1
|
Alekseeva ON, Hoa LT, Vorobyev PO, Kochetkov DV, Gumennaya YD, Naberezhnaya ER, Chuvashov DO, Ivanov AV, Chumakov PM, Lipatova AV. Receptors and Host Factors for Enterovirus Infection: Implications for Cancer Therapy. Cancers (Basel) 2024; 16:3139. [PMID: 39335111 PMCID: PMC11430599 DOI: 10.3390/cancers16183139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/29/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Enteroviruses, with their diverse clinical manifestations ranging from mild or asymptomatic infections to severe diseases such as poliomyelitis and viral myocarditis, present a public health threat. However, they can also be used as oncolytic agents. This review shows the intricate relationship between enteroviruses and host cell factors. Enteroviruses utilize specific receptors and coreceptors for cell entry that are critical for infection and subsequent viral replication. These receptors, many of which are glycoproteins, facilitate virus binding, capsid destabilization, and internalization into cells, and their expression defines virus tropism towards various types of cells. Since enteroviruses can exploit different receptors, they have high oncolytic potential for personalized cancer therapy, as exemplified by the antitumor activity of certain enterovirus strains including the bioselected non-pathogenic Echovirus type 7/Rigvir, approved for melanoma treatment. Dissecting the roles of individual receptors in the entry of enteroviruses can provide valuable insights into their potential in cancer therapy. This review discusses the application of gene-targeting techniques such as CRISPR/Cas9 technology to investigate the impact of the loss of a particular receptor on the attachment of the virus and its subsequent internalization. It also summarizes the data on their expression in various types of cancer. By understanding how enteroviruses interact with specific cellular receptors, researchers can develop more effective regimens of treatment, offering hope for more targeted and efficient therapeutic strategies.
Collapse
Affiliation(s)
- Olga N Alekseeva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Le T Hoa
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Pavel O Vorobyev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Dmitriy V Kochetkov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Yana D Gumennaya
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | | | - Denis O Chuvashov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexander V Ivanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Peter M Chumakov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Anastasia V Lipatova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
2
|
Elsner L, Heimann L, Geisler A, Dieringer B, Knoch KP, Hinze L, Klingel K, Solimena M, Kurreck J, Fechner H. Fast Track Adaptation of Oncolytic Coxsackie B3 Virus to Resistant Colorectal Cancer Cells - a Method to Personalize Virotherapy. Biol Proced Online 2024; 26:11. [PMID: 38664647 PMCID: PMC11044309 DOI: 10.1186/s12575-024-00237-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/12/2024] [Indexed: 04/29/2024] Open
Abstract
BACKGROUND The efficacy of oncolytic viruses (OV) in cancer treatment depends on their ability to successfully infect and destroy tumor cells. However, patients' tumors vary, and in the case of individual insensitivity to an OV, therapeutic efficacy is limited. Here, we present a protocol for rapid generation of tumor cell-specific adapted oncolytic coxsackievirus B3 (CVB3) with enhanced oncolytic potential and a satisfactory safety profile. This is achieved by combining directed viral evolution (DVE) with genetic modification of the viral genome and the use of a microRNA-dependent regulatory tool. METHODS The oncolytic CVB3 variant PD-H was adapted to the refractory colorectal carcinoma cell line Colo320 through serial passaging. XTT assays and virus plaque assays were used to determine virus cytotoxicity and virus replication in vitro. Recombinant PD-H variants were generated through virus mutagenesis. Apoptosis was detected by Western blots, Caspase 3/7 assays, and DAPI staining. The therapeutic efficacy and safety of the adapted recombinant OV PD-SK-375TS were assessed in vivo using a subcutaneous Colo320 xenograft mouse model. RESULTS PD-H was adapted to the colorectal cancer cell line Colo320 within 10 passages. Sequencing of passage 10 virus P-10 revealed a heterogenous virus population with five nucleotide mutations resulting in amino acid substitutions. The genotypically homogeneous OV PD-SK was generated by inserting the five detected mutations of P-10 into the genome of PD-H. PD-SK showed significantly stronger replication and cytotoxicity than PD-H in Colo320 cells, but not in other colorectal carcinoma cell lines. Increase of apoptosis induction was detected as key mechanisms of Colo320 cell-specific adaptation of PD-SK. For in vivo safety PD-SK was engineered with target sites of the miR-375 (miR-375TS) to exclude virus replication in normal tissues. PD-SK-375TS, unlike the PD-H-375TS not adapted homolog suppressed the growth of subcutaneous Colo320 tumors in nude mice without causing any side effects. CONCLUSION Taken together, here we present an optimized protocol for the rapid generation of tumor cell-specific adapted oncolytic CVB3 based on the oncolytic CVB3 strain PD-H. The protocol is promising for the generation of personalized OV for tumor therapy and has the potential to be applied to other OV.
