1
|
Tang J, Hung YF, Yoo D. Genomic RNA recombination of porcine reproductive and respiratory syndrome virus and other arteriviruses. Virology 2025; 601:110284. [PMID: 39531889 DOI: 10.1016/j.virol.2024.110284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/15/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Arteriviruses in the Nidovirales order are single-stranded positive-sense RNA viruses infecting mammals. Arteriviruses are recognized for causing various clinical diseases, ranging from asymptomatic infections to severe conditions like respiratory syndromes and viral hemorrhagic fever. Notably, arteriviruses exhibit a high frequency of RNA recombination, and their robust recombination rates are a crucial factor in recurrent outbreaks. The recombination events also shape the countermeasures employed by arteriviruses during virus-host co-evolution and confer specific evolutionary benefits to viruses, implicating a role as a selective advantage in viral adaptation. This review delves into the molecular basis of RNA recombination in arteriviruses, the bioinformatics tools and methodologies used to visualize evolutionary relationships, and the identification of recombination breakpoints. Significant recombination events are highlighted for PRRSV and other arteriviruses, illustrating the profound implications of recombination for viral evolution and pathogenesis. Recombination between field viruses and between field viruses and vaccine strains can generate new variants with altered antigenic profiles and virulence, leading to diagnostic failure, severe clinical outcomes, and reduced vaccine efficacy. Despite the advances, further research is needed to understand recombination rates and hotspots, as well as to develop potential antiviral strategies and diagnostic approaches for arteriviruses.
Collapse
Affiliation(s)
- Junyu Tang
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA
| | - Yu Fan Hung
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA
| | - Dongwan Yoo
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA.
| |
Collapse
|
2
|
Lean FZX, Stidworthy MF, Dastjerdi A, Partridge T, Smith S, Gough J, Núñez A, Lawson B, Seilern-Macpherson K. Colocalization of hedgehog arterivirus 1 (HhAV-1) and histologic lesions in the European hedgehog ( Erinaceus europaeus) with neurological disease. Vet Pathol 2024:3009858241300553. [PMID: 39665420 DOI: 10.1177/03009858241300553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
The European hedgehog (Erinaceus europaeus) is a protected species of conservation concern in the UK. In recent years, there have been multiple incidents of fatal encephalitis in captive hedgehogs in wildlife rescue centers associated with the molecular detection of a hedgehog arterivirus (HhAV-1). However, it remains unclear whether the virus is the causative agent of the central nervous system (CNS) lesions. In a retrospective investigation using postmortem material from 7 captive hedgehogs with neurological disease, and a single hedgehog with previously identified meningoencephalitis, histologic examination was conducted in tandem with viral RNA in situ hybridization (ISH) to appraise tissue distribution of HhAV-1 and the colocalization with histologic lesions. ISH revealed multicellular tropism of HhAV-1 involving monocyte-macrophage and vascular endothelial cells, with viral RNA detected in multiple organs, likely due to endotheliotropism and viremia. In the CNS, encephalomyelitis was mild whilst viral RNA was abundant and widely distributed, particularly in the microglial population and localized to areas with glial nodules. Splenic lymphoid depletion was generally mild but was moderate to severe in 2 septicemic animals. Brain samples from 13 control hedgehogs, found dead in the wild due to predation/trauma, were also screened for HhAV-1, of which 8 tested positive by real-time reverse transcription polymerase chain reaction (RT-PCR) with a low viral load. No CNS lesions or ISH labeling was observed in 2 of these control hedgehogs that could be examined histologically. Combined, these findings indicate that HhAV-1 infections in captive hedgehogs in English wildlife rescue centers may be associated with histopathologic alterations and clinical neurological disease.
Collapse
Affiliation(s)
- Fabian Z X Lean
- Animal and Plant Health Agency, Surrey, UK
- Royal Veterinary College, North Mymms, Hertfordshire, UK
| | | | | | - Tim Partridge
- Vale Wildlife Hospital and Rehabilitation Centre, Gloucestershire, UK
| | | | | | | | | | | |
Collapse
|
3
|
Patarca R, Haseltine WA. Bioinformatics Insights on Viral Gene Expression Transactivation: From HIV-1 to SARS-CoV-2. Int J Mol Sci 2024; 25:3378. [PMID: 38542351 PMCID: PMC10970485 DOI: 10.3390/ijms25063378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/08/2024] [Accepted: 03/15/2024] [Indexed: 11/11/2024] Open
Abstract
Viruses provide vital insights into gene expression control. Viral transactivators, with other viral and cellular proteins, regulate expression of self, other viruses, and host genes with profound effects on infected cells, underlying inflammation, control of immune responses, and pathogenesis. The multifunctional Tat proteins of lentiviruses (HIV-1, HIV-2, and SIV) transactivate gene expression by recruiting host proteins and binding to transacting responsive regions (TARs) in viral and host RNAs. SARS-CoV-2 nucleocapsid participates in early viral transcription, recruits similar cellular proteins, and shares intracellular, surface, and extracellular distribution with Tat. SARS-CoV-2 nucleocapsid interacting with the replication-transcription complex might, therefore, transactivate viral and cellular RNAs in the transcription and reactivation of self and other viruses, acute and chronic pathogenesis, immune evasion, and viral evolution. Here, we show, by using primary and secondary structural comparisons, that the leaders of SARS-CoV-2 and other coronaviruses contain TAR-like sequences in stem-loops 2 and 3. The coronaviral nucleocapsid C-terminal domains harbor a region of similarity to TAR-binding regions of lentiviral Tat proteins, and coronaviral nonstructural protein 12 has a cysteine-rich metal binding, dimerization domain, as do lentiviral Tat proteins. Although SARS-CoV-1 nucleocapsid transactivated gene expression in a replicon-based study, further experimental evidence for coronaviral transactivation and its possible implications is warranted.
Collapse
Affiliation(s)
- Roberto Patarca
- ACCESS Health International, 384 West Lane, Ridgefield, CT 06877, USA;
- Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY 11030, USA
| | - William A. Haseltine
- ACCESS Health International, 384 West Lane, Ridgefield, CT 06877, USA;
- Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY 11030, USA
| |
Collapse
|
4
|
Zhang R, Wang P, Ma X, Wu Y, Luo C, Qiu L, Zeshan B, Yang Z, Zhou Y, Wang X. Nanopore-Based Direct RNA-Sequencing Reveals a High-Resolution Transcriptional Landscape of Porcine Reproductive and Respiratory Syndrome Virus. Viruses 2021; 13:2531. [PMID: 34960801 PMCID: PMC8706258 DOI: 10.3390/v13122531] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/08/2021] [Accepted: 12/13/2021] [Indexed: 02/07/2023] Open
Abstract
The TRS-mediated discontinuous transcription process is a hallmark of Arteriviruses. Precise assessment of the intricate subgenomic RNA (sg mRNA) populations is required to understand the kinetics of viral transcription. It is difficult to reconstruct and comprehensively quantify splicing events using short-read sequencing, making the identification of transcription-regulatory sequences (TRS) particularly problematic. Here, we applied long-read direct RNA sequencing to characterize the recombined RNA molecules produced in porcine alveolar macrophages during early passage infection of porcine reproductive and respiratory syndrome virus (PRRSV). Based on sequencing two PRRSV isolates, namely XM-2020 and GD, we revealed a high-resolution and diverse transcriptional landscape in PRRSV. The data revealed intriguing differences in subgenomic recombination types between the two PRRSVs while also demonstrating TRS-independent heterogeneous subpopulation not previously observed in Arteriviruses. We find that TRS usage is a regulated process and share the common preferred TRS in both strains. This study also identified a substantial number of TRS-mediated transcript variants, including alternative-sg mRNAs encoding the same annotated ORF, as well as putative sg mRNAs encoded nested internal ORFs, implying that the genetic information encoded in PRRSV may be more intensively expressed. Epigenetic modifications have emerged as an essential regulatory layer in gene expression. Here, we gained a deeper understanding of m5C modification in poly(A) RNA, elucidating a potential link between methylation and transcriptional regulation. Collectively, our findings provided meaningful insights for redefining the transcriptome complexity of PRRSV. This will assist in filling the research gaps and developing strategies for better control of the PRRS.
