1
|
Suraweera CD, Espinoza B, Hinds MG, Kvansakul M. Mastering Death: The Roles of Viral Bcl-2 in dsDNA Viruses. Viruses 2024; 16:879. [PMID: 38932171 PMCID: PMC11209288 DOI: 10.3390/v16060879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Proteins of the Bcl-2 family regulate cellular fate via multiple mechanisms including apoptosis, autophagy, senescence, metabolism, inflammation, redox homeostasis, and calcium flux. There are several regulated cell death (RCD) pathways, including apoptosis and autophagy, that use distinct molecular mechanisms to elicit the death response. However, the same proteins/genes may be deployed in multiple biochemical pathways. In apoptosis, Bcl-2 proteins control the integrity of the mitochondrial outer membrane (MOM) by regulating the formation of pores in the MOM and apoptotic cell death. A number of prosurvival genes populate the genomes of viruses including those of the pro-survival Bcl-2 family. Viral Bcl-2 proteins are sequence and structural homologs of their cellular counterparts and interact with cellular proteins in apoptotic and autophagic pathways, potentially allowing them to modulate these pathways and determine cellular fate.
Collapse
Affiliation(s)
- Chathura D. Suraweera
- Genome Sciences and Cancer Division, The John Curtin School of Medical Research, Australian National University, Canberra 2601, Australia;
| | - Benjamin Espinoza
- Department of Biochemistry and Chemistry, La Trobe University, Melbourne, VIC 3086, Australia;
| | - Mark G. Hinds
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Marc Kvansakul
- Genome Sciences and Cancer Division, The John Curtin School of Medical Research, Australian National University, Canberra 2601, Australia;
| |
Collapse
|
2
|
Morovati S, Mohammadi A, Masoudi R, Heidari AA, Asad Sangabi M. The power of mumps virus: Matrix protein activates apoptotic pathways in human colorectal cell lines. PLoS One 2023; 18:e0295819. [PMID: 38091318 PMCID: PMC10718445 DOI: 10.1371/journal.pone.0295819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
New therapeutic approaches can significantly impact the control of colorectal cancer (CRC), which is increasing worldwide. In this study, we investigated the potential of targeting viral proteins to combat cancer cells. Specifically, we examined the anticancer potential of the matrix (M) protein of the mumps virus Hoshino strain in SW480 CRC cell lines. To begin, we individually transfected SW480 cells with pcDNA3 plasmids containing the mumps virus M gene. We then investigated the percentage of cell death, caspase activity, and the expression levels of genes involved in apoptosis pathways. Following this, we performed bioinformatics analysis on the M protein to identify any similarities with Bcl-2 family members and their viral homologs. Our diagnostic methods showed that treatment with the mumps M protein induced apoptosis and upregulated the expression and activity of pro-apoptotic proteins in SW480 CRC cells compared to the control and vector groups. Based on our bioinformatics studies, we proposed that the BH3 motif in the M protein may trigger apoptosis in CRC cells by interacting with cellular Bax. Overall, our study showed for the first time that the mumps virus M protein could be considered as a targeted treatment for CRC by inducing apoptotic pathways.
Collapse
Affiliation(s)
- Solmaz Morovati
- Department of Pathobiology, Division of Biotechnology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Ali Mohammadi
- Department of Pathobiology, Division of Virology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Ramin Masoudi
- Department of Pathobiology, Division of Biotechnology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Amir Ali Heidari
- Department of Clinical Sciences, Division of Aquatic Animal Health and Diseases, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Mehdi Asad Sangabi
- Department of Pathobiology, Division of Virology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| |
Collapse
|
3
|
Nainu F, Ophinni Y, Shiratsuchi A, Nakanishi Y. Apoptosis and Phagocytosis as Antiviral Mechanisms. Subcell Biochem 2023; 106:77-112. [PMID: 38159224 DOI: 10.1007/978-3-031-40086-5_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Viruses are infectious entities that make use of the replication machinery of their hosts to produce more progenies, causing disease and sometimes death. To counter viral infection, metazoan hosts are equipped with various defense mechanisms, from the rapid-evoking innate immune responses to the most advanced adaptive immune responses. Previous research demonstrated that cells in fruit flies and mice infected with Drosophila C virus and influenza, respectively, undergo apoptosis, which triggers the engulfment of apoptotic virus-infected cells by phagocytes. This process involves the recognition of eat-me signals on the surface of virus-infected cells by receptors of specialized phagocytes, such as macrophages and neutrophils in mice and hemocytes in fruit flies, to facilitate the phagocytic elimination of virus-infected cells. Inhibition of phagocytosis led to severe pathologies and death in both species, indicating that apoptosis-dependent phagocytosis of virus-infected cells is a conserved antiviral mechanism in multicellular organisms. Indeed, our understanding of the mechanisms underlying apoptosis-dependent phagocytosis of virus-infected cells has shed a new perspective on how hosts defend themselves against viral infection. This chapter explores the mechanisms of this process and its potential for developing new treatments for viral diseases.
Collapse
Affiliation(s)
- Firzan Nainu
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia.
| | - Youdiil Ophinni
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Japan
- Laboratory of Host Defense, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Akiko Shiratsuchi
- Center for Medical Education, Sapporo Medical University, Sapporo, Japan
- Division of Biological Function and Regulation, Graduate School of Medicine, Sapporo Medical University, Sapporo, Japan
| | | |
Collapse
|
4
|
Tummers B, Green DR. The evolution of regulated cell death pathways in animals and their evasion by pathogens. Physiol Rev 2022; 102:411-454. [PMID: 34898294 PMCID: PMC8676434 DOI: 10.1152/physrev.00002.2021] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 09/01/2021] [Accepted: 09/01/2022] [Indexed: 12/21/2022] Open
Abstract
The coevolution of host-pathogen interactions underlies many human physiological traits associated with protection from or susceptibility to infections. Among the mechanisms that animals utilize to control infections are the regulated cell death pathways of pyroptosis, apoptosis, and necroptosis. Over the course of evolution these pathways have become intricate and complex, coevolving with microbes that infect animal hosts. Microbes, in turn, have evolved strategies to interfere with the pathways of regulated cell death to avoid eradication by the host. Here, we present an overview of the mechanisms of regulated cell death in Animalia and the strategies devised by pathogens to interfere with these processes. We review the molecular pathways of regulated cell death, their roles in infection, and how they are perturbed by viruses and bacteria, providing insights into the coevolution of host-pathogen interactions and cell death pathways.
Collapse
Affiliation(s)
- Bart Tummers
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee
| |
Collapse
|
5
|
Suraweera CD, Hinds MG, Kvansakul M. Poxviral Strategies to Overcome Host Cell Apoptosis. Pathogens 2020; 10:pathogens10010006. [PMID: 33374867 PMCID: PMC7823800 DOI: 10.3390/pathogens10010006] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/17/2020] [Accepted: 12/17/2020] [Indexed: 12/17/2022] Open
Abstract
Apoptosis is a form of cellular suicide initiated either via extracellular (extrinsic apoptosis) or intracellular (intrinsic apoptosis) cues. This form of programmed cell death plays a crucial role in development and tissue homeostasis in multicellular organisms and its dysregulation is an underlying cause for many diseases. Intrinsic apoptosis is regulated by members of the evolutionarily conserved B-cell lymphoma-2 (Bcl-2) family, a family that consists of pro- and anti-apoptotic members. Bcl-2 genes have also been assimilated by numerous viruses including pox viruses, in particular the sub-family of chordopoxviridae, a group of viruses known to infect almost all vertebrates. The viral Bcl-2 proteins are virulence factors and aid the evasion of host immune defenses by mimicking the activity of their cellular counterparts. Viral Bcl-2 genes have proved essential for the survival of virus infected cells and structural studies have shown that though they often share very little sequence identity with their cellular counterparts, they have near-identical 3D structures. However, their mechanisms of action are varied. In this review, we examine the structural biology, molecular interactions, and detailed mechanism of action of poxvirus encoded apoptosis inhibitors and how they impact on host–virus interactions to ultimately enable successful infection and propagation of viral infections.
Collapse
Affiliation(s)
- Chathura D. Suraweera
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia;
| | - Mark G. Hinds
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3052, Australia
- Correspondence: (M.G.H.); (M.K.)
| | - Marc Kvansakul
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia;
- Correspondence: (M.G.H.); (M.K.)
| |
Collapse
|
6
|
García-Murria MJ, Duart G, Grau B, Diaz-Beneitez E, Rodríguez D, Mingarro I, Martínez-Gil L. Viral Bcl2s' transmembrane domain interact with host Bcl2 proteins to control cellular apoptosis. Nat Commun 2020; 11:6056. [PMID: 33247105 PMCID: PMC7695858 DOI: 10.1038/s41467-020-19881-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 10/29/2020] [Indexed: 12/20/2022] Open
Abstract
Viral control of programmed cell death relies in part on the expression of viral analogs of the B-cell lymphoma 2 (Bcl2) protein known as viral Bcl2s (vBcl2s). vBcl2s control apoptosis by interacting with host pro- and anti-apoptotic members of the Bcl2 family. Here, we show that the carboxyl-terminal hydrophobic region of herpesviral and poxviral vBcl2s can operate as transmembrane domains (TMDs) and participate in their homo-oligomerization. Additionally, we show that the viral TMDs mediate interactions with cellular pro- and anti-apoptotic Bcl2 TMDs within the membrane. Furthermore, these intra-membrane interactions among viral and cellular proteins are necessary to control cell death upon an apoptotic stimulus. Therefore, their inhibition represents a new potential therapy against viral infections, which are characterized by short- and long-term deregulation of programmed cell death.
Collapse
Affiliation(s)
- Maria Jesús García-Murria
- Department of Biochemistry and Molecular Biology, Institut de Biotecnologia i Biomedicina, Universitat de València, 46100, Burjassot, Spain
| | - Gerard Duart
- Department of Biochemistry and Molecular Biology, Institut de Biotecnologia i Biomedicina, Universitat de València, 46100, Burjassot, Spain
| | - Brayan Grau
- Department of Biochemistry and Molecular Biology, Institut de Biotecnologia i Biomedicina, Universitat de València, 46100, Burjassot, Spain
| | - Elisabet Diaz-Beneitez
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Campus Universidad Autónoma, 28049, Madrid, Spain
| | - Dolores Rodríguez
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Campus Universidad Autónoma, 28049, Madrid, Spain
| | - Ismael Mingarro
- Department of Biochemistry and Molecular Biology, Institut de Biotecnologia i Biomedicina, Universitat de València, 46100, Burjassot, Spain
| | - Luis Martínez-Gil
- Department of Biochemistry and Molecular Biology, Institut de Biotecnologia i Biomedicina, Universitat de València, 46100, Burjassot, Spain.
| |
Collapse
|
7
|
The Bcl-2 Family: Ancient Origins, Conserved Structures, and Divergent Mechanisms. Biomolecules 2020; 10:biom10010128. [PMID: 31940915 PMCID: PMC7022251 DOI: 10.3390/biom10010128] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/18/2019] [Accepted: 01/09/2020] [Indexed: 12/13/2022] Open
Abstract
Intrinsic apoptosis, the response to intracellular cell death stimuli, is regulated by the interplay of the B-cell lymphoma 2 (Bcl-2) family and their membrane interactions. Bcl-2 proteins mediate a number of processes including development, homeostasis, autophagy, and innate and adaptive immune responses and their dysregulation underpins a host of diseases including cancer. The Bcl-2 family is characterized by the presence of conserved sequence motifs called Bcl-2 homology motifs, as well as a transmembrane region, which form the interaction sites and intracellular location mechanism, respectively. Bcl-2 proteins have been recognized in the earliest metazoans including Porifera (sponges), Placozoans, and Cnidarians (e.g., Hydra). A number of viruses have gained Bcl-2 homologs and subvert innate immunity and cellular apoptosis for their replication, but they frequently have very different sequences to their host Bcl-2 analogs. Though most mechanisms of apoptosis initiation converge on activation of caspases that destroy the cell from within, the numerous gene insertions, deletions, and duplications during evolution have led to a divergence in mechanisms of intrinsic apoptosis. Currently, the action of the Bcl-2 family is best understood in vertebrates and nematodes but new insights are emerging from evolutionarily earlier organisms. This review focuses on the mechanisms underpinning the activity of Bcl-2 proteins including their structures and interactions, and how they have changed over the course of evolution.
