1
|
Sun K, Fu K, Hu T, Shentu X, Yu X. Leveraging insect viruses and genetic manipulation for sustainable agricultural pest control. PEST MANAGEMENT SCIENCE 2024; 80:2515-2527. [PMID: 37948321 DOI: 10.1002/ps.7878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/16/2023] [Accepted: 11/11/2023] [Indexed: 11/12/2023]
Abstract
The potential of insect viruses in the biological control of agricultural pests is well-recognized, yet their practical application faces obstacles such as host specificity, variable virulence, and resource scarcity. High-throughput sequencing (HTS) technologies have significantly advanced our capabilities in discovering and identifying new insect viruses, thereby enriching the arsenal for pest management. Concurrently, progress in reverse genetics has facilitated the development of versatile viral expression vectors. These vectors have enhanced the specificity and effectiveness of insect viruses in targeting specific pests, offering a more precise approach to pest control. This review provides a comprehensive examination of the methodologies employed in the identification of insect viruses using HTS. Additionally, it explores the domain of genetically modified insect viruses and their associated challenges in pest management. The adoption of these cutting-edge approaches holds great promise for developing environmentally sustainable and effective pest control solutions. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Kai Sun
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Kang Fu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Tao Hu
- Zhejinag Seed Industry Group Xinchuang Bio-breeding Co., Ltd., Hangzhou, China
| | - Xuping Shentu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Xiaoping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| |
Collapse
|
2
|
Xu Y, Zhong Z, Ren Y, Ma L, Ye Z, Gao C, Wang J, Li Y. Antiviral RNA interference in disease vector (Asian longhorned) ticks. PLoS Pathog 2021; 17:e1010119. [PMID: 34860862 PMCID: PMC8673602 DOI: 10.1371/journal.ppat.1010119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 12/15/2021] [Accepted: 11/16/2021] [Indexed: 11/18/2022] Open
Abstract
Disease vectors such as mosquitoes and ticks play a major role in the emergence and re-emergence of human and animal viral pathogens. Compared to mosquitoes, however, much less is known about the antiviral responses of ticks. Here we showed that Asian longhorned ticks (Haemaphysalis longicornis) produced predominantly 22-nucleotide virus-derived siRNAs (vsiRNAs) in response to severe fever with thrombocytopenia syndrome virus (SFTSV, an emerging tick-borne virus), Nodamura virus (NoV), or Sindbis virus (SINV) acquired by blood feeding. Notably, experimental acquisition of NoV and SINV by intrathoracic injection also initiated viral replication and triggered the production of vsiRNAs in H. longicornis. We demonstrated that a mutant NoV deficient in expressing its viral suppressor of RNAi (VSR) replicated to significantly lower levels than wildtype NoV in H. longicornis, but accumulated to higher levels after knockdown of the tick Dicer2-like protein identified by phylogeny comparison. Moreover, the expression of a panel of known animal VSRs in cis from the genome of SINV drastically enhanced the accumulation of the recombinant viruses. This study establishes a novel model for virus-vector-mouse experiments with longhorned ticks and provides the first in vivo evidence for an antiviral function of the RNAi response in ticks. Interestingly, comparing the accumulation levels of SINV recombinants expressing green fluorescent protein or SFTSV proteins identified the viral non-structural protein as a putative VSR. Elucidating the function of ticks’ antiviral RNAi pathway in vivo is critical to understand the virus-host interaction and the control of tick-borne viral pathogens. Tick-borne diseases (TBDs) are the most common illnesses transmitted by ticks, and the annual number of reported TBD cases continues to increase. The Asian longhorned tick, a vector associated with at least 30 human pathogens, is native to eastern Asia and recently reached the USA as an emerging disease threat. Newly identified tick-transmitted pathogens continue to be reported, raising concerns about how TBDs occur. Interestingly, tick can harbor pathogens without being affected themselves. For viral infections, ticks have their own immune systems that protect them from infection. Meanwhile, tick-borne viruses have evolved to avoid these defenses as they establish themselves within the vector. Here, we show in detail that infecting longhorned ticks with distinct arthropod-borne RNA viruses through two approaches natural blood feeding and injection, all induce the production of vsiRNAs. Dicer2-like homolog plays a role in regulating antiviral RNAi responses as knocking down of this gene enhanced viral replication. Furthermore, we demonstrate that tick antiviral RNAi responses are inhibited through expression heterologous VSR proteins in recombinant SINV. We identify both the virus and tick factors are critical components to understanding TBDs. Importantly, our study introduces a novel, in vivo virus-vector-mouse model system for exploring TBDs in the future.
Collapse
Affiliation(s)
- Yan Xu
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Zhengwei Zhong
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Yanxin Ren
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Liting Ma
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Zhi Ye
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Chuang Gao
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jingwen Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- * E-mail: (JW); (YL)
| | - Yang Li
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- * E-mail: (JW); (YL)
| |
Collapse
|
3
|
Ren Y, Li X, Tian Z, Xu Y, Zhang R, Li Y. Zebrafish as an animal model for the antiviral RNA interference pathway. J Gen Virol 2021; 102. [PMID: 33507144 DOI: 10.1099/jgv.0.001552] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The zebrafish (Danio rerio) possesses evolutionarily conserved innate and adaptive immunity as a mammal and has recently become a popular vertebrate model to exploit infection and immunity. Antiviral RNA interference (RNAi) has been illuminated in various model organisms, including Arabidopsis thaliana, Drosophila melanogaster, Caenorhabditis elegans and mice. However, to date, there is no report on the antiviral RNAi pathway of zebrafish. Here, we have evaluated the possible use of zebrafish to study antiviral RNAi with Sindbis virus (SINV), vesicular stomatitis virus (VSV) and Nodamura virus (NoV). We find that SINVs and NoVs induce the production of virus-derived small interfering RNAs (vsiRNAs), the hallmark of antiviral RNAi, with a preference for a length of 22 nucleotides, after infection of larval zebrafish. Meanwhile, the suppressor of RNAi (VSR) protein, NoV B2, may affect the accumulation of the NoV in zebrafish. Furthermore, taking advantage of the fact that zebrafish argonaute-2 (Ago2) protein is naturally deficient in cleavage compared with that of mammals, we provide evidence that the slicing activity of human Ago2 can virtually inhibit the accumulation of RNA virus after being ectopically expressed in larval zebrafish. Thus, zebrafish may be a unique model organism to study the antiviral RNAi pathway.
Collapse
Affiliation(s)
- Yanxin Ren
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, PR China
| | - Xueyu Li
- School of Basic Medical Sciences, Wuhan University, Wuhan, PR China
| | - Zhonghui Tian
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, PR China
| | - Yan Xu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, PR China
| | - Ruilin Zhang
- School of Basic Medical Sciences, Wuhan University, Wuhan, PR China
| | - Yang Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, PR China
| |
Collapse
|
4
|
Toxorhynchites Species: A Review of Current Knowledge. INSECTS 2020; 11:insects11110747. [PMID: 33143104 PMCID: PMC7693308 DOI: 10.3390/insects11110747] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/23/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022]
Abstract
Simple Summary Mosquitoes are well known to spread diseases when they take a blood meal. However, not all species feed on blood but instead get their nourishment from other sources. One such species is Toxorhynchites, which are a paradox among mosquitoes. These mosquitoes are entirely non-blood feeding and, as a result, are not considered to be harmful to human health. Indeed, since their larvae feed on the larvae of pest species and other aquatic insects, they are a potential counter measure against the spread of mosquito-transmitted diseases. Their effective application has been hampered due to a lack of understanding and inconsistencies in their descriptions. This review aims to build upon previously published information and summarize recent findings to support their use in combating mosquito-transmitted infections. Abstract The increasing global incidence of mosquito-borne infections is driving a need for effective control methods. Vector populations have expanded their geographical ranges, while increasing resistance to chemical insecticides and a lack of effective treatments or vaccines has meant that the development of vector control methods is essential in the fight against mosquito-transmitted diseases. This review will focus on Toxorhynchites, a non-hematophagous mosquito genus which is a natural predator of vector species and may be exploited as a biological control agent. Their effectiveness in this role has been strongly debated for many years and early trials have been marred by misinformation and incomplete descriptions. Here, we draw together current knowledge of the general biology of Toxorhynchites and discuss how this updated information will benefit their role in an integrated vector management program.
Collapse
|
5
|
Han Q, Chen G, Wang J, Jee D, Li WX, Lai EC, Ding SW. Mechanism and Function of Antiviral RNA Interference in Mice. mBio 2020; 11:e03278-19. [PMID: 32753500 PMCID: PMC7407090 DOI: 10.1128/mbio.03278-19] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 07/02/2020] [Indexed: 12/18/2022] Open
Abstract
Distinct mammalian RNA viruses trigger Dicer-mediated production of virus-derived small-interfering RNAs (vsiRNA) and encode unrelated proteins to suppress vsiRNA biogenesis. However, the mechanism and function of the mammalian RNA interference (RNAi) response are poorly understood. Here, we characterized antiviral RNAi in a mouse model of infection with Nodamura virus (NoV), a mosquito-transmissible positive-strand RNA virus encoding a known double-stranded RNA (dsRNA)-binding viral suppressor of RNAi (VSR), the B2 protein. We show that inhibition of NoV RNA replication by antiviral RNAi in mouse embryonic fibroblasts (MEFs) requires Dicer-dependent vsiRNA biogenesis and Argonaute-2 slicer activity. We found that VSR-B2 of NoV enhances viral RNA replication in wild-type but not RNAi-defective MEFs such as Argonaute-2 catalytic-dead MEFs and Dicer or Argonaute-2 knockout MEFs, indicating that VSR-B2 acts mainly by suppressing antiviral RNAi in the differentiated murine cells. Consistently, VSR-B2 expression in MEFs has no detectable effect on the induction of interferon-stimulated genes or the activation of global RNA cleavages by RNase L. Moreover, we demonstrate that NoV infection of adult mice induces production of abundant vsiRNA active to guide RNA slicing by Argonaute-2. Notably, VSR-B2 suppresses the biogenesis of both vsiRNA and the slicing-competent vsiRNA-Argonaute-2 complex without detectable inhibition of Argonaute-2 slicing guided by endogenous microRNA, which dramatically enhances viral load and promotes lethal NoV infection in adult mice either intact or defective in the signaling by type I, II, and III interferons. Together, our findings suggest that the mouse RNAi response confers essential protective antiviral immunity in both the presence and absence of the interferon response.IMPORTANCE Innate immune sensing of viral nucleic acids in mammals triggers potent antiviral responses regulated by interferons known to antagonize the induction of RNA interference (RNAi) by synthetic long double-stranded RNA (dsRNA). Here, we show that Nodamura virus (NoV) infection in adult mice activates processing of the viral dsRNA replicative intermediates into small interfering RNAs (siRNAs) active to guide RNA slicing by Argonaute-2. Genetic studies demonstrate that NoV RNA replication in mouse embryonic fibroblasts is inhibited by the RNAi pathway and enhanced by the B2 viral RNAi suppressor only in RNAi-competent cells. When B2 is rendered nonexpressing or nonfunctional, the resulting mutant viruses become nonpathogenic and are cleared in adult mice either intact or defective in the signaling by type I, II, and III interferons. Our findings suggest that mouse antiviral RNAi is active and necessary for the in vivo defense against viral infection in both the presence and absence of the interferon response.