Collapse
Affiliation(s)
- Riteng Zhang
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (R.Z.); (P.W.); (X.M.); (Y.W.); (C.L.); (L.Q.); (Z.Y.)
| | - Peixin Wang
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (R.Z.); (P.W.); (X.M.); (Y.W.); (C.L.); (L.Q.); (Z.Y.)
| | - Xin Ma
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (R.Z.); (P.W.); (X.M.); (Y.W.); (C.L.); (L.Q.); (Z.Y.)
| | - Yifan Wu
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (R.Z.); (P.W.); (X.M.); (Y.W.); (C.L.); (L.Q.); (Z.Y.)
| | - Chen Luo
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (R.Z.); (P.W.); (X.M.); (Y.W.); (C.L.); (L.Q.); (Z.Y.)
| | - Li Qiu
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (R.Z.); (P.W.); (X.M.); (Y.W.); (C.L.); (L.Q.); (Z.Y.)
| | - Basit Zeshan
- Department of Microbiology, Faculty of Life Sciences, University of Central Punjab, Johar Town, Lahore 54000, Pakistan;
| | - Zengqi Yang
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (R.Z.); (P.W.); (X.M.); (Y.W.); (C.L.); (L.Q.); (Z.Y.)
| | - Yefei Zhou
- Department of Life Science, Nanjing Xiaozhuang University, Nanjing 211171, China
| | - Xinglong Wang
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (R.Z.); (P.W.); (X.M.); (Y.W.); (C.L.); (L.Q.); (Z.Y.)
| |
Collapse
|
5
|
D’Souza AR, Buckingham AB, Salasc F, Ingemarsdotter CK, Iaconis G, Jarvis I, Groom HCT, Kenyon JC, Lever AML. Duplex formation between the template and the nascent strand in the transcription-regulating sequences is associated with the site of template switching in SARS - CoV-2. RNA Biol 2021; 18:148-156. [PMID: 34541994 PMCID: PMC8459930 DOI: 10.1080/15476286.2021.1975388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 11/23/2022] Open
Abstract
Recently published transcriptomic data of the SARS-CoV-2 coronavirus show that there is a large variation in the frequency and steady state levels of subgenomic mRNA sequences. This variation is derived from discontinuous subgenomic RNA synthesis, where the polymerase switches template from a 3' proximal genome body sequence to a 5' untranslated leader sequence. This leads to a fusion between the common 5' leader sequence and a 3' proximal body sequence in the RNA product. This process revolves around a common core sequence (CS) that is present at both the template sites that make up the fusion junction. Base-pairing between the leader CS and the nascent complementary minus strand body CS, and flanking regions (together called the transcription regulating sequence, TRS) is vital for this template switching event. However, various factors can influence the site of template switching within the same TRS duplex. Here, we model the duplexes formed between the leader and complementary body TRS regions, hypothesizing the role of the stability of the TRS duplex in determining the major sites of template switching for the most abundant mRNAs. We indicate that the stability of secondary structures and the speed of transcription play key roles in determining the probability of template switching in the production of subgenomic RNAs. We speculate on the effect of reported variant nucleotide substitutions on our models.
Collapse
Affiliation(s)
- Aaron R. D’Souza
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | - Fanny Salasc
- Department of Medicine, University of Cambridge, Cambridge, UK
| | | | - Gennaro Iaconis
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Isobel Jarvis
- Department of Medicine, University of Cambridge, Cambridge, UK
| | | | - Julia C. Kenyon
- Department of Medicine, University of Cambridge, Cambridge, UK
- Homerton College, Cambridge, UK
- Department of Microbiology and Immunology, National University of Singapore, Singapore
| | - Andrew M. L. Lever
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
6
|
Zhu Z, Liu G, Meng K, Yang L, Liu D, Meng G. Rapid Spread of Mutant Alleles in Worldwide SARS-CoV-2 Strains Revealed by Genome-Wide Single Nucleotide Polymorphism and Variation Analysis. Genome Biol Evol 2021; 13:evab015. [PMID: 33512495 PMCID: PMC7883668 DOI: 10.1093/gbe/evab015] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2021] [Indexed: 12/13/2022] Open
Abstract
The novel coronavirus (SARS-CoV-2) has become a pandemic and is threatening human health globally. Here, we report nine newly evolved SARS-CoV-2 single nucleotide polymorphism (SNP) alleles those underwent a rapid increase (seven cases) or decrease (two cases) in their frequency for 30-80% in the initial four months, which are further confirmed by intrahost single nucleotide variation analysis using raw sequence data including 8,217 samples. The nine SNPs are mostly (8/9) located in the coding region and are mainly (6/9) nonsynonymous substitutions. The nine SNPs show a complete linkage in SNP pairs and belong to three different linkage groups, named LG_1 to LG_3. Analyses in population genetics show signatures of adaptive selection toward the mutants in LG_1, but no signal of selection for LG_2. Population genetic analysis results on LG_3 show geological differentiation. Analyses on geographic COVID-19 cases and published clinical data provide evidence that the mutants in LG_1 and LG_3 benefit virus replication and those in LG_1 have a positive correlation with the disease severity in COVID-19-infected patients. The mutants in LG_2 show a bias toward mildness of the disease based on available public clinical data. Our findings may be instructive for epidemiological surveys and disease control of COVID-19 in the future.
