1
|
Zeng J, Jaijyan DK, Yang S, Pei S, Tang Q, Zhu H. Exploring the Potential of Cytomegalovirus-Based Vectors: A Review. Viruses 2023; 15:2043. [PMID: 37896820 PMCID: PMC10612100 DOI: 10.3390/v15102043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 09/28/2023] [Accepted: 09/30/2023] [Indexed: 10/29/2023] Open
Abstract
Viral vectors have emerged as powerful tools for delivering and expressing foreign genes, playing a pivotal role in gene therapy. Among these vectors, cytomegalovirus (CMV) stands out as a promising viral vector due to its distinctive attributes including large packaging capacity, ability to achieve superinfection, broad host range, capacity to induce CD8+ T cell responses, lack of integration into the host genome, and other qualities that make it an appealing vector candidate. Engineered attenuated CMV strains such as Towne and AD169 that have a ~15 kb genomic DNA deletion caused by virus passage guarantee human safety. CMV's large genome enables the efficient incorporation of substantial foreign genes as demonstrated by CMV vector-based therapies for SIV, tuberculosis, cancer, malaria, aging, COVID-19, and more. CMV is capable of reinfecting hosts regardless of prior infection or immunity, making it highly suitable for multiple vector administrations. In addition to its broad cellular tropism and sustained high-level gene expression, CMV triggers robust, virus-specific CD8+ T cell responses, offering a significant advantage as a vaccine vector. To date, successful development and testing of murine CMV (MCMV) and rhesus CMV (RhCMV) vectors in animal models have demonstrated the efficacy of CMV-based vectors. These investigations have explored the potential of CMV vectors for vaccines against HIV, cancer, tuberculosis, malaria, and other infectious pathogens, as well as for other gene therapy applications. Moreover, the generation of single-cycle replication CMV vectors, produced by deleting essential genes, ensures robust safety in an immunocompromised population. The results of these studies emphasize CMV's effectiveness as a gene delivery vehicle and shed light on the future applications of a CMV vector. While challenges such as production complexities and storage limitations need to be addressed, ongoing efforts to bridge the gap between animal models and human translation continue to fuel the optimism surrounding CMV-based vectors. This review will outline the properties of CMV vectors and discuss their future applications as well as possible limitations.
Collapse
Affiliation(s)
- Janine Zeng
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| | - Dabbu Kumar Jaijyan
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| | - Shaomin Yang
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518060, China
| | - Shakai Pei
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| | - Qiyi Tang
- Department of Microbiology, Howard University College of Medicine, 520 W Street NW, Washington, DC 20059, USA
| | - Hua Zhu
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| |
Collapse
|
2
|
Bortolotti D, Rossignoli F, Rotola A, Campioni D, Cultrera R, Grisendi G, Dominici M, Rizzo R. Human Herpes simplex 1 virus infection of endometrial decidual tissue-derived MSC alters HLA-G expression and immunosuppressive functions. Hum Immunol 2018; 79:800-808. [PMID: 30118778 DOI: 10.1016/j.humimm.2018.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/10/2018] [Accepted: 08/13/2018] [Indexed: 10/28/2022]
Abstract
OBJECTIVES Mesenchymal stromal/stem cells have immunosuppressive functions. Our previous results demonstrated that one of the players of this immunomodulation can be ascribed to the Human Leukocyte Antigen-G. HLA-G, a non classical HLA class I antigen, is involved in immune tolerance during pregnancy, organ transplantation, autoimmune and inflammatory diseases. In this study we wanted to verify whether human endometrial decidual tissue derived (EDT)-MSC could express HLA-G. Additionally we assessed the permissivity to Human Herpesvirus infections, using HSV-1 as a model, and the possible effect on EDT-MSC immunosuppressive functions towards peripheral blood mononuclear cell (PBMC) proliferation. METHODS We analyzed immune-inhibitory functions and HLA-G expression in human EDT-MSC before and after HSV-1 infection. RESULTS We observed that EDT-MSC express HLA-G molecules, that partly are responsible for the immune-inhibitory functions of EDT-MSC towards PBMC proliferation. EDT-MSC are permissive for a productive infection by HSV-1, that decreases HLA-G expression and affects EDT-MSC immune-inhibitory functions. CONCLUSIONS We demonstrate that EDT-MSC are susceptible to HSV-1 infection, that reduces HLA-G expression and their immune-inhibitory function. These data could have a clinical implication in the use of EDT-MSC as an immunosuppressant, in particular in steroid-refractory GvHD after allogeneic hematopoietic stem cell transplantation and in autoimmune diseases.
Collapse
Affiliation(s)
- Daria Bortolotti
- Section of Microbiology, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Filippo Rossignoli
- Laboratory of Cellular Therapy, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Antonella Rotola
- Section of Microbiology, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Diana Campioni
- Department of Specialist Biomedical and Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Rosario Cultrera
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Giulia Grisendi
- Laboratory of Cellular Therapy, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Massimo Dominici
- Laboratory of Cellular Therapy, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Roberta Rizzo
- Section of Microbiology, Department of Medical Sciences, University of Ferrara, Ferrara, Italy.