Collapse
Affiliation(s)
- Qingxia Han
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, California, USA
| | - Gang Chen
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, California, USA
| | - Jinyan Wang
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, California, USA
| | - David Jee
- Department of Developmental Biology, Sloan Kettering Institute, New York, New York, USA
| | - Wan-Xiang Li
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, California, USA
| | - Eric C Lai
- Department of Developmental Biology, Sloan Kettering Institute, New York, New York, USA
| | - Shou-Wei Ding
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, California, USA
| |
Collapse
|
6
|
Xu T, Liu S, Li X, Zhang Q. Genomic characterization of covert mortality nodavirus from farming shrimp: Evidence for a new species within the family Nodaviridae. Virus Res 2020; 286:198092. [PMID: 32659308 DOI: 10.1016/j.virusres.2020.198092] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 07/08/2020] [Accepted: 07/08/2020] [Indexed: 12/21/2022]
Abstract
The prevalence of covert mortality nodavirus (CMNV) has become one of the major threats to the shrimp farming industry in Asia and South America recently. Here, the genomic RNA1 and RNA2 of CMNV were characterized by using transcriptome sequencing and RT-PCR. Our study revealed that RNA1 is 3228 bp in length, and contains two putative Open Reading Frames (ORFs), one encoding the RNA dependent RNA polymerase (RdRp) of length 1043 amino acids and another encoding the protein B2 with a length of 132 amino acids. RNA2 is 1448 bp in length and encodes a capsid protein of 437 amino acids. CMNV shared the highest similarity of 51.78 % for RdRp with the other known nodaviruses. Phylogenetic analyses on the basis of RdRp, B2 and capsid proteins indicated that CMNV might represent a novel viral species in the family Nodaviridae. This study reported the first genome sequence of CMNV and it would be helpful for further studies of CMNV in relation to its evolution, diagnostic technique and control strategy.
Collapse
Affiliation(s)
- Tingting Xu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Marine Aquaculture Disease Control, Ministry of Agriculture, Key Laboratory of Marine Aquaculture Epidemiology and Biosecurity, Qingdao, 266071, China
| | - Shuang Liu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Marine Aquaculture Disease Control, Ministry of Agriculture, Key Laboratory of Marine Aquaculture Epidemiology and Biosecurity, Qingdao, 266071, China
| | - Xiaoping Li
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Marine Aquaculture Disease Control, Ministry of Agriculture, Key Laboratory of Marine Aquaculture Epidemiology and Biosecurity, Qingdao, 266071, China
| | - Qingli Zhang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Marine Aquaculture Disease Control, Ministry of Agriculture, Key Laboratory of Marine Aquaculture Epidemiology and Biosecurity, Qingdao, 266071, China; Marine Fisheries Science and Food Production Process Function Laboratory, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| |
Collapse
|
7
|
Mukhopadhyay U, Chanda S, Patra U, Mukherjee A, Komoto S, Chawla-Sarkar M. Biphasic regulation of RNA interference during rotavirus infection by modulation of Argonaute2. Cell Microbiol 2019; 21:e13101. [PMID: 31424151 PMCID: PMC7162324 DOI: 10.1111/cmi.13101] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/29/2019] [Accepted: 08/16/2019] [Indexed: 12/20/2022]
Abstract
RNA interference (RNAi) is an evolutionary ancient innate immune response in plants, nematodes, and arthropods providing natural protection against viral infection. Viruses have also gained counter‐defensive measures by producing virulence determinants called viral‐suppressors‐of‐RNAi (VSRs). Interestingly, in spite of dominance of interferon‐based immunity over RNAi in somatic cells of higher vertebrates, recent reports are accumulating in favour of retention of the antiviral nature of RNAi in mammalian cells. The present study focuses on the modulation of intracellular RNAi during infection with rotavirus (RV), an enteric virus with double‐stranded RNA genome. Intriguingly, a time point‐dependent bimodal regulation of RNAi was observed in RV‐infected cells, where short interfering RNA (siRNA)‐based RNAi was rendered non‐functional during early hours of infection only to be reinstated fully beyond that early infection stage. Subsequent investigations revealed RV nonstructural protein 1 to serve as a putative VSR by associating with and triggering degradation of Argonaute2 (AGO2), the prime effector of siRNA‐mediated RNAi, via ubiquitin–proteasome pathway. The proviral significance of AGO2 degradation was further confirmed when ectopic overexpression of AGO2 significantly reduced RV infection. Cumulatively, the current study presents a unique modulation of host RNAi during RV infection, highlighting the importance of antiviral RNAi in mammalian cells.
Collapse
Affiliation(s)
- Urbi Mukhopadhyay
- Division of Virology, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Shampa Chanda
- Department of Biotechnology, GITAM Institute of Science, Visakhapatnam, India
| | - Upayan Patra
- Division of Virology, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Anupam Mukherjee
- Division of Virology, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Satoshi Komoto
- Department of Virology and Parasitology, School of Medicine, Fujita Health University, Aichi, Japan
| | - Mamta Chawla-Sarkar
- Division of Virology, National Institute of Cholera and Enteric Diseases, Kolkata, India
| |
Collapse
|
8
|
Biddlecome A, Habte HH, McGrath KM, Sambanthamoorthy S, Wurm M, Sykora MM, Knobler CM, Lorenz IC, Lasaro M, Elbers K, Gelbart WM. Delivery of self-amplifying RNA vaccines in in vitro reconstituted virus-like particles. PLoS One 2019; 14:e0215031. [PMID: 31163034 PMCID: PMC6548422 DOI: 10.1371/journal.pone.0215031] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 03/25/2019] [Indexed: 01/01/2023] Open
Abstract
Many mRNA-based vaccines have been investigated for their specific potential to activate dendritic cells (DCs), the highly-specialized antigen-presenting cells of the immune system that play a key role in inducing effective CD4+ and CD8+ T-cell responses. In this paper we report a new vaccine/gene delivery platform that demonstrates the benefits of using a self-amplifying (“replicon”) mRNA that is protected in a viral-protein capsid. Purified capsid protein from the plant virus Cowpea Chlorotic Mottle Virus (CCMV) is used to in vitro assemble monodisperse virus-like particles (VLPs) containing reporter proteins (e.g., Luciferase or eYFP) or the tandem-repeat model antigen SIINFEKL in RNA gene form, coupled to the RNA-dependent RNA polymerase from the Nodamura insect virus. Incubation of immature DCs with these VLPs results in increased activation of maturation markers – CD80, CD86 and MHC-II – and enhanced RNA replication levels, relative to incubation with unpackaged replicon mRNA. Higher RNA uptake/replication and enhanced DC activation were detected in a dose-dependent manner when the CCMV-VLPs were pre-incubated with anti-CCMV antibodies. In all experiments the expression of maturation markers correlates with the RNA levels of the DCs. Overall, these studies demonstrate that: VLP protection enhances mRNA uptake by DCs; coupling replicons to the gene of interest increases RNA and protein levels in the cell; and the presence of anti-VLP antibodies enhances mRNA levels and activation of DCs in vitro. Finally, preliminary in vivo experiments involving mouse vaccinations with SIINFEKL-replicon VLPs indicate a small but significant increase in antigen-specific T cells that are doubly positive for IFN and TFN induction.
Collapse
Affiliation(s)
- Adam Biddlecome
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, United States of America
| | - Habtom H. Habte
- Boehringer Ingelheim Pharmaceuticals, Ridgefield, Connecticut, United States of America
| | - Katherine M. McGrath
- Boehringer Ingelheim Pharmaceuticals, Ridgefield, Connecticut, United States of America
| | | | - Melanie Wurm
- Boehringer-Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | | | - Charles M. Knobler
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, United States of America
| | - Ivo C. Lorenz
- Tri-Institutional Therapeutics Discovery Institute, New York, New York, United States of America
| | - Marcio Lasaro
- Boehringer Ingelheim Pharmaceuticals, Ridgefield, Connecticut, United States of America
| | - Knut Elbers
- Boehringer-Ingelheim Pharma GmbH & Co KG, Biberach, Germany
- * E-mail: (KE); (WMG)
| | - William M. Gelbart
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, United States of America
- * E-mail: (KE); (WMG)
| |
Collapse
|
9
|
Antiviral RNAi in Insects and Mammals: Parallels and Differences. Viruses 2019; 11:v11050448. [PMID: 31100912 PMCID: PMC6563508 DOI: 10.3390/v11050448] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/14/2019] [Accepted: 05/15/2019] [Indexed: 12/26/2022] Open
Abstract
The RNA interference (RNAi) pathway is a potent antiviral defense mechanism in plants and invertebrates, in response to which viruses evolved suppressors of RNAi. In mammals, the first line of defense is mediated by the type I interferon system (IFN); however, the degree to which RNAi contributes to antiviral defense is still not completely understood. Recent work suggests that antiviral RNAi is active in undifferentiated stem cells and that antiviral RNAi can be uncovered in differentiated cells in which the IFN system is inactive or in infections with viruses lacking putative viral suppressors of RNAi. In this review, we describe the mechanism of RNAi and its antiviral functions in insects and mammals. We draw parallels and highlight differences between (antiviral) RNAi in these classes of animals and discuss open questions for future research.
Collapse
|
10
|
Wang C, Liu S, Li X, Hao J, Tang KFJ, Zhang Q. Infection of covert mortality nodavirus in Japanese flounder reveals host jump of the emerging alphanodavirus. J Gen Virol 2019; 100:166-175. [DOI: 10.1099/jgv.0.001177] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Chong Wang
- 1Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology; Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture; Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity; Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, PR China
- 2National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, PR China
| | - Shuang Liu
- 1Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology; Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture; Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity; Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, PR China
- 2National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, PR China
| | - Xiaoping Li
- 1Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology; Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture; Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity; Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, PR China
- 2National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, PR China
| | - Jingwei Hao
- 1Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology; Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture; Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity; Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, PR China
- 2National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, PR China
| | - Kathy F. J. Tang
- 1Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology; Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture; Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity; Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, PR China
| | - Qingli Zhang
- 1Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology; Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture; Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity; Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, PR China
- 2National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, PR China
| |
Collapse
|
11
|
Bennett AJ, Bushmaker T, Cameron K, Ondzie A, Niama FR, Parra HJ, Mombouli JV, Olson SH, Munster VJ, Goldberg TL. Diverse RNA viruses of arthropod origin in the blood of fruit bats suggest a link between bat and arthropod viromes. Virology 2018; 528:64-72. [PMID: 30576861 DOI: 10.1016/j.virol.2018.12.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 12/09/2018] [Accepted: 12/10/2018] [Indexed: 12/22/2022]
Abstract
Bats host diverse viruses due to their unique ecology, behavior, and immunology. However, the role of other organisms with which bats interact in nature is understudied as a contributor to bat viral diversity. We discovered five viruses in the blood of fruit bats (Hypsignathus monstrosus) from the Republic of Congo. Of these five viruses, four have phylogenetic and genomic features suggesting an arthropod origin (a dicistrovirus, a nodavirus, and two tombus-like viruses), while the fifth (a hepadnavirus) is clearly of mammalian origin. We also report the parallel discovery of related tombus-like viruses in fig wasps and primitive crane flies from bat habitats, as well as high infection rates of bats with haemosporidian parasites (Hepatocystis sp.). These findings suggest transmission between arthropods and bats, perhaps through ingestion or hyperparasitism (viral infection of bat parasites). Some "bat-associated" viruses may be epidemiologically linked to bats through their ecological associations with invertebrates.
