1
|
Xia T, Lu X, Kong D, Guo T, Gao Y, Xin L, Jiang Y, Wang X, Shan Z, Li J, Zhou H, Cui W, Qiao X, Tang L, Li Y, Wang L. Screening optimal DC-targeting peptide to enhance the immune efficacy of recombinant Lactobacillus expressing RHDV VP60. Virulence 2024; 15:2368080. [PMID: 38899573 PMCID: PMC11195490 DOI: 10.1080/21505594.2024.2368080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 06/10/2024] [Indexed: 06/21/2024] Open
Abstract
Dendritic cells (DCs) present an ideal target for delivering immunogenic cargo due to their potent antigen-presenting capabilities. This targeting approach holds promise in vaccine development by enhancing the efficiency of antigen recognition and capture by DCs. To identify a high-affinity targeting peptide binding to rabbit DCs, rabbit monocyte-derived DCs (raMoDCs) were isolated and cultured, and a novel peptide, HS (HSLRHDYGYPGH), was identified using a phage-displayed peptide library. Alongside HS, two other DC-targeting peptides, KC1 and MY, previously validated in our laboratory, were employed to construct recombinant Lactgobacillus reuteri fusion-expressed rabbit hemorrhagic disease virus (RHDV) capsid protein VP60. These recombinant Lactobacillus strains were named HS-VP60/L. reuteri, KC1-VP60/L. reuteri, and MY-VP60/L. reuteri. The ability of these recombinant Lactobacillus to bind rabbit DCs was evaluated both in vivo and in vitro. Results demonstrated that the DC-targeting peptide KC1 significantly enhanced the capture efficiency of recombinant Lactobacillus by raMoDCs, promoted DC maturation, and increased cytokine secretion. Furthermore, oral administration of KC1-VP60/L. reuteri effectively induced SIgA and IgG production in rabbits, prolonged rabbit survival post-challenge, and reduced RHDV copies in organs. In summary, the DC-targeting peptide KC1 exhibited robust binding to raMoDCs, and recombinant Lactobacillus expressing KC1-VP60 protein antigens efficiently induced systemic and mucosal immune responses in rabbits, conferring protective efficacy against RHDV. This study offers valuable insights for the development of novel RHDV vaccines.
Collapse
Affiliation(s)
- Tian Xia
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xiao Lu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Deming Kong
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Tiantian Guo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yueyi Gao
- Division of Viral Biologic Testing(I), China Institute of Veterinary Drug Control, Beijing, China
| | - Lingxiang Xin
- Division of Viral Biologic Testing(I), China Institute of Veterinary Drug Control, Beijing, China
| | - Yanping Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Northeastern Science Inspection Station, Harbin, China
| | - Xiaona Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Northeastern Science Inspection Station, Harbin, China
| | - Zhifu Shan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Northeastern Science Inspection Station, Harbin, China
| | - Jiaxuan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Northeastern Science Inspection Station, Harbin, China
| | - Han Zhou
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Northeastern Science Inspection Station, Harbin, China
| | - Wen Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Northeastern Science Inspection Station, Harbin, China
| | - Xinyuan Qiao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Northeastern Science Inspection Station, Harbin, China
| | - Lijie Tang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Northeastern Science Inspection Station, Harbin, China
| | - Yijing Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Northeastern Science Inspection Station, Harbin, China
| | - Li Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Northeastern Science Inspection Station, Harbin, China
| |
Collapse
|
2
|
Corkum CP, Wiede LL, Ruble CLA, Qiu J, Mulrooney-Cousins PM, Steeves MA, Watson DE, Michalak TI. Identification of antibodies cross-reactive with woodchuck immune cells and activation of virus-specific and global cytotoxic T cell responses by anti-PD-1 and anti-PD-L1 in experimental chronic hepatitis B and persistent occult hepadnaviral infection. Front Microbiol 2022; 13:1011070. [PMID: 36560951 PMCID: PMC9764628 DOI: 10.3389/fmicb.2022.1011070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022] Open
Abstract