| |
Collapse
|
3
|
Upfill-Brown A, Taniuchi M, Platts-Mills JA, Kirkpatrick B, Burgess SL, Oberste MS, Weldon W, Houpt E, Haque R, Zaman K, Petri WA. Nonspecific Effects of Oral Polio Vaccine on Diarrheal Burden and Etiology Among Bangladeshi Infants. Clin Infect Dis 2018; 65:414-419. [PMID: 28444240 PMCID: PMC5848225 DOI: 10.1093/cid/cix354] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 04/20/2017] [Indexed: 12/21/2022] Open
Abstract
Background. As the global polio eradication initiative prepares to cease use of oral polio vaccine (OPV) in 2020, there is increasing interest in understanding if oral vaccination provides non-specific immunity to other infections so that the consequences of this transition can be effectively planned for and mitigated. Methods. Data were collected from infants in an urban slum in Bangladesh (Mirpur, Dhaka) as part of the performance of rotavirus and oral polio vaccines in developing countries (PROVIDE) study. Following vaccination with trivalent oral polio vaccine (tOPV) at 6, 10, and 14 weeks, infants were randomly assigned to receive tOPV (n = 315) or inactivated polio vaccine (IPV) (n = 299) at 39 weeks. Episodes of diarrhea were documented through clinic visits and twice-weekly house visits through 52 weeks. In sum, 14 pathogens associated with diarrhea were analyzed with TaqMan Array Cards. Results. Although the proportion of children experiencing diarrhea was not different between the tOPV and IPV groups (P = .18), the number of days with diarrhea (P = .0037) and the number of separate diarrheal episodes (P = .054) trended lower in the OPV arm. Etiological analysis revealed that male tOPV recipients were less likely to have diarrhea of bacterial etiology (P = .0099) compared to male IPV recipients but equally likely to experience diarrhea due to viruses (P = .57) or protozoa (P = .14). Among the 6 bacterial enteric pathogens tested, only Campylobacter jejuni/coli detection was significantly reduced in the OPV arm (P = .0048). Conclusions. Our results suggest that OPV may cause nonspecific reductions in mortality, as has been studied elsewhere, by reducing etiology-specific diarrheal burden. This is likely driven by reductions in bacterial diarrhea. Further study of nonspecific OPV effects before global cessation is supported. Clinical Trials Registration. NCT01375647.
Collapse
Affiliation(s)
- Alexander Upfill-Brown
- Center for World Health, David Geffen School of Medicine at University of California, Los Angeles (UCLA)
| | - Mami Taniuchi
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville
| | - James A Platts-Mills
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville
| | - Beth Kirkpatrick
- Vaccine Testing Center and Unit of Infectious Diseases, Department of Medicine, University of Vermont College of Medicine, Burlington
| | - Stacey L Burgess
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville
| | | | - William Weldon
- Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Eric Houpt
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville
| | - Rashidul Haque
- Center for Vaccine Science and Parasitology Lab, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka
| | - K Zaman
- Center for Vaccine Science and Parasitology Lab, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka
| | - William A Petri
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville
| |
Collapse
|
4
|
Abstract
Herpes simplex virus (HSV) causes significant morbidity on the human population through such clinical syndromes as cold sores, genital herpes, herpes stromal keratitis, and encephalitis. Attempts to generate efficacious vaccines to date have failed. We have recently described the use of a conditionally replication-competent HSV-1 vector to immunize mice against a lethal challenge of HSV-1. The unique feature of this vaccine vector is that its replication is tightly controlled and can only occur in the presence of local heat and the presence of a small molecule inducer (an antiprogestin). This gives it the safety advantage of a replication-defective vaccine vector as well as the advantage of a replication-competent vector in that it is able to stimulate innate and adaptive aspects of the immune response in a natural context that a replication-defective vector cannot. In this chapter we provide a brief overview of HSV vaccines followed by the methodology used to propagate and utilize replication-conditional HSV vectors as vaccines.
Collapse
|
5
|
Palacios C, Torioni de Echaide S, Mattion N. Evaluation of the immune response to Anaplasma marginale MSP5 protein using a HSV-1 amplicon vector system or recombinant protein. Res Vet Sci 2014; 97:514-20. [PMID: 25458492 DOI: 10.1016/j.rvsc.2014.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Revised: 09/29/2014] [Accepted: 10/10/2014] [Indexed: 11/26/2022]
Abstract
Anaplasma marginale is an intraerythrocytic vector-borne infectious agent of cattle. Immunization with the current vaccine, based on parasitized erythrocytes with live Anaplasma centrale, shows some constraints and confers partial protection, suggesting the feasibility for the development of new generation of vaccines. The aim of the present study was to assess the effect of sequential immunization of BALB/c mice, with herpesvirus amplicon vector-based vaccines combined with protein-based vaccines, on the quality of the immune response against the major surface protein 5 of A. marginale. The highest antibody titers against MSP5 were elicited in mice that received two doses of adjuvanted recombinant protein (p < 0.0001). Mice treated with a heterologous prime-boost strategy generated sustained antibody titers at least up to 200 days, and a higher specific cellular response. The results presented here showed that sequential immunization with HSV-based vectors and purified antigen enhances the quality of the immune response against A. marginale.