Collapse
Affiliation(s)
- Zhenglin Zhu
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Gexin Liu
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Kaiwen Meng
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Liuqing Yang
- Chongqing Occupational Disease Prevention Hospital, Chongqing, China
| | - Di Liu
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for 25 Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Geng Meng
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
7
|
Rana AK, Rahmatkar SN, Kumar A, Singh D. Glycogen synthase kinase-3: A putative target to combat severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. Cytokine Growth Factor Rev 2020; 58:92-101. [PMID: 32948440 PMCID: PMC7446622 DOI: 10.1016/j.cytogfr.2020.08.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 08/20/2020] [Indexed: 02/07/2023]
Abstract
The coronavirus disease 19 (COVID-19) outbreak caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) had turned out to be highly pathogenic and transmittable. Researchers throughout the globe are still struggling to understand this strain's aggressiveness in search of putative therapies for its control. Crosstalk between oxidative stress and systemic inflammation seems to support the progression of the infection. Glycogen synthase kinase-3 (Gsk-3) is a conserved serine/threonine kinase that mainly participates in cell proliferation, development, stress, and inflammation in humans. Nucleocapsid protein of SARS-CoV-2 is an important structural protein responsible for viral replication and interferes with the host defence mechanism by the help of Gsk-3 protein. The viral infected cells show activated Gsk-3 protein that degrades the Nuclear factor erythroid 2-related factor (Nrf2) protein, resulting in excessive oxidative stress. Activated Gsk-3 also modulates CREB-DNA activity, phosphorylates NF-κB, and degrades β-catenin, thus provokes systemic inflammation. Interaction between these two pathophysiological events, oxidative stress, and inflammation enhance mucous secretion, coagulation cascade, and hypoxia, which ultimately leads to multiple organs failure, resulting in the death of the infected patient. The present review aims to highlight the pathogenic role of Gsk-3 in viral replication, initiation of oxidative stress, and inflammation during SARS-CoV-2 infection. The review also summarizes the potential Gsk-3 pathway modulators as putative therapeutic interventions in combating the COVID-19 pandemic.
Collapse
Affiliation(s)
- Anil Kumar Rana
- Pharmacology and Toxicology Laboratory, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India
| | - Shubham Nilkanth Rahmatkar
- Pharmacology and Toxicology Laboratory, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India
| | - Amit Kumar
- Pharmacology and Toxicology Laboratory, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India
| | - Damanpreet Singh
- Pharmacology and Toxicology Laboratory, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India.
| |
Collapse
|
8
|
Tsai TL, Su CC, Hsieh CC, Lin CN, Chang HW, Lo CY, Lin CH, Wu HY. Gene Variations in Cis-Acting Elements between the Taiwan and Prototype Strains of Porcine Epidemic Diarrhea Virus Alter Viral Gene Expression. Genes (Basel) 2018; 9:E591. [PMID: 30501108 PMCID: PMC6316102 DOI: 10.3390/genes9120591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/20/2018] [Accepted: 11/26/2018] [Indexed: 01/30/2023] Open
Abstract
In 2013, the outbreak of porcine epidemic diarrhea (PED) in Taiwan caused serious economic losses. In this study, we examined whether the variations of the cis-acting elements between the porcine epidemic diarrhea virus (PEDV) Taiwan (TW) strain and the prototype strain CV777 alter gene expression. For this aim, we analyzed the variations of the cis-acting elements in the 5' and 3' untranslated regions (UTRs) between the PEDV TW, CV777, and other reference strains. We also determined the previously unidentified transcription regulatory sequence (TRS), a sequence motif required for coronavirus transcription, and found that a nucleotide deletion in the TW strain, in comparison with CV777 strain, immediately downstream of the leader core sequence alters the identity between the leader TRS and the body TRS. Functional analyses using coronavirus defective interfering (DI) RNA revealed that such variations in cis-acting elements for the TW strain compared with the CV777 strain have an influence on the efficiency of gene expression. The current data show for the first time the evolution of PEDV in terms of cis-acting elements and their effects on gene expression, and thus may contribute to our understanding of recent PED outbreaks worldwide.
Collapse
Affiliation(s)
- Tsung-Lin Tsai
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung 40227, Taiwan.
| | - Chen-Chang Su
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung 40227, Taiwan.
| | - Ching-Chi Hsieh
- Division of Chest Medicine, Department of Internal Medicine, Chang Bing Show Chwan Memorial Hospital, Changhua 505, Taiwan.
| | - Chao-Nan Lin
- Department of Veterinary Medicine, National Pingtung University of Science and Technology, Neipu, Pingtung 91201, Taiwan.
| | - Hui-Wen Chang
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan.
| | - Chen-Yu Lo
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung 40227, Taiwan.
| | - Ching-Houng Lin
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung 40227, Taiwan.
| | - Hung-Yi Wu
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung 40227, Taiwan.
| |
Collapse
|
9
|
Di H, McIntyre AA, Brinton MA. New insights about the regulation of Nidovirus subgenomic mRNA synthesis. Virology 2018; 517:38-43. [PMID: 29475599 PMCID: PMC5987246 DOI: 10.1016/j.virol.2018.01.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 01/23/2018] [Accepted: 01/29/2018] [Indexed: 01/19/2023]
Abstract
The members of the Order Nidovirales share a similar genome organization with two overlapping nonstructural polyproteins encoded in the 5' two-thirds and the structural proteins encoded in the 3' third. They also express their 3' region proteins from a nested set of 3' co-terminal subgenomic messenger RNAs (sg mRNAs). Some but not all of the Nidovirus sg mRNAs also have a common 5' leader sequence that is acquired by a discontinuous RNA synthesis mechanism regulated by multiple 3' body transcription regulating sequences (TRSs) and the 5' leader TRS. Initial studies detected a single major body TRS for each 3' sg mRNA with a few alternative functional TRSs reported. The recent application of advanced techniques, such as next generation sequencing and ribosomal profiling, in studies of arteriviruses and coronaviruses has revealed an expanded sg mRNA transcriptome and coding capacity.
Collapse
Affiliation(s)
- Han Di
- Department of Biology, Georgia State University, P.O. Box 4010, Atlanta, GA 30303, USA
| | - Ayisha A McIntyre
- Department of Biology, Georgia State University, P.O. Box 4010, Atlanta, GA 30303, USA
| | - Margo A Brinton
- Department of Biology, Georgia State University, P.O. Box 4010, Atlanta, GA 30303, USA.
| |
Collapse
|
10
|
Expanded subgenomic mRNA transcriptome and coding capacity of a nidovirus. Proc Natl Acad Sci U S A 2017; 114:E8895-E8904. [PMID: 29073030 DOI: 10.1073/pnas.1706696114] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Members of the order Nidovirales express their structural protein ORFs from a nested set of 3' subgenomic mRNAs (sg mRNAs), and for most of these ORFs, a single genomic transcription regulatory sequence (TRS) was identified. Nine TRSs were previously reported for the arterivirus Simian hemorrhagic fever virus (SHFV). In the present study, which was facilitated by next-generation sequencing, 96 SHFV body TRSs were identified that were functional in both infected MA104 cells and macaque macrophages. The abundance of sg mRNAs produced from individual TRSs was consistent over time in the two different cell types. Most of the TRSs are located in the genomic 3' region, but some are in the 5' ORF1a/1b region and provide alternative sources of nonstructural proteins. Multiple functional TRSs were identified for the majority of the SHFV 3' ORFs, and four previously identified TRSs were found not to be the predominant ones used. A third of the TRSs generated sg mRNAs with variant leader-body junction sequences. Sg mRNAs encoding E', GP2, or ORF5a as their 5' ORF as well as sg mRNAs encoding six previously unreported alternative frame ORFs or 14 previously unreported C-terminal ORFs of known proteins were also identified. Mutation of the start codon of two C-terminal ORFs in an infectious clone reduced virus yield. Mass spectrometry detected one previously unreported protein and suggested translation of some of the C-terminal ORFs. The results reveal the complexity of the transcriptional regulatory mechanism and expanded coding capacity for SHFV, which may also be characteristic of other nidoviruses.