Woodchuck (Marmota monax) infected with woodchuck hepatitis virus (WHV) is the most pathogenically compatible naturally occurring model of human hepatitis B virus (HBV) infection, chronic hepatitis B, and HBV-induced hepatocellular carcinoma. This system plays a crucial role in discovery and preclinical evaluation of anti-HBV therapies. Its utilization remains tempered by the relatively narrow range of validated immunologic and molecular tools. We evaluated commercial antibodies against immune cell phenotypic markers and T cell molecules for cross-reactivity with woodchuck antigenic equivalents. The confirmed antibodies against programed cell death protein-1 (PD-1) and its ligand (PD-L1) were examined for ex vivo ability to activate WHV-specific, global and bystander cytotoxic T cells (CTLs) in chronic hepatitis and asymptomatic infection persisting after self-resolved acute hepatitis. Examination of 65 antibodies led to identification or confirmation of 23 recognizing woodchuck T, regulatory T, B and natural killer cells, T cell-associated PD-1, PD-L1, CTLA-4 and TIM-3 molecules, CD25 and CD69 markers of T cell activation, and interferon gamma (IFNγ). Antibodies against woodchuck PD-1 and PD-L1 triggered in vitro highly individualized WHV-specific and global activation of CTLs in both chronic hepatitis and persistent occult infection. WHV-specific CTLs were more robustly augmented by anti-PD-1 than by anti-PD-L1 in chronic hepatitis, while global IFNγ-positive CTL response was significantly suppressed in chronic hepatitis compared to persistent occult infection. Anti-PD-1 and anti-PD-L1 also occasionally activated CTLs to specificities other than those tested suggesting their potency to trigger side effects. This was particularly apparent when T cells from chronic hepatitis were treated with anti-PD-L1. The current findings indicate that inhibition of the PD-1/PD-L1 pathway could reactivate virus-specific and global T cell responses in both chronic hepatitis and asymptomatic persistent infection. They suggest a mechanism of potential reactivation of clinically silent infection during anti-PD-1/PD-L1 treatment and indicate that this therapy may also subdue occult HBV infection.
Collapse
Affiliation(s)
- Christopher P. Corkum
- Molecular Virology and Hepatology Research Group, Division of BioMedical Sciences, Faculty of Medicine, Health Sciences Centre, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Louisa L. Wiede
- Molecular Virology and Hepatology Research Group, Division of BioMedical Sciences, Faculty of Medicine, Health Sciences Centre, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Cara L.-A. Ruble
- Lilly Research Laboratories, Elli Lilly and Company, Indianapolis, IN, United States
| | - Jiabin Qiu
- Lilly Research Laboratories, Elli Lilly and Company, Indianapolis, IN, United States
| | - Patricia M. Mulrooney-Cousins
- Molecular Virology and Hepatology Research Group, Division of BioMedical Sciences, Faculty of Medicine, Health Sciences Centre, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Meredith A. Steeves
- Non-Clinical Safety Assessment, Toxicology, Elli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, United States
| | - David E. Watson
- Lilly Research Laboratories, Elli Lilly and Company, Indianapolis, IN, United States
| | - Tomasz I. Michalak
- Molecular Virology and Hepatology Research Group, Division of BioMedical Sciences, Faculty of Medicine, Health Sciences Centre, Memorial University of Newfoundland, St. John’s, NL, Canada,*Correspondence: Tomasz I. Michalak,
| |
Collapse
|
3
|
Xia T, Wang N, Tang Y, Gao Y, Gao C, Hao J, Jiang Y, Wang X, Shan Z, Li J, Zhou H, Cui W, Qiao X, Tang L, Wang L, Li Y. Delivery of antigen to porcine dendritic cells by fusing antigen with porcine dendritic cells targeting peptide. Front Immunol 2022; 13:926279. [PMID: 36159835 PMCID: PMC9499840 DOI: 10.3389/fimmu.2022.926279] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Dendritic cells (DCs) are professional antigen-presenting cells that can recognize, capture, and process antigens. Fusing molecules targeting DCs with antigens can effectively improve the efficiency with which antigens are recognized and captured by DCs. This targeting strategy can be used for vaccine development to effectively improve the efficiency of antigen recognition and capture by DCs. The targeting sequence of porcine cytotoxic T-lymphocyte associated protein 4 (CTLA4), which binds porcine DCs, was identified in this study. Recombinant Lactobacillus reuteri (L. reuteri) expressing CTLA4-6aa (LYPPPY) and CTLA4-87aa fused to the porcine epidemic diarrhea virus (PEDV) protective antigen core neutralizing epitope (COE) were used to evaluate the ability of the two targeting motifs to bind the B7 molecule on DCs. Our results demonstrate that CTLA4-6aa could bind porcine DCs, and recombinant Lactobacillus expressing the CTLA4-6aa captured by porcine DCs was more efficient than those expressing CTLA4-87aa. In addition, the expression of DC markers, toll-like receptors, and cytokines was significantly higher in the 6aa-COE/L. reuteri-stimulated porcine DCs compared to DCs treated with 87aa-COE/L. reuteri (p<0.01) and recombinant Lactobacillus expressing CTLA4-6aa enhanced the ability of porcine DCs to activate T-cell proliferation. Our analysis of the protein structure revealed that CTLA4-87aa contains intramolecular hydrogen bonds, which may have weakened the intermolecular force between the residues on porcine CTLA4 and that on B7. In conclusion, recombinant Lactobacillus expressing CTLA4-6aa were more efficiently captured by porcine DCs and had a stronger ability to promote DC maturation and enhance T-cell proliferation. The LYPPPY motif is the optimal sequence for binding to porcine DCs. Piglets immunized with recombinant Lactobacillus showed that recombinant Lactobacillus expressing CTLA4-6aa induced significant levels of anti-PEDV-specific IgG and IgA antibody responses. Our study may promote research on DC-targeting strategies to enhance the effectiveness of porcine vaccines.