Collapse
Affiliation(s)
- Leslie Elsner
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Lisanne Heimann
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Anja Geisler
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Babette Dieringer
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Klaus-Peter Knoch
- Paul Langerhans Institute Dresden and German Center for Diabetes Research (DZD e.V.), Helmholtz Munich at University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Luisa Hinze
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Karin Klingel
- Cardiopathology, Institute for Pathology and Neuropathology, University Hospital Tuebingen, Liebermeisterstr. 8, 72076, Tübingen, Germany
| | - Michel Solimena
- Paul Langerhans Institute Dresden and German Center for Diabetes Research (DZD e.V.), Helmholtz Munich at University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Jens Kurreck
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Henry Fechner
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany.
| |
Collapse
|
3
|
Peribañez-Dominguez S, Parra-Guillen ZP, Freshwater T, Troconiz IF. A physiologically based pharmacokinetic model for V937 oncolytic virus in mice. Front Pharmacol 2023; 14:1211452. [PMID: 37771727 PMCID: PMC10524596 DOI: 10.3389/fphar.2023.1211452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/28/2023] [Indexed: 09/30/2023] Open
Abstract
Introduction: Oncolytic viruses (OVs) represent a novel therapeutic strategy in oncology due to their capability to selectively infect and replicate in cancer cells, triggering a direct and/or immune-induced tumor lysis. However, the mechanisms governing OV pharmacokinetics are still poorly understood. This work aims to develop a physiologically based pharmacokinetic model of the novel OV, V937, in non-tumor-bearing mice to get a quantitative understanding of its elimination and tissue uptake processes. Materials and methods: Model development was performed using data obtained from 60 mice. Viral levels were quantified from eight tissues after a single intravenous V937 dose. An external dataset was used for model validation. This test set included multiple-dose experiments with different routes of administration. V937 distribution in each organ was described using a physiological structure based on mouse-specific organ blood flows and volumes. Analyses were performed using the non-linear mixed-effects approach with NONMEM 7.4. Results: Viral levels showed a drop from 108 to 105 copies/µg RNA at day 1 in blood, reflected in a high estimate of total clearance (18.2 mL/h). A well-stirred model provided an adequate description for all organs except the muscle and heart, where a saturable uptake process improved data description. The highest numbers of viral copies were observed in the brain, lymph node, kidney, liver, lung, and spleen on the first day after injection. On the other hand, the maximum amount of viral copies in the heart, muscle, and pancreas occurred 3 days after administration. Conclusion: To the best of our knowledge, this is the first physiologically based pharmacokinetic model developed to characterize OV biodistribution, representing a relevant source of quantitative knowledge regarding the in vivo behavior of OVs. This model can be further expanded by adding a tumor compartment, where OVs could replicate.
Collapse
Affiliation(s)
- Sara Peribañez-Dominguez
- Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Zinnia P. Parra-Guillen
- Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Tomoko Freshwater
- Quantitative Pharmacology and Pharmacometrics Immune/Oncology (QP2-I/O) Merck & Co., Inc., Rahway, NJ, United States
| | - Iñaki F. Troconiz
- Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
- Institute of Data Science and Artificial Intelligence (DATAI), University of Navarra, Pamplona, Spain
| |
Collapse
|
4
|
Abd-Aziz N, Poh CL. Development of oncolytic viruses for cancer therapy. Transl Res 2021; 237:98-123. [PMID: 33905949 DOI: 10.1016/j.trsl.2021.04.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 02/07/2023]
Abstract
Oncolytic virotherapy is a therapeutic approach that uses replication-competent viruses to kill cancers. The ability of oncolytic viruses to selectively replicate in cancer cells leads to direct cell lysis and induction of anticancer immune response. Like other anticancer therapies, oncolytic virotherapy has several limitations such as viral delivery to the target, penetration into the tumor mass, and antiviral immune responses. This review provides an insight into the different characteristics of oncolytic viruses (natural and genetically modified) that contribute to effective applications of oncolytic virotherapy in preclinical and clinical trials, and strategies to overcome the limitations. The potential of oncolytic virotherapy combining with other conventional treatments or cancer immunotherapies involving immune checkpoint inhibitors and CAR-T therapy could form part of future multimodality treatment strategies.
Collapse
Affiliation(s)
- Noraini Abd-Aziz
- Centre for Virus and Vaccine Research (CVVR), School of Medical and Life Sciences, Sunway University, Subang Jaya, Selangor, Malaysia
| | - Chit Laa Poh
- Centre for Virus and Vaccine Research (CVVR), School of Medical and Life Sciences, Sunway University, Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
5
|
Lin W, Zhao Y, Zhong L. Current strategies of virotherapy in clinical trials for cancer treatment. J Med Virol 2021; 93:4668-4692. [PMID: 33738818 DOI: 10.1002/jmv.26947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/12/2021] [Accepted: 03/15/2021] [Indexed: 12/19/2022]
Abstract
As a novel immune-active agent for cancer treatment, viruses have the ability of infecting and replicating in tumor cells. The safety and efficacy of viruses has been tested and confirmed in preclinical and clinical trials. In the last decade, virotherapy has been adopted as a monotherapy or combined therapy with immunotherapy, chemotherapy, or radiotherapy, showing promising outcomes against cancer. In this review, the current strategies of viruses used in clinical trials are classified and described. Besides this, the challenge and future prospects of virotherapy in the management for cancer patients are discussed in this review.