Collapse
Affiliation(s)
- Carlos Palacios
- Centro de Virología Animal, Instituto de Ciencia y Tecnología Dr. Cesar Milstein, CONICET, Saladillo 2468, C1440FFX, Ciudad de Buenos Aires, Argentina
| | - Susana Torioni de Echaide
- Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria Rafaela, Ruta 34 Km 227, CP 2300, Rafaela, Santa Fe, Argentina
| | - Nora Mattion
- Centro de Virología Animal, Instituto de Ciencia y Tecnología Dr. Cesar Milstein, CONICET, Saladillo 2468, C1440FFX, Ciudad de Buenos Aires, Argentina.
| |
Collapse
|
6
|
Avanzi S, Leoni V, Rotola A, Alviano F, Solimando L, Lanzoni G, Bonsi L, Di Luca D, Marchionni C, Alvisi G, Ripalti A. Susceptibility of human placenta derived mesenchymal stromal/stem cells to human herpesviruses infection. PLoS One 2013; 8:e71412. [PMID: 23940750 PMCID: PMC3734067 DOI: 10.1371/journal.pone.0071412] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 07/01/2013] [Indexed: 12/11/2022] Open
Abstract
Fetal membranes (FM) derived mesenchymal stromal/stem cells (MSCs) are higher in number, expansion and differentiation abilities compared with those obtained from adult tissues, including bone marrow. Upon systemic administration, ex vivo expanded FM-MSCs preferentially home to damaged tissues promoting regenerative processes through their unique biological properties. These characteristics together with their immune-privileged nature and immune suppressive activity, a low infection rate and young age of placenta compared to other sources of SCs make FM-MSCs an attractive target for cell-based therapy and a valuable tool in regenerative medicine, currently being evaluated in clinical trials. In the present study we investigated the permissivity of FM-MSCs to all members of the human Herpesviridae family, an issue which is relevant to their purification, propagation, conservation and therapeutic use, as well as to their potential role in the vertical transmission of viral agents to the fetus and to their potential viral vector-mediated genetic modification. We present here evidence that FM-MSCs are fully permissive to infection with Herpes simplex virus 1 and 2 (HSV-1 and HSV-2), Varicella zoster virus (VZV), and Human Cytomegalovirus (HCMV), but not with Epstein-Barr virus (EBV), Human Herpesvirus-6, 7 and 8 (HHV-6, 7, 8) although these viruses are capable of entering FM-MSCs and transient, limited viral gene expression occurs. Our findings therefore strongly suggest that FM-MSCs should be screened for the presence of herpesviruses before xenotransplantation. In addition, they suggest that herpesviruses may be indicated as viral vectors for gene expression in MSCs both in gene therapy applications and in the selective induction of differentiation.
Collapse
Affiliation(s)
- Simone Avanzi
- Department of Oncology, Haematology and Laboratory Medicine, Operative Unit of Microbiology, A. O-U. di Bologna Policlinico S. Orsola-Malpighi, Bologna, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Nopora K, Bernhard CA, Ried C, Castello AA, Murphy KM, Marconi P, Koszinowski U, Brocker T. MHC class I cross-presentation by dendritic cells counteracts viral immune evasion. Front Immunol 2012. [PMID: 23189079 PMCID: PMC3505839 DOI: 10.3389/fimmu.2012.00348] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
DCs very potently activate CD8(+) T cells specific for viral peptides bound to MHC class I molecules. However, many viruses have evolved immune evasion mechanisms, which inactivate infected DCs and might reduce priming of T cells. Then MHC class I cross-presentation of exogenous viral Ag by non-infected DCs may become crucial to assure CD8(+) T cell responses. Although many vital functions of infected DCs are inhibited in vitro by many different viruses, the contributions of cross-presentation to T cell immunity when confronted with viral immune inactivation in vivo has not been demonstrated up to now, and remains controversial. Here we show that priming of Herpes Simplex Virus (HSV)-, but not murine cytomegalovirus (mCMV)-specific CD8(+) T cells was severely reduced in mice with a DC-specific cross-presentation deficiency. In contrast, while CD8(+) T cell responses to mutant HSV, which lacks crucial inhibitory genes, also depended on CD8α(+) DCs, they were independent of cross-presentation. Therefore HSV-specific CTL-responses entirely depend on the CD8α(+) DC subset, which present via direct or cross-presentation mechanisms depending on the immune evasion equipment of virus. Our data establish the contribution of cross-presentation to counteract viral immune evasion mechanisms in some, but not all viruses.
Collapse
Affiliation(s)
- Katrin Nopora
- Institute for Immunology, Ludwig-Maximilians-University Munich Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Edelmann SL, Marconi P, Brocker T. Peripheral T cells re-enter the thymus and interfere with central tolerance induction. THE JOURNAL OF IMMUNOLOGY 2011; 186:5612-9. [PMID: 21471449 DOI: 10.4049/jimmunol.1004010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The thymus mainly contains developing thymocytes that undergo thymic selection. In addition, some mature activated peripheral T cells can re-enter the thymus. We demonstrated in this study that adoptively transferred syngeneic Ag-specific T cells can enter the thymus of lymphopenic mice, where they delete thymic dendritic cells and medullary thymic epithelial cells in an Ag-specific fashion, without altering general thymic functions. This induced sustained thymic release of autoreactive self-Ag-specific T cells suggested that adoptively transferred activated T cells can specifically alter the endogenous T cell repertoire by erasing negative selection of their own specificities. Especially in clinical settings in which adoptively transferred T cells cause graft-versus-host disease or graft-versus-leukemia, as well as in adoptive tumor therapies, these findings might be of importance, because the endogenous T cell repertoire might be skewed to contribute to both manifestations.
Collapse
Affiliation(s)
- Stephanie L Edelmann
- Institute for Immunology, Ludwig-Maximilians-University, D-80336 Munich, Germany
| | | | | |
Collapse
|
9
|
Marconi P, Argnani R, Epstein AL, Manservigi R. HSV as a vector in vaccine development and gene therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 655:118-44. [PMID: 20047039 DOI: 10.1007/978-1-4419-1132-2_10] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The very deep knowledge acquired on the genetics and molecular biology of herpes simplex virus (HSV), major human pathogen whose lifestyle is based on a long-term dual interaction with the infected host characterized by the existence of lytic and latent infections, has allowed the development of potential vectors for several applications in human healthcare. These include delivery and expression of human genes to cells of the nervous system, selective destruction of cancer cells, prophylaxis against infection with HSV or other infectious diseases and targeted infection of specific tissues or organs. Three different classes of vectors can be derived from HSV-1: replication-competent attenuated vectors, replication-incompetent recombinant vectors and defective helper-dependent vectors known as amplicons. This chapter highlights the current knowledge concerning design, construction and recent applications, as well as the potential and current limitations of the three different classes of HSV-1-based vectors.