Collapse
Affiliation(s)
- Tian Xia
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Ning Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yuqing Tang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yueyi Gao
- Division of Viral Biologic Testing(I), China Institute of Veterinary Drug Control, Beijing, China
| | - Chong Gao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Jianhui Hao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yanping Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Northeastern Science Inspection Station, Harbin, China
| | - Xiaona Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Northeastern Science Inspection Station, Harbin, China
| | - Zhifu Shan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Northeastern Science Inspection Station, Harbin, China
| | - Jiaxuan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Northeastern Science Inspection Station, Harbin, China
| | - Han Zhou
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Northeastern Science Inspection Station, Harbin, China
| | - Wen Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Northeastern Science Inspection Station, Harbin, China
| | - Xinyuan Qiao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Northeastern Science Inspection Station, Harbin, China
| | - Lijie Tang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Northeastern Science Inspection Station, Harbin, China
| | - Li Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Northeastern Science Inspection Station, Harbin, China
- *Correspondence: Yijing Li, ; Li Wang,
| | - Yijing Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Northeastern Science Inspection Station, Harbin, China
- *Correspondence: Yijing Li, ; Li Wang,
| |
Collapse
|
4
|
Li L, Li S, Zhou Y, Yang L, Zhou D, Yang Y, Lu M, Yang D, Song J. The dose of HBV genome contained plasmid has a great impact on HBV persistence in hydrodynamic injection mouse model. Virol J 2017; 14:205. [PMID: 29070073 PMCID: PMC5657044 DOI: 10.1186/s12985-017-0874-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 10/18/2017] [Indexed: 01/12/2023] Open
Abstract
Background Hydrodynamic injection (HI) of hepatitis B virus (HBV) mouse model is an useful tool for HBV related research in vivo. However, only 40% of C57/BL6 mice injected with 10 μg HBV genome contained plasmid (pAAV-HBV1.2), serum HBsAg more than 6 months and none of the BALB/c mice injected with 10 μg pAAV-HBV1.2 plasmid DNA, serum HBsAg positive more than 4 weeks in the previous study. Methods In this study, C57/BL6 and BALB/c mice were hydrodynamic injected with different doses of pAAV-HBV1.2 plasmid DNA. HBV related serum markers were detected by ELISA. ALT levels in the serum were measured using full automated biochemistry analyzer. HBcAg positive cells in the liver were detected by immunohistochemical staining. The mRNA levels of IRF3, ISGs including ISG15, OAS, PKR and immune factors including IFNγ, TNFα, TGFβ, IL-6, IL-10, PDL1 in liver of the mice were quantified by qRT-PCR. Results The results showed that the mice injected with 100 μg high-concentration or 1 μg low-concentration of pAAV-HBV1.2 plasmid DNA did not excert dominant influence on HBV persistence. In contrast, injection of 5 μg intermediate-dose of pAAV-HBV1.2 plasmid DNA led to significant prolonged HBsAg expression and HBV persistence in both C57/BL6 (80% of the mice with HBsAg positive more than 6 months) and BALB/c (60% of the mice with HBsAg positive more than 3 months) mice. IFNγ was significant up-regulated in liver of the mice injected with 1 μg or 100 μg pAAV-HBV1.2 plasmid DNA. TNFα was up-regulated significantly in liver of the mice injected with 100 μg pAAV-HBV1.2 plasmid DNA. Moreover, PDL1 was significant up-regulated in liver of the mice injected with 5 μg pAAV-HBV1.2 plasmid DNA. Conclusion In this paper we demonstrated that, in the HBV HI mouse model, the concentration of injected pAAV-HBV1.2 plasmid DNA contributes to the diverse kinetics of HBsAg and HBeAg in the serum as well as HBcAg expression level in the liver, which then determined the HBV persisternce, while the antiviral factors IFNγ, TNFα as well as immune negative regulatory factor PDL1 play important roles on HBV persistence.