Collapse
|
11
|
Chen N, Chand RJ, Rowland RRR. Deep Sequencing Details the Cross-over Map of Chimeric Genes in Two Porcine Reproductive and Respiratory Syndrome Virus Infectious Clones. Open Virol J 2017; 11:49-58. [PMID: 28839504 PMCID: PMC5543688 DOI: 10.2174/1874357901711010049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 11/01/2016] [Accepted: 02/06/2017] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Recombination is an important contributor to the genetic diversity of most viruses. A reverse genetics system using green fluorescence protein (GFP)- and enhanced GFP (EGFP)-expressing infectious clones was developed to study the requirements for recombination. However, it is still unclear what types of cross-over events occurred to produce the viable offspring. OBJECTIVE We utilized 454 sequencing to infer recombination events in this system. METHOD Two porcine reproductive and respiratory syndrome virus (PRRSV) infectious clones, P129-EGFP-97C and P129-GFPm-d (2-6), were co-transfected into HEK-293T cells. P129-EGFP-97C is a fully functional virus that contains a non-fluorescent EGFP. P129-GFPm-d (2-6) is a defective virus but contains a fluorescent GFPm. Successful recombination was evident by the appearance of fully functional progeny virus that expresses fluorescence. Total RNA was extracted from infected cells expressing fluorescence, and the entire fluorescent gene was amplified to prepare an amplicon library for 454 sequencing. RESULTS Deep sequencing showed that the nucleotide identities changed from ~37% (in the variable region from 21nt to 165nt) to 20% (T289C) to ~38% (456-651nt) then to 100% (672-696nt) when compared to EGFP. The results indicated that cross-over events occurred in three conserved regions (166-288nt, 290-455nt, 652-671nt), which were also supported by sequence alignments. Remarkably, the short conserved region (652-671nt) showed to be a cross-over hotspot. In addition, four cross-over patterns (two single and two double cross-over) might be used to produce viable recombinants. CONCLUSION The reverse genetics system incorporating the use of high throughput sequencing creates a genetic platform to study the generation of viable recombinant viruses.
Collapse
Affiliation(s)
- Nanhua Chen
- College of Veterinary Medicine, Yangzhou University, Jiangsu 225009, P.R. China.,Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, Kansas, United States
| | - Ranjni J Chand
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, Kansas, United States
| | - Raymond R R Rowland
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, Kansas, United States
| |
Collapse
|
12
|
Ding B, Qin Y, Chen M. Nucleocapsid proteins: roles beyond viral RNA packaging. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 7:213-26. [PMID: 26749541 PMCID: PMC7169677 DOI: 10.1002/wrna.1326] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 11/15/2015] [Accepted: 11/17/2015] [Indexed: 12/22/2022]
Abstract
Viral nucleocapsid proteins (NCs) enwrap the RNA genomes of viruses to form NC–RNA complexes, which act as a template and are essential for viral replication and transcription. Beyond packaging viral RNA, NCs also play important roles in virus replication, transcription, assembly, and budding by interacting with viral and host cellular proteins. Additionally, NCs can inhibit interferon signaling response and function in cell stress response, such as inducing apoptosis. Finally, NCs can be the target of vaccines, benefiting from their conserved gene sequences. Here, we summarize important findings regarding the additional functions of NCs as much more than structural RNA‐binding proteins, with specific emphasis on (1) their association with the viral life cycle, (2) their association with host cells, and (3) as ideal candidates for vaccine development. WIREs RNA 2016, 7:213–226. doi: 10.1002/wrna.1326 This article is categorized under:
RNA Interactions with Proteins and Other Molecules > RNA–Protein Complexes RNA Interactions with Proteins and Other Molecules > Protein–RNA Interactions: Functional Implications Translation > Translation Regulation
Collapse
Affiliation(s)
- Binbin Ding
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Yali Qin
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Mingzhou Chen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| |
Collapse
|
13
|
Wu CH, Chen PJ, Yeh SH. Nucleocapsid phosphorylation and RNA helicase DDX1 recruitment enables coronavirus transition from discontinuous to continuous transcription. Cell Host Microbe 2015; 16:462-72. [PMID: 25299332 PMCID: PMC7104987 DOI: 10.1016/j.chom.2014.09.009] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Revised: 07/11/2014] [Accepted: 08/22/2014] [Indexed: 11/27/2022]
Abstract
Coronaviruses contain a positive-sense single-stranded genomic (g) RNA, which encodes nonstructural proteins. Several subgenomic mRNAs (sgmRNAs) encoding structural proteins are generated by template switching from the body transcription regulatory sequence (TRS) to the leader TRS. The process preferentially generates shorter sgmRNA. Appropriate readthrough of body TRSs is required to produce longer sgmRNAs and full-length gRNA. We find that phosphorylation of the viral nucleocapsid (N) by host glycogen synthase kinase-3 (GSK-3) is required for template switching. GSK-3 inhibition selectively reduces the generation of gRNA and longer sgmRNAs, but not shorter sgmRNAs. N phosphorylation allows recruitment of the RNA helicase DDX1 to the phosphorylated-N-containing complex, which facilitates template readthrough and enables longer sgmRNA synthesis. DDX1 knockdown or loss of helicase activity markedly reduces the levels of longer sgmRNAs. Thus, coronaviruses employ a unique strategy for the transition from discontinuous to continuous transcription to ensure balanced sgmRNAs and full-length gRNA synthesis.
Collapse
Affiliation(s)
- Chia-Hsin Wu
- Department of Microbiology, National Taiwan University College of Medicine, No. 1, Jen-Ai Road, Section 1, Taipei 10051, Taiwan
| | - Pei-Jer Chen
- Department of Microbiology, National Taiwan University College of Medicine, No. 1, Jen-Ai Road, Section 1, Taipei 10051, Taiwan; Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, No. 1, Jen-Ai Road, Section 1, Taipei 10051, Taiwan; National Taiwan University Research Center for Medical Excellence, No. 2, Syu-Jhou Road, Taipei 10055, Taiwan
| | - Shiou-Hwei Yeh
- Department of Microbiology, National Taiwan University College of Medicine, No. 1, Jen-Ai Road, Section 1, Taipei 10051, Taiwan; National Taiwan University Research Center for Medical Excellence, No. 2, Syu-Jhou Road, Taipei 10055, Taiwan; Department of Laboratory Medicine, National Taiwan University Hospital, No. 1, Changde Street, Taipei 10048, Taiwan.
| |
Collapse
|
14
|
Kappes MA, Faaberg KS. PRRSV structure, replication and recombination: Origin of phenotype and genotype diversity. Virology 2015; 479-480:475-86. [PMID: 25759097 PMCID: PMC7111637 DOI: 10.1016/j.virol.2015.02.012] [Citation(s) in RCA: 238] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 01/23/2015] [Accepted: 02/09/2015] [Indexed: 11/26/2022]
Abstract
Porcine reproductive and respiratory disease virus (PRRSV) has the intrinsic ability to adapt and evolve. After 25 years of study, this persistent pathogen has continued to frustrate efforts to eliminate infection of herds through vaccination or other elimination strategies. The purpose of this review is to summarize the research on the virion structure, replication and recombination properties of PRRSV that have led to the extraordinary phenotype and genotype diversity that exists worldwide. Review of structure, replication and recombination of porcine reproductive and respiratory syndrome virus. Homologous recombination to produce conventional subgenomic messenger RNA as well as heteroclite RNA. Discussion of structure, replication and recombination mechanisms that have yielded genotypic and phenotypic diversity.