Collapse
Affiliation(s)
- Andrew J Bennett
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Trenton Bushmaker
- Laboratory of Virology, Virus Ecology Unit, Division of Intramural Research, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, USA
| | - Kenneth Cameron
- Wildlife Conservation Society, Wildlife Health Program, 2300 Southern Boulevard, Bronx, NY, USA
| | - Alain Ondzie
- Wildlife Conservation Society, Wildlife Health Program, 2300 Southern Boulevard, Bronx, NY, USA
| | - Fabien R Niama
- Laboratoire National de Santé Publique, Brazzaville, Republic of Congo
| | | | | | - Sarah H Olson
- Wildlife Conservation Society, Wildlife Health Program, 2300 Southern Boulevard, Bronx, NY, USA
| | - Vincent J Munster
- Laboratory of Virology, Virus Ecology Unit, Division of Intramural Research, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, USA
| | - Tony L Goldberg
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
12
|
Zhang QL, Liu S, Li J, Xu TT, Wang XH, Fu GM, Li XP, Sang SW, Bian XD, Hao JW. Evidence for Cross-Species Transmission of Covert Mortality Nodavirus to New Host of Mugilogobius abei. Front Microbiol 2018; 9:1447. [PMID: 30038599 PMCID: PMC6046410 DOI: 10.3389/fmicb.2018.01447] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 06/11/2018] [Indexed: 11/16/2022] Open
Abstract
Viral covert mortality disease (VCMD), caused by covert mortality nodavirus (CMNV), is a newly emerging disease affecting most cultured shrimp and other crustaceans, but not fish. However, we discovered for the first time that Mugilogobius abei, a common marine fish collecting from shrimp farming ponds and surrounding coastal waters in China, was tested to be CMNV positive based on reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay. Further investigation based on the quantitative RT-LAMP assay indicated that 39% individuals of sampled M. abei were CMNV positive. Sequencing and alignment of sequences revealed that the partial RNA-dependent RNA polymerase gene of CMNV isolated from M. abei shared 98% homology with that from the original CMNV isolates. Histopathological analysis showed that CMNV infection in M. abei could induce extensive skeletal muscle necrosis, nervous tissue vacuolation in retina of eye and cerebellum of brain. Positive signals were verified in skeletal muscle, eye, brain and intestine by in situ hybridization (ISH) with CMNV probes. Under transmission electron microscope (TEM), CMNV particles were further visualized in the cytoplasm of neurogliocytes, granulocytes and myocytes in the CMNV positive samples diagnosed by ISH. All findings suggested that CMNV, a typical alphanodavirus originated from shrimp, could switch their hosts to fish by cross-species transmission. Meanwhile, the results reminded us to pay close attention to the high risk of CMNV to use fish as intermediate or new host as well as potentially spread or cause epidemic among cultured marine fish.
Collapse
Affiliation(s)
- Qing Li Zhang
- Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Shuang Liu
- Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jun Li
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,School of Sciences and Medicine, Lake Superior State University, Sault Ste. Marie, MI, United States
| | - Ting Ting Xu
- Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiu Hua Wang
- Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Guang Ming Fu
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiao Ping Li
- Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Song Wen Sang
- Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiao Dong Bian
- Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Jing Wei Hao
- Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
13
|
Bastin D, Aitken AS, Pelin A, Pikor LA, Crupi MJF, Huh MS, Bourgeois-Daigneault MC, Bell JC, Ilkow CS. Enhanced susceptibility of cancer cells to oncolytic rhabdo-virotherapy by expression of Nodamura virus protein B2 as a suppressor of RNA interference. J Immunother Cancer 2018; 6:62. [PMID: 29921327 PMCID: PMC6008949 DOI: 10.1186/s40425-018-0366-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/25/2018] [Indexed: 12/27/2022] Open
Abstract
Antiviral responses are barriers that must be overcome for efficacy of oncolytic virotherapy. In mammalian cells, antiviral responses involve the interferon pathway, a protein-signaling cascade that alerts the immune system and limits virus propagation. Tumour-specific defects in interferon signaling enhance viral infection and responses to oncolytic virotherapy, but many human cancers are still refractory to oncolytic viruses. Given that invertebrates, fungi and plants rely on RNA interference pathways for antiviral protection, we investigated the potential involvement of this alternative antiviral mechanism in cancer cells. Here, we detected viral genome-derived small RNAs, indicative of RNAi-mediated antiviral responses, in human cancer cells. As viruses may encode suppressors of the RNA interference pathways, we engineered an oncolytic vesicular stomatitis virus variant to encode the Nodamura virus protein B2, a known inhibitor of RNAi-mediated immune responses. B2-expressing oncolytic virus showed enhanced viral replication and cytotoxicity, impaired viral genome cleavage and altered microRNA processing in cancer cells. Our data establish the improved therapeutic potential of our novel virus which targets the RNAi-mediated antiviral defense of cancer cells.
Collapse
Affiliation(s)
- Donald Bastin
- 0000 0000 9606 5108grid.412687.eCentre for Innovative Cancer ResearchOttawa Hospital Research Institute K1H 8L6 Ottawa Canada.,0000 0001 2182 2255grid.28046.38Department of Biochemistry, Microbiology and ImmunologyUniversity of Ottawa K1H 8M5 Ottawa Canada
| | - Amelia S Aitken
- 0000 0000 9606 5108grid.412687.eCentre for Innovative Cancer ResearchOttawa Hospital Research Institute K1H 8L6 Ottawa Canada.,0000 0001 2182 2255grid.28046.38Department of Biochemistry, Microbiology and ImmunologyUniversity of Ottawa K1H 8M5 Ottawa Canada
| | - Adrian Pelin
- 0000 0000 9606 5108grid.412687.eCentre for Innovative Cancer ResearchOttawa Hospital Research Institute K1H 8L6 Ottawa Canada.,0000 0001 2182 2255grid.28046.38Department of Biochemistry, Microbiology and ImmunologyUniversity of Ottawa K1H 8M5 Ottawa Canada
| | - Larissa A Pikor
- 0000 0000 9606 5108grid.412687.eCentre for Innovative Cancer ResearchOttawa Hospital Research Institute K1H 8L6 Ottawa Canada.,0000 0001 2182 2255grid.28046.38Department of Biochemistry, Microbiology and ImmunologyUniversity of Ottawa K1H 8M5 Ottawa Canada
| | - Mathieu J F Crupi
- 0000 0000 9606 5108grid.412687.eCentre for Innovative Cancer ResearchOttawa Hospital Research Institute K1H 8L6 Ottawa Canada.,0000 0001 2182 2255grid.28046.38Department of Biochemistry, Microbiology and ImmunologyUniversity of Ottawa K1H 8M5 Ottawa Canada
| | - Michael S Huh
- 0000 0000 9606 5108grid.412687.eCentre for Innovative Cancer ResearchOttawa Hospital Research Institute K1H 8L6 Ottawa Canada.,0000 0001 2182 2255grid.28046.38Department of Biochemistry, Microbiology and ImmunologyUniversity of Ottawa K1H 8M5 Ottawa Canada
| | - Marie-Claude Bourgeois-Daigneault
- 0000 0000 9606 5108grid.412687.eCentre for Innovative Cancer ResearchOttawa Hospital Research Institute K1H 8L6 Ottawa Canada.,0000 0001 2182 2255grid.28046.38Department of Biochemistry, Microbiology and ImmunologyUniversity of Ottawa K1H 8M5 Ottawa Canada
| | - John C Bell
- 0000 0000 9606 5108grid.412687.eCentre for Innovative Cancer ResearchOttawa Hospital Research Institute K1H 8L6 Ottawa Canada.,0000 0001 2182 2255grid.28046.38Department of Biochemistry, Microbiology and ImmunologyUniversity of Ottawa K1H 8M5 Ottawa Canada
| | - Carolina S Ilkow
- 0000 0000 9606 5108grid.412687.eCentre for Innovative Cancer ResearchOttawa Hospital Research Institute K1H 8L6 Ottawa Canada .,0000 0001 2182 2255grid.28046.38Department of Biochemistry, Microbiology and ImmunologyUniversity of Ottawa K1H 8M5 Ottawa Canada
| |
Collapse
|
14
|
Paces J, Nic M, Novotny T, Svoboda P. Literature review of baseline information to support the risk assessment of RNAi‐based GM plants. ACTA ACUST UNITED AC 2017. [PMCID: PMC7163844 DOI: 10.2903/sp.efsa.2017.en-1246] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jan Paces
- Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic (IMG)
| | | | | | - Petr Svoboda
- Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic (IMG)
| |
Collapse
|
15
|
Fan Y, Guo YR, Yuan W, Zhou Y, Holt MV, Wang T, Demeler B, Young NL, Zhong W, Tao YJ. Structure of a pentameric virion-associated fiber with a potential role in Orsay virus entry to host cells. PLoS Pathog 2017; 13:e1006231. [PMID: 28241071 PMCID: PMC5344674 DOI: 10.1371/journal.ppat.1006231] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 03/09/2017] [Accepted: 02/10/2017] [Indexed: 11/25/2022] Open
Abstract
Despite the wide use of Caenorhabditis elegans as a model organism, the first virus naturally infecting this organism was not discovered until six years ago. The Orsay virus and its related nematode viruses have a positive-sense RNA genome, encoding three proteins: CP, RdRP, and a novel δ protein that shares no homology with any other proteins. δ can be expressed either as a free δ or a CP-δ fusion protein by ribosomal frameshift, but the structure and function of both δ and CP-δ remain unknown. Using a combination of electron microscopy, X-ray crystallography, computational and biophysical analyses, here we show that the Orsay δ protein forms a ~420-Å long, pentameric fiber with an N-terminal α-helical bundle, a β-stranded filament in the middle, and a C-terminal head domain. The pentameric nature of the δ fiber has been independently confirmed by both mass spectrometry and analytical ultracentrifugation. Recombinant Orsay capsid containing CP-δ shows protruding long fibers with globular heads at the distal end. Mutant viruses with disrupted CP-δ fibers were generated by organism-based reverse genetics. These viruses were found to be either non-viable or with poor infectivity according to phenotypic and qRT-PCR analyses. Furthermore, addition of purified δ proteins to worm culture greatly reduced Orsay infectivity in a sequence-specific manner. Based on the structure resemblance between the Orsay CP-δ fiber and the fibers from reovirus and adenovirus, we propose that CP-δ functions as a cell attachment protein to mediate Orsay entry into worm intestine cells.