Collapse
Affiliation(s)
- Peggy Marconi
- Department of Experimental and Diagnostic Medicine-Section of Microbiology, University of Ferrara, Via Luigi Borsari 46, Ferrara, 44100, Italy.
| | | | | | | |
Collapse
|
10
|
Abstract
The very deep knowledge acquired on the genetics and molecular biology of herpes simplex virus (HSV), has allowed the development of potential replication-competent and replication-defective vectors for several applications in human healthcare. These include delivery and expression of human genes to cells of the nervous systems, selective destruction of cancer cells, prophylaxis against infection with HSV or other infectious diseases, and targeted infection to specific tissues or organs. Replication-defective recombinant vectors are non-toxic gene transfer tools that preserve most of the neurotropic features of wild type HSV-1, particularly the ability to express genes after having established latent infections, and are thus proficient candidates for therapeutic gene transfer settings in neurons. A replication-defective HSV vector for the treatment of pain has recently entered in phase 1 clinical trial. Replication-competent (oncolytic) vectors are becoming a suitable and powerful tool to eradicate brain tumours due to their ability to replicate and spread only within the tumour mass, and have reached phase II/III clinical trials in some cases. The progress in understanding the host immune response induced by the vector is also improving the use of HSV as a vaccine vector against both HSV infection and other pathogens. This review briefly summarizes the obstacle encountered in the delivery of HSV vectors and examines the various strategies developed or proposed to overcome such challenges.
Collapse
Affiliation(s)
- Roberto Manservigi
- Department of Experimental and Diagnostic Medicine - Section of Microbiology, University of Ferrara, Via Luigi Borsari 46, 44100 Ferrara, Italy
| | | | | |
Collapse
|
11
|
Manservigi R, Argnani R, Marconi P. HSV Recombinant Vectors for Gene Therapy. Open Virol J 2010; 4:123-56. [PMID: 20835362 DOI: 10.2174/1874357901004030123] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 03/13/2010] [Accepted: 03/31/2010] [Indexed: 12/16/2022] Open
Abstract
The very deep knowledge acquired on the genetics and molecular biology of herpes simplex virus (HSV), has allowed the development of potential replication-competent and replication-defective vectors for several applications in human healthcare. These include delivery and expression of human genes to cells of the nervous systems, selective destruction of cancer cells, prophylaxis against infection with HSV or other infectious diseases, and targeted infection to specific tissues or organs. Replication-defective recombinant vectors are non-toxic gene transfer tools that preserve most of the neurotropic features of wild type HSV-1, particularly the ability to express genes after having established latent infections, and are thus proficient candidates for therapeutic gene transfer settings in neurons. A replication-defective HSV vector for the treatment of pain has recently entered in phase 1 clinical trial. Replication-competent (oncolytic) vectors are becoming a suitable and powerful tool to eradicate brain tumours due to their ability to replicate and spread only within the tumour mass, and have reached phase II/III clinical trials in some cases. The progress in understanding the host immune response induced by the vector is also improving the use of HSV as a vaccine vector against both HSV infection and other pathogens. This review briefly summarizes the obstacle encountered in the delivery of HSV vectors and examines the various strategies developed or proposed to overcome such challenges.
Collapse
Affiliation(s)
- Roberto Manservigi
- Department of Experimental and Diagnostic Medicine - Section of Microbiology, University of Ferrara, Via Luigi Borsari 46, 44100 Ferrara, Italy
| | | | | |
Collapse
|
12
|
Gruber A, Cannarile MA, Cheminay C, Ried C, Marconi P, Häcker G, Brocker T. Parenchymal cells critically curtail cytotoxic T-cell responses by inducing Bim-mediated apoptosis. Eur J Immunol 2010; 40:966-75. [DOI: 10.1002/eji.200939485] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
13
|
Medical application of herpes simplex virus. J Dermatol Sci 2009; 57:75-82. [PMID: 19939634 DOI: 10.1016/j.jdermsci.2009.10.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Revised: 10/20/2009] [Accepted: 10/21/2009] [Indexed: 11/22/2022]
Abstract
Herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) are important human pathogens that cause a variety of diseases from mild skin diseases such as herpes labialis and herpes genitalis to life-threatening diseases such as herpes encephalitis and neonatal herpes. A number of studies have elucidated the roles of this virus in viral replication and pathogenicity, the regulation of gene expression, interaction with the host cell and immune evasion from the host system. This research has allowed the development of potential therapeutic agents and vectors for human diseases. This review focuses on the basic functions and roles of HSV gene products and reviews the current knowledge of medical applications of genetically engineered HSV mutants using different strategies. These major HSV-derived vectors include: (i) amplicons for gene delivery vectors; (ii) replication-defective HSV recombinants for vaccine vectors; (iii) replication-attenuated HSV recombinants for oncolytic virotherapy.