Collapse
|
8
|
Rahman MM, McFadden G. Oncolytic Virotherapy with Myxoma Virus. J Clin Med 2020; 9:jcm9010171. [PMID: 31936317 PMCID: PMC7020043 DOI: 10.3390/jcm9010171] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 12/25/2019] [Accepted: 01/03/2020] [Indexed: 02/07/2023] Open
Abstract
Oncolytic viruses are one of the most promising novel therapeutics for malignant cancers. They selectively infect and kill cancer cells while sparing the normal counterparts, expose cancer- specific antigens and activate the host immune system against both viral and tumor determinants. Oncolytic viruses can be used as monotherapy or combined with existing cancer therapies to become more potent. Among the many types of oncolytic viruses that have been developed thus far, members of poxviruses are the most promising candidates against diverse cancer types. This review summarizes recent advances that are made with oncolytic myxoma virus (MYXV), a member of the Leporipoxvirus genus. Unlike other oncolytic viruses, MYXV infects only rabbits in nature and causes no harm to humans or any other non-leporid animals. However, MYXV can selectively infect and kill cancer cells originating from human, mouse and other host species. This selective cancer tropism and safety profile have led to the testing of MYXV in various types of preclinical cancer models. The next stage will be successful GMP manufacturing and clinical trials that will bring MYXV from bench to bedside for the treatment of currently intractable malignancies.
Collapse
|
9
|
Takahashi Y, Tsotakos N, Liu Y, Young MM, Serfass J, Tang Z, Abraham T, Wang HG. The Bif-1-Dynamin 2 membrane fission machinery regulates Atg9-containing vesicle generation at the Rab11-positive reservoirs. Oncotarget 2018; 7:20855-68. [PMID: 26980706 PMCID: PMC4991497 DOI: 10.18632/oncotarget.8028] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 02/15/2016] [Indexed: 01/08/2023] Open
Abstract
Atg9 is a multispanning transmembrane protein that is required for autophagosome formation. During autophagy, vesicles containing Atg9 are generated through an unknown mechanism and delivered to the autophagosome formation sites. We have previously reported that Atg9-containing membranes undergo continuous tubulation and fission during nutrient starvation in a manner dependent on the curvature-inducing protein Bif-1/Sh3glb1. Here, we identify Dynamin 2 (DNM2) as a Bif-1-interacting protein that mediates the fission of Atg9-containing membranes during autophagy. The interaction of Bif-1 and DNM2 is enhanced upon nutrient starvation, and Bif-1 and DNM2 cooperatively induce the generation of Atg9-containing vesicles. Inhibition of the GTPase activity of DNM2 results in the accumulation of Atg9-positive tubular structures that originate from a Rab11-positive reservoir. Although Atg9 seems to be constitutively trafficked to the reservoir regardless of Bif-1 expression, membrane tubulation from the Atg9 reservoir is dependent on Bif-1 and is strongly induced upon nutrient starvation. These findings suggest that the generation of Atg9 vesicles from a Rab11-positive reservoir is tightly controlled by the Bif-1-DNM2 membrane fission machinery in response to cellular demand for autophagy.
Collapse
Affiliation(s)
- Yoshinori Takahashi
- Department of Pediatrics, Penn State University College of Medicine, Hershey, PA 17033, USA.,Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA 17033, USA
| | - Nikolaos Tsotakos
- Department of Pediatrics, Penn State University College of Medicine, Hershey, PA 17033, USA
| | - Ying Liu
- Department of Pharmacology, Penn State University College of Medicine, Hershey, PA 17033, USA
| | - Megan M Young
- Department of Pediatrics, Penn State University College of Medicine, Hershey, PA 17033, USA
| | - Jacob Serfass
- Department of Pharmacology, Penn State University College of Medicine, Hershey, PA 17033, USA
| | - Zhenyuan Tang
- Department of Pharmacology, Penn State University College of Medicine, Hershey, PA 17033, USA
| | - Thomas Abraham
- Department of Neural and Behavioral Science and the Microscopy Imaging Facility, Penn State University College of Medicine, Hershey, PA 17033, USA
| | - Hong-Gang Wang
- Department of Pediatrics, Penn State University College of Medicine, Hershey, PA 17033, USA.,Department of Pharmacology, Penn State University College of Medicine, Hershey, PA 17033, USA.,Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
10
|
The Bcl-2 Family in Host-Virus Interactions. Viruses 2017; 9:v9100290. [PMID: 28984827 PMCID: PMC5691641 DOI: 10.3390/v9100290] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 10/01/2017] [Accepted: 10/03/2017] [Indexed: 12/13/2022] Open
Abstract
Members of the B cell lymphoma-2 (Bcl-2) family are pivotal arbiters of mitochondrially mediated apoptosis, a process of fundamental importance during tissue development, homeostasis, and disease. At the structural and mechanistic level, the mammalian members of the Bcl-2 family are increasingly well understood, with their interplay ultimately deciding the fate of a cell. Dysregulation of Bcl-2-mediated apoptosis underlies a plethora of diseases, and numerous viruses have acquired homologs of Bcl-2 to subvert host cell apoptosis and autophagy to prevent premature death of an infected cell. Here we review the structural biology, interactions, and mechanisms of action of virus-encoded Bcl-2 proteins, and how they impact on host-virus interactions to ultimately enable successful establishment and propagation of viral infections.
Collapse
|
11
|
Nichols DB, De Martini W, Cottrell J. Poxviruses Utilize Multiple Strategies to Inhibit Apoptosis. Viruses 2017; 9:v9080215. [PMID: 28786952 PMCID: PMC5580472 DOI: 10.3390/v9080215] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 07/31/2017] [Accepted: 08/02/2017] [Indexed: 12/11/2022] Open
Abstract
Cells have multiple means to induce apoptosis in response to viral infection. Poxviruses must prevent activation of cellular apoptosis to ensure successful replication. These viruses devote a substantial portion of their genome to immune evasion. Many of these immune evasion products expressed during infection antagonize cellular apoptotic pathways. Poxvirus products target multiple points in both the extrinsic and intrinsic apoptotic pathways, thereby mitigating apoptosis during infection. Interestingly, recent evidence indicates that poxviruses also hijack cellular means of eliminating apoptotic bodies as a means to spread cell to cell through a process called apoptotic mimicry. Poxviruses are the causative agent of many human and veterinary diseases. Further, there is substantial interest in developing these viruses as vectors for a variety of uses including vaccine delivery and as oncolytic viruses to treat certain human cancers. Therefore, an understanding of the molecular mechanisms through which poxviruses regulate the cellular apoptotic pathways remains a top research priority. In this review, we consider anti-apoptotic strategies of poxviruses focusing on three relevant poxvirus genera: Orthopoxvirus, Molluscipoxvirus, and Leporipoxvirus. All three genera express multiple products to inhibit both extrinsic and intrinsic apoptotic pathways with many of these products required for virulence.
Collapse
Affiliation(s)
- Daniel Brian Nichols
- Department of Biological Sciences, Seton Hall University, South Orange, NJ 07039, USA.
| | - William De Martini
- Department of Biological Sciences, Seton Hall University, South Orange, NJ 07039, USA.
| | - Jessica Cottrell
- Department of Biological Sciences, Seton Hall University, South Orange, NJ 07039, USA.
| |
Collapse
|
12
|
Coutu J, Ryerson MR, Bugert J, Brian Nichols D. The Molluscum Contagiosum Virus protein MC163 localizes to the mitochondria and dampens mitochondrial mediated apoptotic responses. Virology 2017; 505:91-101. [PMID: 28235685 DOI: 10.1016/j.virol.2017.02.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 01/30/2017] [Accepted: 02/17/2017] [Indexed: 12/22/2022]
Abstract
Apoptosis is a powerful host cell defense to prevent viruses from completing replication. Poxviruses have evolved complex means to dampen cellular apoptotic responses. The poxvirus, Molluscum Contagiosum Virus (MCV), encodes numerous host interacting molecules predicted to antagonize immune responses. However, the function of the majority of these MCV products has not been characterized. Here, we show that the MCV MC163 protein localized to the mitochondria via an N-terminal mitochondrial localization sequence and transmembrane domain. Transient expression of the MC163 protein prevented mitochondrial membrane permeabilization (MMP), an event central to cellular apoptotic responses, induced by either Tumor Necrosis Factor alpha (TNF-α) or carbonyl cyanide 3-chlorophenylhydrazone (CCCP). MC163 expression prevented the release of a mitochondrial intermembrane space reporter protein when cells were challenged with TNF-α. Inhibition of MMP was also observed in cell lines stably expressing MC163. MC163 expression may contribute to the persistence of MCV lesions by dampening cellular apoptotic responses.
Collapse
Affiliation(s)
- Jesse Coutu
- Department of Biological Sciences, Seton Hall University, 400 S. Orange Ave, South Orange, NJ 07079, United States
| | - Melissa R Ryerson
- Department of Microbiology, University of Illinois, 601 S. Goodwin Ave., Champaign-Urbana, IL 61801, United States
| | - Joachim Bugert
- Institut für Mikrobiologie der Bundeswehr, Neuherbergstrasse, 1180937 München, Germany
| | - Daniel Brian Nichols
- Department of Biological Sciences, Seton Hall University, 400 S. Orange Ave, South Orange, NJ 07079, United States.
| |
Collapse
|
13
|
Aurora A kinase activates YAP signaling in triple-negative breast cancer. Oncogene 2016; 36:1265-1275. [PMID: 27593935 DOI: 10.1038/onc.2016.292] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 06/22/2016] [Accepted: 06/27/2016] [Indexed: 02/08/2023]
Abstract
The Yes-associated protein (YAP) is an effector that transduces the output of the Hippo pathway to transcriptional modulation. Considering the role of YAP in cancers, this protein has emerged as a key node in malignancy development. In this study, we determined that Aurora A kinase acts as a positive regulator for YAP-mediated transcriptional machinery. Specifically, YAP associates with Aurora A predominantly in the nucleus. Activation of Aurora A can impinge on YAP activity through direct phosphorylation. Moreover, aberrant expression of YAP and Aurora A signaling is highly correlated with triple-negative breast cancer (TNBC). We herein provide evidence to establish the functional relevance of this newly discovered regulatory axis in TNBC.