Collapse
Affiliation(s)
- Weijian Lin
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
| | - Yongxiang Zhao
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
| | - Liping Zhong
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
| |
Collapse
|
6
|
Elsedawy NB, Nace RA, Russell SJ, Schulze AJ. Oncolytic Activity of Targeted Picornaviruses Formulated as Synthetic Infectious RNA. MOLECULAR THERAPY-ONCOLYTICS 2020; 17:484-495. [PMID: 32529026 PMCID: PMC7276391 DOI: 10.1016/j.omto.2020.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 05/12/2020] [Indexed: 12/22/2022]
Abstract
Infectious nucleic acid has been proposed as a superior formulation for oncolytic virus therapy. Oncolytic picornaviruses can be formulated as infectious RNA (iRNA), and their unwanted tropisms eliminated by microRNA (miRNA) detargeting. However, genomic insertion of miRNA target sequences into coxsackievirus A21 (CVA21) iRNA compromised its specific infectivity, negating further development as a novel oncolytic virus formulation. To address this limitation, we substituted a muscle-specific miRNA response element for the spacer region downstream of the internal ribosomal entry site in the 5′ non-coding region of CVA21 iRNA, thereby preserving genome length while avoiding the disruption of known surrounding RNA structural elements. This new iRNA (R-CVA21) retained high specific infectivity, rapidly generating replicating miRNA-detargeted viruses following transfection in H1-HeLa cells. Further, in contrast with alternatively configured iRNAs that were tested in parallel, intratumoral administration of R-CVA21 generated a spreading oncolytic infection that was curative in treated animals without associated myotoxicity. Moreover, R-CVA21 also exhibited superior miRNA response element stability in vivo. This novel formulation is a promising agent for clinical translation.
Collapse
Affiliation(s)
- Noura B Elsedawy
- Department of Molecule Medicine, Mayo Clinic College of Medicine, Rochester, MN 55902, USA
| | - Rebecca A Nace
- Department of Molecule Medicine, Mayo Clinic College of Medicine, Rochester, MN 55902, USA
| | - Stephen J Russell
- Department of Molecule Medicine, Mayo Clinic College of Medicine, Rochester, MN 55902, USA
| | - Autumn J Schulze
- Department of Molecule Medicine, Mayo Clinic College of Medicine, Rochester, MN 55902, USA
| |
Collapse
|
7
|
Hromic-Jahjefendic A, Lundstrom K. Viral Vector-Based Melanoma Gene Therapy. Biomedicines 2020; 8:E60. [PMID: 32187995 PMCID: PMC7148454 DOI: 10.3390/biomedicines8030060] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 02/06/2023] Open
Abstract
Gene therapy applications of oncolytic viruses represent an attractive alternative for cancer treatment. A broad range of oncolytic viruses, including adenoviruses, adeno-associated viruses, alphaviruses, herpes simplex viruses, retroviruses, lentiviruses, rhabdoviruses, reoviruses, measles virus, Newcastle disease virus, picornaviruses and poxviruses, have been used in diverse preclinical and clinical studies for the treatment of various diseases, including colon, head-and-neck, prostate and breast cancer as well as squamous cell carcinoma and glioma. The majority of studies have focused on immunotherapy and several drugs based on viral vectors have been approved. However, gene therapy for malignant melanoma based on viral vectors has not been utilized to its full potential yet. This review represents a summary of the achievements of preclinical and clinical studies using viral vectors, with the focus on malignant melanoma.
Collapse
Affiliation(s)
- Altijana Hromic-Jahjefendic
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina;
| | | |
Collapse
|
8
|
Zainutdinov SS, Kochneva GV, Netesov SV, Chumakov PM, Matveeva OV. Directed evolution as a tool for the selection of oncolytic RNA viruses with desired phenotypes. Oncolytic Virother 2019; 8:9-26. [PMID: 31372363 PMCID: PMC6636189 DOI: 10.2147/ov.s176523] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 06/07/2019] [Indexed: 12/23/2022] Open
Abstract
Viruses have some characteristics in common with cell-based life. They can evolve and adapt to environmental conditions. Directed evolution can be used by researchers to produce viral strains with desirable phenotypes. Through bioselection, improved strains of oncolytic viruses can be obtained that have better safety profiles, increased specificity for malignant cells, and more efficient spread among tumor cells. It is also possible to select strains capable of killing a broader spectrum of cancer cell variants, so as to achieve a higher frequency of therapeutic responses. This review describes and analyses virus adaptation studies performed with members of four RNA virus families that are used for viral oncolysis: reoviruses, paramyxoviruses, enteroviruses, and rhabdoviruses.
Collapse
Affiliation(s)
- Sergei S Zainutdinov
- State Research Center of Virology and Biotechnology “Vector”
, Koltsovo630559, Russia
| | - Galina V Kochneva
- State Research Center of Virology and Biotechnology “Vector”
, Koltsovo630559, Russia
| | - Sergei V Netesov
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk630090, Russia
| | - Peter M Chumakov
- Engelhardt Institute of Molecular Biology
, Moscow119991, Russia
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products
, Moscow108819, Russia
| | | |
Collapse
|
9
|
Sahu SK, Kumar M. Application of Oncolytic Virus as a Therapy of Cancer. Microb Biotechnol 2018. [DOI: 10.1007/978-981-10-7140-9_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
10
|
Svyatchenko VA, Ternovoy VA, Kiselev NN, Demina AV, Loktev VB, Netesov SV, Chumakov PM. Bioselection of coxsackievirus B6 strain variants with altered tropism to human cancer cell lines. Arch Virol 2017; 162:3355-3362. [PMID: 28766058 DOI: 10.1007/s00705-017-3492-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/02/2017] [Indexed: 12/21/2022]
Abstract
Cancer cells develop increased sensitivity to members of many virus families and, in particular, can be efficiently infected and lysed by many low-pathogenic human enteroviruses. However, because of their great genetic heterogeneity, cancer cells display different levels of sensitivity to particular enterovirus strains, which may substantially limit the chances of a positive clinical response. We show that a non-pathogenic strain of coxsackievirus B6 (LEV15) can efficiently replicate to high titers in the malignant human cell lines C33A, DU145, AsPC-1 and SK-Mel28, although it displays much lower replication efficiency in A431 and A549 cells and very limited replication ability in RD and MCF7 cells, as well as in the normal lung fibroblast cell line MRC-5 and the immortalized mammary epithelial cell line MCF10A. By serial passaging in RD, MCF7 and A431 cells, we obtained LEV15 strain variants that had acquired high replication capacity in the appropriate carcinoma cell lines without losing their high replication capability in the original set of cancer cell lines and had limited replication capability in untransformed cells. The strains demonstrated improved oncolytic properties in nude-mouse xenografts. We identified nucleotide changes responsible for the phenotypes and suggest a bioselection approach for a generation of oncolytic virus strains with a wider spectrum of affected tumors.
