, we compare and discuss the relationship between the host range of poxvirus species and the abundance/diversity of host range genes. We analyzed the sequences of 38 previously identified and putative homologs of poxvirus host range genes, and updated these data with deposited sequences of new poxvirus genomes. Overall, the term host range genes might not be the most appropriate for these genes, since no correlation between them and the viruses' host spectrum was observed, and a change in nomenclature should be considered. Finally, we analyzed the evolutionary history of these genes, and reaffirmed the occurrence of horizontal gene transfer (HGT) for certain elements, as previously suggested. Considering the data presented in this study, it is not possible to associate the diversity of host range factors with the amount of hosts of known poxviruses, and this traditional nomenclature creates misunderstandings.
Collapse
Affiliation(s)
- Graziele Pereira Oliveira
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil.
| | - Rodrigo Araújo Lima Rodrigues
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil.
| | - Maurício Teixeira Lima
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil.
| | - Betânia Paiva Drumond
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil.
| | - Jônatas Santos Abrahão
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil.
| |
Collapse
|
42
|
Structural and Functional Insight into Canarypox Virus CNP058 Mediated Regulation of Apoptosis. Viruses 2017; 9:v9100305. [PMID: 29053589 PMCID: PMC5691656 DOI: 10.3390/v9100305] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 10/15/2017] [Accepted: 10/18/2017] [Indexed: 12/21/2022] Open
Abstract
Programmed cell death or apoptosis is an important component of host defense systems against viral infection. The B-cell lymphoma 2 (Bcl-2) proteins family is the main arbiter of mitochondrially mediated apoptosis, and viruses have evolved sequence and structural mimics of Bcl-2 to subvert premature host cell apoptosis in response to viral infection. The sequencing of the canarypox virus genome identified a putative pro-survival Bcl-2 protein, CNP058. However, a role in apoptosis inhibition for CNP058 has not been identified to date. Here, we report that CNP058 is able to bind several host cell pro-death Bcl-2 proteins, including Bak and Bax, as well as several BH3 only-proteins including Bim, Bid, Bmf, Noxa, Puma, and Hrk with high to moderate affinities. We then defined the structural basis for CNP058 binding to pro-death Bcl-2 proteins by determining the crystal structure of CNP058 bound to Bim BH3. CNP058 adopts the conserved Bcl-2 like fold observed in cellular pro-survival Bcl-2 proteins, and utilizes the canonical ligand binding groove to bind Bim BH3. We then demonstrate that CNP058 is a potent inhibitor of ultraviolet (UV) induced apoptosis in a cell culture model. Our findings suggest that CNP058 is a potent inhibitor of apoptosis that is able to bind to BH3 domain peptides from a broad range of pro-death Bcl-2 proteins, and may play a key role in countering premature host apoptosis.
Collapse
|
43
|
The Bcl-2 Family in Host-Virus Interactions. Viruses 2017; 9:v9100290. [PMID: 28984827 PMCID: PMC5691641 DOI: 10.3390/v9100290] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 10/01/2017] [Accepted: 10/03/2017] [Indexed: 12/13/2022] Open
Abstract
Members of the B cell lymphoma-2 (Bcl-2) family are pivotal arbiters of mitochondrially mediated apoptosis, a process of fundamental importance during tissue development, homeostasis, and disease. At the structural and mechanistic level, the mammalian members of the Bcl-2 family are increasingly well understood, with their interplay ultimately deciding the fate of a cell. Dysregulation of Bcl-2-mediated apoptosis underlies a plethora of diseases, and numerous viruses have acquired homologs of Bcl-2 to subvert host cell apoptosis and autophagy to prevent premature death of an infected cell. Here we review the structural biology, interactions, and mechanisms of action of virus-encoded Bcl-2 proteins, and how they impact on host-virus interactions to ultimately enable successful establishment and propagation of viral infections.
Collapse
|
44
|
Farré D, Martínez-Vicente P, Engel P, Angulo A. Immunoglobulin superfamily members encoded by viruses and their multiple roles in immune evasion. Eur J Immunol 2017; 47:780-796. [PMID: 28383780 DOI: 10.1002/eji.201746984] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/11/2017] [Accepted: 03/29/2017] [Indexed: 12/31/2022]
Abstract
Pathogens have developed a plethora of strategies to undermine host immune defenses in order to guarantee their survival. For large DNA viruses, these immune evasion mechanisms frequently rely on the expression of genes acquired from host genomes. Horizontally transferred genes include members of the immunoglobulin superfamily, whose products constitute the most diverse group of proteins of vertebrate genomes. Their promiscuous immunoglobulin domains, which comprise the building blocks of these molecules, are involved in a large variety of functions mediated by ligand-binding interactions. The flexible structural nature of the immunoglobulin domains makes them appealing targets for viral capture due to their capacity to generate high functional diversity. Here, we present an up-to-date review of immunoglobulin superfamily gene homologs encoded by herpesviruses, poxviruses, and adenoviruses, that include CD200, CD47, Fc receptors, interleukin-1 receptor 2, interleukin-18 binding protein, CD80, carcinoembryonic antigen-related cell adhesion molecules, and signaling lymphocyte activation molecules. We discuss their distinct structural attributes, binding properties, and functions, shaped by evolutionary pressures to disarm specific immune pathways. We include several novel genes identified from extensive genome database surveys. An understanding of the properties and modes of action of these viral proteins may guide the development of novel immune-modulatory therapeutic tools.