Collapse
Affiliation(s)
- Matthew A Kappes
- Virus and Prion Research Unit, USDA-ARS-National Animal Disease Center, Ames, IA, USA
| | - Kay S Faaberg
- Virus and Prion Research Unit, USDA-ARS-National Animal Disease Center, Ames, IA, USA.
| |
Collapse
|
15
|
Genetic manipulation of a transcription-regulating sequence of porcine reproductive and respiratory syndrome virus reveals key nucleotides determining its activity. Arch Virol 2014; 159:1927-40. [PMID: 24562427 DOI: 10.1007/s00705-014-2018-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 09/16/2013] [Indexed: 10/25/2022]
Abstract
The factors that determine the transcription-regulating sequence (TRS) activity of porcine reproductive and respiratory syndrome virus (PRRSV) remain largely unclear. In this study, the effect of mutagenesis of conserved C nucleotides at positions 5 and 6 in the leader TRS (TRS-L) and/or canonical body TRS7 (TRS-B7) on the synthesis of subgenomic (sg) mRNA and virus infectivity was investigated in the context of a type 2 PRRSV infectious cDNA clone. The results showed that a double C mutation in the leader TRS completely abolished sg mRNAs synthesis and virus infectivity, but a single C mutation did not. A single C or double C mutation in TRS-B7.1 or/and TRS-B7.2 impaired or abolished the corresponding sg mRNA synthesis. Introduction of identical mutations in the leader and body TRSs partially restored sg mRNA7.1 and/or sg mRNA7.2 transcription, indicating that the base-pairing interaction between sense TRS-L and cTRS-B is a crucial factor influencing sg mRNA synthesis. Analysis of the mRNA leader-body junctions of mutants provided evidence for a mechanism of discontinuous minus-strand transcription. This study also showed that mutational inactivation of TRS-B7.1 or TRS-B7.2 did not affect the production of infectious progeny virus, and the sg mRNA formed from each of them could express N protein. However, TRS-B7.1 plays more important roles than TRS-B7.2 in maintaining the growth characteristic of type 2 PRRSV. These results provide more insight into the molecular mechanism of genome expression and subgenomic mRNA transcription of PRRSV.
Collapse
|
16
|
Balasuriya UBR, Go YY, MacLachlan NJ. Equine arteritis virus. Vet Microbiol 2013; 167:93-122. [PMID: 23891306 PMCID: PMC7126873 DOI: 10.1016/j.vetmic.2013.06.015] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 06/22/2013] [Accepted: 06/25/2013] [Indexed: 11/13/2022]
Abstract
Equine arteritis virus (EAV) is the causative agent of equine viral arteritis (EVA), a respiratory and reproductive disease of equids. There has been significant recent progress in understanding the molecular biology of EAV and the pathogenesis of its infection in horses. In particular, the use of contemporary genomic techniques, along with the development and reverse genetic manipulation of infectious cDNA clones of several strains of EAV, has generated significant novel information regarding the basic molecular biology of the virus. Therefore, the objective of this review is to summarize current understanding of EAV virion architecture, replication, evolution, molecular epidemiology and genetic variation, pathogenesis including the influence of host genetics on disease susceptibility, host immune response, and potential vaccination and treatment strategies.
Collapse
Affiliation(s)
- Udeni B R Balasuriya
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546, USA.
| | | | | |
Collapse
|
17
|
Nedialkova DD, Gorbalenya AE, Snijder EJ. Arterivirus Nsp1 modulates the accumulation of minus-strand templates to control the relative abundance of viral mRNAs. PLoS Pathog 2010; 6:e1000772. [PMID: 20174607 PMCID: PMC2824749 DOI: 10.1371/journal.ppat.1000772] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Accepted: 01/14/2010] [Indexed: 12/18/2022] Open
Abstract
The gene expression of plus-strand RNA viruses with a polycistronic genome depends on translation and replication of the genomic mRNA, as well as synthesis of subgenomic (sg) mRNAs. Arteriviruses and coronaviruses, distantly related members of the nidovirus order, employ a unique mechanism of discontinuous minus-strand RNA synthesis to generate subgenome-length templates for the synthesis of a nested set of sg mRNAs. Non-structural protein 1 (nsp1) of the arterivirus equine arteritis virus (EAV), a multifunctional regulator of viral RNA synthesis and virion biogenesis, was previously implicated in controlling the balance between genome replication and sg mRNA synthesis. Here, we employed reverse and forward genetics to gain insight into the multiple regulatory roles of nsp1. Our analysis revealed that the relative abundance of viral mRNAs is tightly controlled by an intricate network of interactions involving all nsp1 subdomains. Distinct nsp1 mutations affected the quantitative balance among viral mRNA species, and our data implicate nsp1 in controlling the accumulation of full-length and subgenome-length minus-strand templates for viral mRNA synthesis. The moderate differential changes in viral mRNA abundance of nsp1 mutants resulted in similarly altered viral protein levels, but progeny virus yields were greatly reduced. Pseudorevertant analysis provided compelling genetic evidence that balanced EAV mRNA accumulation is critical for efficient virus production. This first report on protein-mediated, mRNA-specific control of nidovirus RNA synthesis reveals the existence of an integral control mechanism to fine-tune replication, sg mRNA synthesis, and virus production, and establishes a major role for nsp1 in coordinating the arterivirus replicative cycle. Plus-strand RNA viruses, a major group of plant and animal pathogens, employ a variety of gene expression strategies. In some groups, the genome is translated into a single polyprotein precursor comprising all viral proteins, while the expression of genomes containing multiple open reading frames commonly depends on the production of additional, subgenomic mRNAs. These serve to translate the open reading frames that are inaccessible to host cell ribosomes engaged in genome translation. Arteriviruses and coronaviruses secure the expression of their structural protein genes by generating an extensive nested set of subgenomic mRNAs, which are copied from a set of complementary minus-strand templates. The production of these subgenome-length minus strands involves a unique mechanism of discontinuous RNA synthesis that essentially competes with the production of the full-length minus strand, the template for genome replication. We describe here that arterivirus non-structural protein 1 (nsp1) modulates the accumulation of minus-strand RNAs to control the relative abundance of both genome-length and subgenomic mRNAs, thereby ensuring efficient production of new virus particles. We found that specific nsp1 mutants with imbalanced mRNA levels and low virus production rapidly acquire additional nsp1 mutations that rescue these defects. Thus, a single arterivirus protein plays a decisive role in the integral control of replication, sg mRNA synthesis, and virus production.