Collapse
Affiliation(s)
- Victor A Svyatchenko
- State Research Center of Virology and Biotechnology "Vector", Koltsovo, Novosibirsk, Russia
| | - Vladimir A Ternovoy
- State Research Center of Virology and Biotechnology "Vector", Koltsovo, Novosibirsk, Russia
| | - Nikolai N Kiselev
- State Research Center of Virology and Biotechnology "Vector", Koltsovo, Novosibirsk, Russia
| | - Anna V Demina
- State Research Center of Virology and Biotechnology "Vector", Koltsovo, Novosibirsk, Russia
| | - Valery B Loktev
- State Research Center of Virology and Biotechnology "Vector", Koltsovo, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Sergey V Netesov
- State Research Center of Virology and Biotechnology "Vector", Koltsovo, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Peter M Chumakov
- Novosibirsk State University, Novosibirsk, Russia.
- Engelhardt Institute of Molecular Biology, Moscow, Russia.
- M.P. Chumakov Institute of Poliomyelitis and Viral Encephalitides, Federal Scientific Center on Research and Development of Immunobiology Products, Moscow, Russia.
| |
Collapse
|
11
|
Masemann D, Boergeling Y, Ludwig S. Employing RNA viruses to fight cancer: novel insights into oncolytic virotherapy. Biol Chem 2017; 398:891-909. [DOI: 10.1515/hsz-2017-0103] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 04/08/2017] [Indexed: 12/13/2022]
Abstract
Abstract
Within recent decades, viruses that specifically target tumor cells have emerged as novel therapeutic agents against cancer. These viruses do not only act via their cell-lytic properties, but also harbor immunostimulatory features to re-direct the tumor microenvironment and stimulate tumor-directed immune responses. Furthermore, oncolytic viruses are considered to be superior to classical cancer therapies due to higher selectivity towards tumor cell destruction and, consequently, less collateral damage of non-transformed healthy tissue. In particular, the field of oncolytic RNA viruses is rapidly developing since these agents possess alternative tumor-targeting strategies compared to established oncolytic DNA viruses. Thus, oncolytic RNA viruses have broadened the field of virotherapy facilitating new strategies to fight cancer. In addition to several naturally occurring oncolytic viruses, genetically modified RNA viruses that are armed to express foreign factors such as immunostimulatory molecules have been successfully tested in early clinical trials showing promising efficacy. This review aims to provide an overview of the most promising RNA viruses in clinical development, to summarize the current knowledge of clinical trials using these viral agents, and to discuss the main issues as well as future perspectives of clinical approaches using oncolytic RNA viruses.
Collapse
|
12
|
Hamid O, Hoffner B, Gasal E, Hong J, Carvajal RD. Oncolytic immunotherapy: unlocking the potential of viruses to help target cancer. Cancer Immunol Immunother 2017; 66:1249-1264. [PMID: 28712033 PMCID: PMC5626801 DOI: 10.1007/s00262-017-2025-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 05/23/2017] [Indexed: 12/22/2022]
Abstract
Oncolytic immunotherapy is a research area of cancer immunotherapy investigating the use of modified viruses to target cancer cells. A variety of different viral backbones (e.g., adenovirus, reovirus) with a diverse range of genetic modifications are currently being investigated for the treatment of a variety of cancers. The oncolytic virus that has advanced the furthest in clinical development is talimogene laherparepvec, a recombinant HSV-1 virus expressing granulocyte-macrophage colony-stimulating factor (GM-CSF). In a phase 3 study in patients with unresectable metastatic melanoma, intralesional talimogene laherparepvec treatment resulted in a higher durable response rate compared with subcutaneous GM-CSF treatment (16.3 versus 2.1%; P < 0.001). Notably, responses were observed at uninjected lesions including visceral lesions, indicating a systemic antitumor response had occurred. Studies evaluating combination treatments involving oncolytic viruses and immunologic agents are ongoing. This review focuses on the mechanisms of action for oncolytic viruses and highlights select agents and combinations currently in development.
Collapse
Affiliation(s)
- Omid Hamid
- The Angeles Clinic and Research Institute, 11818 Wilshire Blvd #200, Los Angeles, CA, 90025, USA.
| | | | | | - Jenny Hong
- Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | |
Collapse
|
13
|
Abstract
Oncolytic virotherapy is a cancer treatment in which replication-competent viruses are used that specifically infect, replicate in and lyse malignant tumour cells, while minimizing harm to normal cells. Anecdotal evidence of the effectiveness of this strategy has existed since the late nineteenth century, but advances and innovations in biotechnological methods in the 1980s and 1990s led to a renewed interest in this type of therapy. Multiple clinical trials investigating the use of agents constructed from a wide range of viruses have since been performed, and several of these enrolled patients with urological malignancies. Data from these clinical trials and from preclinical studies revealed a number of challenges to the effectiveness of oncolytic virotherapy that have prompted the development of further sophisticated strategies. Urological cancers have a range of distinctive features, such as specific genetic mutations and cell surface markers, which enable improving both effectiveness and safety of oncolytic virus treatments. The strategies employed in creating advanced oncolytic agents include alteration of the virus tropism, regulating transcription and translation of viral genes, combination with chemotherapy, radiotherapy or gene therapy, arming viruses with factors that stimulate the immune response against tumour cells and delivery technologies to ensure that the viral agent reaches its target tissue.