Collapse
Affiliation(s)
- Lei Li
- Experimental Medicine Center, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Department of Infectious Disease, Anhui Provincial Hospital, Anhui Medical University, Hefei, China
| | - Sheng Li
- Experimental Medicine Center, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Department of Infectious Diseases, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yun Zhou
- Experimental Medicine Center, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Department of Infectious Diseases, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lu Yang
- Experimental Medicine Center, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Di Zhou
- Experimental Medicine Center, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yan Yang
- Experimental Medicine Center, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Mengji Lu
- Institute of Virology, University Hospital of Essen, University Duisburg-Essen, Essen, Germany
| | - Dongliang Yang
- Department of Infectious Diseases, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingjiao Song
- Experimental Medicine Center, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
5
|
Dai S, Zhuo M, Song L, Chen X, Yu Y, Tang Z, Zang G. Dendritic cell-based vaccination with lentiviral vectors encoding ubiquitinated hepatitis B core antigen enhances hepatitis B virus-specific immune responses in vivo. Acta Biochim Biophys Sin (Shanghai) 2015; 47:870-9. [PMID: 26373843 DOI: 10.1093/abbs/gmv093] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 06/30/2015] [Indexed: 12/27/2022] Open
Abstract
The activity of hepatitis B virus (HBV)-specific cytotoxic T lymphocytes (CTLs) plays a predominant role in the clearance of HBV. Dendritic cells (DCs) are key antigen-presenting cells and play an important role in the initiation of immune responses. We previously verified that lentiviral vector encoding ubiquitinated hepatitis B core antigen (LV-Ub-HBcAg) effectively transduced DCs to induce maturation, and the mature DCs efficiently induced T cell polarization to Th1 and generated HBcAg-specific CTLs ex vivo. In this study, HBV-specific immune responses of LV-Ub-HBcAg in BALB/c mice (H-2Kd) were evaluated. It was shown that direct injection of LV-Ub-HBcAg increased the production of cytokines IL-2 and IFN-γ, elicited strong antibody responses, and remarkably generated a high percentage of IFN-γ+CD8+ T cells with HBV-specific CTL responses in BALB/c mice. In addition, direct injection of LV-Ub-HBcAg induced potent anti-HBV immune responses, similar to those elicited by in vitro-transduced DCs. In conclusion, the DC-based therapeutic vaccine LV-Ub-HBcAg elicited specific antibody immune responses and induced robust specific CTL activity in vivo.