Collapse
|
14
|
Pisklakova A, McKenzie B, Zemp F, Lun X, Kenchappa RS, Etame AB, Rahman MM, Reilly K, Pilon-Thomas S, McFadden G, Kurz E, Forsyth PA. M011L-deficient oncolytic myxoma virus induces apoptosis in brain tumor-initiating cells and enhances survival in a novel immunocompetent mouse model of glioblastoma. Neuro Oncol 2016; 18:1088-1098. [PMID: 26962017 DOI: 10.1093/neuonc/now006] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Myxoma virus (MYXV) is a promising oncolytic agent and is highly effective against immortalized glioma cells but less effective against brain tumor initiating cells (BTICs), which are believed to mediate glioma development/recurrence. MYXV encodes various proteins to attenuate host cell apoptosis, including an antiapoptotic Bcl-2 homologue known as M011L. Such proteins may limit the ability of MYXV to kill BTICs, which have heightened resistance to apoptosis. We hypothesized that infecting BTICs with an M011L-deficient MYXV construct would overcome BTIC resistance to MYXV. METHODS We used patient-derived BTICs to evaluate the efficacy of M011L knockout virus (vMyx-M011L-KO) versus wild-type MYXV (vMyx-WT) and characterized the mechanism of virus-induced cell death in vitro. To extend our findings in a novel immunocompetent animal model, we derived, cultured, and characterized a C57Bl/6J murine BTIC (mBTIC0309) from a spontaneous murine glioma and evaluated vMyx-M011L-KO efficacy with and without temozolomide (TMZ) in mBTIC0309-bearing mice. RESULTS We demonstrated that vMyx-M011L-KO induces apoptosis in BTICs, dramatically increasing sensitivity to the virus. vMyx-WT failed to induce apoptosis as M011L protein prevented Bax activation and cytochrome c release. In vivo, intracranial implantation of mBTIC0309 generated tumors that closely recapitulated the pathological and molecular profile of human gliomas. Treatment of tumor-bearing mice with vMyx-M011L-KO significantly prolonged survival in immunocompetent-but not immunodeficient-mouse models, an effect that is significantly enhanced in combination with TMZ. CONCLUSIONS Our data suggest that vMyx-M011L-KO is an effective, well-tolerated, proapoptotic oncolytic virus and a strong candidate for clinical translation.
Collapse
Affiliation(s)
- Alexandra Pisklakova
- Department of Neuro-Oncology and Tumor Biology, Moffitt Cancer Center, Tampa, Florida (A.P., R.S.K., A.B.E., P.A.F.); Southern Alberta Cancer Research Institute, University of Calgary, Calgary, Alberta, Canada (B.M., F.Z., X.L., E.K., P.A.F.); Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida (M.M.R., G.M.); Center for Cancer Research, National Cancer Institute, Bethesda, Maryland (K.R.); Department of Immunology, Moffitt Cancer Center, Tampa, Florida (S.P.-T.)
| | - Brienne McKenzie
- Department of Neuro-Oncology and Tumor Biology, Moffitt Cancer Center, Tampa, Florida (A.P., R.S.K., A.B.E., P.A.F.); Southern Alberta Cancer Research Institute, University of Calgary, Calgary, Alberta, Canada (B.M., F.Z., X.L., E.K., P.A.F.); Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida (M.M.R., G.M.); Center for Cancer Research, National Cancer Institute, Bethesda, Maryland (K.R.); Department of Immunology, Moffitt Cancer Center, Tampa, Florida (S.P.-T.)
| | - Franz Zemp
- Department of Neuro-Oncology and Tumor Biology, Moffitt Cancer Center, Tampa, Florida (A.P., R.S.K., A.B.E., P.A.F.); Southern Alberta Cancer Research Institute, University of Calgary, Calgary, Alberta, Canada (B.M., F.Z., X.L., E.K., P.A.F.); Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida (M.M.R., G.M.); Center for Cancer Research, National Cancer Institute, Bethesda, Maryland (K.R.); Department of Immunology, Moffitt Cancer Center, Tampa, Florida (S.P.-T.)
| | - Xueqing Lun
- Department of Neuro-Oncology and Tumor Biology, Moffitt Cancer Center, Tampa, Florida (A.P., R.S.K., A.B.E., P.A.F.); Southern Alberta Cancer Research Institute, University of Calgary, Calgary, Alberta, Canada (B.M., F.Z., X.L., E.K., P.A.F.); Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida (M.M.R., G.M.); Center for Cancer Research, National Cancer Institute, Bethesda, Maryland (K.R.); Department of Immunology, Moffitt Cancer Center, Tampa, Florida (S.P.-T.)
| | - Rajappa S Kenchappa
- Department of Neuro-Oncology and Tumor Biology, Moffitt Cancer Center, Tampa, Florida (A.P., R.S.K., A.B.E., P.A.F.); Southern Alberta Cancer Research Institute, University of Calgary, Calgary, Alberta, Canada (B.M., F.Z., X.L., E.K., P.A.F.); Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida (M.M.R., G.M.); Center for Cancer Research, National Cancer Institute, Bethesda, Maryland (K.R.); Department of Immunology, Moffitt Cancer Center, Tampa, Florida (S.P.-T.)
| | - Arnold B Etame
- Department of Neuro-Oncology and Tumor Biology, Moffitt Cancer Center, Tampa, Florida (A.P., R.S.K., A.B.E., P.A.F.); Southern Alberta Cancer Research Institute, University of Calgary, Calgary, Alberta, Canada (B.M., F.Z., X.L., E.K., P.A.F.); Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida (M.M.R., G.M.); Center for Cancer Research, National Cancer Institute, Bethesda, Maryland (K.R.); Department of Immunology, Moffitt Cancer Center, Tampa, Florida (S.P.-T.)
| | - Masmudur M Rahman
- Department of Neuro-Oncology and Tumor Biology, Moffitt Cancer Center, Tampa, Florida (A.P., R.S.K., A.B.E., P.A.F.); Southern Alberta Cancer Research Institute, University of Calgary, Calgary, Alberta, Canada (B.M., F.Z., X.L., E.K., P.A.F.); Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida (M.M.R., G.M.); Center for Cancer Research, National Cancer Institute, Bethesda, Maryland (K.R.); Department of Immunology, Moffitt Cancer Center, Tampa, Florida (S.P.-T.)
| | - Karlyne Reilly
- Department of Neuro-Oncology and Tumor Biology, Moffitt Cancer Center, Tampa, Florida (A.P., R.S.K., A.B.E., P.A.F.); Southern Alberta Cancer Research Institute, University of Calgary, Calgary, Alberta, Canada (B.M., F.Z., X.L., E.K., P.A.F.); Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida (M.M.R., G.M.); Center for Cancer Research, National Cancer Institute, Bethesda, Maryland (K.R.); Department of Immunology, Moffitt Cancer Center, Tampa, Florida (S.P.-T.)
| | - Shari Pilon-Thomas
- Department of Neuro-Oncology and Tumor Biology, Moffitt Cancer Center, Tampa, Florida (A.P., R.S.K., A.B.E., P.A.F.); Southern Alberta Cancer Research Institute, University of Calgary, Calgary, Alberta, Canada (B.M., F.Z., X.L., E.K., P.A.F.); Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida (M.M.R., G.M.); Center for Cancer Research, National Cancer Institute, Bethesda, Maryland (K.R.); Department of Immunology, Moffitt Cancer Center, Tampa, Florida (S.P.-T.)
| | - Grant McFadden
- Department of Neuro-Oncology and Tumor Biology, Moffitt Cancer Center, Tampa, Florida (A.P., R.S.K., A.B.E., P.A.F.); Southern Alberta Cancer Research Institute, University of Calgary, Calgary, Alberta, Canada (B.M., F.Z., X.L., E.K., P.A.F.); Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida (M.M.R., G.M.); Center for Cancer Research, National Cancer Institute, Bethesda, Maryland (K.R.); Department of Immunology, Moffitt Cancer Center, Tampa, Florida (S.P.-T.)
| | - Ebba Kurz
- Department of Neuro-Oncology and Tumor Biology, Moffitt Cancer Center, Tampa, Florida (A.P., R.S.K., A.B.E., P.A.F.); Southern Alberta Cancer Research Institute, University of Calgary, Calgary, Alberta, Canada (B.M., F.Z., X.L., E.K., P.A.F.); Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida (M.M.R., G.M.); Center for Cancer Research, National Cancer Institute, Bethesda, Maryland (K.R.); Department of Immunology, Moffitt Cancer Center, Tampa, Florida (S.P.-T.)
| | - Peter A Forsyth
- Department of Neuro-Oncology and Tumor Biology, Moffitt Cancer Center, Tampa, Florida (A.P., R.S.K., A.B.E., P.A.F.); Southern Alberta Cancer Research Institute, University of Calgary, Calgary, Alberta, Canada (B.M., F.Z., X.L., E.K., P.A.F.); Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida (M.M.R., G.M.); Center for Cancer Research, National Cancer Institute, Bethesda, Maryland (K.R.); Department of Immunology, Moffitt Cancer Center, Tampa, Florida (S.P.-T.)
| |
Collapse
|
15
|
Fleming SB, Wise LM, Mercer AA. Molecular genetic analysis of orf virus: a poxvirus that has adapted to skin. Viruses 2015; 7:1505-39. [PMID: 25807056 PMCID: PMC4379583 DOI: 10.3390/v7031505] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 03/17/2015] [Accepted: 03/19/2015] [Indexed: 12/17/2022] Open
Abstract
Orf virus is the type species of the Parapoxvirus genus of the family Poxviridae. It induces acute pustular skin lesions in sheep and goats and is transmissible to humans. The genome is G+C rich, 138 kbp and encodes 132 genes. It shares many essential genes with vaccinia virus that are required for survival but encodes a number of unique factors that allow it to replicate in the highly specific immune environment of skin. Phylogenetic analysis suggests that both viral interleukin-10 and vascular endothelial growth factor genes have been "captured" from their host during the evolution of the parapoxviruses. Genes such as a chemokine binding protein and a protein that binds granulocyte-macrophage colony-stimulating factor and interleukin-2 appear to have evolved from a common poxvirus ancestral gene while three parapoxvirus nuclear factor (NF)-κB signalling pathway inhibitors have no homology to other known NF-κB inhibitors. A homologue of an anaphase-promoting complex subunit that is believed to manipulate the cell cycle and enhance viral DNA synthesis appears to be a specific adaptation for viral-replication in keratinocytes. The review focuses on the unique genes of orf virus, discusses their evolutionary origins and their role in allowing viral-replication in the skin epidermis.