Collapse
Affiliation(s)
- Danny D. Nedialkova
- Molecular Virology Laboratory, Department of Medical Microbiology, Center of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Alexander E. Gorbalenya
- Molecular Virology Laboratory, Department of Medical Microbiology, Center of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Eric J. Snijder
- Molecular Virology Laboratory, Department of Medical Microbiology, Center of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
- * E-mail:
| |
Collapse
|
18
|
Recombinant PRRSV expressing porcine circovirus sequence reveals novel aspect of transcriptional control of porcine arterivirus. Virus Res 2009; 148:8-16. [PMID: 19951727 PMCID: PMC7114387 DOI: 10.1016/j.virusres.2009.11.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Revised: 11/15/2009] [Accepted: 11/25/2009] [Indexed: 12/16/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) expresses its genes via a set of nested subgenomic (sg) mRNAs. Such discontinuous transcription is unique yet poorly understood for arterivirus. The utilization of transcription-regulating sequence (TRS) remains a puzzle, as many TRS-like sequences exist in viral genome, yet only six or seven sg mRNAs were transcribed in arterivirus infected cells. To investigate the transcriptional control of the porcine arterivirus, a recombinant PRRSV infectious cDNA clone pCPV expressing the capsid gene of porcine circovirus 2 (PCV2) between PRRSV ORF1b and ORF2a was developed. The rescued recombinant viruses contained a range of disparate deletions of the inserted PCV2 sequence, yet two stable recombinant viruses containing 41 and 275 nt of foreign sequences were generated upon plaque purification and serial passages. Further analysis of the sg RNA2 profile revealed that an array of novel sg RNA species was generated in cells infected with the recombinant virus. One group was formed by utilizing the inserted PCV2 sequence as TRS; another group was generated from cryptic TRS-like PRRSV sequences located 19, 37 and 97 nt immediately downstream of the PRRSV ORF2 AUG. These results demonstrated that (1) the recombinant virus from direct insertion of foreign sequences was genetically unstable, while two recombinant PRRSVs containing foreign sequence of 41 or 275 nt in length, respectively, became stable upon plaque purification and further serial passages; (2) PRRSV can utilize foreign TRS-like sequence as transcriptional promoter; (3) the insertion of foreign sequence provoked the generation of novel subgenomic RNAs utilizing cryptic TRS-like sequences that remain non-functional in native PRRSV.
Collapse
|
19
|
Yu D, Lv J, Sun Z, Zheng H, Lu J, Yuan S. Reverse genetic manipulation of the overlapping coding regions for structural proteins of the type II porcine reproductive and respiratory syndrome virus. Virology 2008; 383:22-31. [PMID: 18977502 PMCID: PMC7172853 DOI: 10.1016/j.virol.2008.09.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Revised: 06/28/2008] [Accepted: 09/07/2008] [Indexed: 10/24/2022]
Abstract
The overlapping genomic regions coding for structural proteins of porcine reproductive and respiratory syndrome virus (PRRSV) poses problems for molecular dissection of the virus replication process. We constructed five mutant full-length cDNA clones with the overlapping regions unwound and 1 to 3 restriction sites inserted between two adjacent ORFs (ORF1/2, ORF4/5, ORF5/6, ORF 6/7 and ORF7/3' UTR), which generated the recombinant viruses. Our findings demonstrated that 1) the overlapping structural protein ORFs can be physically separated, and is dispensable for virus viability; 2) such ORF separations did not interrupt the subgenomic RNA synthesis; 3) the plaque morphology, growth kinetics, and antigenicity of these mutant viruses were virtually indistinguishable from those of the parental virus in cultured cells; and 4) these mutant viruses remained genetic stable in vitro. This study lays a foundation for further molecular dissection of PRRSV replication process, and development of genetically tagged vaccines against PRRS.
Collapse
Affiliation(s)
- Dandan Yu
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Chinese Ministry of Agriculture, Shanghai 200241, China
| | | | | | | | | | | |
Collapse
|
20
|
Tijms MA, Nedialkova DD, Zevenhoven-Dobbe JC, Gorbalenya AE, Snijder EJ. Arterivirus subgenomic mRNA synthesis and virion biogenesis depend on the multifunctional nsp1 autoprotease. J Virol 2007; 81:10496-505. [PMID: 17626105 PMCID: PMC2045461 DOI: 10.1128/jvi.00683-07] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Accepted: 06/27/2007] [Indexed: 11/20/2022] Open
Abstract
Many groups of plus-stranded RNA viruses produce additional, subgenomic mRNAs to regulate the expression of part of their genome. Arteriviruses and coronaviruses (order Nidovirales) are unique among plus-stranded RNA viruses for using a mechanism of discontinuous RNA synthesis to produce a nested set of 5'- and 3'-coterminal subgenomic mRNAs, which serve to express the viral structural protein genes. The discontinuous step presumably occurs during minus-strand synthesis and joins noncontiguous sequences copied from the 3'- and 5'-proximal domains of the genomic template. Nidovirus genome amplification ("replication") and subgenomic mRNA synthesis ("transcription") are driven by 13 to 16 nonstructural proteins (nsp's), generated by autocatalytic processing of two large "replicase" polyproteins. Previously, using a replicon system, the N-terminal nsp1 replicase subunit of the arterivirus equine arteritis virus (EAV) was found to be dispensable for replication but crucial for transcription. Using reverse genetics, we have now addressed the role of nsp1 against the background of the complete EAV life cycle. Mutagenesis revealed that nsp1 is in fact a multifunctional regulatory protein. Its papain-like autoprotease domain releases nsp1 from the replicase polyproteins, a cleavage essential for viral RNA synthesis. Several mutations in the putative N-terminal zinc finger domain of nsp1 selectively abolished transcription, while replication was either not affected or even increased. Other nsp1 mutations did not significantly affect either replication or transcription but still dramatically reduced the production of infectious progeny. Thus, nsp1 is involved in at least three consecutive key processes in the EAV life cycle: replicase polyprotein processing, transcription, and virion biogenesis.
Collapse
Affiliation(s)
- Marieke A Tijms
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, LUMC P4-26, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
21
|
Abstract
Coronaviruses are large, enveloped RNA viruses of both medical and veterinary importance. Interest in this viral family has intensified in the past few years as a result of the identification of a newly emerged coronavirus as the causative agent of severe acute respiratory syndrome (SARS). At the molecular level, coronaviruses employ a variety of unusual strategies to accomplish a complex program of gene expression. Coronavirus replication entails ribosome frameshifting during genome translation, the synthesis of both genomic and multiple subgenomic RNA species, and the assembly of progeny virions by a pathway that is unique among enveloped RNA viruses. Progress in the investigation of these processes has been enhanced by the development of reverse genetic systems, an advance that was heretofore obstructed by the enormous size of the coronavirus genome. This review summarizes both classical and contemporary discoveries in the study of the molecular biology of these infectious agents, with particular emphasis on the nature and recognition of viral receptors, viral RNA synthesis, and the molecular interactions governing virion assembly.