Collapse
|
14
|
Dresch C, Edelmann SL, Marconi P, Brocker T. Lentiviral-mediated transcriptional targeting of dendritic cells for induction of T cell tolerance in vivo. THE JOURNAL OF IMMUNOLOGY 2008; 181:4495-506. [PMID: 18802052 DOI: 10.4049/jimmunol.181.7.4495] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Dendritic cells (DCs) are important APCs able to induce both tolerance and immunity. Therefore, DCs are attractive targets for immune intervention. However, the ex vivo generation and manipulation of DCs at sufficient numbers and without changing their original phenotypic and functional characteristics are major obstacles. To manipulate DCs in vivo, we developed a novel DC-specific self-inactivating lentiviral vector system using the 5' untranslated region from the DC-STAMP gene as a putative promoter region. We show that a gene therapy approach with these DC-STAMP-lentiviral vectors yields long-term and cell-selective transgene expression in vivo. Furthermore, transcriptionally targeted DCs induced functional, Ag-specific CD4 and CD8 T cell tolerance in vivo, which could not be broken by viral immunization. Tolerized CTL were unable to induce autoimmune diabetes in a murine autoimmune model system. Therefore, delivering transgenes specifically to DCs by using viral vectors might be a promising tool in gene therapy.
Collapse
Affiliation(s)
- Christiane Dresch
- Institute for Immunology, Ludwig-Maximilians-University, Munich, Germany
| | | | | | | |
Collapse
|
15
|
Luckashenak N, Schroeder S, Endt K, Schmidt D, Mahnke K, Bachmann MF, Marconi P, Deeg CA, Brocker T. Constitutive Crosspresentation of Tissue Antigens by Dendritic Cells Controls CD8+ T Cell Tolerance In Vivo. Immunity 2008; 28:521-32. [DOI: 10.1016/j.immuni.2008.02.018] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2007] [Revised: 12/11/2007] [Accepted: 02/08/2008] [Indexed: 01/12/2023]
|
16
|
Werner-Klein M, Dresch C, Marconi P, Brocker T. Transcriptional targeting of B cells for induction of peripheral CD8 T cell tolerance. THE JOURNAL OF IMMUNOLOGY 2007; 178:7738-46. [PMID: 17548611 DOI: 10.4049/jimmunol.178.12.7738] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Several mechanisms are in place to neutralize autoimmune CD8 T cells by tolerance induction. Developing self-specific CD8 T cells are eliminated in the thymus by Ag-presenting epithelial and dendritic cells (DCs). However, CD8 T cells escaping thymic central tolerance can also be inactivated by tolerance mechanisms in peripheral organs. In contrast to DCs, the role of B cells in generating CD8 T cell tolerance is not well-characterized. To investigate this question in more detail, we transcriptionally targeted Ag to B cells using B cell-specific retroviral vectors in vivo. Although Ag expression could be detected in B cells of thymus, lymph nodes, and spleen, B cells were unable to induce central tolerance of CD8 thymocytes. In contrast, in peripheral organs, we could identify clonal deletion and functional inhibition (anergy) of CD8 T cells as tolerance-inducing mechanisms. Although Ag expressed by B cells was acquired and cross-presented by DCs, B cells were also sufficient to tolerize CD8 T cells directly. These findings suggest exploitation of B cells for Ag-specific immunotherapy of CD8 T cell-mediated autoimmune diseases.
Collapse
Affiliation(s)
- Melanie Werner-Klein
- Institute for Immunology, Ludwig-Maximilians-University, Goethestrasse 31, D-80336 Munich, Germany
| | | | | | | |
Collapse
|
17
|
Fiorentini S, Marconi P, Avolio M, Marini E, Garrafa E, Caracciolo S, Rossi D, Bozac A, Becker PD, Gentili F, Facchetti F, Guzman CA, Manservigi R, Caruso A. Replication-deficient mutant Herpes Simplex Virus-1 targets professional antigen presenting cells and induces efficient CD4+ T helper responses. Microbes Infect 2007; 9:988-96. [PMID: 17553721 DOI: 10.1016/j.micinf.2007.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2006] [Revised: 03/08/2007] [Accepted: 04/03/2007] [Indexed: 11/24/2022]
Abstract
Both neutralizing antibodies and cytotoxic T-cells are necessary to control a viral infection. However, vigorous T helper responses are essential for their elicitation and maintenance. Here we show that a recombinant replication-deficient Herpes Simplex Virus (HSV)-1 vector encoding the Human Immunodeficiency Virus (HIV)-1 matrix protein p17 (T0-p17) was capable of infecting professional antigen presenting cells (APCs) in vitro and in vivo. The injection of T0-p17 in the mouse dermis generated a strong p17-specific CD4+ T helper response preceding both p17-specific humoral and effector T cell responses. Moreover, we show that T0-p17 infection did not interfere with the endogenous processing of the transgene encoded antigen, since infected APCs were able to evoke a strong recall response in vitro. Our results demonstrate that replication-deficient HSV vectors can be appealing candidates for the development of vaccines able to trigger T helper responses.