Collapse
Affiliation(s)
- Shenglan Dai
- Department of Infectious Disease, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Meng Zhuo
- Department of Infectious Disease, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Linlin Song
- Department of Infectious Disease, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Xiaohua Chen
- Department of Infectious Disease, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Yongsheng Yu
- Department of Infectious Disease, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Zhenghao Tang
- Department of Infectious Disease, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Guoqing Zang
- Department of Infectious Disease, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| |
Collapse
|
6
|
Woodchuck hepatitis virus core antigen-based DNA and protein vaccines induce qualitatively different immune responses that affect T cell recall responses and antiviral effects. Virology 2014; 475:56-65. [PMID: 25462346 DOI: 10.1016/j.virol.2014.11.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 10/31/2014] [Accepted: 11/04/2014] [Indexed: 11/22/2022]
Abstract
T helper type 1 (Th1) immunity was considered to play a dominant role in viral clearance of hepadnaviral infection. However, pre-primed Th2 type responses were able to efficiently control hepadnaviral infection in animal models. We investigated how pre-primed Th1/2 responses control hepadnaviral replication using the newly established mouse models. DNA (pWHcIm, pCTLA-4-C) and protein vaccines based on the nucleocapsid protein (WHcAg) of woodchuck hepatitis virus (WHV) primed specific immune responses with distinct features. The pre-primed responses determined the characteristics of recall responses if challenged with a WHcAg-expressing adenoviral vector. Vaccination with pWHcIm and pCTLA4-C facilitated viral control in the hydrodynamic injection model and reduced WHV loads by about 3 and 2 logs in WHV-transgenic mice, respectively, despite of different kinetics of specific CD8+ T cell responses. Thus, pre-primed Th2-biased responses facilitate the development of CD8+ T cell responses in mice compared with naïve controls and thereby confer better viral control.
Collapse
|
7
|
Pishraft-Sabet L, Kosinska AD, Rafati S, Bolhassani A, Taheri T, Memarnejadian A, Alavian SM, Roggendorf M, Samimi-Rad K. Enhancement of HCV polytope DNA vaccine efficacy by fusion to an N-terminal fragment of heat shock protein gp96. Arch Virol 2014; 160:141-52. [PMID: 25348271 DOI: 10.1007/s00705-014-2243-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 09/23/2014] [Indexed: 12/30/2022]
Abstract
Induction of a strong hepatitis C virus (HCV)-specific immune response plays a key role in control and clearance of the virus. A polytope (PT) DNA vaccine containing B- and T-cell epitopes could be a promising vaccination strategy against HCV, but its efficacy needs to be improved. The N-terminal domain of heat shock protein gp96 (NT(gp96)) has been shown to be a potent adjuvant for enhancing immunity. We constructed a PT DNA vaccine encoding four HCV immunodominant cytotoxic T lymphocyte epitopes (two HLA-A2- and two H2-D(d)-specific motifs) from the Core, E2, NS3 and NS5B antigens in addition to a T-helper CD4+ epitope from NS3 and a B-cell epitope from E2. The NT(gp96) was fused to the C- or N-terminal end of the PT DNA (PT-NT(gp96) or NT(gp96)-PT), and their potency was compared. Cellular and humoral immune responses against the expressed peptides were evaluated in CB6F1 mice. Our results showed that immunization of mice with PT DNA vaccine fused to NT(gp96) induced significantly stronger T-cell and antibody responses than PT DNA alone. Furthermore, the adjuvant activity of NT(gp96) was more efficient in the induction of immune responses when fused to the C-terminal end of the HCV DNA polytope. In conclusion, the NT(gp96) improved the efficacy of the DNA vaccine, and this immunomodulatory effect was dependent on the position of the fusion.
Collapse
Affiliation(s)
- Leila Pishraft-Sabet
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, P.O.Box 6446, Tehran, 14155, Islamic Republic of Iran
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Zhang Y, Su WJ, Wang J, Bai XF, Huang CX, Lian JQ. A fusion DNA vaccine encoding middle version of HBV envelope protein fused to interleukin-21 did not enhance HBV-specific immune response in mice. Viral Immunol 2014; 27:430-7. [PMID: 25211639 DOI: 10.1089/vim.2014.0051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
DNA vaccination can generate both humoral and cellular immunity, resulting in potential prophylactic and therapeutic vaccines in variety of conditions, including hepatitis B virus (HBV) infection. Fusion of cytokine gene is one of the ways to increase the immunogenicity of DNA vaccine. Interleukin (IL)-21 has been demonstrated to play an immunomodulatory role in HBV infection. Thus, we aimed to investigate the ability of IL-21 in the regulation of middle version of HBV envelop protein (MS) DNA vaccine. Fusion plasmid encoding IL-21 linked with MS was constructed. Normal and HBV transgenic mice were immunized by plasmid. pcDNA-IL-21/S2S induced a comparable level of anti-HBs antibody and HBsAg-specific CD8+ T-cell response with pcDNA-S2S. Furthermore, the level of circulating HBsAg was decreased by induction of anti-HBs antibody and HBsAg-specific CD8+ T-cell response to both pcDNA-IL-21/S2S and pcDNA-S2S vaccination in HBV transgenic mice. Thus, immunization with DNA vaccine encoding HBV MS protein induced both T- and B-cell response by targeting the specific antigen. Furthermore, it was also revealed that MS DNA vaccination could break immune tolerance in HBV transgenic mice. But IL-21 did not strengthen immune response induced by HBV DNA immunization. Our study suggested that MS-expressing plasmid may be useful for both preventive and therapeutic methods in HBV infection. However, IL-21 does not improve the immunogenicity and efficacy of MS DNA vaccination, and thus may not be used as a therapeutic marker for chronic hepatitis B.