Collapse
Affiliation(s)
- Stephen B Fleming
- Department of Microbiology and Immunology, 720 Cumberland St, University of Otago, Dunedin 9016, New Zealand.
| | - Lyn M Wise
- Department of Microbiology and Immunology, 720 Cumberland St, University of Otago, Dunedin 9016, New Zealand.
| | - Andrew A Mercer
- Department of Microbiology and Immunology, 720 Cumberland St, University of Otago, Dunedin 9016, New Zealand.
| |
Collapse
|
16
|
Neidel S, Maluquer de Motes C, Mansur DS, Strnadova P, Smith GL, Graham SC. Vaccinia virus protein A49 is an unexpected member of the B-cell Lymphoma (Bcl)-2 protein family. J Biol Chem 2015; 290:5991-6002. [PMID: 25605733 PMCID: PMC4358236 DOI: 10.1074/jbc.m114.624650] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 01/11/2015] [Indexed: 12/18/2022] Open
Abstract
Vaccinia virus (VACV) encodes several proteins that inhibit activation of the proinflammatory transcription factor nuclear factor κB (NF-κB). VACV protein A49 prevents translocation of NF-κB to the nucleus by sequestering cellular β-TrCP, a protein required for the degradation of the inhibitor of κB. A49 does not share overall sequence similarity with any protein of known structure or function. We solved the crystal structure of A49 from VACV Western Reserve to 1.8 Å resolution and showed, surprisingly, that A49 has the same three-dimensional fold as Bcl-2 family proteins despite lacking identifiable sequence similarity. Whereas Bcl-2 family members characteristically modulate cellular apoptosis, A49 lacks a surface groove suitable for binding BH3 peptides and does not bind proapoptotic Bcl-2 family proteins Bax or Bak. The N-terminal 17 residues of A49 do not adopt a single well ordered conformation, consistent with their proposed role in binding β-TrCP. Whereas pairs of A49 molecules interact symmetrically via a large hydrophobic surface in crystallo, A49 does not dimerize in solution or in cells, and we propose that this hydrophobic interaction surface may mediate binding to a yet undefined cellular partner. A49 represents the eleventh VACV Bcl-2 family protein and, despite these proteins sharing very low sequence identity, structure-based phylogenetic analysis shows that all poxvirus Bcl-2 proteins are structurally more similar to each other than they are to any cellular or herpesvirus Bcl-2 proteins. This is consistent with duplication and diversification of a single BCL2 family gene acquired by an ancestral poxvirus.
Collapse
Affiliation(s)
- Sarah Neidel
- From the Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, United Kingdom and
| | - Carlos Maluquer de Motes
- From the Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, United Kingdom and
| | - Daniel S Mansur
- the Department of Microbiology, Immunology, and Parasitology, Universidade Federal de Santa Catarina, Florianopolis, 88040-900 Brazil
| | - Pavla Strnadova
- From the Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, United Kingdom and
| | - Geoffrey L Smith
- From the Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, United Kingdom and
| | - Stephen C Graham
- From the Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, United Kingdom and
| |
Collapse
|
17
|
Abstract
UNLABELLED Apoptosis is a tightly regulated process that plays a crucial role in the removal of virus-infected cells, a process controlled by both pro- and antiapoptotic members of the Bcl-2 family. The proapoptotic proteins Bak and Bax are regulated by antiapoptotic Bcl-2 proteins and are also activated by a subset of proteins known as BH3-only proteins that perform dual functions by directly activating Bak and Bax or by sequestering and neutralizing antiapoptotic family members. Numerous viruses express proteins that prevent premature host cell apoptosis. Vaccinia virus encodes F1L, an antiapoptotic protein essential for survival of infected cells that bears no discernible sequence homology to mammalian cell death inhibitors. Despite the limited sequence similarities, F1L has been shown to adopt a novel dimeric Bcl-2-like fold that enables hetero-oligomeric binding to both Bak and the proapoptotic BH3-only protein Bim that ultimately prevents Bak and Bax homo-oligomerization. However, no structural data on the mode of engagement of F1L and its Bcl-2 counterparts are available. Here we solved the crystal structures of F1L in complex with two ligands, Bim and Bak. Our structures indicate that F1L can engage two BH3 ligands simultaneously via the canonical Bcl-2 ligand binding grooves. Furthermore, by structure-guided mutagenesis, we generated point mutations within the binding pocket of F1L in order to elucidate the residues responsible for both Bim and Bak binding and prevention of apoptosis. We propose that the sequestration of Bim by F1L is primarily responsible for preventing apoptosis during vaccinia virus infection. IMPORTANCE Numerous viruses have adapted strategies to counteract apoptosis by encoding proteins responsible for sequestering proapoptotic components. Vaccinia virus, the prototypical member of the family Orthopoxviridae, encodes a protein known as F1L that functions to prevent apoptosis by interacting with Bak and the BH3-only protein Bim. Despite recent structural advances, little is known regarding the mechanics of binding between F1L and the proapoptotic Bcl-2 family members. Utilizing three-dimensional structures of F1L bound to host proapoptotic proteins, we generated variants of F1L that neutralize Bim and/or Bak. We demonstrate that during vaccinia virus infection, engagement of Bim and Bak by F1L is crucial for subversion of host cell apoptosis.
Collapse
|
18
|
Lacek K, Bauer B, Bieńkowska-Szewczyk K, Rziha HJ. Orf virus (ORFV) ANK-1 protein mitochondrial localization is mediated by ankyrin repeat motifs. Virus Genes 2014; 49:68-79. [PMID: 24743940 DOI: 10.1007/s11262-014-1069-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 04/03/2014] [Indexed: 10/25/2022]
Abstract
Orf virus (ORFV) strain D1701-V, a Parapoxvirus belonging to the family Poxviridae, became attractive as a novel virus vector system that we successfully used for the generation of recombinant vaccines. Therefore, the identification of viral genes involved in host tropisms or immune modulation is of great interest, as for instance the ORFV-encoded ankyrin-repeat (AR) containing proteins. The present study shows for the first time that the ANK-1 designated gene product of ORFV126 is targeted to mitochondria of ORFV-infected and in ANK-1 transiently expressing cells. Taking advantage of ANK-1 EGFP fusion proteins and confocal fluorescence microscopy mutational and deletion analyses indicated the importance of AR8 and AR9, which may contain a novel class of mitochondria-targeting sequence (MTS) in the central to C-terminal part of this AR-containing protein. The fluorescent findings were corroborated by cell fractionation and Western blotting experiments. The presented results open the avenue for more detailed investigations on cellular binding partners and the function of ANK-1 in viral replication or virulence.
Collapse
Affiliation(s)
- Krzysztof Lacek
- Laboratory of Virus Molecular Biology, University of Gdańsk, 80-822, Gdańsk, Poland
| | | | | | | |
Collapse
|
19
|
Haller SL, Peng C, McFadden G, Rothenburg S. Poxviruses and the evolution of host range and virulence. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2014; 21:15-40. [PMID: 24161410 PMCID: PMC3945082 DOI: 10.1016/j.meegid.2013.10.014] [Citation(s) in RCA: 174] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 10/15/2013] [Accepted: 10/15/2013] [Indexed: 11/22/2022]
Abstract
Poxviruses as a group can infect a large number of animals. However, at the level of individual viruses, even closely related poxviruses display highly diverse host ranges and virulence. For example, variola virus, the causative agent of smallpox, is human-specific and highly virulent only to humans, whereas related cowpox viruses naturally infect a broad spectrum of animals and only cause relatively mild disease in humans. The successful replication of poxviruses depends on their effective manipulation of the host antiviral responses, at the cellular-, tissue- and species-specific levels, which constitutes a molecular basis for differences in poxvirus host range and virulence. A number of poxvirus genes have been identified that possess host range function in experimental settings, and many of these host range genes target specific antiviral host pathways. Herein, we review the biology of poxviruses with a focus on host range, zoonotic infections, virulence, genomics and host range genes as well as the current knowledge about the function of poxvirus host range factors and how their interaction with the host innate immune system contributes to poxvirus host range and virulence. We further discuss the evolution of host range and virulence in poxviruses as well as host switches and potential poxvirus threats for human and animal health.
Collapse
Affiliation(s)
- Sherry L Haller
- Laboratory for Host-Specific Virology, Division of Biology, Kansas State University, KS 66506, USA
| | - Chen Peng
- Laboratory for Host-Specific Virology, Division of Biology, Kansas State University, KS 66506, USA
| | - Grant McFadden
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| | - Stefan Rothenburg
- Laboratory for Host-Specific Virology, Division of Biology, Kansas State University, KS 66506, USA.
| |
Collapse
|
20
|
Franklin E, Khan AR. Poxvirus antagonism of innate immunity by Bcl-2 fold proteins. J Struct Biol 2013; 181:1-10. [DOI: 10.1016/j.jsb.2012.10.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 10/28/2012] [Accepted: 10/29/2012] [Indexed: 10/27/2022]
|
21
|
Bratke KA, McLysaght A, Rothenburg S. A survey of host range genes in poxvirus genomes. INFECTION GENETICS AND EVOLUTION 2012; 14:406-25. [PMID: 23268114 DOI: 10.1016/j.meegid.2012.12.002] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 12/01/2012] [Accepted: 12/06/2012] [Indexed: 12/17/2022]
Abstract
Poxviruses are widespread pathogens, which display extremely different host ranges. Whereas some poxviruses, including variola virus, display narrow host ranges, others such as cowpox viruses naturally infect a wide range of mammals. The molecular basis for differences in host range are poorly understood but apparently depend on the successful manipulation of the host antiviral response. Some poxvirus genes have been shown to confer host tropism in experimental settings and are thus called host range factors. Identified host range genes include vaccinia virus K1L, K3L, E3L, B5R, C7L and SPI-1, cowpox virus CP77/CHOhr, ectromelia virus p28 and 022, and myxoma virus T2, T4, T5, 11L, 13L, 062R and 063R. These genes encode for ankyrin repeat-containing proteins, tumor necrosis factor receptor II homologs, apoptosis inhibitor T4-related proteins, Bcl-2-related proteins, pyrin domain-containing proteins, cellular serine protease inhibitors (serpins), short complement-like repeats containing proteins, KilA-N/RING domain-containing proteins, as well as inhibitors of the double-stranded RNA-activated protein kinase PKR. We conducted a systematic survey for the presence of known host range genes and closely related family members in poxvirus genomes, classified them into subgroups based on their phylogenetic relationship and correlated their presence with the poxvirus phylogeny. Common themes in the evolution of poxvirus host range genes are lineage-specific duplications and multiple independent inactivation events. Our analyses yield new insights into the evolution of poxvirus host range genes. Implications of our findings for poxvirus host range and virulence are discussed.