Collapse
Affiliation(s)
- Zahid Delwar
- Department of Surgery, University of British Columbia, 2211 Wesbrook Mall, Vancouver, British Columbia V6T 2B5, Canada
| | - Kaixin Zhang
- Department of Urology, University of British Columbia, Level 6, 2775 Laurel Street, Vancouver, British Columbia V5Z 1M9, Canada
| | - Paul S Rennie
- Prostate Research Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, British Columbia V6H 3Z6, Canada
| | - William Jia
- Department of Surgery, University of British Columbia, 2211 Wesbrook Mall, Vancouver, British Columbia V6T 2B5, Canada
| |
Collapse
|
14
|
Ylä-Pelto J, Tripathi L, Susi P. Therapeutic Use of Native and Recombinant Enteroviruses. Viruses 2016; 8:57. [PMID: 26907330 PMCID: PMC4810247 DOI: 10.3390/v8030057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 02/15/2016] [Accepted: 02/18/2016] [Indexed: 12/20/2022] Open
Abstract
Research on human enteroviruses has resulted in the identification of more than 100 enterovirus types, which use more than 10 protein receptors and/or attachment factors required in cell binding and initiation of the replication cycle. Many of these “viral” receptors are overexpressed in cancer cells. Receptor binding and the ability to replicate in specific target cells define the tropism and pathogenesis of enterovirus types, because cellular infection often results in cytolytic response, i.e., disruption of the cells. Viral tropism and cytolytic properties thus make native enteroviruses prime candidates for oncolytic virotherapy. Copy DNA cloning and modification of enterovirus genomes have resulted in the generation of enterovirus vectors with properties that are useful in therapy or in vaccine trials where foreign antigenic epitopes are expressed from or on the surface of the vector virus. The small genome size and compact particle structure, however, set limits to enterovirus genome modifications. This review focuses on the therapeutic use of native and recombinant enteroviruses and the methods that have been applied to modify enterovirus genomes for therapy.
Collapse
Affiliation(s)
- Jani Ylä-Pelto
- Department of Virology, University of Turku, Kiinamyllynkatu 13, 20520 Turku, Finland.
| | - Lav Tripathi
- Department of Virology, University of Turku, Kiinamyllynkatu 13, 20520 Turku, Finland.
| | - Petri Susi
- Department of Virology, University of Turku, Kiinamyllynkatu 13, 20520 Turku, Finland.
- Biomaterials and Diagnostics Group, Turku University of Applied Sciences, 20520 Turku, Finland.
| |
Collapse
|
15
|
Bradley S, Jakes AD, Harrington K, Pandha H, Melcher A, Errington-Mais F. Applications of coxsackievirus A21 in oncology. Oncolytic Virother 2014; 3:47-55. [PMID: 27512662 PMCID: PMC4918364 DOI: 10.2147/ov.s56322] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The clinical management of cancer continues to be dominated by macroscopic surgical resection, radiotherapy, and cytotoxic drugs. The major challenge facing oncology is to achieve more selective, less toxic and effective methods of targeting disseminated tumors, a challenge oncolytic virotherapy may be well-placed to meet. Characterization of coxsackievirus A21 (CVA21) receptor-based mechanism of virus internalization and lysis in the last decade has suggested promise for CVA21 as a virotherapy against malignancies which overexpress those receptors. Preclinical studies have demonstrated proof of principle, and with the results of early clinical trials awaited, CVA21 may be one of the few viruses to demonstrate benefit for patients. This review outlines the potential of CVA21 as an oncolytic agent, describing the therapeutic development of CVA21 in preclinical studies and early stage clinical trials. Preclinical evidence supports the potential use of CVA21 across a range of malignancies. Malignant melanoma is the most intensively studied cancer, and may represent a “test case” for future development of the virus. Although there are theoretical barriers to the clinical utility of oncolytic viruses like CVA21, whether these will block the efficacy of the virus in clinical practice remains to be established, and is a question which can only be answered by appropriate trials. As these data become available, the rapid journey of CVA21 from animal studies to clinical trials may offer a model for the translation of other oncolytic virotherapies from laboratory to clinic.
Collapse
Affiliation(s)
- Stephen Bradley
- Leeds Institute of Cancer and Pathology, Cancer Research UK and Experimental Cancer Medicine Centre, St James' University Hospital, Leeds, UK
| | - Adam D Jakes
- Leeds Institute of Cancer and Pathology, Cancer Research UK and Experimental Cancer Medicine Centre, St James' University Hospital, Leeds, UK
| | - Kevin Harrington
- Division of Cancer Biology, The Institute of Cancer Research, London, UK
| | - Hardev Pandha
- Oncology Department, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Alan Melcher
- Leeds Institute of Cancer and Pathology, Cancer Research UK and Experimental Cancer Medicine Centre, St James' University Hospital, Leeds, UK
| | - Fiona Errington-Mais
- Leeds Institute of Cancer and Pathology, Cancer Research UK and Experimental Cancer Medicine Centre, St James' University Hospital, Leeds, UK
| |
Collapse
|
16
|
Lu J, He YQ, Yi LN, Zan H, Kung HF, He ML. Viral kinetics of Enterovirus 71 in human abdomyosarcoma cells. World J Gastroenterol 2011; 17:4135-42. [PMID: 22039330 PMCID: PMC3203367 DOI: 10.3748/wjg.v17.i36.4135] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 05/19/2011] [Accepted: 05/26/2011] [Indexed: 02/06/2023] Open
Abstract
AIM: To characterise the viral kinetics of enterovirus 71 (EV71).