Collapse
Affiliation(s)
- Domènec Farré
- Immunology Unit, Department of Biomedical Sciences, Medical School, University of Barcelona, Barcelona, Spain
| | - Pablo Martínez-Vicente
- Immunology Unit, Department of Biomedical Sciences, Medical School, University of Barcelona, Barcelona, Spain
| | - Pablo Engel
- Immunology Unit, Department of Biomedical Sciences, Medical School, University of Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Ana Angulo
- Immunology Unit, Department of Biomedical Sciences, Medical School, University of Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| |
Collapse
|
45
|
Anasir MI, Caria S, Skinner MA, Kvansakul M. Structural basis of apoptosis inhibition by the fowlpox virus protein FPV039. J Biol Chem 2017; 292:9010-9021. [PMID: 28411240 DOI: 10.1074/jbc.m116.768879] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 04/13/2017] [Indexed: 11/06/2022] Open
Abstract
Programmed cell death or apoptosis of infected host cells is an important defense mechanism in response to viral infections. This process is regulated by proapoptotic and prosurvival members of the B-cell lymphoma 2 (Bcl-2) protein family. To counter premature death of a virus-infected cell, poxviruses use a range of different molecular strategies including the mimicry of prosurvival Bcl-2 proteins. One such viral prosurvival protein is the fowlpox virus protein FPV039, which is a potent apoptosis inhibitor, but the precise molecular mechanism by which FPV039 inhibits apoptosis is unknown. To understand how fowlpox virus inhibits apoptosis, we examined FPV039 using isothermal titration calorimetry, small-angle X-ray scattering, and X-ray crystallography. Here, we report that the fowlpox virus prosurvival protein FPV039 promiscuously binds to cellular proapoptotic Bcl-2 and engages all major proapoptotic Bcl-2 proteins. Unlike other identified viral Bcl-2 proteins to date, FPV039 engaged with cellular proapoptotic Bcl-2 with affinities comparable with those of Bcl-2's endogenous cellular counterparts. Structural studies revealed that FPV039 adopts the conserved Bcl-2 fold observed in cellular prosurvival Bcl-2 proteins and closely mimics the structure of the prosurvival Bcl-2 family protein Mcl-1. Our findings suggest that FPV039 is a pan-Bcl-2 protein inhibitor that can engage all host BH3-only proteins, as well as Bcl-2-associated X, apoptosis regulator (Bax) and Bcl-2 antagonist/killer (Bak) proteins to inhibit premature apoptosis of an infected host cell. This work therefore provides a mechanistic platform to better understand FPV039-mediated apoptosis inhibition.