Collapse
Affiliation(s)
- Yanlin Fan
- Department of BioSciences, Rice University, MS-140, Houston, Texas, United States of America
| | - Yusong R. Guo
- Department of BioSciences, Rice University, MS-140, Houston, Texas, United States of America
| | - Wang Yuan
- Department of BioSciences, Rice University, MS-140, Houston, Texas, United States of America
| | - Ying Zhou
- Department of BioSciences, Rice University, MS-140, Houston, Texas, United States of America
| | - Matthew V. Holt
- Verna & Marrs McLean Department of Biochemistry & Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, United States of America
| | - Tao Wang
- Verna & Marrs McLean Department of Biochemistry & Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, United States of America
| | - Borries Demeler
- The University of Texas Health Science Center at San Antonio, Department of Biochemistry, MC 7760, 7703 Floyd Curl Drive, San Antonio, Texas, United States of America
| | - Nicolas L. Young
- Verna & Marrs McLean Department of Biochemistry & Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, United States of America
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, United States of America
| | - Weiwei Zhong
- Department of BioSciences, Rice University, MS-140, Houston, Texas, United States of America
| | - Yizhi J. Tao
- Department of BioSciences, Rice University, MS-140, Houston, Texas, United States of America
| |
Collapse
|
16
|
Jiwaji M, Short JR, Dorrington RA. Expanding the host range of small insect RNA viruses: Providence virus (Carmotetraviridae) infects and replicates in a human tissue culture cell line. J Gen Virol 2016; 97:2763-2768. [PMID: 27521161 DOI: 10.1099/jgv.0.000578] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Tetraviruses are small, positive (+ve)-sense ssRNA viruses that infect the midgut cells of lepidopteran larvae. Providence virus (PrV) is the only member of the family Carmotetraviridae (previously Tetraviridae). PrV particles exhibit the characteristic tetraviral T=4 icosahedral symmetry, but PrV is distinct from other tetraviruses with respect to genome organization and viral non-structural proteins. Currently, PrV is the only tetravirus known to infect and replicate in lepidopteran cell culture lines. In this report we demonstrate, using immunofluorescence microscopy, that PrV infects and replicates in a human tissue culture cell line (HeLa), producing infectious virus particles. We also provide evidence for PrV replication in vitro in insect, mammalian and plant cell-free systems. This study challenges the long-held view that tetraviruses have a narrow host range confined to one or a few lepidopteran species and highlights the need to consider the potential for apparently non-infectious viruses to be transferred to new hosts in the laboratory.
Collapse
Affiliation(s)
- Meesbah Jiwaji
- Department of Biochemistry and Microbiology, Rhodes University, PO Box 94, Grahamstown 6140, South Africa
| | - James Roswell Short
- Department of Biochemistry and Microbiology, Rhodes University, PO Box 94, Grahamstown 6140, South Africa
| | - Rosemary Ann Dorrington
- Department of Biochemistry and Microbiology, Rhodes University, PO Box 94, Grahamstown 6140, South Africa
| |
Collapse
|
17
|
Feijó RG, Maggioni R, Cunha Martins PC, de Abreu KL, Oliveira-Neto JM, Guertler C, Justino EB, Perazzolo LM, Marins LF. RNAi-based inhibition of infectious myonecrosis virus replication in Pacific white shrimp Litopenaeus vannamei. DISEASES OF AQUATIC ORGANISMS 2015; 114:89-98. [PMID: 25993884 DOI: 10.3354/dao02853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Disease in Pacific white shrimp Litopenaeus vannamei caused by the infectious myonecrosis virus (IMNV) causes significant socioeconomic impacts in infection-prone shrimp aquaculture regions. The use of synthetic dsRNA to activate an RNA interference (RNAi) response is being explored as a means of disease prophylaxis in farmed shrimp. Here, survival was tracked in L. vannamei injected with long synthetic dsRNAs targeted to IMNV open reading frame (ORF) 1a, ORF1b, and ORF2 genome regions prior to injection challenge with IMNV, and real-time RT-PCR was used to track the progress of IMNV infection and mRNA expression levels of the host genes sid1, dicer2, and argonaute2. Injection of dsRNAs targeting the ORF1a and ORF1b genes but not the ORF2 gene strongly inhibited IMNV replication over a 3 wk period following IMNV challenge, and resulted in 90 and 83% shrimp survival, respectively. Host gene mRNA expression data indicated that the Sid1 protein, which forms a transmembrane channel involved in cellular import/export of dsRNA, increased in abundance most significantly in shrimp groups that were most highly protected by virus-specific dsRNA injection. Subclinical IMNV infections present in the experimental L. vannamei used increased markedly in the 2 d between injection of any of the 4 virus-specific or non-specific dsRNAs tested and IMNV challenge. While handling and injection stress are implicated in increasing IMNV replication levels, the underlying molecular factors that may have been involved remain to be elucidated.
Collapse
Affiliation(s)
- Rubens Galdino Feijó
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas (ICB), Universidade Federal de Rio Grande (FURG), Av. Itália, Km 8, CEP 96203-900, Rio Grande, RS, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Ali PSS, John J, Selvaraj M, Kek TL, Salleh MZ. Nodamura virus B2 amino terminal domain sensitivity to small interfering RNA. Microbiol Immunol 2015; 59:299-304. [PMID: 25753649 DOI: 10.1111/1348-0421.12253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 02/17/2015] [Accepted: 03/03/2015] [Indexed: 11/28/2022]
Abstract
Nodamura virus (NoV) B2, a suppressor of RNA interference, binds double stranded RNAs (dsRNAs) and small interfering RNAs (siRNAs) corresponding to Dicer substrates and products. Here, we report that the amino terminal domain of NoV B2 (NoV B2 79) specifically binds siRNAs but not dsRNAs. NoV B2 79 oligomerizes on binding to 27 nucleotide siRNA. Mutation of the residues phenylalanine49 and alanine60 to cysteine and methionine, respectively enhances the RNA binding affinity of NoV B2 79. Circular dichroism spectra demonstrated that the wild type and mutant NoV B2 79 have similar secondary structure conformations.
Collapse
Affiliation(s)
- P Shaik Syed Ali
- Institute of Biophysical Chemistry, Goethe University, Max-von-Laue-Str. 9, Frankfurt 60438, Germany.,Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi, MARA, 42300 Puncak Alam, Selangor, Malaysia
| | - Jasmine John
- Institute of General Microbiology and Microbe Genetics, Friedrich-Schiller University Jena, Neugasse 24, D-07743 Jena, Germany
| | - Manikandan Selvaraj
- Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi, MARA, 42300 Puncak Alam, Selangor, Malaysia
| | - Teh Lay Kek
- Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi, MARA, 42300 Puncak Alam, Selangor, Malaysia
| | - Mohd Zaki Salleh
- Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi, MARA, 42300 Puncak Alam, Selangor, Malaysia
| |
Collapse
|
19
|
Gitlin L, Hagai T, LaBarbera A, Solovey M, Andino R. Rapid evolution of virus sequences in intrinsically disordered protein regions. PLoS Pathog 2014; 10:e1004529. [PMID: 25502394 PMCID: PMC4263755 DOI: 10.1371/journal.ppat.1004529] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 10/20/2014] [Indexed: 11/18/2022] Open
Abstract
Nodamura Virus (NoV) is a nodavirus originally isolated from insects that can replicate in a wide variety of hosts, including mammals. Because of their simplicity and ability to replicate in many diverse hosts, NoV, and the Nodaviridae in general, provide a unique window into the evolution of viruses and host-virus interactions. Here we show that the C-terminus of the viral polymerase exhibits extreme structural and evolutionary flexibility. Indeed, fewer than 10 positively charged residues from the 110 amino acid-long C-terminal region of protein A are required to support RNA1 replication. Strikingly, this region can be replaced by completely unrelated protein sequences, yet still produce a functional replicase. Structure predictions, as well as evolutionary and mutational analyses, indicate that the C-terminal region is structurally disordered and evolves faster than the rest of the viral proteome. Thus, the function of an intrinsically unstructured protein region can be independent of most of its primary sequence, conferring both functional robustness and sequence plasticity on the protein. Our results provide an experimental explanation for rapid evolution of unstructured regions, which enables an effective exploration of the sequence space, and likely function space, available to the virus. Proteins often contain regions with defined structures that enable their function. While important for maintaining the overall architecture of the protein, structural conservation adds constraints on the ability of the protein to mutate, and thus evolve. Viruses of eukaryotes, however, often encode for proteins with unstructured regions. As these regions are less constrained, they are more likely to accumulate mutations, which in turn can facilitate the appearance of novel functions during the evolution of the virus. Even though it has been known that such “disordered protein regions” have been particularly malleable in evolution, their functions and their ability to withstand extensive mutations have not been explored in detail. Here, we discovered that a disordered part of the Nodamura Virus polymerase is both required for replication of the viral genome, and extremely variable among different nodaviruses. We examined the tolerance of this protein region to mutations and found an unexpected ability to accommodate very diverse protein sequences. We propose that disordered protein regions can be a reservoir for evolutionary innovation that can play important roles in virus adaptation to new environments.
Collapse
Affiliation(s)
- Leonid Gitlin
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, United States of America
| | - Tzachi Hagai
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, United States of America
| | - Anthony LaBarbera
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, United States of America
| | - Mark Solovey
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, United States of America
| | - Raul Andino
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
20
|
A unique nodavirus with novel features: mosinovirus expresses two subgenomic RNAs, a capsid gene of unknown origin, and a suppressor of the antiviral RNA interference pathway. J Virol 2014; 88:13447-59. [PMID: 25210176 DOI: 10.1128/jvi.02144-14] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED Insects are a reservoir for many known and novel viruses. We discovered an unknown virus, tentatively named mosinovirus (MoNV), in mosquitoes from a tropical rainforest region in Côte d'Ivoire. The MoNV genome consists of two segments of positive-sense RNA of 2,972 nucleotides (nt) (RNA 1) and 1,801 nt (RNA 2). Its putative RNA-dependent RNA polymerase shares 43% amino acid identity with its closest relative, that of the Pariacoto virus (family Nodaviridae). Unexpectedly, for the putative capsid protein, maximal pairwise identity of 16% to Lake Sinai virus 2, an unclassified virus with a nonsegmented RNA genome, was found. Moreover, MoNV virions are nonenveloped and about 50 nm in diameter, larger than any of the known nodaviruses. Mature MoNV virions contain capsid proteins of ∼ 56 kDa, which do not seem to be cleaved from a longer precursor. Northern blot analyses revealed that MoNV expresses two subgenomic RNAs of 580 nt (RNA 3) and 292 nt (RNA 4). RNA 4 encodes a viral suppressor of RNA interference (RNAi) that shares its mechanism with the B2 RNAi suppressor protein of other nodaviruses despite lacking recognizable similarity to these proteins. MoNV B2 binds long double-stranded RNA (dsRNA) and, accordingly, inhibits Dicer-2-mediated processing of dsRNA into small interfering RNAs (siRNAs). Phylogenetic analyses indicate that MoNV is a novel member of the family Nodaviridae that acquired its capsid gene via reassortment from an unknown, distantly related virus beyond the family level. IMPORTANCE The identification of novel viruses provides important information about virus evolution and diversity. Here, we describe an unknown unique nodavirus in mosquitoes, named mosinovirus (MoNV). MoNV was classified as a nodavirus based on its genome organization and on phylogenetic analyses of the RNA-dependent RNA polymerase. Notably, its capsid gene was acquired from an unknown virus with a distant relationship to nodaviruses. Another remarkable feature of MoNV is that, unlike other nodaviruses, it expresses two subgenomic RNAs (sgRNAs). One of the sgRNAs expresses a protein that counteracts antiviral defense of its mosquito host, whereas the function of the other sgRNA remains unknown. Our results show that complete genome segments can be exchanged beyond the species level and suggest that insects harbor a large repertoire of exceptional viruses.