METHODS: In this study, human rhabdomyosarcoma (RD) cells were infected with EV71 at different multiplicity of infection (MOI). After infection, the cytopathic effect (CPE) was monitored and recorded using a phase contrast microscope associated with a CCD camera at different time points post viral infection (0, 6, 12, 24 h post infection). Cell growth and viability were measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay in both EV71 infected and mock infected cells at each time point. EV71 replication kinetics in RD cells was determined by measuring the total intracellular viral RNA with real-time reverse-transcription polymerase chain reaction (qRT-PCR). Also, the intracellular and extracellular virion RNA was isolated and quantified at different time points to analyze the viral package and secretion. The expression of viral protein was determined by analyze the levels of viral structure protein VP1 with Western blotting.
RESULTS: EV71 infection induced a significant CPE as early as 6 h post infection (p.i.) in both RD cells infected with high ratio of virus (MOI 10) and low ratio of virus (MOI 1). In EV71 infected cells, the cell growth was inhibited and the number of viable cells was rapidly decreased in the later phase of infection. EV71 virions were uncoated immediately after entry. The intracellular viral RNA began to increase at as early as 3 h p.i. and the exponential increase was found between 3 h to 6 h p.i. in both infected groups. For viral structure protein synthesis, results from western-blot showed that intracellular viral protein VP1 could not be detected until 6 h p.i. in the cells infected at either MOI 1 or MOI 10; and reached the peak at 9 h p.i. in the cells infected with EV71 at both MOI 1 and MOI 10. Simultaneously, the viral package and secretion were also actively processed as the virus underwent rapid replication. The viral package kinetics was comparable for both MOI 1 and MOI 10 infected groups. It was observed that at 3 h p.i, the intracellular virions obviously decreased, thereafter, the intracellular virions began to increase and enter into the exponential phase until 12 h p.i. The total amounts of intracellular virons were decreased from 12 to 24 h p.i. Consistent with this result, the increase of virus secretion occurred during 6 to 12 h p.i.
CONCLUSION: The viral kinetics of EV71 were established by analyzing viral replication, package and secretion in RD cells.
Collapse
|
17
|
Uil TG, Vellinga J, de Vrij J, van den Hengel SK, Rabelink MJWE, Cramer SJ, Eekels JJM, Ariyurek Y, van Galen M, Hoeben RC. Directed adenovirus evolution using engineered mutator viral polymerases. Nucleic Acids Res 2010; 39:e30. [PMID: 21138963 PMCID: PMC3061072 DOI: 10.1093/nar/gkq1258] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Adenoviruses (Ads) are the most frequently used viruses for oncolytic and gene therapy purposes. Most Ad-based vectors have been generated through rational design. Although this led to significant vector improvements, it is often hampered by an insufficient understanding of Ad’s intricate functions and interactions. Here, to evade this issue, we adopted a novel, mutator Ad polymerase-based, ‘accelerated-evolution’ approach that can serve as general method to generate or optimize adenoviral vectors. First, we site specifically substituted Ad polymerase residues located in either the nucleotide binding pocket or the exonuclease domain. This yielded several polymerase mutants that, while fully supportive of viral replication, increased Ad’s intrinsic mutation rate. Mutator activities of these mutants were revealed by performing deep sequencing on pools of replicated viruses. The strongest identified mutators carried replacements of residues implicated in ssDNA binding at the exonuclease active site. Next, we exploited these mutators to generate the genetic diversity required for directed Ad evolution. Using this new forward genetics approach, we isolated viral mutants with improved cytolytic activity. These mutants revealed a common mutation in a splice acceptor site preceding the gene for the adenovirus death protein (ADP). Accordingly, the isolated viruses showed high and untimely expression of ADP, correlating with a severe deregulation of E3 transcript splicing.
Collapse
Affiliation(s)
- Taco G Uil
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, 2300 RC, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Funke C, Farr M, Werner B, Dittmann S, Überla K, Piper C, Niehaus K, Horstkotte D. Antiviral effect of Bosentan and Valsartan during coxsackievirus B3 infection of human endothelial cells. J Gen Virol 2010; 91:1959-1970. [DOI: 10.1099/vir.0.020065-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In viral myocarditis, adeno- and enteroviruses have most commonly been implicated as causes of infection. Both viruses require the human coxsackie-adenovirus receptor (CAR) to infect the myocardium. Due to its crucial role for viral entry, CAR-downregulation may lead to novel approaches for treatment for viral myocarditis. In this study, we report on pharmaceutical drug influences on CAR levels in human umbilical vein endothelial cells (HUVEC) and cervical carcinoma cells (HeLa) detected by immunoblotting, quantitative real time-PCR and cellular susceptibility to the cardiotropic coxsackie-B3 virus strain Nancy (CVB3). Our results indicate, for the first time, a dose-dependent CAR mRNA and protein downregulation upon Valsartan and Bosentan treatment. Most interestingly, drug-induced CAR diminution significantly reduced the viral load in CVB3-infected HUVEC. In order to assess the regulatory effects of both drugs in detail, we knocked down their protein targets, the G-protein coupled receptors angiotensin-II type-1 receptor (AT1R) and endothelin-1 type-A and -B receptors (ETAR/ETBR) in HUVEC. Receptor-specific gene silencing indicates that CAR gene expression is regulated by agonistic and antagonistic binding to ETBR, but not ETAR. In addition, neither stimulation nor inhibition of AT1R seemed to be involved in CAR gene regulatory processes. Our study indicates that Valsartan and Bosentan protected human endothelial cells from CVB3-infection. Therefore, besides their well-known anti-hypertensive effects these drugs may also protect the myocardium and other tissues from coxsackie- and adenoviral infection.