Collapse
MESH Headings
- Animals
- Antigen-Presenting Cells/immunology
- Antigen-Presenting Cells/virology
- CD4 Antigens
- CD4-Positive T-Lymphocytes/immunology
- Female
- Gene Products, gag/genetics
- Gene Products, gag/immunology
- Gene Products, gag/metabolism
- Genetic Vectors
- HIV Antibodies/blood
- HIV Antigens/genetics
- HIV Antigens/immunology
- HIV Antigens/metabolism
- Herpesvirus 1, Human/genetics
- Herpesvirus 1, Human/immunology
- Herpesvirus 1, Human/pathogenicity
- Humans
- Immunization
- Macrophages, Peritoneal/virology
- Mice
- Mice, Inbred BALB C
- Mutation
- Recombination, Genetic
- T-Lymphocytes, Helper-Inducer/immunology
- Viral Proteins/genetics
- Viral Proteins/immunology
- Viral Proteins/metabolism
- Virus Replication
- gag Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- Simona Fiorentini
- Department of Experimental and Applied Medicine, Section of Microbiology, University of Brescia Medical School, Piazzale Spedali Civili, 1, I-25123 Brescia, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Santos K, Simon DAL, Conway E, Bowers WJ, Mitra S, Foster TH, Lugade A, Lord EM, Federoff HJ, Dewhurst S, Frelinger JG. Spatial and temporal expression of herpes simplex virus type 1 amplicon-encoded genes: implications for their use as immunization vectors. Hum Gene Ther 2007; 18:93-105. [PMID: 17298238 DOI: 10.1089/hum.2006.082] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
There is great interest in developing new immunization vectors. Helper virus-free herpes amplicons, plasmid-based vectors that encode no viral gene products and have an extremely large coding capacity, are attractive viral vaccine candidates for expressing recombinant proteins in vivo for immunization. Earlier studies in mice, using amplicons encoding the gp120 protein of human immunodeficiency virus (HIV), resulted in strikingly robust cellular immune responses as measured by cytotoxicity and interferon gamma enzyme-linked immunospot assays. To begin to understand how such vectors function in vivo to generate an immune response, we used amplicons encoding reporter constructs including green fluorescent protein (GFP) and luciferase to examine the duration of expression after administration to mice. Luciferase expression, measured with the IVIS system from Xenogen/Caliper Life Sciences (Hopkinton, MA) and by enzymatic assays of tissue extracts, revealed that expression after injection of the HSVluc amplicons peaked earlier than 24 hr after injection into mice. HSVegfp injection resulted in peak accumulation of GFP 24 hr after administration in vivo. Thus, both reporter genes revealed a rather rapid and robust expression pattern of short duration. The short period of expression appears in part to be due to gene silencing. Examination of the cells transduced by amplicons encoding GFP and human B7.1 suggested that the amplicons transduce a variety of cells, including professional antigen-presenting cells. From this and previous work, we conclude that amplicons may engender a potent immune response by directly transducing dendritic cells as well as by cross-priming of antigen produced by other transduced host cells.
Collapse
Affiliation(s)
- Kathlyn Santos
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Bozac A, Berto E, Vasquez F, Grandi P, Caputo A, Manservigi R, Ensoli B, Marconi P. Expression of human immunodeficiency virus type 1 tat from a replication-deficient herpes simplex type 1 vector induces antigen-specific T cell responses. Vaccine 2006; 24:7148-58. [PMID: 16884834 DOI: 10.1016/j.vaccine.2006.06.061] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2005] [Revised: 06/23/2006] [Accepted: 06/26/2006] [Indexed: 10/24/2022]
Abstract
Herpes simplex type-1 virus (HSV-1) based vectors have been widely used in different gene therapy approaches and also as experimental vaccines against HSV-1 infection. Recent advances in the HSV-1 technology do support the use of replication defective HSV-1 as vaccine vectors for delivery of foreign antigens. We have examined the ability of a recombinant replication-defective HSV-1 vector expressing the HIV-1 Tat protein to induce long-term Tat-specific immune responses in the Balb/c murine model. The results showed that vector administration by the subcutaneous route elicits anti-Tat specific T-cell mediated immune responses in mice characterized by the presence of the Tat-specific cytotoxic activity and production of high levels of IFN-gamma.
Collapse
Affiliation(s)
- Aleksandra Bozac
- University of Ferrara, Department of Experimental and Diagnostic Medicine, Section of Microbiology, Via Luigi Borsari 46, 44100 Ferrara, Italy
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Kouvatsis V, Argnani R, Tsitoura E, Arsenakis M, Georgopoulou U, Mavromara P, Manservigi R. Characterization of herpes simplex virus type 1 recombinants that express and incorporate high levels of HCV E2-gC chimeric proteins. Virus Res 2006; 123:40-9. [PMID: 16989918 DOI: 10.1016/j.virusres.2006.07.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2006] [Revised: 07/21/2006] [Accepted: 07/27/2006] [Indexed: 12/18/2022]
Abstract
We report the construction of two HSV-1 recombinants encoding chimeric forms of the E2 glycoprotein of HCV-1a composed of the ectodomain of E2 (aa384-611 or 384-711) fused to different parts of the transmembrane and cytoplasmic domain of the HSV-1 gC glycoprotein (gC). The parental HSV-1, known as KgBpK(-)gC(-), is deleted for gC and the main heparan sulphate (HS) binding domain of gB, and it exhibits impaired binding (ca. 80%) to HS compared to the wild type virus KOS [Laquerre, S., Argnani, R., Anderson, D.B., Zucchini, S., Manservigi, R., Glorioso, J.C., 1998. Heparan sulphate proteoglycan binding by herpes simplex virus type 1 glycoproteins B and C, which differ in their contributions to virus attachment, penetration, and cell-to-cell spread. J. Virol. 72, 6119-6130]. We show that gC:E2 proteins are efficiently expressed and transported to the cell surface. We also demonstrate that HSV-1 can incorporate both gC:E2 chimeric proteins into particles and show that incorporation of both chimeric molecules in the viral envelope partially restored binding (ca. 20%) of the HSV-1 recombinants to heparan sulphate. Finally, we showed that the gC:E2ScaI chimeric glycoprotein was able to bind a recombinant form of hCD81 and virion-expressed gC:E2ScaI permitted the binding of the HSV-1 recombinant virus to the hCD81 molecule.