Collapse
Affiliation(s)
- Kirsten A Bratke
- Smurfit Institute of Genetics, University of Dublin, Trinity College, Dublin 2, Ireland
| | | | | |
Collapse
|
22
|
Okamoto T, Campbell S, Mehta N, Thibault J, Colman PM, Barry M, Huang DCS, Kvansakul M. Sheeppox virus SPPV14 encodes a Bcl-2-like cell death inhibitor that counters a distinct set of mammalian proapoptotic proteins. J Virol 2012; 86:11501-11. [PMID: 22896610 PMCID: PMC3486325 DOI: 10.1128/jvi.01115-12] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 07/24/2012] [Indexed: 12/16/2022] Open
Abstract
Many viruses express inhibitors of programmed cell death (apoptosis), thereby countering host defenses that would otherwise rapidly clear infected cells. To counter this, viruses such as adenoviruses and herpesviruses express recognizable homologs of the mammalian prosurvival protein Bcl-2. In contrast, the majority of poxviruses lack viral Bcl-2 (vBcl-2) homologs that are readily identified by sequence similarities. One such virus, myxoma virus, which is the causative agent of myxomatosis, expresses a virulence factor that is a potent inhibitor of apoptosis. In spite of the scant sequence similarity to Bcl-2, myxoma virus M11L adopts an almost identical 3-dimensional fold. We used M11L as bait in a sequence similarity search for other Bcl-2-like proteins and identified six putative vBcl-2 proteins from poxviruses. Some are potent inhibitors of apoptosis, in particular sheeppox virus SPPV14, which inhibited cell death induced by multiple agents. Importantly, SPPV14 compensated for the loss of antiapoptotic F1L in vaccinia virus and acts to directly counter the cell death mediators Bax and Bak. SPPV14 also engages a unique subset of the death-promoting BH3-only ligands, including Bim, Puma, Bmf, and Hrk. This suggests that SPPV14 may have been selected for specific biological roles as a virulence factor for sheeppox virus.
Collapse
Affiliation(s)
- Toru Okamoto
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Stephanie Campbell
- Li Ka Shing Institute for Virology, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Ninad Mehta
- Li Ka Shing Institute for Virology, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - John Thibault
- Li Ka Shing Institute for Virology, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Peter M. Colman
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Michele Barry
- Li Ka Shing Institute for Virology, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - David C. S. Huang
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Marc Kvansakul
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| |
Collapse
|
23
|
Almansour NM, Pirogova E, Coloe PJ, Cosic I, Istivan TS. A bioactive peptide analogue for myxoma virus protein with a targeted cytotoxicity for human skin cancer in vitro. J Biomed Sci 2012; 19:65. [PMID: 22805371 PMCID: PMC3407504 DOI: 10.1186/1423-0127-19-65] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 07/17/2012] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Cancer is an international health problem, and the search for effective treatments is still in progress. Peptide therapy is focused on the development of short peptides with strong tumoricidal activity and low toxicity. In this study, we investigated the efficacy of a myxoma virus peptide analogue (RRM-MV) as a candidate for skin cancer therapy. RRM-MV was designed using the Resonant Recognition Model (RRM) and its effect was examined on human skin cancer and normal human skin cells in vitro. METHODS Cell cultures were treated with various concentrations of the peptides at different incubation intervals. Cellular morphological changes (apoptosis and necrosis) were evaluated using confocal laser scanning microscopy. The cytotoxic effects of RRM-MV on human skin cancer and normal human skin cells were quantitatively determined by cytotoxicity and cell viability assays. The effect on human erythrocytes was also determined using quantitative hemolysis assay. DNA fragmentation assay was performed to detect early apoptotic events in treated cancer cells. Furthermore, to investigate the possible cell signalling pathway targeted by the peptides treatment, the levels of p-Akt expression in skin cancer and normal cells were detected by immunoblotting. RESULTS Our results indicate that RRM-MV has a dose-dependent toxic effect on cancer cells only up to 18 h. The immunoblotting results indicated that the RRM-MV slightly increased p-Akt expression in melanoma and carcinoma cells, but did not seem to affect p-Akt expression in normal skin cells. CONCLUSIONS RRM-MV targets and lethally harms cancer cells and leaves normal cells unharmed. It is able to reduce the cancer cell viability, disrupting the LDH activity in cancer cells and can significantly affect cancer progression. Further investigation into other cell signalling pathways is needed in the process leading to the in vivo testing of this peptide to prove its safety as a possible effective treatment for skin cancer.
Collapse
Affiliation(s)
- Nahlah M Almansour
- Biotechnology and Environmental Biology, School of Applied Sciences, Science Engineering and Health College, RMIT University, Bundoora, VIC 3083, Australia
| | | | | | | | | |
Collapse
|
24
|
Kerr PJ. Myxomatosis in Australia and Europe: a model for emerging infectious diseases. Antiviral Res 2012; 93:387-415. [PMID: 22333483 DOI: 10.1016/j.antiviral.2012.01.009] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 01/20/2012] [Accepted: 01/26/2012] [Indexed: 11/18/2022]
Abstract
Myxoma virus is a poxvirus naturally found in two American leporid (rabbit) species (Sylvilagus brasiliensis and Sylvilagus bachmani) in which it causes an innocuous localised cutaneous fibroma. However, in European rabbits (Oryctolagus cuniculus) the same virus causes the lethal disseminated disease myxomatosis. The introduction of myxoma virus into the European rabbit population in Australia in 1950 initiated the best known example of what happens when a novel pathogen jumps into a completely naïve new mammalian host species. The short generation time of the rabbit and their vast numbers in Australia meant evolution could be studied in real time. The carefully documented emergence of attenuated strains of virus that were more effectively transmitted by the mosquito vector and the subsequent selection of rabbits with genetic resistance to myxomatosis is the paradigm for pathogen virulence and host-pathogen coevolution. This natural experiment was repeated with the release of a separate strain of myxoma virus in France in 1952. The subsequent spread of the virus throughout Europe and its coevolution with the rabbit essentially paralleled what occurred in Australia. Detailed molecular studies on myxoma virus have dissected the role of virulence genes in the pathogenesis of myxomatosis and when combined with genomic data and reverse genetics should in future enable the understanding of the molecular evolution of the virus as it adapted to its new host. This review describes the natural history and evolution of myxoma virus together with the molecular biology and experimental pathogenesis studies that are informing our understanding of evolution of emerging diseases.
Collapse
Affiliation(s)
- Peter J Kerr
- CSIRO Ecosystem Sciences, GPO Box 1700, Canberra, ACT 2601, Australia.
| |
Collapse
|
25
|
Abstract
Antigen presentation to T lymphocytes is the seminal triggering event of the specific immune response, and poxviruses encode immunomodulatory genes that disrupt this process. Discovery of viral proteins that interfere with steps in the antigen presentation process requires a robust, easily manipulated antigen-presenting and T lymphocyte response system. Use of fresh primary antigen-presenting cells (APC) is preferable because cell lines that can present antigen in vitro are often not representative of APC in vivo and are typically weak stimulators. To study immunomodulatory poxvirus genes, we have used infected primary rat macrophages to present a model antigen, the myelin basic protein peptide, to a cognate CD4+ RsL11 T cell clone. Using this system, viruses can be assessed for difference in immunomodulation, and viral gene functions may also be assayed by comparing effects of wild type virus and mutant viruses (e.g., a deletion in the putative immunomodulatory gene). While antigen presentation can be thought of as a single event, it can also be considered as a larger process comprising multiple steps including: antigen acquisition, antigen processing, peptide loading onto MHC molecules, transport to the surface, MHC binding to T cell receptor, interaction of costimulatory molecules, cell signaling, cytokine synthesis by both cells, and proliferation of antigen specific T lymphocytes. This system allows for the initial determination of whether there is a phenotype and then also allows the stepwise deconstruction of the system to analyze this process at several points to focus in on the mechanism of immunomodulation. We have used this model system to elucidate the function of a highly conserved but previously uncharacterized poxvirus gene that we showed was important for virulence in rodents. The experimental system developed should be broadly applicable to analyzing viral effects on immunity.
Collapse
Affiliation(s)
- Rachel L Roper
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, USA.
| |
Collapse
|
26
|
Postigo A, Way M. The vaccinia virus-encoded Bcl-2 homologues do not act as direct Bax inhibitors. J Virol 2012; 86:203-13. [PMID: 22013032 PMCID: PMC3255923 DOI: 10.1128/jvi.05817-11] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 10/12/2011] [Indexed: 11/20/2022] Open
Abstract
Many viruses, including members of several poxvirus genera, encode inhibitors that block apoptosis by simultaneously binding the proapoptotic Bcl-2 proteins Bak and Bax. The Orthopoxvirus vaccinia virus encodes the Bcl-2-like F1 protein, which sequesters Bak but not Bax. However, N1, a potent virulence factor, is reported to be antiapoptotic and to interact with Bax. Here we investigated whether vaccinia virus inhibits Bak/Bax-dependent apoptosis via the cooperative action of F1 and N1. We found that Western Reserve (WR) and ΔN1L viruses inhibited drug- and infection-induced apoptosis equally. Meanwhile, infections with ΔF1L or ΔN1L/F1L virus resulted in similar levels of Bax activation and apoptosis. Outside the context of infection, N1 did not block drug- or Bax-induced cell death or interact with Bax. In addition to F1 and N1, vaccinia virus encodes further structural homologs of Bcl-2 proteins that are conserved in orthopoxviruses, including A46, A52, B14, C1, C6, C16/B22, K7, and N2. However, we found that these do not associate with Bax or inhibit drug-induced cell death. Based on our findings that N1 is not an antiapoptotic protein, we propose that the F1 orthologs represent the only orthopoxvirus Bcl-2 homolog to directly inhibit the Bak/Bax checkpoint.
Collapse
Affiliation(s)
- Antonio Postigo
- Cancer Research UK London Research Institute, London, United Kingdom
| | | |
Collapse
|
27
|
Inhibition of apoptosis and NF-κB activation by vaccinia protein N1 occur via distinct binding surfaces and make different contributions to virulence. PLoS Pathog 2011; 7:e1002430. [PMID: 22194685 PMCID: PMC3240604 DOI: 10.1371/journal.ppat.1002430] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Accepted: 10/26/2011] [Indexed: 11/24/2022] Open
Abstract
Vaccinia virus (VACV) protein N1 is an intracellular virulence factor and belongs to a family of VACV B-cell lymphoma (Bcl)-2-like proteins whose members inhibit apoptosis or activation of pro-inflammatory transcription factors, such as interferon (IFN) regulatory factor-3 (IRF-3) and nuclear factor-κB (NF-κB). Unusually, N1 inhibits both apoptosis and NF-κB activation. To understand how N1 exerts these different functions, we have mutated residues in the Bcl-2-like surface groove and at the interface used to form N1 homodimers. Mutagenesis of the surface groove abolished only the N1 anti-apoptotic activity and protein crystallography showed these mutants differed from wild-type N1 only at the site of mutation. Conversely, mutagenesis of the dimer interface converted N1 to a monomer and affected only inhibition of NF-κB activation. Collectively, these data show that N1 inhibits pro-inflammatory and pro-apoptotic signalling using independent surfaces of the protein. To determine the relative contribution of each activity to virus virulence, mutant N1 alleles were introduced into a VACV strain lacking N1 and the virulence of these viruses was analysed after intradermal and intranasal inoculation in mice. In both models, VACV containing a mutant N1 unable to inhibit apoptosis had similar virulence to wild-type virus, whereas VACV containing a mutant N1 impaired for NF-κB inhibition induced an attenuated infection similar to that of the N1-deleted virus. This indicates that anti-apoptotic activity of N1 does not drive virulence in these in vivo models, and highlights the importance of pro-inflammatory signalling in the immune response against viral infections. Viruses have multiple strategies to escape the host immune system. These include proteins to inhibit cellular signalling pathways promoting an inflammatory response, and others that prevent programmed cell death (apoptosis), allowing completion of the virus replication cycle. This paper concerns the vaccinia virus (VACV) protein N1, which forms homodimers and blocks activation of both apoptosis and the pro-inflammatory NF-κB transcription factor. By introducing mutations in N1, we demonstrate that these functions are mediated by different surfaces of the protein. Biochemical and structural analysis of these mutants demonstrates that the anti-apoptotic activity of N1 relies on a hydrophobic groove on the surface of the protein and that the anti-NF-κB activity requires an intact dimer interface. Recombinant VACVs expressing the mutant N1 proteins were made to investigate the contributions of the different properties of N1 to virulence. The results showed that the anti-NF-κB activity of N1, rather than the N1-mediated inhibition of apoptosis, is the major contributor to virulence. This underlines the central role of pro-inflammatory signalling in the host immune response against viral infections.