Collapse
Affiliation(s)
- Carsten Funke
- Department of Cardiology, Heart and Diabetes Center NRW, Ruhr University of Bochum, Georgstr. 11, 32545 Bad Oeynhausen, NRW, Germany
| | - Martin Farr
- Department of Cardiology, Heart and Diabetes Center NRW, Ruhr University of Bochum, Georgstr. 11, 32545 Bad Oeynhausen, NRW, Germany
| | - Bianca Werner
- Department of Cardiology, Heart and Diabetes Center NRW, Ruhr University of Bochum, Georgstr. 11, 32545 Bad Oeynhausen, NRW, Germany
| | - Sven Dittmann
- Department of Cardiology, Heart and Diabetes Center NRW, Ruhr University of Bochum, Georgstr. 11, 32545 Bad Oeynhausen, NRW, Germany
| | - Klaus Überla
- Department of Molecular and Medical Virology, Ruhr University of Bochum, Universitätsstr. 150, 44801 Bochum, NRW, Germany
| | - Cornelia Piper
- Department of Cardiology, Heart and Diabetes Center NRW, Ruhr University of Bochum, Georgstr. 11, 32545 Bad Oeynhausen, NRW, Germany
| | - Karsten Niehaus
- Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstr. 27, 33615 Bielefeld, NRW, Germany
| | - Dieter Horstkotte
- Department of Cardiology, Heart and Diabetes Center NRW, Ruhr University of Bochum, Georgstr. 11, 32545 Bad Oeynhausen, NRW, Germany
| |
Collapse
|
19
|
Berry LJ, Au GG, Barry RD, Shafren DR. Potent oncolytic activity of human enteroviruses against human prostate cancer. Prostate 2008; 68:577-87. [PMID: 18288643 DOI: 10.1002/pros.20741] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Oncolytic virotherapy offers a unique treatment modality for prostate cancer, especially stages that are resistant to current therapies, with the additional benefit of preferentially targeting tumor cells amongst an environment of healthy tissue. Herein, the low pathogenic enteroviruses; Coxsackievirus A21 (CVA21), as well as a bio-selected variant of Coxsackievirus A21 (CVA21-DAFv) and Echovirus 1 (EV1) are evaluated as novel oncolytic agents against human prostate cancer. METHODS The surface expression of viral receptors required for enterovirus cell attachment/entry, including intercellular adhesion molecule-1 (ICAM-1), decay-accelerating factor (DAF) and integrin alpha(2)beta(1) on a number of human prostate cancer lines was assessed by flow cytometry. Susceptibility to viral oncolysis was determined via in vitro cell lysis assays performed on cell monolayers cultured in micro titer plates. The in vivo oncolytic efficacy of the enteroviruses was assessed using xenograft models in immune compromised SCID-mice following systemic challenge. RESULTS The majority of prostate cancer lines tested expressed surface ICAM-1 and/or DAF, or alpha(2)beta(1), facilitating significant degrees of oncolysis following in vitro viral challenge. Systemic delivery of each of the three viruses induced reduction of xenograft tumor burdens in vivo, and a therapeutic dose-response was demonstrated for escalating doses of EV1 in the LNCaP animal model. CONCLUSION Enteroviruses CVA21, CVA21-DAFv, and EV1 are potentially potent oncolytic agents against human prostate cancer.
Collapse
Affiliation(s)
- Linda J Berry
- The Picornavirus Research Unit, School of Biomedical Sciences, Faculty of Health, The University of Newcastle, Newcastle, New South Wales, Australia
| | | | | | | |
Collapse
|
20
|
Lévêque N, Norder H, Zreik Y, Cartet G, Falcon D, Rivat N, Chomel JJ, Hong SS, Lina B. Echovirus 6 strains derived from a clinical isolate show differences in haemagglutination ability and cell entry pathway. Virus Res 2007; 130:1-9. [PMID: 17566587 DOI: 10.1016/j.virusres.2007.05.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2006] [Revised: 05/02/2007] [Accepted: 05/04/2007] [Indexed: 11/25/2022]
Abstract
Two echovirus 6 (EV6) strains were isolated from a clinical sample after successive sub-cultures in PLC (human hepatocellular carcinoma) and HeLa (human cervical adenocarcinoma) cells. The first strain retained its haemagglutinating capacity (HAEV6) while the second became non-haemagglutinating (NHAEV6). Virus binding assay showed that HAEV6 was capable of binding to DAF-expressing cells but not NHAEV6 confirming the role of DAF in EV6 haemagglutination. The lack of competition between the two viral strains during coinfections suggested that each strain used a different cell entry pathway. We provide evidence showing that HAEV6 used preferentially the lipid raft-dependent caveolae pathway, whereas NHAEV6 followed the clathrin-mediated pathway. Comparison of the sequences of HAEV6 and NHAEV6 revealed five amino acid changes in the VP1, VP2 and VP3 capsid proteins distributed in domains which are known to be highly immunogenic or suggested to be involved in receptor binding, virion stability and pathogenicity.