Collapse
Affiliation(s)
- V Kouvatsis
- Molecular Virology Laboratory, Hellenic Pasteur Institute, Athens 11521, Greece
| | | | | | | | | | | | | |
Collapse
|
21
|
Fiorentini S, Becker PD, Marini E, Marconi P, Avolio M, Tosti G, Link C, Manservigi R, Guzman CA, Caruso A. HIV-1 Matrix Protein p17 Modulatesin VivoPreactivated Murine T-Cell Response and Enhances the Induction of Systemic and Mucosal Immunity Against Intranasally Co-administered Antigens. Viral Immunol 2006; 19:177-88. [PMID: 16817760 DOI: 10.1089/vim.2006.19.177] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
HIV-1 p17 is a viral cytokine that acts on preactivated, but not on resting, human T cells promoting proliferation, proinflammatory cytokines release and HIV-1 replication, after binding to a cellular receptor (p17R). Here, we demonstrate that p17Rs are expressed on activated murine T cells, which respond to p17 stimulation similarly to their human counterpart. We developed a mouse model of abortive HSV-1 infection to induce T cell activation in vivo. Preactivated cells expressed p17Rs and were highly susceptible to p17 stimulation, which triggered proinflammatory cytokines release and promoted CD4+ T cell survival and expansion. Coculture of in vivo activated splenocytes with macrophages in the presence of p17 further increased their ability to produce IFN-gamma. The presence of macrophages and activated T cells at mucosal sites prompted us to investigate the immunomodulatory activities of p17 in vivo. Intranasal coadministration of p17 with beta-galactosidase (beta-gal) resulted in improved beta-gal specific cellular and humoral immune responses at systemic and mucosal levels. It is well established that HIV-1 replication is driven in an autocrine/paracrine manner by endogenously produced proinflammatory cytokines. Our results highlight the role of p17 in sustaining cellular activation and inflammation, thereby promoting a permissive microenvironment for HIV-1 replication. In addition, p17 is a promising candidate antigen, exhibiting immunomodulatory/adjuvant properties, that need to be exploited in the development of HIV/AIDS vaccines.
Collapse
MESH Headings
- Adjuvants, Immunologic
- Administration, Intranasal
- Animals
- Chlorocebus aethiops
- Female
- Gene Products, gag/genetics
- Gene Products, gag/immunology
- Gene Products, gag/metabolism
- HIV Antigens/genetics
- HIV Antigens/immunology
- HIV Antigens/metabolism
- HIV-1/immunology
- HIV-1/pathogenicity
- Humans
- Immunity, Mucosal/drug effects
- Lymphocyte Activation/drug effects
- Macrophages, Peritoneal/immunology
- Mice
- Mice, Inbred BALB C
- Receptors, Cell Surface/metabolism
- T-Lymphocytes/drug effects
- T-Lymphocytes/immunology
- Vero Cells
- Viral Proteins/genetics
- Viral Proteins/immunology
- Viral Proteins/metabolism
- Virus Replication
- gag Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- Simona Fiorentini
- Section of Microbiology, Department of Experimental and Applied Medicine, Medical School, University of Brescia, Brescia, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Dudek T, Knipe DM. Replication-defective viruses as vaccines and vaccine vectors. Virology 2006; 344:230-9. [PMID: 16364753 DOI: 10.1016/j.virol.2005.09.020] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Accepted: 09/10/2005] [Indexed: 11/15/2022]
Abstract
The classical viral vaccine approaches using inactivated virus or live-attenuated virus have not been successful for some viruses, such as human immunodeficiency virus or herpes simplex virus. Therefore, new types of vaccines are needed to combat these infections. Replication-defective mutant viruses are defective for one or more functions that are essential for viral genome replication or synthesis and assembly of viral particles. These viruses are propagated in complementing cell lines expressing the missing gene product; however, in normal cells, they express viral gene products but do not replicate to form progeny virions. As vaccines, these mutant viruses have advantages of both classical types of viral vaccines in being as safe as inactivated virus but expressing viral antigens inside infected cells so that MHC class I and class II presentation can occur efficiently. Replication-defective viruses have served both as vaccines for the virus itself and as a vector for the expression of heterologous antigens. The potential advantages and disadvantages of these vaccines are discussed as well as contrasting them with single-cycle mutant virus vaccines and replicon/amplicon versions of vaccines. Replication-defective viruses have also served as important probes of the host immune response in helping to define the importance of the first round of infected cells in the host immune response, the mechanisms of activation of innate immune response, and the role of the complement pathway in humoral immune responses to viruses.
Collapse
Affiliation(s)
- Tim Dudek
- Program in Biological Sciences and Public Health, Harvard School of Public Health, Boston, MA 02115, USA
| | | |
Collapse
|
23
|
Berto E, Bozac A, Marconi P. Development and application of replication-incompetent HSV-1-based vectors. Gene Ther 2006; 12 Suppl 1:S98-102. [PMID: 16231061 DOI: 10.1038/sj.gt.3302623] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The replication-incompetent HSV-1-based vectors are herpesviruses in which genes that are 'essential' for viral replication have been either mutated or deleted. These deletions have substantially reduced their cytotoxicity by preventing early and late viral gene expression and, together with other deletions involving 'nonessential' genes, have also created space to introduce distinct and independently regulated expression cassettes for different transgenes. Therapeutic effects in gene therapy applications requiring simultaneous and synergic expression of multiple gene products are easily achievable with these vectors. A number of different HSV-1-based nonreplicative vectors for specific gene therapy applications have been developed so far. They have been tested in different gene therapy animal models of neuropathies (Parkinson's disease, chronic pain, spinal cord injury pain) and lysosomal storage disorders. Many replication-incompetent HSV-1-based vectors have also been used either as potential anti-herpes vaccines, as well as vaccine vectors for other pathogens in murine and simian models. Anticancer gene therapy approaches have also been successfully set up; gene therapy to other targets by using these vectors is feasible.