Collapse
|
28
|
MacNeill AL, Moldenhauer T, Doty R, Mann T. Myxoma virus induces apoptosis in cultured feline carcinoma cells. Res Vet Sci 2011; 93:1036-8. [PMID: 22100245 DOI: 10.1016/j.rvsc.2011.10.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 08/02/2011] [Accepted: 10/24/2011] [Indexed: 11/29/2022]
Abstract
There is growing interest in utilizing replicating oncolytic viruses as cancer therapeutics agents. The effectiveness of myxoma virus-induced oncolysis was evaluated in two feline cancer cell cultures. Although myxoma virus is a rabbit-specific pathogen, protein expression driven by myxoma virus and production of infectious viral particles were detected. Cell death occurred in primary feline cancer cells within 48 h of inoculation with myxoma virus. Future studies to determine if other feline neoplasms are susceptible to myxoma virus infection are warranted.
Collapse
Affiliation(s)
- A L MacNeill
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois, Urbana, IL 61802, USA.
| | | | | | | |
Collapse
|
29
|
Spiesschaert B, McFadden G, Hermans K, Nauwynck H, Van de Walle GR. The current status and future directions of myxoma virus, a master in immune evasion. Vet Res 2011; 42:76. [PMID: 21658227 PMCID: PMC3131250 DOI: 10.1186/1297-9716-42-76] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 06/09/2011] [Indexed: 01/12/2023] Open
Abstract
Myxoma virus (MYXV) gained importance throughout the twentieth century because of the use of the highly virulent Standard Laboratory Strain (SLS) by the Australian government in the attempt to control the feral Australian population of Oryctolagus cuniculus (European rabbit) and the subsequent illegal release of MYXV in Europe. In the European rabbit, MYXV causes a disease with an exceedingly high mortality rate, named myxomatosis, which is passively transmitted by biting arthropod vectors. MYXV still has a great impact on European rabbit populations around the world. In contrast, only a single cutaneous lesion, restricted to the point of inoculation, is seen in its natural long-term host, the South-American Sylvilagus brasiliensis and the North-American S. Bachmani. Apart from being detrimental for European rabbits, however, MYXV has also become of interest in human medicine in the last two decades for two reasons. Firstly, due to the strong immune suppressing effects of certain MYXV proteins, several secreted virus-encoded immunomodulators (e.g. Serp-1) are being developed to treat systemic inflammatory syndromes such as cardiovascular disease in humans. Secondly, due to the inherent ability of MYXV to infect a broad spectrum of human cancer cells, the live virus is also being developed as an oncolytic virotherapeutic to treat human cancer. In this review, an update will be given on the current status of MYXV in rabbits as well as its potential in human medicine in the twenty-first century. Table of contents Abstract 1. The virus 2. History 3. Pathogenesis and disease symptoms 4. Immunomodulatory proteins of MYXV 4.1. MYXV proteins with anti-apoptotic functions 4.1.1. Inhibition of pro-apoptotic molecules 4.1.2. Inhibition by protein-protein interactions by ankyrin repeat viral proteins 4.1.3. Inhibition of apoptosis by enhancing the degradation of cellular proteins 4.1.4. Inhibition of apoptosis by blocking host Protein Kinase R (PKR) 4.2. MYXV proteins interfering with leukocyte chemotaxis 4.3. MYXV serpins that inhibit cellular pro-inflammatory or pro-apoptotic proteases 4.4. MYXV proteins that interfere with leukocyte activation 4.5. MYXV proteins with sequence similarity to HIV proteins 4.6. MYXV proteins with unknown immune function 5. Vaccination strategies against myxomatosis 5.1. Current MYXV vaccines 5.2. Vaccination campaigns to protect European rabbits in the wild 6. Applications of myxoma virus for human medicine 6.1. MYXV proteins as therapeutics for allograft vasculopathy and atherosclerosis 6.2. Applications for MYXV as a live oncolytic virus to treat cancer 7. Discussion and Conclusions 8. List of Abbreviations References Author Details Authors' contributions Competing interests Figure Legends Acknowledgements
Collapse
Affiliation(s)
- Bart Spiesschaert
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium.
| | | | | | | | | |
Collapse
|
30
|
Abstract
The link between evasion of apoptosis and the development of cellular hyperplasia and ultimately cancer is implicitly clear if one considers how many cells are produced each day and, hence, how many cells must die to make room for the new ones (reviewed in Raff, 1996). Furthermore, cells are frequently experiencing noxious stimuli that can cause lesions in their DNA and faults in DNA replication can occur during cellular proliferation. Such DNA damage needs to be repaired efficiently or cells with irreparable damage must be killed to prevent subsequent division of aberrant cells that may fuel tumorigenesis (reviewed in Weinberg, 2007). The detection of genetic lesions in human cancers that activate prosurvival genes or disable proapoptotic genes have provided the first evidence that defects in programmed cell death can cause cancer (Tagawa et al., 2005; Tsujimoto et al., 1984; Vaux, Cory, and Adams, 1988) and this concept was proven by studies with genetically modified mice (Egle et al., 2004b; Strasser et al., 1990a). It is therefore now widely accepted that evasion of apoptosis is a requirement for both neoplastic transformation and sustained growth of cancer cells (reviewed in Cory and Adams, 2002; Hanahan and Weinberg, 2000; Weinberg, 2007). Importantly, apoptosis is also a major contributor to anticancer therapy-induced killing of tumor cells (reviewed in Cory and Adams, 2002; Cragg et al., 2009). Consequently, a detailed understanding of apoptotic cell death will help to better comprehend the complexities of tumorigenesis and should assist with the development of improved targeted therapies for cancer based on the direct activation of the apoptotic machinery (reviewed in Lessene, Czabotar, and Colman, 2008).
Collapse
Affiliation(s)
- Gemma Kelly
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Andreas Strasser
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
31
|
Abstract
Poxviruses encode numerous proteins that inhibit apoptosis, a form of cell death critical to the elimination of virally infected cells. Sequencing of the deerpox virus genome revealed DPV022, a protein that lacks obvious homology to cellular members of the Bcl-2 family but shares limited regions of amino acid identity with two unique poxviral inhibitors of apoptosis, M11L and F1L. Given the limited homology, we sought to determine whether DPV022 could inhibit apoptosis. Here we show that DPV022 localized to the mitochondria, where it inhibited apoptosis. We used a Saccharomyces cerevisiae model system to demonstrate that in the absence of all other Bcl-2 family proteins, DPV022 interacted directly with Bak and Bax. We confirmed the ability of DPV022 to interact with Bak and Bax by immunoprecipitation and showed that DPV022 prevented apoptosis induced by Bak and Bax overexpression. Moreover, we showed that DPV022 blocked apoptosis even when all the endogenous mammalian antiapoptotic proteins were neutralized by a combination of selective BH3 ligands. During virus infection, DPV022 interacted with endogenous Bak and Bax and prevented the conformational activation of both of them. Thus, we have characterized a novel poxviral inhibitor of apoptosis with intriguing amino acid differences from the well-studied proteins M11L and F1L.
Collapse
|
32
|
Lee JW, Park S, Takahashi Y, Wang HG. The association of AMPK with ULK1 regulates autophagy. PLoS One 2010; 5:e15394. [PMID: 21072212 PMCID: PMC2972217 DOI: 10.1371/journal.pone.0015394] [Citation(s) in RCA: 376] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Accepted: 09/04/2010] [Indexed: 12/13/2022] Open
Abstract
Autophagy is a highly orchestrated intracellular bulk degradation process that is activated by various environmental stresses. The serine/threonine kinase ULK1, like its yeast homologue Atg1, is a key initiator of autophagy that is negatively regulated by the mTOR kinase. However, the molecular mechanism that controls the inhibitory effect of mTOR on ULK1-mediated autophagy is not fully understood. Here we identified AMPK, a central energy sensor, as a new ULK1-binding partner. We found that AMPK binds to the PS domain of ULK1 and this interaction is required for ULK1-mediated autophagy. Interestingly, activation of AMPK by AICAR induces 14-3-3 binding to the AMPK-ULK1-mTORC1 complex, which coincides with raptor Ser792 phosphorylation and mTOR inactivation. Consistently, AICAR induces autophagy in TSC2-deficient cells expressing wild-type raptor but not the mutant raptor that lacks the AMPK phosphorylation sites (Ser722 and Ser792). Taken together, these results suggest that AMPK association with ULK1 plays an important role in autophagy induction, at least in part, by phosphorylation of raptor to lift the inhibitory effect of mTOR on the ULK1 autophagic complex.
Collapse
Affiliation(s)
- Jong Woo Lee
- Department of Pharmacology and Penn State Hershey Cancer Institute, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Sungman Park
- Department of Pharmacology and Penn State Hershey Cancer Institute, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Yoshinori Takahashi
- Department of Pharmacology and Penn State Hershey Cancer Institute, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Hong-Gang Wang
- Department of Pharmacology and Penn State Hershey Cancer Institute, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
33
|
Abstract
Mitochondria are involved in a variety of cellular metabolic processes, and their functions are regulated by extrinsic and intrinsic stimuli including viruses. Recent studies have shown that mitochondria play a central role in the primary host defense mechanisms against viral infections, and a number of novel viral and mitochondrial proteins are involved in these processes. Some viral proteins localize in mitochondria and interact with mitochondrial proteins to regulate cellular responses. This review summarizes recent findings on the functions and roles of these molecules as well as mitochondrial responses to viral infections.
Collapse
|
34
|
Castanier C, Arnoult D. Mitochondrial localization of viral proteins as a means to subvert host defense. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1813:575-83. [PMID: 20807553 DOI: 10.1016/j.bbamcr.2010.08.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 08/18/2010] [Accepted: 08/20/2010] [Indexed: 12/29/2022]
Abstract
Viruses have developed a battery of distinct strategies to overcome the very sophisticated defense mechanisms of the infected host. Throughout the process of pathogen-host co-evolution, viruses have therefore acquired the capability to prevent host cell apoptosis because elimination of infected cells via apoptosis is one of the most ancestral defense mechanism against infection. Conversely, induction of apoptosis may favor viral dissemination as a result of the dismantlement of the infected cells. Mitochondria have been long recognized for their key role in the modulation of apoptosis but more recently, mitochondria have been shown to serve as a crucial platform for innate immune signaling as illustrated by the identification of MAVS. Thus, it is therefore not surprising that this organelle represents a recurrent target for viruses, aiming to manipulate the fate of the infected host cell or to inhibit innate immune response. In this review, we highlight the viral proteins that are specifically targeted to the mitochondria to subvert host defense. This article is part of a Special Issue entitled Mitochondria: the deadly organelle.