Collapse
Affiliation(s)
- Nicolas Lévêque
- Centre National de Référence des Entérovirus, Laboratoire de Virologie, Centre de Biologie et de Pathologie Est, Institut de Microbiologie, Hospices Civils de Lyon, 69677 Bron, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Khan AG, Pichler J, Rosemann A, Blaas D. Human rhinovirus type 54 infection via heparan sulfate is less efficient and strictly dependent on low endosomal pH. J Virol 2007; 81:4625-32. [PMID: 17301156 PMCID: PMC1900163 DOI: 10.1128/jvi.02160-06] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
K-type major-group human rhinoviruses (HRVs) (including HRV54) share a prominent lysine residue in the HI surface loop of VP1 with all minor-group HRVs. Despite the presence of this residue, they cannot use members of the low-density lipoprotein receptor family for productive infection. Reexamining all K-type viruses for receptor usage, we noticed that HRV54 is able to replicate in RD cells that lack the major-group receptor intercellular adhesion molecule 1 (ICAM-1). By using receptor blocking assays, inhibition of sulfation, enzymatic digestion, and proteoglycan-deficient cell lines, we show here that wild-type HRV54, without any adaptation, uses heparan sulfate (HS) proteoglycan as an alternate receptor. However, infection via HS is less efficient than infection via ICAM-1. Moreover, HRV54 has an acid lability profile similar to that of the minor-group virus HRV2. In ICAM-1-deficient cells its replication is completely blocked by the H(+)-ATPase inhibitor bafilomycin A1, whereas in ICAM-1-expressing cells it replicates in the presence of the drug. Thus, use of a "noncatalytic" receptor requires the virus to be highly unstable at low pH.
Collapse
Affiliation(s)
- Abdul Ghafoor Khan
- Max F. Perutz Laboratories, Department of Medical Biochemistry, Medical University of Vienna, A-1030 Vienna, Austria
| | | | | | | |
Collapse
|
22
|
Nsaibia S, Wagner S, Rondé P, Warter JM, Poindron P, Aouni M, Dorchies OM. The difficult-to-cultivate coxsackieviruses A can productively multiply in primary culture of mouse skeletal muscle. Virus Res 2007; 123:30-9. [PMID: 16956688 DOI: 10.1016/j.virusres.2006.07.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2005] [Revised: 07/15/2006] [Accepted: 07/27/2006] [Indexed: 11/26/2022]
Abstract
Coxsackieviruses A (CVA) are associated with several clinical manifestations such as aseptic meningitis and paralytic syndromes in humans. Most CVA are difficult-to-cultivate, which impedes their propagation and isolation from clinical material. Here, we tested the ability of cultivable (CVA-13, CVA-14), and difficult-to-cultivate (CVA-6, CVA-22) strains to infect primary cultures of skeletal muscle cells established from newborn mice. We found that such cultures sustained the multiplication of these CVA, as evidenced by the development of a cytopathic effect, already in the initial preparation or after passaging once. Cultures established for no more than 24h were sensitive to infection whereas older preparations were resistant. Using confocal microscopy after double-immunolabeling of the VP1 capsid protein and the muscle cell marker myosin, we demonstrated that only the myoblasts were infected, resulting in VP1 expression throughout their cytoplasm. Inoculation of infected cultures to suckling mice resulted in paralysis indicating that infection was productive. The nature of candidate receptors for virus entry in such cultures and the influence of cell culture conditions on the expression of these putative receptors are discussed. This work suggests that primary cultures of skeletal muscle cells could be used to propagate and isolate any CVA strain.
Collapse
Affiliation(s)
- Siwar Nsaibia
- Louis Pasteur University-Strasbourg II, School of Pharmacy, Laboratoire de Pathologie des Communications entre Cellules Nerveuses et Musculaires, EA 3427, 67401 Illkirch, France
| | | | | | | | | | | | | |
Collapse
|
23
|
Fatemi SH, Pearce DA, Brooks AI, Sidwell RW. Prenatal viral infection in mouse causes differential expression of genes in brains of mouse progeny: a potential animal model for schizophrenia and autism. Synapse 2005; 57:91-9. [PMID: 15906383 DOI: 10.1002/syn.20162] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Schizophrenia and autism are neurodevelopmental disorders with genetic and environmental etiologies. Prenatal viral infection has been associated with both disorders. We investigated the effects of prenatal viral infection on gene regulation in offspring of Balb-c mice using microarray technology. The results showed significant upregulation of 21 genes and downregulation of 18 genes in the affected neonatal brain homogenates spanning gene families affecting cell structure and function, namely, cytosolic chaperone system, HSC70, Bicaudal D, aquaporin 4, carbonic anhydrase 3, glycine receptor, norepinephrine transporter, and myelin basic protein. We also verified the results using QPCR measurements of selected mRNA species. These results show for the first time that prenatal human influenza viral infection on day 9 of pregnancy leads to alterations in a subset of genes in brains of exposed offspring, potentially leading to permanent changes in brain structure and function.
Collapse
Affiliation(s)
- S H Fatemi
- University of Minnesota, Department of Psychiatry, Division of Neuroscience Research, Minneapolis, Minnesota 55455, USA.
| | | | | | | |
Collapse
|