Collapse
Affiliation(s)
- E Berto
- Department of Experimental and Diagnostic Medicine, Section of Microbiology, University of Ferrara, Ferrara, Italy
| | | | | |
Collapse
|
24
|
Lauterbach H, Ried C, Epstein AL, Marconi P, Brocker T. Reduced immune responses after vaccination with a recombinant herpes simplex virus type 1 vector in the presence of antiviral immunity. J Gen Virol 2005; 86:2401-2410. [PMID: 16099897 DOI: 10.1099/vir.0.81104-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Due to the continuous need for new vaccines, viral vaccine vectors have become increasingly attractive. In particular, herpes simplex virus type 1 (HSV-1)-based vectors offer many advantages, such as broad cellular tropism, large DNA-packaging capacity and the induction of pro-inflammatory responses. However, despite promising results obtained with HSV-1-derived vectors, the question of whether pre-existing virus-specific host immunity affects vaccine efficacy remains controversial. For this reason, the influence of pre-existing HSV-1-specific immunity on the immune response induced with a replication-defective, recombinant HSV-1 vaccine was investigated in vivo. It was shown that humoral as well as cellular immune responses against a model antigen encoded by the vaccine were strongly diminished in HSV-1-seropositive mice. This inhibition could be observed in mice infected with wild-type HSV-1 or with a replication-defective vector. Although these data clearly indicate that pre-existing antiviral host immunity impairs the efficacy of HSV-1-derived vaccine vectors, they also show that vaccination under these constraints might still be feasible.
Collapse
Affiliation(s)
- Henning Lauterbach
- Institute for Immunology, Ludwig Maximilians University Munich, Goethestrasse 31, 80336 Munich, Germany
| | - Christine Ried
- Institute for Immunology, Ludwig Maximilians University Munich, Goethestrasse 31, 80336 Munich, Germany
| | - Alberto L Epstein
- University Claude-Bernard Lyon 1, Centre de Genetique Moleculaire et Cellulaire, Lyon, France
| | - Peggy Marconi
- University of Ferrara, Department of Experimental and Diagnostic Medicine, Ferrara, Italy
| | - Thomas Brocker
- Institute for Immunology, Ludwig Maximilians University Munich, Goethestrasse 31, 80336 Munich, Germany
| |
Collapse
|
25
|
Heit A, Schmitz F, O'Keeffe M, Staib C, Busch DH, Wagner H, Huster KM. Protective CD8 T cell immunity triggered by CpG-protein conjugates competes with the efficacy of live vaccines. THE JOURNAL OF IMMUNOLOGY 2005; 174:4373-80. [PMID: 15778402 DOI: 10.4049/jimmunol.174.7.4373] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In contrast to infectious (live) vaccines are those based on subunit Ag that are notoriously poor in eliciting protective CD8 T cell responses, presumably because subunit Ags become insufficiently cross-presented by dendritic cells (DCs) and because the latter need to be activated to acquire competence for cross-priming. In this study, we show that CpG-Ag complexes overcome these limitations. OVA covalently linked to CpG-DNA (CpG-OVA complex), once it is efficiently internalized by DCs via DNA receptor-mediated endocytosis, is translocated to lysosomal-associated membrane protein 1 (LAMP-1)-positive endosomal-lysosomal compartments recently shown to display competence for cross-presentation. In parallel, CpG-OVA complex loaded DCs become activated and acquire characteristics of professional APCs. In vivo, a single s.c. dose of CpG-OVA complex (10 mug of protein) induces primary and secondary clonal expansion/contraction of Ag-specific CD8 T cells similar in kinetics to live vaccines; examples including Listeria monocytogenes genetically engineered to produce OVA (LM-OVA) and two viral vector-based OVA vaccines analyzed. Interestingly, CpG-OVA complex induced almost equal percentages of Ag-specific memory CD8 T cells as did infection with LM-OVA. A single dose vaccination with CpG-OVA complex protected mice against lethal doses of LM-OVA. These data underscore that the synergy imparted by CpG-OVA complex-mediated combined triggering of innate and specific immunity might be key to initiate CD8 T cell-based immunoprotection by synthetic vaccines based on subunit Ag.
Collapse
Affiliation(s)
- Antje Heit
- Institute of Medical Microbiology, Immunology and Hygiene, Technische Universität München, Germany
| | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Therapeutic vaccines such as those used to combat cancer or persistent viral infection are required to reprogramme a downregulated immune system. This presents a difficult challenge for vaccine design and merits the development of novel immunization protocols. Currently, we know that mobilization of dendritic cells (DCs) to present antigens to T lymphocytes is crucial for effective immunization. Our increasing understanding of DC biology, coupled with the growing sophistication of viral vectors developed for gene therapy, makes more rational vaccine design an exciting possibility. Here we propose that engineering viral vectors to express antigens in activated DCs will provide the most effective vaccines for priming an immune response.
Collapse
Affiliation(s)
- Mary K Collins
- Division of Infection and Immunity, Royal Free and University College Medical School, Windeyer Institute, 46 Cleveland Street, London W1T 4JF, UK.
| | | |
Collapse
|