Collapse
Affiliation(s)
- Céline Castanier
- INSERM U1014, Hopital Paul Brousse, Batiment Lavoisier, 14 avenue Paul Vaillant Couturier, 94807 Villejuif cedex, France
| | | |
Collapse
|
35
|
Galluzzi L, Kepp O, Morselli E, Vitale I, Senovilla L, Pinti M, Zitvogel L, Kroemer G. Viral strategies for the evasion of immunogenic cell death. J Intern Med 2010; 267:526-42. [PMID: 20433579 DOI: 10.1111/j.1365-2796.2010.02223.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Viral strategies for the evasion of immunogenic cell death (Symposium). J Intern Med 2010; 267: 526-542. Driven by co-evolutionary forces, viruses have refined a wide arsenal of strategies to interfere with the host defences. On one hand, viruses can block/retard programmed cell death in infected cells, thereby suppressing one of the most ancient mechanisms against viral dissemination. On the other hand, multiple viral factors can efficiently trigger the death of infected cells and uninfected cells from the immune system, which favours viral spreading and prevents/limits an active antiviral response, respectively. Moreover, several viruses are able to inhibit the molecular machinery that drives the translocation of calreticulin to the surface of dying cells. Thereby, viruses block the exposure of an engulfment signal that is required for the efficient uptake of dying cells by dendritic cells and for the induction of the immune response. In this review, we discuss a variety of mechanisms by which viruses interfere with the cell death machinery and, in particular, by which they subvert immunogenic cell death.
Collapse
|
36
|
Andoniou CE. Suicide watch: how cytomegalovirus interferes with the cell-death pathways of infected cells. ACTA ACUST UNITED AC 2010; 76:1-8. [PMID: 20403148 DOI: 10.1111/j.1399-0039.2010.01494.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The cytomegaloviruses (CMVs) are a family of species-specific viruses that have evolved sophisticated methods to interfere with the host's ability to generate innate and adaptive immune responses. In addition, CMVs must guard against another host defence mechanism, namely the induction of apoptosis that results in the elimination of infected cells. The importance of inhibiting cell death to the evolutionary survival of CMVs is underlined by the fact that these viruses encode an array of molecules devoted to interfering with host apoptotic pathways. CMVs have also been recognised for their ability to inhibit non-apoptotic forms of cells death. Recent publications have provided important insights into how some of these CMV-encoded molecules mediate their pro-survival effects, and this review will compare the mechanisms used by various members of the CMV family to prevent the premature death of the host cell. The capacity for some of the virally encoded cell-death inhibitors to mediate effects unrelated to the suppression of cell death will also be discussed.
Collapse
Affiliation(s)
- C E Andoniou
- Immunology and Virology Program, Centre for Ophthalmology and Visual Science, The University of Western Australia, Nedlands, Australia.
| |
Collapse
|
37
|
The orf virus inhibitor of apoptosis functions in a Bcl-2-like manner, binding and neutralizing a set of BH3-only proteins and active Bax. Apoptosis 2010; 14:1317-30. [PMID: 19779821 DOI: 10.1007/s10495-009-0403-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We have previously shown that the Orf virus protein, ORFV125, is a potent inhibitor of the mitochondrial pathway of apoptosis and displays rudimentary sequence similarities to cellular anti-apoptotic Bcl-2 proteins. Here we investigate the proposal that ORFV125 acts in a Bcl-2-like manner to inhibit apoptosis. We show that the viral protein interacted with a range of BH3-only proteins (Bik, Puma, DP5, Noxa and all 3 isoforms of Bim) and neutralized their pro-apoptotic activity. In addition, ORFV125 bound to the active, but not the inactive, form of Bax, and reduced the formation of Bax dimers. Mutation of specific amino acids in ORFV125 that are conserved and functionally important in mammalian Bcl-2 family proteins led to loss of both binding and inhibitory functions. We conclude that ORFV125's mechanism of action is Bcl-2-like and propose that the viral protein's combined ability to bind to a range of BH3-only proteins as well as the active form of Bax provides significant protection against apoptosis. Furthermore, we demonstrate that the binding profile of ORFV125 is distinct to that of other poxviral Bcl-2-like proteins.
Collapse
|
38
|
Dalton KP, Nicieza I, Baragaño A, Alonso JMM, Parra F. Molecular characterisation of virulence graded field isolates of myxoma virus. Virol J 2010; 7:49. [PMID: 20187925 PMCID: PMC2845566 DOI: 10.1186/1743-422x-7-49] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2009] [Accepted: 02/26/2010] [Indexed: 01/22/2023] Open
Abstract
Background Myxoma virus (MV) has been endemic in Europe since shortly after its deliberate release in France in 1952. While the emergence of more resistant hosts and more transmissible and attenuated virus is well documented, there have been relatively few studies focused on the sequence changes incurred by the virus as it has adapted to its new host. In order to identify regions of variability within the MV genome to be used for phylogenetic studies and to try to investigate causes of MV strain attenuation we have molecularly characterised nine strains of MV isolated in Spain between the years 1992 and 1995 from wide ranging geographic locations and which had been previously graded for virulence by experimental infection of rabbits. Results The findings reported here show the analysis of 16 genomic regions accounting for approximately 10% of the viral genomes. Of the 20 genes analysed 5 (M034L, M069L, M071L, M130R and M135R) were identical in all strains and 1 (M122R) contained only a single point mutation in an individual strain. Four genes (M002L/R, M009L, M036L and M017L) showed insertions or deletions that led to disruption of the ORFs. Conclusions The findings presented here provide valuable tools for strain differentiation and phylogenetic studies of MV isolates and some clues as to the reasons for virus attenuation in the field.
Collapse
Affiliation(s)
- Kevin P Dalton
- Instituto Universitario de Biotecnología de Asturias, Departamento de Bioquímica y Biología Molecular, Edificio Santiago Gascón, Campus El Cristo, Universidad de Oviedo, 33006 Oviedo, España.
| | | | | | | | | |
Collapse
|
39
|
Campbell S, Hazes B, Kvansakul M, Colman P, Barry M. Vaccinia virus F1L interacts with Bak using highly divergent Bcl-2 homology domains and replaces the function of Mcl-1. J Biol Chem 2009; 285:4695-708. [PMID: 19955184 PMCID: PMC2836074 DOI: 10.1074/jbc.m109.053769] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The Bcl-2 family regulates induction of apoptosis at the mitochondria. Essential to this regulation are the interactions between Bcl-2 family members, which are mediated by Bcl-2 homology (BH) domains. Vaccinia virus F1L is a unique inhibitor of apoptosis that lacks significant sequence similarity with the Bcl-2 family and does not contain obvious BH domains. Despite this, F1L inhibits cytochrome c release from mitochondria by preventing Bak and Bax activation. Although F1L constitutively interacts with Bak to prevent Bak activation, the precise mechanism of this interaction remains elusive. We have identified highly divergent BH domains in F1L that were verified by the recent crystal structure of F1L (Kvansakul, M., Yang, H., Fairlie, W. D., Czabotar, P. E., Fischer, S. F., Perugini, M. A., Huang, D. C., and Colman, P. M. (2008) Cell Death Differ. 15, 1564-1571). Here we show that F1L required these BH domains to interact with ectopically expressed and endogenous Bak. The interaction between F1L and Bak was conserved across species, and both F1L and the cellular antiapoptotic protein Mcl-1 required the Bak BH3 domain for interaction. Moreover, F1L replaced Mcl-1 during infection, as the Bak x Mcl-1 complex was disrupted during vaccinia virus infection. In contrast to UV irradiation, vaccinia virus infection did not result in rapid degradation of Mcl-1, consistent with our observation that vaccinia virus did not initiate a DNA damage response. Additionally, Mcl-1 expression prevented Bak activation and apoptosis during infection with a proapoptotic vaccinia virus devoid of F1L. Our data suggest that F1L replaces the antiapoptotic activity of Mcl-1 during vaccinia virus infection by interacting with Bak using highly divergent BH domains.
Collapse
Affiliation(s)
- Stephanie Campbell
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | | | | | | | | |
Collapse
|
40
|
Furman LM, Maaty WS, Petersen LK, Ettayebi K, Hardy ME, Bothner B. Cysteine protease activation and apoptosis in Murine norovirus infection. Virol J 2009; 6:139. [PMID: 19744337 PMCID: PMC2753316 DOI: 10.1186/1743-422x-6-139] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2009] [Accepted: 09/10/2009] [Indexed: 02/16/2023] Open
Abstract
Background Noroviruses are the leading cause of viral gastroenteritis. Because a suitable in vitro culture system for the human virus has yet to be developed, many basic details of the infection process are unknown. Murine norovirus (MNV) serves as a model system for the study of norovirus infection. Recently it was shown that infection of RAW 264.7 cells involved a novel apoptotic pathway involving survivin. Results Using a different set of approaches, the up-regulation of caspases, DNA condensation/fragmentation, and membrane blebbing, all of which are markers of apoptosis, were confirmed. Live cell imaging and activity-based protein profiling showed that activation of caspase-like proteases occurred within two hours of infection, followed by morphological changes to the cells. MNV infection in the presence of caspase inhibitors proceeded via a distinct pathway of rapid cellular necrosis and reduced viral production. Affinity purification of activity-based protein profiling targets and identification by peptide mass fingerprinting showed that the cysteine protease cathepsin B was activated early in infection, establishing this protein as an upstream activator of the intrinsic apoptotic pathway. Conclusion This work adds cathepsin B to the noncanonical programmed cell death induced by MNV, and provides data suggesting that the virus may induce apoptosis to expand the window of time for viral replication. This work also highlights the significant power of activity-based protein profiling in the study of viral pathogenesis.
Collapse
Affiliation(s)
- Linnzi M Furman
- Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59715, USA.
| | | | | | | | | | | |
Collapse
|
41
|
Brabant M, Baux L, Casimir R, Briand JP, Chaloin O, Porceddu M, Buron N, Chauvier D, Lassalle M, Lecoeur H, Langonné A, Dupont S, Déas O, Brenner C, Rebouillat D, Muller S, Borgne-Sanchez A, Jacotot E. A flavivirus protein M-derived peptide directly permeabilizes mitochondrial membranes, triggers cell death and reduces human tumor growth in nude mice. Apoptosis 2009; 14:1190-203. [DOI: 10.1007/s10495-009-0394-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
42
|
Kim YG, Kim JY, Mohan C, Lee GM. Effect of Bcl-xLoverexpression on apoptosis and autophagy in recombinant Chinese hamster ovary cells under nutrient-deprived condition. Biotechnol Bioeng 2009; 103:757-66. [DOI: 10.1002/bit.22298] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
43
|
The fowlpox virus BCL-2 homologue, FPV039, interacts with activated Bax and a discrete subset of BH3-only proteins to inhibit apoptosis. J Virol 2009; 83:7085-98. [PMID: 19439472 DOI: 10.1128/jvi.00437-09] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Apoptosis is a potent immune barrier against viral infection, and many viruses, including poxviruses, encode proteins to overcome this defense. Interestingly, the avipoxviruses, which include fowlpox and canarypox virus, are the only poxviruses known to encode proteins with obvious Bcl-2 sequence homology. We previously characterized the fowlpox virus protein FPV039 as a Bcl-2-like antiapoptotic protein that inhibits apoptosis by interacting with and inactivating the proapoptotic cellular protein Bak. However, both Bak and Bax can independently trigger cell death. Thus, to effectively inhibit apoptosis, a number of viruses also inhibit Bax. Here we show that FPV039 inhibited apoptosis induced by Bax overexpression and prevented both the conformational activation of Bax and the subsequent formation of Bax oligomers at the mitochondria, two critical steps in the induction of apoptosis. Additionally, FPV039 interacted with activated Bax in the context of Bax overexpression and virus infection. Importantly, the ability of FPV039 to interact with active Bax and inhibit Bax activity was dependent on the structurally conserved BH3 domain of FPV039, even though this domain possesses little sequence homology to other BH3 domains. FPV039 also inhibited apoptosis induced by the BH3-only proteins, upstream activators of Bak and Bax, despite interacting detectably with only two: BimL and Bik. Collectively, our data suggest that FPV039 inhibits apoptosis by sequestering and inactivating multiple proapoptotic Bcl-2 proteins, including certain BH3-only proteins and both of the critical "gatekeepers" of apoptosis, Bak and Bax.