Collapse
Affiliation(s)
- Ye Zhang
- 1 Center for Infectious Diseases, Tangdu Hospital, Fourth Military Medical University , Xi'an, China
| | | | | | | | | | | |
Collapse
|
9
|
Ubiquitin-hepatitis B core antigen-cytoplasmic transduction peptide enhances HBV-specific humoral and CTL immune responses in vivo. Int Immunopharmacol 2014; 23:1-7. [PMID: 25135878 DOI: 10.1016/j.intimp.2014.08.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Revised: 08/03/2014] [Accepted: 08/07/2014] [Indexed: 02/07/2023]
Abstract
Therapeutic strategies based on an enhanced hepatitis B virus (HBV)-specific cytotoxic T lymphocyte (CTL) activity may eradicate HBV. We previously verified that a fusion protein ubiquitin (Ub)-hepatitis B core antigen (HBcAg)-cytoplasmic transduction peptide (CTP) can enter the cytoplasm of dendritic cells and enhance T cell response to generate HBV-specific CTLs efficiently in vitro. Ub, a marker of protein degradation, may promote the generation of peptides appropriate for major histocompatibility complex class I presentation. In the present study, the specific immune responses of the fusion protein Ub-HBcAg-CTP in BALB/c mice were evaluated and the underlying mechanisms were investigated. Results showed that Ub-HBcAg-CTP increased the anti-HBcAg titer and produced the cytokines IFN-γ and IL-2. This fusion protein also induced higher percentages of IFN-γ(+)CD8(+) cells and specific CTL responses. Ub-HBcAg-CTP could also upregulate the expressions of Jak2, Tyk2, STAT1, and STAT4 in T lymphocytes. In conclusion, Ub-HBcAg-CTP enhanced cellular and humoral immune responses and induced robust HBV-specific CTL activities in BALB/c mice.
Collapse
|
10
|
Song J, Zhou Y, Li S, Wang B, Zheng X, Wu J, Gibbert K, Dittmer U, Lu M, Yang D. Susceptibility of different hepatitis B virus isolates to interferon-alpha in a mouse model based on hydrodynamic injection. PLoS One 2014; 9:e90977. [PMID: 24618716 PMCID: PMC3950299 DOI: 10.1371/journal.pone.0090977] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 02/05/2014] [Indexed: 12/13/2022] Open
Abstract
Interferon alpha (IFN-α) is commonly used for the treatment of chronic hepatitis B (CHB) patients. Many factors including viral genetics may determine the outcome of IFN-α therapy. In this study, we tested whether the expression of IFN-α directly in the liver inhibits HBV gene expression and replication using a HBV hydrodynamic injection (HI) mouse model. Two replication-competent clones from different HBV isolates that belonging to HBV genotype A and B based on a pAAV vector (pAAV-HBV-A and pAAV-HBV-B) were compared for their susceptibility to IFN-α. HBV clones were injected into mice either alone or in combination with a murine (m) IFN-α expression plasmid (pmIFN-α). HBsAg and HBeAg concentrations and HBV DNA levels in mice differed after injection of these two HBV clones. Co-application of pmIFN-α together with the two distinct isolates resulted in markedly different kinetics of decline of HBsAg, HBeAg, and HBV DNA levels in the mice. Immunohistochemical staining of liver sections with anti-HBc showed that mIFN-α application completely inhibited the expression of HBcAg in mice inoculated with pAAV-HBV-B, whereas the expression of HBcAg was only reduced in mice with pAAV-HBV-A. Consistently, mice injected with pAAV-HBV-B and pmIFN-α showed higher expression levels of the IFN-stimulated genes (ISGs) ISG15, OAS, PKR as well as proinflammatory cytokine IL-6 in the liver. In addition, expression levels of anti-inflammatory cytokine IL-10 was down-regulated significantly in liver of the mice injected with pAAV-HBV-B and pmIFN-α. Our data demonstrate that IFN-α exerts antiviral activity in HBV mouse model, but different HBV isolates may have diverse susceptibility to IFN-α.