Collapse
|
21
|
Gant VU, Moreno S, Varela-Ramirez A, Johnson KL. Two membrane-associated regions within the Nodamura virus RNA-dependent RNA polymerase are critical for both mitochondrial localization and RNA replication. J Virol 2014; 88:5912-26. [PMID: 24696464 PMCID: PMC4093860 DOI: 10.1128/jvi.03032-13] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 01/16/2014] [Indexed: 12/23/2022] Open
Abstract
UNLABELLED Viruses with positive-strand RNA genomes amplify their genomes in replication complexes associated with cellular membranes. Little is known about the mechanism of replication complex formation in cells infected with Nodamura virus. This virus is unique in its ability to lethally infect both mammals and insects. In mice and in larvae of the greater wax moth (Galleria mellonella), Nodamura virus-infected muscle cells exhibit mitochondrial aggregation and membrane rearrangement, leading to disorganization of the muscle fibrils on the tissue level and ultimately in hind limb/segment paralysis. However, the molecular basis for this pathogenesis and the role of mitochondria in Nodamura virus infection remains unclear. Here, we tested the hypothesis that Nodamura virus establishes RNA replication complexes that associate with mitochondria in mammalian cells. Our results showed that Nodamura virus replication complexes are targeted to mitochondria, as evidenced in biochemical, molecular, and confocal microscopy studies. More specifically, we show that the Nodamura virus RNA-dependent RNA polymerase interacts with the outer mitochondrial membranes as an integral membrane protein and ultimately becomes associated with functional replication complexes. These studies will help us to understand the mechanism of replication complex formation and the pathogenesis of Nodamura virus for mammals. IMPORTANCE This study will further our understanding of Nodamura virus (NoV) genome replication and its pathogenesis for mice. NoV is unique among the Nodaviridae in its ability to infect mammals. Here we show that NoV establishes RNA replication complexes (RCs) in association with mitochondria in mammalian cells. These RCs contain newly synthesized viral RNA and feature a physical interaction between mitochondrial membranes and the viral RNA-dependent RNA polymerase (RdRp), which is mediated by two membrane-associated regions. While the nature of the interaction needs to be explored further, it appears to occur by a mode distinct from that described for the insect nodavirus Flock House virus (FHV). The interaction of the NoV RdRp with mitochondrial membranes is essential for clustering of mitochondria into networks that resemble those described for infected mouse muscle and that are associated with fatal hind limb paralysis. This work therefore provides the first link between NoV RNA replication complex formation and the pathogenesis of this virus for mice.
Collapse
Affiliation(s)
- Vincent U Gant
- Border Biomedical Research Center and Department of Biological Sciences, The University of Texas at El Paso, El Paso, Texas, USA
| | | | | | | |
Collapse
|
22
|
Svoboda P. Renaissance of mammalian endogenous RNAi. FEBS Lett 2014; 588:2550-6. [DOI: 10.1016/j.febslet.2014.05.030] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Revised: 05/16/2014] [Accepted: 05/19/2014] [Indexed: 01/03/2023]
|
23
|
Allen WJ, Wiley MR, Myles KM, Adelman ZN, Bevan DR. Steered molecular dynamics identifies critical residues of the Nodamura virus B2 suppressor of RNAi. J Mol Model 2014; 20:2092. [PMID: 24549790 DOI: 10.1007/s00894-014-2092-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 11/25/2013] [Indexed: 11/30/2022]
Abstract
Nearly all RNA viruses produce double-stranded RNA (dsRNA) during their replication cycles--an important pathogen-associated molecular pattern recognized by the RNA interference (RNAi) pathway in invertebrates and plants. Nodamura virus (NoV) encodes a suppressor of RNA silencing termed B2, which binds to dsRNA and prevents the initiation of RNAi as well as the loading of silencing complexes. Using the published crystal structure of NoV-B2, we performed a series of molecular dynamics (MD) simulations to determine the relative electrostatic and van der Waals contributions of various residues in binding dsRNA, identifying four novel potential interactors: R56, E48, P68 and R69. Additionally, steered MD was used to simulate the binding affinity of NoV-B2 sequences bearing substitutions at positions F49, R56 or R59 to dsRNA, with F49S and R56L/R59L substitutions found to have a significant negative impact on the ability of NoV-B2 to bind dsRNA. NoV RNA1 variants were tested for self-directed replication in both vertebrate (RNAi⁻) and invertebrate (RNAi⁺) cultured cells. Consistent with a role in dsRNA binding, NoV replication in F49C and F49S variant constructs was affected negatively only in RNAi⁺ cells. Thus, we used a combination of MD simulations and experimental mutagenesis to further characterize residues important for NoV-dsRNA interactions.
Collapse
Affiliation(s)
- William J Allen
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, 24061-0308, USA,
| | | | | | | | | |
Collapse
|
24
|
Antiviral RNA interference in animals: piecing together the evidence. Nat Struct Mol Biol 2014; 20:1239-41. [PMID: 24197164 DOI: 10.1038/nsmb.2708] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
25
|
Qiu Y, Wang Z, Liu Y, Qi N, Si J, Xiang X, Xia X, Hu Y, Zhou X. Newly discovered insect RNA viruses in China. SCIENCE CHINA-LIFE SCIENCES 2013; 56:711-4. [PMID: 23917843 DOI: 10.1007/s11427-013-4520-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 06/17/2013] [Indexed: 02/02/2023]
Abstract
Insects are a group of arthropods and the largest group of animals on Earth, with over one million species described to date. Like other life forms, insects suffer from viruses that cause disease and death. Viruses that are pathogenic to beneficial insects cause dramatic economic losses on agriculture. In contrast, viruses that are pathogenic to insect pests can be exploited as attractive biological control agents. All of these factors have led to an explosion in the amount of research into insect viruses in recent years, generating impressive quantities of information on the molecular and cellular biology of these viruses. Due to the wide variety of insect viruses, a better understanding of these viruses will expand our overall knowledge of their virology. Here, we review studies of several newly discovered RNA insect viruses in China.
Collapse
Affiliation(s)
- Yang Qiu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Adelman ZN, Anderson MAE, Liu M, Zhang L, Myles KM. Sindbis virus induces the production of a novel class of endogenous siRNAs in Aedes aegypti mosquitoes. INSECT MOLECULAR BIOLOGY 2012; 21:357-68. [PMID: 22458920 PMCID: PMC3386798 DOI: 10.1111/j.1365-2583.2012.01141.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Small RNA regulatory pathways are used to control the activity of transposons, regulate gene expression and resist infecting viruses. We examined the biogenesis of mRNA-derived endogenous short-interfering RNAs (endo-siRNAs) in the disease vector mosquito Aedes aegypti. Under standard conditions, mRNA-derived endo-siRNAs were produced from the bidirectional transcription of tail-tail overlapping gene pairs. Upon infection with the alphavirus, Sindbis virus (SINV), another class of mRNA-derived endo-siRNAs was observed. Genes producing SINV-induced endo-siRNAs were not enriched for overlapping partners or nearby genes, but were enriched for transcripts with long 3' untranslated regions. Endo-siRNAs from this class derived uniformly from the entire length of the target transcript, and were found to regulate the transcript levels of the genes from which they were derived. Strand-specific quantitative PCR experiments demonstrated that antisense strands of targeted mRNA genes were produced to exonic, but not intronic regions. Finally, small RNAs mapped to both sense and antisense strands of exon-exon junctions, suggesting double-stranded RNA precursors to SINV-induced endo-siRNAs may be synthesized from mature mRNA templates. These results suggest additional complexity in small RNA pathways and gene regulation in the presence of an infecting virus in disease vector mosquitoes.
Collapse
Affiliation(s)
- Z N Adelman
- Fralin Life Science Institute and Department of Entomology, Virginia Tech, Blacksburg, VA 24061, USA.
| | | | | | | | | |
Collapse
|
27
|
Internal initiation is responsible for synthesis of Wuhan nodavirus subgenomic RNA. J Virol 2011; 85:4440-51. [PMID: 21325414 DOI: 10.1128/jvi.02410-10] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Nodaviruses are small nonenveloped spherical viruses with a bipartite genome of RNAs. In nodaviruses, subgenomic RNA3 (sgRNA3) plays a critical role in viral replication and survival, as it coordinates the replication of two viral genomic RNAs (RNA1 and RNA2) and encodes protein B2, which is a potent RNA-silencing inhibitor. Despite its importance, the molecular mechanism of nodaviral sgRNA3 synthesis is still poorly understood. Here, we propose that sgRNA3 of Wuhan nodavirus (WhNV) is internally initiated from a promoter on the negative template of genomic RNA1. Serial deletion and mutation analyses further revealed that the core promoter of WhNV sgRNA3 is between nucleotide positions -22 and +6 of its transcription start site. Besides, a stem-loop structure of WhNV sgRNA3 was computationally predicted upstream of sgRNA3's transcription start site. Both the secondary structure and the primary sequence were determined to be required for promoter activity. Furthermore, our results show that the synthesis of WhNV sgRNA3 is counterregulated by the replication of WhNV genomic RNA2, which encodes a viral capsid precursor protein. And this sgRNA3 synthesis is also able to trans-activate the replication of RNA2. Altogether, findings in this study indicate that there is a newly discovered internal initiation model for the synthesis of nodaviral sgRNA.