Collapse
Affiliation(s)
- Paul S Masters
- Wadsworth Center, New York State Department of Health, Albany, 12201, USA
| |
Collapse
|
22
|
Sawicki SG, Sawicki DL, Siddell SG. A contemporary view of coronavirus transcription. J Virol 2006; 81:20-9. [PMID: 16928755 PMCID: PMC1797243 DOI: 10.1128/jvi.01358-06] [Citation(s) in RCA: 415] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Stanley G Sawicki
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine, Toledo, OH 43614, USA
| | | | | |
Collapse
|
23
|
Pasternak AO, Spaan WJM, Snijder EJ. Nidovirus transcription: how to make sense...? J Gen Virol 2006; 87:1403-1421. [PMID: 16690906 DOI: 10.1099/vir.0.81611-0] [Citation(s) in RCA: 256] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Many positive-stranded RNA viruses use subgenomic mRNAs to express part of their genetic information. To produce structural and accessory proteins, members of the order Nidovirales (corona-, toro-, arteri- and roniviruses) generate a 3' co-terminal nested set of at least three and often seven to nine mRNAs. Coronavirus and arterivirus subgenomic transcripts are not only 3' co-terminal but also contain a common 5' leader sequence, which is derived from the genomic 5' end. Their synthesis involves a process of discontinuous RNA synthesis that resembles similarity-assisted RNA recombination. Most models proposed over the past 25 years assume co-transcriptional fusion of subgenomic RNA leader and body sequences, but there has been controversy over the question of whether this occurs during plus- or minus-strand synthesis. In the latter model, which has now gained considerable support, subgenomic mRNA synthesis takes place from a complementary set of subgenome-size minus-strand RNAs, produced by discontinuous minus-strand synthesis. Sense-antisense base-pairing interactions between short conserved sequences play a key regulatory role in this process. In view of the presumed common ancestry of nidoviruses, the recent finding that ronivirus and torovirus mRNAs do not contain a common 5' leader sequence is surprising. Apparently, major mechanistic differences must exist between nidoviruses, which raises questions about the functions of the common leader sequence and nidovirus transcriptase proteins and the evolution of nidovirus transcription. In this review, nidovirus transcription mechanisms are compared, the experimental systems used are critically assessed and, in particular, the impact of recently developed reverse genetic systems is discussed.
Collapse
Affiliation(s)
- Alexander O Pasternak
- Molecular Virology Laboratory, Department of Medical Microbiology, Center of Infectious Diseases, Leiden University Medical Center, LUMC P4-26, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Willy J M Spaan
- Molecular Virology Laboratory, Department of Medical Microbiology, Center of Infectious Diseases, Leiden University Medical Center, LUMC P4-26, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Eric J Snijder
- Molecular Virology Laboratory, Department of Medical Microbiology, Center of Infectious Diseases, Leiden University Medical Center, LUMC P4-26, PO Box 9600, 2300 RC Leiden, The Netherlands
| |
Collapse
|
24
|
Sawicki SG, Sawicki DL, Younker D, Meyer Y, Thiel V, Stokes H, Siddell SG. Functional and genetic analysis of coronavirus replicase-transcriptase proteins. PLoS Pathog 2005; 1:e39. [PMID: 16341254 PMCID: PMC1298938 DOI: 10.1371/journal.ppat.0010039] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2005] [Accepted: 11/01/2005] [Indexed: 12/15/2022] Open
Abstract
The coronavirus replicase-transcriptase complex is an assembly of viral and cellular proteins that mediate the synthesis of genome and subgenome-sized mRNAs in the virus-infected cell. Here, we report a genetic and functional analysis of 19 temperature-sensitive (ts) mutants of Murine hepatitis virus MHV-A59 that are unable to synthesize viral RNA when the infection is initiated and maintained at the non-permissive temperature. Both classical and biochemical complementation analysis leads us to predict that the majority of MHV-A59 ORF1a replicase gene products (non-structural proteins nsp1-nsp11) form a single complementation group (cistron1) while the replicase gene products encoded in ORF1b (non-structural proteins nsp12-nsp16) are able to function in trans and comprise at least three, and possibly five, further complementation groups (cistrons II-VI). Also, we have identified mutations in the non-structural proteins nsp 4, nsp5, nsp10, nsp12, nsp14, and nsp16 that are responsible for the ts phenotype of eight MHV-A59 mutants, which allows us to conclude that these proteins are essential for the assembly of a functional replicase-transcriptase complex. Finally, our analysis of viral RNA synthesis in ts mutant virus-infected cells allows us to discriminate three phenotypes with regard to the inability of specific mutants to synthesize viral RNA at the non-permissive temperature. Mutant LA ts6 appeared to be defective in continuing negative-strand synthesis, mutant Alb ts16 appeared to form negative strands but these were not utilized for positive-strand RNA synthesis, and mutant Alb ts22 was defective in the elongation of both positive- and negative-strand RNA. On the basis of these results, we propose a model that describes a pathway for viral RNA synthesis in MHV-A59-infected cells. Further biochemical analysis of these mutants should allow us to identify intermediates in this pathway and elucidate the precise function(s) of the viral replicase proteins involved.
Collapse
Affiliation(s)
- Stanley G Sawicki
- Department of Medical Microbiology and Immunology, Medical University of Ohio, Toledo, Ohio, United States of America
| | - Dorothea L Sawicki
- Department of Medical Microbiology and Immunology, Medical University of Ohio, Toledo, Ohio, United States of America
| | - Diane Younker
- Department of Medical Microbiology and Immunology, Medical University of Ohio, Toledo, Ohio, United States of America
| | - Yvonne Meyer
- Institute of Virology, University of Würzburg, Würzburg, Germany
| | - Volker Thiel
- Institute of Virology, University of Würzburg, Würzburg, Germany
| | - Helen Stokes
- Department of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Stuart G Siddell
- Department of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
25
|
Smits SL, van Vliet ALW, Segeren K, el Azzouzi H, van Essen M, de Groot RJ. Torovirus non-discontinuous transcription: mutational analysis of a subgenomic mRNA promoter. J Virol 2005; 79:8275-81. [PMID: 15956573 PMCID: PMC1143767 DOI: 10.1128/jvi.79.13.8275-8281.2005] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2004] [Accepted: 03/08/2005] [Indexed: 11/20/2022] Open
Abstract
Toroviruses (order Nidovirales) are enveloped positive-strand RNA viruses of mammals. The prototype torovirus, equine torovirus strain Berne (Berne virus [BEV]), uses two different transcription strategies to produce a 3'-coterminal nested set of subgenomic (sg) mRNAs. Its mRNA 2 carries a leader sequence derived from the 5' end of the genome and is produced via discontinuous transcription. The remaining three sg mRNAs, 3 to 5, are colinear with the 3' end of the genome and are made via non-discontinuous RNA synthesis. Their synthesis is supposedly regulated by short conserved sequence motifs, 5'-ACN3-4CUUUAGA-3', within the noncoding intergenic regions that precede the M, HE, and N genes (A. L. van Vliet, S. L. Smits, P. J. Rottier, and R. J. de Groot, EMBO J. 21:6571-6580, 2002). We have now studied the--for nidoviruses unusual--non-discontinuous transcription mechanism in further detail by probing the role of the postulated transcription-regulating sequences (TRSs). To this end, we constructed a synthetic defective interfering (DI) RNA, carrying a 24-nucleotide segment of the intergenic region between the HE and N genes. We demonstrate that this DI RNA, when introduced into BEV-infected cells, directs the synthesis of a sg DI RNA species; in fact, a 16-nucleotide cassette containing the TRS already proved sufficient. Synthesis of this sg DI RNA, like that of mRNAs 3 to 5 of the standard virus, initiated at the 5'-most adenylate of the TRS. An extensive mutational analysis of the TRS is presented. Our results provide first and formal experimental evidence that the conserved motifs within the BEV intergenic sequences indeed drive sg RNA synthesis.