Collapse
Affiliation(s)
- Mohd Ishtiaq Anasir
- From the Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia and
| | - Sofia Caria
- From the Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia and
| | - Michael A Skinner
- Section of Virology, Faculty of Medicine, Imperial College London, London W2 1PZ, United Kingdom
| | - Marc Kvansakul
- From the Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia and
| |
Collapse
|
46
|
Sarker S, Das S, Lavers JL, Hutton I, Helbig K, Imbery J, Upton C, Raidal SR. Genomic characterization of two novel pathogenic avipoxviruses isolated from pacific shearwaters (Ardenna spp.). BMC Genomics 2017; 18:298. [PMID: 28407753 PMCID: PMC5390406 DOI: 10.1186/s12864-017-3680-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Accepted: 04/05/2017] [Indexed: 01/18/2023] Open
Abstract
Background Over the past 20 years, many marine seabird populations have been gradually declining and the factors driving this ongoing deterioration are not always well understood. Avipoxvirus infections have been found in a wide range of bird species worldwide, however, very little is known about the disease ecology of avian poxviruses in seabirds. Here we present two novel avipoxviruses from pacific shearwaters (Ardenna spp), one from a Flesh-footed Shearwater (A. carneipes) (SWPV-1) and the other from a Wedge-tailed Shearwater (A. pacificus) (SWPV-2). Results Epidermal pox lesions, liver, and blood samples were examined from A. carneipes and A. pacificus of breeding colonies in eastern Australia. After histopathological confirmation of the disease, PCR screening was conducted for avipoxvirus, circovirus, reticuloendotheliosis virus, and fungal agents. Two samples that were PCR positive for poxvirus were further assessed by next generation sequencing, which yielded complete Shearwaterpox virus (SWPV) genomes from A. pacificus and A. carneipes, both showing the highest degree of similarity with Canarypox virus (98% and 67%, respectively). The novel SWPV-1 complete genome from A. carneipes is missing 43 genes compared to CNPV and contains 4 predicted genes which are not found in any other poxvirus, whilst, SWPV-2 complete genome was deemed to be missing 18 genes compared to CNPV and a further 15 genes significantly fragmented as to probably cause them to be non-functional. Conclusion These are the first avipoxvirus complete genome sequences that infect marine seabirds. In the comparison of SWPV-1 and −2 to existing avipoxvirus sequences, our results indicate that the SWPV complete genome from A. carneipes (SWPV-1) described here is not closely related to any other avipoxvirus genome isolated from avian or other natural host species, and that it likely should be considered a separate species. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3680-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Subir Sarker
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Melbourne, VIC, 3086, Australia.
| | - Shubhagata Das
- School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia
| | - Jennifer L Lavers
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, 7004, Australia
| | - Ian Hutton
- Lord Howe Island Museum, Lord Howe Island, NSW, 2898, Australia
| | - Karla Helbig
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Jacob Imbery
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Chris Upton
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Shane R Raidal
- School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia
| |
Collapse
|
47
|
Townsend DG, Trivedi S, Jackson RJ, Ranasinghe C. Recombinant fowlpox virus vector-based vaccines: expression kinetics, dissemination and safety profile following intranasal delivery. J Gen Virol 2017; 98:496-505. [PMID: 28056224 PMCID: PMC5797952 DOI: 10.1099/jgv.0.000702] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 01/03/2017] [Indexed: 12/23/2022] Open
Abstract
We have previously established that mucosal uptake of recombinant fowlpox virus (rFPV) vaccines is far superior to other vector-based vaccines. Specifically, intranasal priming with rFPV vaccines can recruit unique antigen-presenting cells, which induce excellent mucosal and systemic HIV-specific CD8+ T-cell immunity. In this study, we have for the first time investigated the in vivo dissemination, safety and expression kinetics of rFPV post intranasal delivery using recombinant viruses expressing green fluorescent protein or mCherry. Both confocal microscopy of tissue sections using green fluorescent protein and in vivo Imaging System (IVIS) spectrum live animal and whole organ imaging studies using mCherry revealed that (i) the peak antigen expression occurs 12 to 24 h post vaccination and no active viral gene expression is detected 96 h post vaccination. (ii) The virus only infects the initial vaccination site (lung and nasal cavity) and does not disseminate to distal sites such as the spleen or gut. (iii) More importantly, rFPV does not cross the olfactory receptor neuron pathway. Collectively, our findings indicate that rFPV vector-based vaccines have all the hallmarks of a safe and effective mucosal delivery vector, suitable for clinical evaluation.
Collapse
Affiliation(s)
- David G Townsend
- Molecular Mucosal Vaccine Immunology Group, Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra ACT 2601, Australia
| | - Shubhanshi Trivedi
- Molecular Mucosal Vaccine Immunology Group, Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra ACT 2601, Australia
- Present address: Division of Infectious Diseases, Department of Internal Medicine, The University of Utah, Salt Lake City, UT, USA
| | - Ronald J Jackson
- Molecular Mucosal Vaccine Immunology Group, Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra ACT 2601, Australia
| | - Charani Ranasinghe
- Molecular Mucosal Vaccine Immunology Group, Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra ACT 2601, Australia
| |
Collapse
|
48
|
Garanzini D, Del Médico-Zajac MP, Calamante G. Development of Recombinant Canarypox Viruses Expressing Immunogens. Methods Mol Biol 2017; 1581:15-28. [PMID: 28374241 DOI: 10.1007/978-1-4939-6869-5_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Canarypox viruses (CNPV) are excellent candidates to develop recombinant vector vaccines due to both their capability to induce protective immune responses and their incompetence to replicate in mammalian cells (safety profile). In addition, CNPV and the derived recombinants can be manipulated under biosafety level 1 conditions. There is no commercially available system to obtain recombinant CNPV; however, the methodology and tools required to develop recombinant vaccinia virus (VV), prototype of the Poxviridae family, can be easily adapted. This chapter provides protocols for the generation, plaque isolation, molecular characterization, amplification and purification of recombinant CNPV.