Collapse
|
28
|
Cai D, Qiu Y, Qi N, Yan R, Lin M, Nie D, Zhang J, Hu Y. Characterization of Wuhan Nodavirus subgenomic RNA3 and the RNAi inhibition property of its encoded protein B2. Virus Res 2010; 151:153-61. [PMID: 20441781 DOI: 10.1016/j.virusres.2010.04.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Revised: 04/22/2010] [Accepted: 04/23/2010] [Indexed: 10/19/2022]
Abstract
Wuhan Nodavirus (WhNV) is the first reported nodavirus isolated from insect in China. The viral genome consists of two positive-strand RNA, RNA1 and RNA2. RNA1 is 3149 nucleotides in length, and contains three putative Open Reading Frames (ORFs) which encode proteins A, B1 and B2, respectively. In contrast, only one putative ORF encoding protein alpha was identified within 1562-nt-long RNA2 species. Here, we report the newly characterized molecular properties of WhNV subgenomic RNA3 and its encoded protein B2. We have successfully multiplied WhNV in the natural host Pieris rapae larvae under laboratory conditions. WhNV replication in the host cells resulted in the expression of viral proteins, ProA, B2 and Proalpha, with the absence of B1 production. Northern blot hybridization assay revealed the existence of subgenomic RNA3 which is 5' capped and 3' co-terminal with RNA1. The subgenomic RNA3 is 370 nucleotides in length and contains only one ORF (B2) with the first AUG as the authentic initiation codon. In addition, we found that nonstructural protein B2 of WhNV is an efficient RNA interference (RNAi) suppressor in a cultured drosophila cell line. The amino-terminal region (aa 1-20) of B2 is essential for this RNAi inhibition activity.
Collapse
Affiliation(s)
- Dawei Cai
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Körber S, Shaik Syed Ali P, Chen JCH. Structure of the RNA-binding domain of Nodamura virus protein B2, a suppressor of RNA interference. Biochemistry 2010; 48:2307-9. [PMID: 19249868 DOI: 10.1021/bi900126s] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein B2 from Nodamura virus (NMV B2), a member of the Nodavirus family, acts as a suppressor of RNA interference (RNAi). The N-terminal domain of NMV B2, consisting of residues 1-79, recognizes double-stranded RNA (dsRNA). The 2.5 A crystal structure of the RNA-binding domain of NMV B2 shows a dimeric, helical bundle structure. The structure shows a conserved set of RNA-binding residues compared with flock house virus B2, despite limited sequence identity. The crystal packing places the RNA-binding residues along one face of symmetry-related molecules, suggesting a potential platform for recognition of dsRNA.
Collapse
Affiliation(s)
- Stephanie Körber
- Institute of Biophysical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| | | | | |
Collapse
|
30
|
Rosskopf JJ, Upton JH, Rodarte L, Romero TA, Leung MY, Taufer M, Johnson KL. A 3' terminal stem-loop structure in Nodamura virus RNA2 forms an essential cis-acting signal for RNA replication. Virus Res 2010; 150:12-21. [PMID: 20176063 DOI: 10.1016/j.virusres.2010.02.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Revised: 02/07/2010] [Accepted: 02/09/2010] [Indexed: 12/22/2022]
Abstract
Nodamura virus (NoV; family Nodaviridae) contains a bipartite positive-strand RNA genome that replicates via negative-strand intermediates. The specific structural and sequence determinants for initiation of nodavirus RNA replication have not yet been identified. For the related nodavirus Flock House virus (FHV) undefined sequences within the 3'-terminal 50 nucleotides (nt) of FHV RNA2 are essential for its replication. We previously showed that a conserved stem-loop structure (3'SL) is predicted to form near the 3' end of the RNA2 segments of seven nodaviruses, including NoV. We hypothesized that the 3'SL structure from NoV RNA2 is an essential cis-acting element for RNA replication. To determine whether the structure can actually form within RNA2, we analyzed the secondary structure of NoV RNA2 in vitro transcripts using nuclease mapping. The resulting nuclease maps were 86% consistent with the predicted 3'SL structure, suggesting that it can form in solution. We used a well-defined reverse genetic system for launch of NoV replication in yeast cells to test the function of the 3'SL in the viral life cycle. Deletion of the nucleotides that comprise the 3'SL from a NoV2-GFP chimeric replicon resulted in a severe defect in RNA2 replication. A minimal replicon containing the 5'-terminal 17 nt and the 3'-terminal 54 nt of RNA2 (including the predicted 3'SL) retained the ability to replicate in yeast, suggesting that this region is able to direct replication of a heterologous mRNA. These data suggest that the 3'SL plays an essential role in replication of NoV RNA2. The conservation of the predicted 3'SL suggests that this common motif may play a role in RNA replication for the other members of the Nodaviridae.
Collapse
Affiliation(s)
- John J Rosskopf
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Maetzig T, Galla M, Brugman MH, Loew R, Baum C, Schambach A. Mechanisms controlling titer and expression of bidirectional lentiviral and gammaretroviral vectors. Gene Ther 2009; 17:400-11. [PMID: 19847204 DOI: 10.1038/gt.2009.129] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Bidirectional lentiviral vectors mediate expression of two or more cDNAs from a single internal promoter. In this study, we examined mechanisms that control titer and expression properties of this vector system. To address whether the bidirectional design depends on lentiviral (LV) backbone components, especially the Rev/Rev responsive element (RRE) system, we constructed similar expression cassettes for LV and gammaretroviral (GV) vectors. Bidirectional expression levels could be adjusted by the use of different internal promoters. Furthermore, removal of the constitutive RNA transport element of Mason-Pfizer monkey virus, used in first generation bidirectional LV vectors, improved gene expression. Titers of bidirectional vectors were approximately 10-fold reduced in comparison to unidirectional vectors, independent of the Rev/RRE interaction. We reasoned that titer reductions were due to the formation of interfering double-stranded RNA in packaging cells. Indeed, cotransfection of Nodamuravirus B2 protein, an RNA interference suppressor, increased bidirectional vector titers at least fivefold. We validated the potential of high titer bidirectional vectors by coexpressing a fluorescent marker with O(6)-methylguanine-DNA methyltransferase from integrating, or with Cre recombinase from integrating and non-integrating GV and LV backbones. This allowed for the tracking of chemoprotected and recombined cells by fluorescence marker expression.
Collapse
Affiliation(s)
- T Maetzig
- Department of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | |
Collapse
|
32
|
Su YC, Wu JL, Hong JR. Betanodavirus non-structural protein B2: A novel necrotic death factor that induces mitochondria-mediated cell death in fish cells. Virology 2008; 385:143-54. [PMID: 19116179 DOI: 10.1016/j.virol.2008.11.036] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Revised: 09/17/2008] [Accepted: 11/13/2008] [Indexed: 12/31/2022]
Abstract
The Betanodavirus non-structural protein B2 plays a role in silencing RNA interference (RNAi), which mediated regulation of animal and plant innate immune responses, but little is known regarding the role of B2 in cell death. The present study examined the effects of B2 on mitochondria-mediated necrotic cell death in grouper liver (GL-av) cells. B2 was expressed at 12 h post-infection (pi), with increased expression between 24 and 72 h pi by Western blot. B2 was transiently expressed to investigate possible novel protein functions. Transient expression of B2 in GL-av cells resulted in apoptotic cell features and positive TUNEL assays (28%) at 24 h post-transfection (pt). During mechanistic studies of cell death, B2 upregulated expression of the proapoptotic gene Bax (2.8 fold at 48 h pt) and induced loss of mitochondria membrane potential (MMP) but not mitochondrial cytochrome c release. Furthermore, over expression of Bcl-2 family member zfBcl-xL effectively prevented B2-induced, mitochondria-mediated necrotic cell death. Finally, using RNA interference to reduce B2 expression, both B2 and Bax expression were downregulated and RGNNV-infected cells were rescued from secondary necrosis. Taken together, our results suggest that B2 upregulates Bax and triggers mitochondria-mediated necrotic cell death independent of cytochrome c release.
Collapse
Affiliation(s)
- Yu-Chin Su
- Institute of Biotechnology, National Cheng Kung University, Taiwan, ROC
| | | | | |
Collapse
|
33
|
Zhang X, Segers GC, Sun Q, Deng F, Nuss DL. Characterization of hypovirus-derived small RNAs generated in the chestnut blight fungus by an inducible DCL-2-dependent pathway. J Virol 2008; 82:2613-9. [PMID: 18199652 PMCID: PMC2258980 DOI: 10.1128/jvi.02324-07] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2007] [Accepted: 01/04/2008] [Indexed: 12/27/2022] Open
Abstract
The disruption of one of two dicer genes, dcl-2, of the chestnut blight fungus Cryphonectria parasitica was recently shown to increase susceptibility to mycovirus infection (G. C. Segers, X. Zhang, F. Deng, Q. Sun, and D. L. Nuss, Proc. Natl. Acad. Sci. USA 104:12902-12906, 2007). We now report the accumulation of virus-derived small RNAs (vsRNAs) in hypovirus CHV1-EP713-infected wild-type and dicer gene dcl-1 mutant C. parasitica strains but not in hypovirus-infected dcl-2 mutant and dcl-1 dcl-2 double-mutant strains. The CHV1-EP713 vsRNAs were produced from both the positive and negative viral RNA strands at a ratio of 3:2 in a nonrandom distribution along the viral genome. We also show that C. parasitica responds to hypovirus and mycoreovirus infections with a significant increase (12- to 20-fold) in dcl-2 expression while the expression of dcl-1 is increased only modestly (2-fold). The expression of dcl-2 is further increased ( approximately 35-fold) following infection with a hypovirus CHV1-EP713 mutant that lacks the p29 suppressor of RNA silencing. The combined results demonstrate the biogenesis of mycovirus-derived small RNAs in a fungal host through the action of a specific dicer gene, dcl-2. They also reveal that dcl-2 expression is significantly induced in response to mycovirus infection by a mechanism that appears to be repressed by the hypovirus-encoded p29 suppressor of RNA silencing.
Collapse
Affiliation(s)
- Xuemin Zhang
- Center for Biosystems Research, University of Maryland Biotechnology Institute, Shady Grove Campus, 9600 Gudelsky Dr., Rockville, MD 20850, USA
| | | | | | | | | |
Collapse
|
34
|
Chou YT, Tam B, Linay F, Lai EC. Transgenic inhibitors of RNA interference in Drosophila. Fly (Austin) 2007; 1:311-6. [PMID: 18820441 DOI: 10.4161/fly.5606] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
RNA silencing functions as an adaptive antiviral defense in both plants and animals. In turn, viruses commonly encode suppressors of RNA silencing, which enable them to mount productive infection. These inhibitor proteins may be exploited as reagents with which to probe mechanisms and functions of RNA silencing pathways. In this report, we describe transgenic Drosophila strains that allow inducible expression of the viral RNA silencing inhibitors Flock House virus-B2, Nodamura virus-B2, vaccinia virus-E3L, influenza A virus-NS1 and tombusvirus P19. Some of these, especially the B2 proteins, are effective transgenic inhibitors of double strand RNA-induced gene silencing in flies. On the other hand, none of them is effective against the Drosophila microRNA pathway. Their functional selectivity makes these viral silencing proteins useful reagents with which to study biological functions of the Drosophila RNA interference pathway.