Collapse
Affiliation(s)
- Saskia L Smits
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
26
|
Sola I, Moreno JL, Zúñiga S, Alonso S, Enjuanes L. Role of nucleotides immediately flanking the transcription-regulating sequence core in coronavirus subgenomic mRNA synthesis. J Virol 2005; 79:2506-16. [PMID: 15681451 PMCID: PMC546574 DOI: 10.1128/jvi.79.4.2506-2516.2005] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2004] [Accepted: 09/23/2004] [Indexed: 11/20/2022] Open
Abstract
The generation of subgenomic mRNAs in coronavirus involves a discontinuous mechanism of transcription by which the common leader sequence, derived from the genome 5' terminus, is fused to the 5' end of the mRNA coding sequence (body). Transcription-regulating sequences (TRSs) precede each gene and include a conserved core sequence (CS) surrounded by relatively variable sequences (5' TRS and 3' TRS). Regulation of transcription in coronaviruses has been studied by reverse-genetics analysis of the sequences immediately flanking a unique CS in the Transmissible gastroenteritis virus genome (CS-S2), located inside the S gene, that does not lead to detectable amounts of the corresponding mRNA, in spite of its canonical sequence. The transcriptional inactivity of CS-S2 was genome position independent. The presence of a canonical CS was not sufficient to drive transcription, but subgenomic synthesis requires a minimum base pairing between the leader TRS (TRS-L) and the complement of the body TRS (cTRS-B) provided by the CS and its adjacent nucleotides. A good correlation was observed between the free energy of TRS-L and cTRS-B duplex formation and the levels of subgenomic mRNA S2, demonstrating that base pairing between the leader and body beyond the CS is a determinant regulation factor in coronavirus transcription. In TRS mutants with increasing complementarity between TRS-L and cTRS-B, a tendency to reach a plateau in DeltaG values was observed, suggesting that a more precise definition of the TRS limits might be proposed, specifically that it consists of the central CS and around 4 nucleotides flanking 5' and 3' the CS. Sequences downstream of the CS exert a stronger influence on the template-switching decision according to a model of polymerase strand transfer and template switching during minus-strand synthesis.
Collapse
Affiliation(s)
- Isabel Sola
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología, CSIC, Campus Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | |
Collapse
|
27
|
Enjuanes L, Sola I, Alonso S, Escors D, Zúñiga S. Coronavirus reverse genetics and development of vectors for gene expression. Curr Top Microbiol Immunol 2005; 287:161-97. [PMID: 15609512 PMCID: PMC7120368 DOI: 10.1007/3-540-26765-4_6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2023]
Abstract
Knowledge of coronavirus replication, transcription, and virus-host interaction has been recently improved by engineering of coronavirus infectious cDNAs. With the transmissible gastroenteritis virus (TGEV) genome the efficient (>40 microg per 106 cells) and stable (>20 passages) expression of the foreign genes has been shown. Knowledge of the transcription mechanism in coronaviruses has been significantly increased, making possible the fine regulation of foreign gene expression. A new family of vectors based on single coronavirus genomes, in which essential genes have been deleted, has emerged including replication-competent, propagation-deficient vectors. Vector biosafety is being increased by relocating the RNA packaging signal to the position previously occupied by deleted essential genes, to prevent the rescue of fully competent viruses that might arise from recombination events with wild-type field coronaviruses. The large cloning capacity of coronaviruses (>5 kb) and the possibility of engineering the tissue and species tropism to target expression to different organs and animal species, including humans, has increased the potential of coronaviruses as vectors for vaccine development and, possibly, gene therapy.
Collapse
Affiliation(s)
- L Enjuanes
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología, CSIC, Campus Universidad Autónoma, 28049 Cantoblanco, Madrid, Spain.
| | | | | | | | | |
Collapse
|
28
|
Zúñiga S, Sola I, Alonso S, Enjuanes L. Sequence motifs involved in the regulation of discontinuous coronavirus subgenomic RNA synthesis. J Virol 2004; 78:980-94. [PMID: 14694129 PMCID: PMC368802 DOI: 10.1128/jvi.78.2.980-994.2004] [Citation(s) in RCA: 180] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2003] [Accepted: 10/01/2003] [Indexed: 12/24/2022] Open
Abstract
Coronavirus transcription leads to the synthesis of a nested set of mRNAs with a leader sequence derived from the 5' end of the genome. The mRNAs are produced by a discontinuous transcription in which the leader is linked to the mRNA coding sequences. This process is regulated by transcription-regulating sequences (TRSs) preceding each mRNA, including a highly conserved core sequence (CS) with high identity to sequences present in the virus genome and at the 3' end of the leader (TRS-L). The role of TRSs was analyzed by reverse genetics using a full-length infectious coronavirus cDNA and site-directed mutagenesis of the CS. The canonical CS-B was nonessential for the generation of subgenomic mRNAs (sgmRNAs), but its presence led to transcription levels at least 10(3)-fold higher than those in its absence. The data obtained are compatible with a transcription mechanism including three steps: (i) formation of 5'-3' complexes in the genomic RNA, (ii) base-pairing scanning of the nascent negative RNA strand by the TRS-L, and (iii) template switching during synthesis of the negative strand to complete the negative sgRNA. This template switch takes place after copying the CS sequence and was predicted in silico based on high base-pairing score between the nascent negative RNA strand and the TRS-L and minimum DeltaG.
Collapse
MESH Headings
- 3' Untranslated Regions/chemistry
- 3' Untranslated Regions/genetics
- 5' Untranslated Regions/chemistry
- 5' Untranslated Regions/genetics
- Animals
- Base Pairing
- Base Sequence
- Cricetinae
- DNA, Complementary/genetics
- Gene Expression Regulation, Viral
- Genome, Viral
- Humans
- Models, Genetic
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- RNA, Messenger/biosynthesis
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Viral/biosynthesis
- RNA, Viral/chemistry
- RNA, Viral/genetics
- Templates, Genetic
- Transcription, Genetic
- Transmissible gastroenteritis virus/chemistry
- Transmissible gastroenteritis virus/genetics
- Transmissible gastroenteritis virus/metabolism
Collapse
Affiliation(s)
- Sonia Zúñiga
- Centro Nacional de Biotecnología, CSIC, Department of Molecular and Cell Biology, Campus Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain
| | | | | | | |
Collapse
|