Collapse
|
44
|
Postigo A, Martin MC, Dodding MP, Way M. Vaccinia-induced epidermal growth factor receptor-MEK signalling and the anti-apoptotic protein F1L synergize to suppress cell death during infection. Cell Microbiol 2009; 11:1208-18. [PMID: 19388902 PMCID: PMC2730480 DOI: 10.1111/j.1462-5822.2009.01327.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
F1L is a functional Bcl-2 homologue that inhibits apoptosis at the mitochondria during vaccinia infection. However, the extent and timing of cell death during ΔF1L virus infection suggest that additional viral effectors cooperate with F1L to limit apoptosis. Here we report that vaccinia growth factor (VGF), a secreted virulence factor, promotes cell survival independently of its role in virus multiplication. Analysis of single and double knockout viruses reveals that VGF acts synergistically with F1L to protect against cell death during infection. Cell survival in the absence of F1L is dependent on VGF activation of the epidermal growth factor receptor. Furthermore, signalling through MEK kinases is necessary and sufficient for VGF-dependent survival. We conclude that VGF stimulates an epidermal growth factor receptor-MEK-dependent pro-survival pathway that synergizes with F1L to counteract an infection-induced apoptotic pathway that predominantly involves the BH3-only protein Bad.
Collapse
Affiliation(s)
- Antonio Postigo
- Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3PX, UK
| | | | | | | |
Collapse
|
45
|
Yamaguchi H, Woods NT, Piluso LG, Lee HH, Chen J, Bhalla KN, Monteiro A, Liu X, Hung MC, Wang HG. p53 acetylation is crucial for its transcription-independent proapoptotic functions. J Biol Chem 2009; 284:11171-83. [PMID: 19265193 DOI: 10.1074/jbc.m809268200] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Acetylation of p53 at carboxyl-terminal lysine residues enhances its transcriptional activity associated with cell cycle arrest and apoptosis. Here we demonstrate that p53 acetylation at Lys-320/Lys-373/Lys-382 is also required for its transcription-independent functions in BAX activation, reactive oxygen species production, and apoptosis in response to the histone deacetylase inhibitors (HDACi) suberoylanilide hydroxamic acid and LAQ824. Knock-out of p53 markedly reduced HDACi-induced apoptosis. Unexpectedly, expression of transactivation-deficient p53 variants sensitized p53-null cells to HDACi-mediated BAX-dependent apoptosis, whereas knockdown of endogenous mutant p53 in cancer cells reduced HDACi-mediated cytotoxicity. Evaluation of the mechanisms controlling this response led to the discovery of a novel interaction between p53 and Ku70. The association between these two proteins was acetylation-independent, but acetylation of p53 could prevent and disrupt the Ku70-BAX complex and enhance apoptosis. These results suggest a new mechanism of acetylated p53 transcription-independent regulation of apoptosis.
Collapse
Affiliation(s)
- Hirohito Yamaguchi
- Department of Pharmacology and Pennsylvania State Hershey Cancer Institute, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Virally mediated inhibition of Bax in leukocytes promotes dissemination of murine cytomegalovirus. Cell Death Differ 2008; 16:312-20. [PMID: 18949000 DOI: 10.1038/cdd.2008.152] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The evolutionary survival of viruses relies on their ability to disseminate infectious progeny to sites of transmission. The capacity to subvert apoptosis is thought to be crucial for ensuring efficient viral replication in permissive cells, but its role in viral dissemination in vivo has not been considered. We show here that the murine cytomegalovirus (MCMV) m38.5 protein specifically counters the action of Bax. As predicted from our biochemical data, the capacity of m38.5 to inhibit apoptosis is only apparent in cells unable to activate Bak. Deletion of m38.5 resulted in an attenuated growth of MCMV in vitro. In vivo replication of the Deltam38.5 virus was not significantly impaired in visceral organs. However, m38.5 played a central role in protecting leukocytes from Bax-mediated apoptosis, thereby promoting viral dissemination to the salivary glands, the principal site of transmission. These results establish that in vivo MCMV replication induces the activation of Bax in leukocytes, but not other permissive cells, and that MCMV interferes with this process to attain maximum dissemination.
Collapse
|
47
|
Abstract
As a family of viruses, poxviruses collectively exhibit a broad host range and most of the individual members are capable of replicating in a wide array of cell types from various host species, at least in vitro. At the cellular level, poxvirus tropism is dependent not upon specific cell surface receptors, but rather upon: (1) the ability of the cell to provide intracellular complementing factors needed for productive virus replication, and (2) the ability of the specific virus to successfully manipulate intracellular signaling networks that regulate cellular antiviral processes downstream of virus entry. The large genomic coding capacity of poxviruses enables the virus to express a unique collection of viral proteins that function as host range factors, which specifically target and manipulate host signaling pathways to establish optimal cellular conditions for viral replication. Functionally, the known host range factors from poxviruses have been associated with manipulation of a diverse array of cellular targets, which includes cellular kinases and phosphatases, apoptosis, and various antiviral pathways. To date, only a small number of poxvirus host range genes have been identified and studied, and only a handful of these have been functionally characterized. For this reason, poxvirus host range factors represent a potential gold mine for the discovery of novel pathogen-host protein interactions. This review summarizes our current understanding of the mechanisms by which the known poxvirus host range genes, and their encoded factors, expand tropism through the manipulation of host cell intracellular signaling pathways.
Collapse
Affiliation(s)
- Steven J Werden
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | | | | |
Collapse
|
48
|
Su J, Willert C, Comanita L, Peters A, Gilbert PA, Strathdee C, O'Connell PJ, McFadden GD, Dekaban GA. Inclusion of the viral anti-apoptotic molecule M11L in DNA vaccine vectors enhances HIV Env-specific T cell-mediated immunity. Virology 2008; 375:48-58. [DOI: 10.1016/j.virol.2008.01.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Revised: 10/30/2007] [Accepted: 01/10/2008] [Indexed: 10/22/2022]
|
49
|
Werden SJ, McFadden G. The role of cell signaling in poxvirus tropism: the case of the M-T5 host range protein of myxoma virus. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2007; 1784:228-37. [PMID: 17905673 DOI: 10.1016/j.bbapap.2007.08.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2007] [Revised: 07/30/2007] [Accepted: 08/02/2007] [Indexed: 11/26/2022]
Abstract
Poxviruses demonstrate strict species specificity in vivo that range from narrow to broad, however the fundamental factors that mediate the basis of poxvirus tropism remain poorly understood. It is generally believed that most, if not all, poxviruses can efficiently bind and enter a wide range of mammalian cells and all of the known host anti-viral pathways that block viral replication in nonpremissive cells operate downstream of virus entry. A productive poxvirus infection is heavily dependent upon the production of a vast array of host modulatory products that specifically target and manipulate both extracellular immune response pathways of the host, as well as intracellular signal transduction pathways of the individually infected cells. The unique pathogenesis and host tropism of specific poxviruses can be attributed to the broad diversity of host modulatory proteins they express. Myxoma virus (MV) is a rabbit-specific poxviruses that encodes multiple host range factors, including an ankyrin-repeat protein M-T5, which functions to regulate tropism of MV for rabbit lymphocytes and some human cancer cells. At the molecular level, M-T5 binds and alters at least two distinct cellular proteins: Akt and cullin-1. The direct interaction between M-T5 and Akt was shown to be a key restriction determinant for MV tropism in a spectrum of human cancer cells making MV an excellent oncolytic candidate. Thus, the intricate relationship between viral encoded proteins and components of the host cell signaling networks can have profound impact on poxvirus tropism. The lessons we continue to learn from poxvirus host range factors like M-T5 will provide further insights into the factors that regulate poxvirus tropism and the mechanisms by which poxviruses micromanipulate the signaling pathways of the infected cell.
Collapse
Affiliation(s)
- Steven J Werden
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | | |
Collapse
|
50
|
Banadyga L, Gerig J, Stewart T, Barry M. Fowlpox virus encodes a Bcl-2 homologue that protects cells from apoptotic death through interaction with the proapoptotic protein Bak. J Virol 2007; 81:11032-45. [PMID: 17686864 PMCID: PMC2045560 DOI: 10.1128/jvi.00734-07] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Poxviruses are renowned for encoding numerous immunomodulatory proteins capable of undermining potent immune defenses. One effective barrier against infection is apoptosis, a process controlled at the mitochondria by pro- and antiapoptotic members of the highly conserved Bcl-2 family of proteins. Although poxviruses are known to encode an array of effective inhibitors of apoptosis, members of the Avipoxvirus genus, which includes fowlpox virus, encode proteins with Bcl-2 homology. Here, we show that FPV039, a fowlpox virus protein with limited Bcl-2 homology, inhibited apoptosis in response to a variety of cytotoxic stimuli, including virus infection itself. Similar to other antiapoptotic Bcl-2 proteins, FPV039 localized predominantly to the mitochondria in both human and chicken cells and protected human cells from tumor necrosis factor alpha-induced loss of the mitochondrial membrane potential. In addition, coimmunoprecipitation revealed that FPV039 interacted constitutively with the proapoptotic Bcl-2 protein, Bak, in both human and chicken cells. Concordantly, FPV039 also inhibited apoptosis induced by the transient overexpression of Bak. To confirm these results in the context of virus infection, we generated a recombinant vaccinia virus lacking F1L, the endogenous apoptotic inhibitor in vaccinia virus, and expressing FPV039. In the context of vaccinia virus infection, FPV039 retained the ability to localize to the mitochondria and interacted with Bak. Moreover, FPV039 prevented the activation of Bak and protected infected cells from apoptosis induced by staurosporine and virus infection. Together, our data indicate that FPV039 is a functional Bcl-2 homologue that inhibits apoptosis by neutralizing the proapoptotic Bcl-2 family member Bak.
Collapse
Affiliation(s)
- Logan Banadyga
- Department of Medical Microbiology and Immunology, University of Alberta, 621 HMRC, Edmonton, Alberta, Canada T6G 2S2
| | | | | | | |
Collapse
|