Collapse
Affiliation(s)
- Yu-ting Chou
- Sloan-Kettering Institute, New York, New York 10021, USA
| | | | | | | |
Collapse
|
35
|
Adachi K, Ichinose T, Watanabe K, Kitazato K, Kobayashi N. Potential for the replication of the betanodavirus redspotted grouper nervous necrosis virus in human cell lines. Arch Virol 2007; 153:15-24. [PMID: 17906832 PMCID: PMC7086817 DOI: 10.1007/s00705-007-1051-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2007] [Accepted: 07/24/2007] [Indexed: 11/25/2022]
Abstract
The determination of the host ranges of viruses is important because of the possible emergence of infectious agents, which may result from the zoonotic transmission of animal viruses to humans. The family Nodaviridae, whose members are non-enveloped, positive-stranded bipartite RNA viruses, is comprised of the genera Alphanodavirus and Betanodavirus, whose members predominantly infect insects and fish, respectively. The alphanodaviruses can also infect suckling mice and suckling hamsters, resulting in paralysis and death. Pigs near the site of isolation of the Nodamura virus (NoV), an alphanodavirus, have been reported to have high levels of NoV neutralizing antibody, suggesting that they may be part of the natural host range of this virus. Betanodaviruses are the causative agents of viral nervous necrosis, which occurs in several species of fish. However, little is known regarding the mechanism of infection of these viruses. Whether betanodaviruses can infect hosts other than fish remains unclear. In this study, we examined the possibility that a betanodavirus, redspotted grouper nervous necrosis virus (RGNNV), can infect human cell lines and showed that this virus can attach to the cells but cannot penetrate them, although human cells can support the replication of the betanodavirus when viral RNAs are transfected. The betanodavirus in its present form cannot infect human cells.
Collapse
Affiliation(s)
- K. Adachi
- />Laboratory of Molecular Biology of Infectious Agents, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - T. Ichinose
- />Laboratory of Molecular Biology of Infectious Agents, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - K. Watanabe
- />Laboratory of Molecular Biology of Infectious Agents, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - K. Kitazato
- />Laboratory of Molecular Biology of Infectious Agents, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - N. Kobayashi
- />Laboratory of Molecular Biology of Infectious Agents, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
- />Central Research Center, AVSS Corporation, Nagasaki, Japan
| |
Collapse
|
36
|
Chen SP, Wu JL, Su YC, Hong JR. Anti-Bcl-2 family members, zfBcl-x(L) and zfMcl-1a, prevent cytochrome c release from cells undergoing betanodavirus-induced secondary necrotic cell death. Apoptosis 2007; 12:1043-60. [PMID: 17245642 DOI: 10.1007/s10495-006-0032-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Nervous necrosis virus (NNV)-induced, host cell apoptosis mediates secondary necrosis by an ill-understood process. In this study, redspotted grouper nervous necrosis virus (RGNNV) is shown to induce mitochondria-mediated necrotic cell death in GL-av cells (fish cells) via cytochrome c release, and anti-apoptotic proteins are shown to protect these cells from death. Western blots revealed that cytochrome c release coincided with disruption of mitochondrial ultrastructure and preceded necrosis, but did not correlate with caspases activation. To identify the mediator(s) of this necrotic process, a protein synthesis inhibitor (cycloheximide; CHX; 0.33 microg/ml) was used to block cytochrome c release as well as PS exposure and mitochondrial membrane permeability transition pore (MMP) loss. CHX (0.33 microg/ml) completely blocked viral protein B2 expression, and partly blocked protein A, protein alpha, and a pro-apoptotic death protein (Bad) expression. Overexpression of B2 gene increased necrotic-like cell death up to 30% at 48 h post-transfection, suggesting that newly synthesized protein (B2) may be involved in this necrotic process. Finally, necrotic death was prevented by overexpression of Bcl-2 family proteins, zfBcl-x(L) and xfMcl-1a. Thus, new protein synthesis and release of cytochrome c are required for RGNNV-induced necrotic cell death, which can be blocked by anti-apoptotic Bcl-2 members.
Collapse
Affiliation(s)
- Shi-Ping Chen
- Laboratory of Molecular Virology and Biotechnology, Institute of Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
| | | | | | | |
Collapse
|
37
|
Fenner BJ, Thiagarajan R, Chua HK, Kwang J. Betanodavirus B2 is an RNA interference antagonist that facilitates intracellular viral RNA accumulation. J Virol 2007; 80:85-94. [PMID: 16352533 PMCID: PMC1317529 DOI: 10.1128/jvi.80.1.85-94.2006] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Betanodaviruses are small positive-sense bipartite RNA viruses that infect a wide variety of fish species and are notorious for causing lethal outbreaks in juvenile fish hatcheries worldwide. The function of a small nonstructural protein, B2, encoded by the subgenomic RNA3 of betanodaviruses, has remained obscure. Greasy grouper nervous necrosis virus, a betanodavirus model, was used to develop a facile DNA-based reverse genetics system that recapitulated the virus infection cycle, and we used this system to show that B2 is a small nonstructural protein that is essential for high level accumulation of viral RNA1 after RNA transfection of fish, mammalian, and avian cells. The defect in RNA1 accumulation in a B2 mutant was partially complemented by supplying B2 RNA in trans. Confocal analysis of the cellular distribution of B2 indicated that B2 is able to enter the nucleus and accumulates there during the late stages of GGNNV infection. Using human HeLa cells as a cellular RNA interference model, we found that B2 could efficiently antagonize RNA interference, which is a property shared by the distantly related alphanodavirus B2 proteins. This function provides appears to provide an explanation, at least in part, for why B2 mutant RNA1 is severely impaired in its intracellular accumulation.
Collapse
Affiliation(s)
- Beau J Fenner
- Animal Health Biotechnology, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604
| | | | | | | |
Collapse
|
38
|
Mérai Z, Kerényi Z, Kertész S, Magna M, Lakatos L, Silhavy D. Double-stranded RNA binding may be a general plant RNA viral strategy to suppress RNA silencing. J Virol 2006; 80:5747-56. [PMID: 16731914 PMCID: PMC1472586 DOI: 10.1128/jvi.01963-05] [Citation(s) in RCA: 217] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
In plants, RNA silencing (RNA interference) is an efficient antiviral system, and therefore successful virus infection requires suppression of silencing. Although many viral silencing suppressors have been identified, the molecular basis of silencing suppression is poorly understood. It is proposed that various suppressors inhibit RNA silencing by targeting different steps. However, as double-stranded RNAs (dsRNAs) play key roles in silencing, it was speculated that dsRNA binding might be a general silencing suppression strategy. Indeed, it was shown that the related aureusvirus P14 and tombusvirus P19 suppressors are dsRNA-binding proteins. Interestingly, P14 is a size-independent dsRNA-binding protein, while P19 binds only 21-nucleotide ds-sRNAs (small dsRNAs having 2-nucleotide 3' overhangs), the specificity determinant of the silencing system. Much evidence supports the idea that P19 inhibits silencing by sequestering silencing-generated viral ds-sRNAs. In this study we wanted to test the hypothesis that dsRNA binding is a general silencing suppression strategy. Here we show that many plant viral silencing suppressors bind dsRNAs. Beet yellows virus Peanut P21, clump virus P15, Barley stripe mosaic virus gammaB, and Tobacco etch virus HC-Pro, like P19, bind ds-sRNAs size-selectively, while Turnip crinkle virus CP is a size-independent dsRNA-binding protein, which binds long dsRNAs as well as ds-sRNAs. We propose that size-selective ds-sRNA-binding suppressors inhibit silencing by sequestering viral ds-sRNAs, whereas size-independent dsRNA-binding suppressors inactivate silencing by sequestering long dsRNA precursors of viral sRNAs and/or by binding ds-sRNAs. The findings that many unrelated silencing suppressors bind dsRNA suggest that dsRNA binding is a general silencing suppression strategy which has evolved independently many times.
Collapse
Affiliation(s)
- Zsuzsanna Mérai
- Agricultural Biotechnology Center, H-2101 Gödöllö, P. O. Box. 411, Hungary
| | | | | | | | | | | |
Collapse
|
39
|
Abstract
RNA interference constitutes a key component of the innate immune response to viral infection in both plants and invertebrate animals and has been postulated to have a similar protective function in mammals. This perspective reviews the available data addressing whether RNA interference forms part of the mammalian innate immune response and concludes that the popular hypothesis in favor of that possibility remains far from proven and may not be valid.
Collapse
Affiliation(s)
- Bryan R Cullen
- Center for Virology and Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA.
| |
Collapse
|
40
|
Liu C, Zhang J, Yi F, Wang J, Wang X, Jiang H, Xu J, Hu Y. Isolation and RNA1 nucleotide sequence determination of a new insect nodavirus from Pieris rapae larvae in Wuhan city, China. Virus Res 2006; 120:28-35. [PMID: 16780981 DOI: 10.1016/j.virusres.2005.09.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2005] [Revised: 08/31/2005] [Accepted: 09/01/2005] [Indexed: 10/24/2022]
Abstract
A new insect nodavirus is isolated from Pieris rapae larvae in Wuhan city, China and tentatively designated Wuhan nodavirus (WhNV). We here report the physicochemical characterization of WhNV and determine the nucleotide sequences of its larger segment of genome, RNA1. The results show that WhNV particles are isometric, non-enveloped, with a diameter of about 29nm. The virus has a major capsid protein and a minor capsid protein with estimated molecular mass of 40 and 44kDa, respectively. WhNV RNA1 is determined to be 3149nt long, containing a 1014-amino-acid open reading frame (ORF) encoding protein A with a calculated molecular mass of 114,608Da. The protein A shows 39 and 27% identity to its homologues in Pariacoto virus (PaV) and Striped jack necrosis nervous virus (SJNNV), respectively, but shows only 24% or less identity to its homologues in other insect Nodaviruses such as Nodamura virus (NoV), Black beetle virus (BBV), Boolarra virus (BoV) and Flock house virus (FHV). Predicted domains for six RNA-dependent RNA polymerase motifs and putative ORFs (protein B) are confirmed by sequence analysis of WhNV RNA1.
Collapse
Affiliation(s)
- Chuanfeng Liu
- State Key Laboratory of Virology, Laboratory of Insect Virology, College of Life Science, Wuhan University, Wuhan 430072, China
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Chao JA, Lee JH, Chapados BR, Debler EW, Schneemann A, Williamson JR. Dual modes of RNA-silencing suppression by Flock House virus protein B2. Nat Struct Mol Biol 2006; 12:952-7. [PMID: 16228003 DOI: 10.1038/nsmb1005] [Citation(s) in RCA: 244] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2005] [Accepted: 09/19/2005] [Indexed: 01/15/2023]
Abstract
As a counter-defense against antiviral RNA silencing during infection, the insect Flock House virus (FHV) expresses the silencing suppressor protein B2. Biochemical experiments show that B2 binds to double-stranded RNA (dsRNA) without regard to length and inhibits cleavage of dsRNA by Dicer in vitro. A cocrystal structure reveals that a B2 dimer forms a four-helix bundle that binds to one face of an A-form RNA duplex independently of sequence. These results suggest that B2 blocks both cleavage of the FHV genome by Dicer and incorporation of FHV small interfering RNAs into the RNA-induced silencing complex.