Collapse
Affiliation(s)
- Débora Garanzini
- Instituto de Biotecnología, CICVyA-INTA, N. Repetto y de los Reseros, Hurlingham, Buenos Aires, Argentina
- Instituto Nacional de Producción de Biológicos, ANLIS "Dr. Carlos G. Malbrán", Av. Vélez Sarsfield, 563, Ciudad Autónoma de Buenos Aires, Argentina
| | - María Paula Del Médico-Zajac
- Instituto de Biotecnología, CICVyA-INTA, N. Repetto y de los Reseros, Hurlingham, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Godoy Cruz, 2290, Ciudad Autónoma de Buenos Aires, Argentina
| | - Gabriela Calamante
- Instituto de Biotecnología, CICVyA-INTA, N. Repetto y de los Reseros, Hurlingham, Buenos Aires, Argentina.
| |
Collapse
|
49
|
Pankovics P, Boros Á, Tóth Z, Phan TG, Delwart E, Reuter G. Genetic characterization of a second novel picornavirus from an amphibian host, smooth newt (Lissotriton vulgaris). Arch Virol 2016; 162:1043-1050. [PMID: 28005212 DOI: 10.1007/s00705-016-3198-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 12/02/2016] [Indexed: 11/30/2022]
Abstract
In this study, a novel picornavirus was identified in faecal samples from smooth newts (Lissotriton vulgaris). The complete genome of picornavirus strain newt/II-5-Pilis/2014/HUN (KX463670) is 7755 nt long with type-IV IRES and has 39.6% aa sequence identity in the protein P1 to the corresponding protein of bat picornavirus (KJ641686, unassigned) and 42.7% and 53.5% aa sequence identity in the 2C and 3CD protein, respectively, to oscivirus (GU182410, genus Oscivirus). Interestingly, the L-protein of newt/II-5-Pilis/2014/HUN has conserved aa motifs that are similar to those found in phosphatase-1 catalytic (PP1C) subunit binding region (pfam10488) proteins. This second amphibian-origin picornavirus could represent a novel species and could be a founding member of a potential novel picornavirus genus.
Collapse
Affiliation(s)
- Péter Pankovics
- Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, ÁNTSZ Regional Institute of State Public Health Service, Pecs, Hungary
- Department of Medical Microbiology and Immunology, University of Pécs, Szigeti út 12., Pecs, 7624, Hungary
| | - Ákos Boros
- Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, ÁNTSZ Regional Institute of State Public Health Service, Pecs, Hungary
- Department of Medical Microbiology and Immunology, University of Pécs, Szigeti út 12., Pecs, 7624, Hungary
| | - Zoltán Tóth
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Hungarian Academy of Sciences, Budapest, Hungary
| | - Tung Gia Phan
- Blood Systems Research Institute, San Francisco, CA, USA
| | - Eric Delwart
- Blood Systems Research Institute, San Francisco, CA, USA
- University of California, San Francisco, CA, USA
| | - Gábor Reuter
- Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, ÁNTSZ Regional Institute of State Public Health Service, Pecs, Hungary.
- Department of Medical Microbiology and Immunology, University of Pécs, Szigeti út 12., Pecs, 7624, Hungary.
| |
Collapse
|
50
|
Monkeypox virus induces the synthesis of less dsRNA than vaccinia virus, and is more resistant to the anti-poxvirus drug, IBT, than vaccinia virus. Virology 2016; 497:125-135. [PMID: 27467578 PMCID: PMC5026613 DOI: 10.1016/j.virol.2016.07.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 07/16/2016] [Accepted: 07/18/2016] [Indexed: 02/03/2023]
Abstract
Monkeypox virus (MPXV) infection fails to activate the host anti-viral protein, PKR, despite lacking a full-length homologue of the vaccinia virus (VACV) PKR inhibitor, E3. Since PKR can be activated by dsRNA produced during a viral infection, we have analyzed the accumulation of dsRNA in MPXV-infected cells. MPXV infection led to less accumulation of dsRNA than VACV infection. Because in VACV infections accumulation of abnormally low amounts of dsRNA is associated with mutations that lead to resistance to the anti-poxvirus drug isatin beta-thiosemicarbazone (IBT), we investigated the effects of treatment of MPXV-infected cells with IBT. MPXV infection was eight-fold more resistant to IBT than wild-type vaccinia virus (wtVACV). These results demonstrate that MPXV infection leads to the accumulation of less dsRNA than wtVACV, which in turn likely leads to a decreased capacity for activation of the dsRNA-dependent host enzyme, PKR.
Collapse
|