Collapse
Affiliation(s)
- Jeffrey A Chao
- Department of Molecular Biology, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, California 92037, USA
| | | | | | | | | | | |
Collapse
|
42
|
van Rij RP, Andino R. The silent treatment: RNAi as a defense against virus infection in mammals. Trends Biotechnol 2006; 24:186-93. [PMID: 16503061 DOI: 10.1016/j.tibtech.2006.02.006] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2005] [Revised: 11/25/2005] [Accepted: 02/13/2006] [Indexed: 12/22/2022]
Abstract
RNA interference (RNAi) is a mechanism for sequence-specific gene silencing guided by double-stranded RNA. In plants and insects it is well established that RNAi is instrumental in the response to viral infections; whether RNAi has a similar function in mammals is under intense investigation. Recent studies to address this question have identified some unanticipated interactions between the RNAi machinery and mammalian viruses. Furthermore, introduction of virus-specific small interfering RNAs (siRNAs) into cells, thus programming the RNAi machinery to target viruses, is an effective therapeutic approach to inhibit virus replication in vitro and in animal models. Although several issues remain to be addressed, such as delivery and viral escape, these findings hold tremendous potential for the development of RNAi-based antiviral therapeutics.
Collapse
Affiliation(s)
- Ronald P van Rij
- Department of Microbiology and Immunology, University of California-San Francisco, San Francisco, CA 94143-2280, USA
| | | |
Collapse
|
43
|
Abstract
Interest in insect small RNA viruses (SRVs) has grown slowly but steadily. A number of new viruses have been analyzed at the sequence level, adding to our knowledge of their diversity at the level of both individual virus species and families. In particular, a number of possible new virus families have emerged. This research has largely been driven by interest in their potential for pest control, as well as in their importance as the causal agents of disease in beneficial arthropods. At the same time, research into known viruses has made valuable contributions to our understanding of an emerging new field of central importance to molecular biology-the existence of RNA-based gene silencing, developmental control, and adaptive immune systems in eukaryotes. Subject to RNA-based adaptive immune responses in their hosts, viruses have evolved a variety of genes encoding proteins capable of suppressing the immune response. Such genes were first identified in plant viruses, but the first examples known from animal viruses were identified in insect RNA viruses. This chapter will address the diversity of insect SRVs, and attempts to harness their simplicity in the engineering of transgenic plants expressing viruses for resistance to insect pests. We also describe RNA interference and antiviral pathways identified in plants and animals, how they have led viruses to evolve genes capable of suppressing such adaptive immunity, and the problems presented by these pathways for the strategy of expressing viruses in transgenic plants. Approaches for countering these problems are also discussed.
Collapse
|
44
|
Iwamoto T, Mise K, Takeda A, Okinaka Y, Mori KI, Arimoto M, Okuno T, Nakai T. Characterization of Striped jack nervous necrosis virus subgenomic RNA3 and biological activities of its encoded protein B2. J Gen Virol 2005; 86:2807-2816. [PMID: 16186236 DOI: 10.1099/vir.0.80902-0] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Striped jack nervous necrosis virus (SJNNV), which infects fish, is the type species of the genus Betanodavirus. This virus has a bipartite genome of positive-strand RNAs, designated RNAs 1 and 2. A small RNA (ca. 0.4 kb) has been detected from SJNNV-infected cells, which was newly synthesized and corresponded to the 3'-terminal region of RNA1. Rapid amplification of cDNA ends analysis showed that the 5' end of this small RNA (designated RNA3) initiated at nt 2730 of the corresponding RNA1 sequence and contained a 5' cap structure. Substitution of the first nucleotide of the subgenomic RNA sequence within RNA1 selectively inhibited production of the positive-strand RNA3 but not of the negative-strand RNA3, which suggests that RNA3 may be synthesized via a premature termination model. The single RNA3-encoded protein (designated protein B2) was expressed in Escherichia coli, purified and used to immunize a rabbit to obtain an anti-protein B2 polyclonal antibody. An immunological test showed that the antigen was specifically detected in the central nervous system and retina of infected striped jack larvae (Pseudocaranx dentex), and in the cytoplasm of infected cultured E-11 cells. These results indicate that SJNNV produces subgenomic RNA3 from RNA1 and synthesizes protein B2 during virus multiplication, as reported for alphanodaviruses. In addition, an Agrobacterium co-infiltration assay established in transgenic plants that express green fluorescent protein showed that SJNNV protein B2 has a potent RNA silencing-suppression activity, as discovered for the protein B2 of insect-infecting alphanodaviruses.
Collapse
Affiliation(s)
- Tokinori Iwamoto
- Kamiura Station, Japan Fisheries Research Agency, Oita 879-2602, Japan
| | - Kazuyuki Mise
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Atsushi Takeda
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Yasushi Okinaka
- Graduate School of Biosphere Science, Hiroshima University, Higashihiroshima, 739-8528, Japan
| | - Koh-Ichiro Mori
- Kamiura Station, Japan Fisheries Research Agency, Oita 879-2602, Japan
| | - Misao Arimoto
- Kamiura Station, Japan Fisheries Research Agency, Oita 879-2602, Japan
| | - Tetsuro Okuno
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Toshihiro Nakai
- Graduate School of Biosphere Science, Hiroshima University, Higashihiroshima, 739-8528, Japan
| |
Collapse
|
45
|
Robalino J, Bartlett T, Shepard E, Prior S, Jaramillo G, Scura E, Chapman RW, Gross PS, Browdy CL, Warr GW. Double-stranded RNA induces sequence-specific antiviral silencing in addition to nonspecific immunity in a marine shrimp: convergence of RNA interference and innate immunity in the invertebrate antiviral response? J Virol 2005; 79:13561-71. [PMID: 16227276 PMCID: PMC1262564 DOI: 10.1128/jvi.79.21.13561-13571.2005] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Double-stranded RNA (dsRNA) is a common by-product of viral infections and a potent inducer of innate antiviral immune responses in vertebrates. In the marine shrimp Litopenaeus vannamei, innate antiviral immunity is also induced by dsRNA in a sequence-independent manner. In this study, the hypothesis that dsRNA can evoke not only innate antiviral immunity but also a sequence-specific antiviral response in shrimp was tested. It was found that viral sequence-specific dsRNA affords potent antiviral immunity in vivo, implying the involvement of RNA interference (RNAi)-like mechanisms in the antiviral response of the shrimp. Consistent with the activation of RNAi by virus-specific dsRNA, endogenous shrimp genes could be silenced in a systemic fashion by the administration of cognate long dsRNA. While innate antiviral immunity, sequence-dependent antiviral protection, and gene silencing could all be induced by injection of long dsRNA molecules, injection of short interfering RNAs failed to induce similar responses, suggesting a size requirement for extracellular dsRNA to engage antiviral mechanisms and gene silencing. We propose a model of antiviral immunity in shrimp by which viral dsRNA engages not only innate immune pathways but also an RNAi-like mechanism to induce potent antiviral responses in vivo.
Collapse
Affiliation(s)
- Javier Robalino
- Marine Biomedicine and Environmental Sciences Center, Medical University of South Carolina, 221 Ft. Johnson Road, Charleston, South Carolina 29412, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
RNA silencing or RNA interference (RNAi) refers to the small RNA-guided gene silencing mechanism conserved in a wide range of eukaryotic organisms from plants to mammals. As part of this special issue on the biology, mechanisms and applications of RNAi, here we review the recent advances on defining a role of RNAi in the responses of invertebrate and vertebrate animals to virus infection. Approximately 40 miRNAs and 10 RNAi suppressors encoded by diverse mammalian viruses have been identified. Assays used for the identification of viral suppressors and possible biological functions of both viral miRNAs and suppressors are discussed. We propose that herpes viral miRNAs may act as specificity factors to initiate heterochromatin assembly of the latent viral DNA genome in the nucleus.
Collapse
|
47
|
Abstract
Nodamura virus (NoV) is a small RNA virus that is infectious for insect and mammalian hosts. We have developed a highly sensitive assay of RNA interference (RNAi) in mammalian cells that shows that the NoV B2 protein functions as an inhibitor of RNAi triggered by either short hairpin RNAs or small interfering RNAs. In the cell, NoV B2 binds to pre-Dicer substrate RNA and RNA-induced silencing complex (RISC)-processed RNAs and inhibits the Dicer cleavage reaction and, potentially, one or more post-Dicer activities. In vitro, NoV B2 inhibits Dicer-mediated RNA cleavage in the absence of any other host factors and specifically binds double-stranded RNAs corresponding in structure to Dicer substrates and products. Its abilities to bind to Dicer precursor and post-Dicer RISC-processed RNAs suggest a mechanism of inhibition that is unique among known viral inhibitors of RNAi.
Collapse
Affiliation(s)
- Christopher S Sullivan
- G. W. Hooper Research Foundation, University of California, San Francisco, 513 Parnassus Ave., HSW 1501, Box 0552, San Francisco, CA 94143-0552, USA.
| | | |
Collapse
|
48
|
Price BD, Eckerle LD, Ball LA, Johnson KL. Nodamura virus RNA replication in Saccharomyces cerevisiae: heterologous gene expression allows replication-dependent colony formation. J Virol 2005; 79:495-502. [PMID: 15596842 PMCID: PMC538723 DOI: 10.1128/jvi.79.1.495-502.2005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Nodamura virus (NoV) and Flock House virus (FHV) are members of the family Nodaviridae. The nodavirus genome is composed of two positive-sense RNA segments: RNA1 encodes the viral RNA-dependent RNA polymerase and RNA2 encodes the capsid protein precursor. A small subgenomic RNA3, which encodes nonstructural proteins B1 and B2, is transcribed from RNA1 during RNA replication. Previously, FHV was shown to replicate both of its genomic RNAs and to transcribe RNA3 in transiently transfected yeast cells. FHV RNAs and their derivatives could also be expressed from plasmids containing RNA polymerase II promoters. Here we show that all of these features can be recapitulated for NoV, the only nodavirus that productively infects mammals. Inducible plasmid-based systems were used to characterize the RNA replication requirements for NoV RNA1 and RNA2 in Saccharomyces cerevisiae. Induced NoV RNA1 replication was robust. Three previously described NoV RNA1 mutants behaved in yeast as they had in mammalian cells. Yeast colonies were selected from cells expressing NoV RNA1, and RNA2 replicons that encoded yeast nutritional markers, from plasmids. Unexpectedly, these NoV RNA replication-dependent yeast colonies were recovered at frequencies 10(4)-fold lower than in the analogous FHV system. Molecular analysis revealed that some of the NoV RNA replication-dependent colonies contained mutations in the NoV B2 open reading frame in the replicating viral RNA. In addition, we found that NoV RNA1 could support limited replication of a deletion derivative of the heterologous FHV RNA2 that expressed the yeast HIS3 selectable marker, resulting in formation of HIS+ colonies.
Collapse
Affiliation(s)
- B Duane Price
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | | | | |
Collapse
|