Collapse
Affiliation(s)
- Jingjiao Song
- Division of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Yun Zhou
- Department of Infectious Diseases, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Sheng Li
- Department of Infectious Diseases, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Baoju Wang
- Department of Infectious Diseases, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Xin Zheng
- Department of Infectious Diseases, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Jun Wu
- Department of Infectious Diseases, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Kathrin Gibbert
- Institute of Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Ulf Dittmer
- Institute of Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Mengji Lu
- Institute of Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Dongliang Yang
- Department of Infectious Diseases, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| |
Collapse
|
11
|
Wang B, Zhu Z, Zhu B, Wang J, Song Z, Huang S, Fan W, Tao Y, Wang Z, Wang H, Lu M, Yang D. Nucleoside analogues alone or combined with vaccination prevent hepadnavirus viremia and induce protective immunity: alternative strategy for hepatitis B virus post-exposure prophylaxis. Antiviral Res 2014; 105:118-25. [PMID: 24583157 DOI: 10.1016/j.antiviral.2014.02.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 02/18/2014] [Accepted: 02/19/2014] [Indexed: 01/08/2023]
Abstract
OBJECTIVES The current strategies for hepatitis B virus (HBV) post-exposure prophylaxis (PEP) are not generally available in remote and rural areas of developing countries and/or carry potential risks for infection with blood-borne transmitted pathogens. Nucleotide analogues (NAs) are successfully used for human immunodeficiency virus PEP, and maybe effective for HBV PEP. In this study, we tested the NA-based strategies for HBV PEP using the Chinese woodchuck model. METHODS Chinese woodchucks were inoculated intravenously with different doses of woodchuck hepatitis virus (WHV). A deoxyguanosine analogue entacavir (ETV), a DNA vaccine pWHcIm, or ETV plus pWHcIm were applied to the infected animals 24h later. Twenty weeks later, the animals were re-challenged with WHV to test for the presence of immunity against WHV. RESULTS Inoculation with different WHV doses had a strong influence on the course of WHV infection; NA alone or in combination with a DNA vaccine completely prevented viremia after a high dose of WHV inoculation in Chinese woodchucks and induced partial or complete protective immunity, respectively. CONCLUSIONS NA-based PEP strategies (NA alone or in combination with vaccine) may be an alternative of HBV PEP, especially in those living in the remote and rural areas of the developing countries and the non-responders to the current vaccine, and may be valuable in the PEP of HBV and HIV co-infection after occupational and non-occupational exposure. Further clinical studies are warranted to confirm the valuable of NA-based strategies in HBV PEP.
Collapse
Affiliation(s)
- Baoju Wang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhenni Zhu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Bin Zhu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Junzhong Wang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhitao Song
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shunmei Huang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wei Fan
- Qinghai Institute for Endemic Disease Prevention and Control, Xining 811602, China
| | - Yuanqing Tao
- Qinghai Institute for Endemic Disease Prevention and Control, Xining 811602, China
| | - Zhongdong Wang
- Qinghai Institute for Endemic Disease Prevention and Control, Xining 811602, China
| | - Hu Wang
- Qinghai Institute for Endemic Disease Prevention and Control, Xining 811602, China
| | - Mengji Lu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institut für Virologie, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen 45122, Germany.
| | - Dongliang Yang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
12
|
Liu J, Zhang E, Ma Z, Wu W, Kosinska A, Zhang X, Möller I, Seiz P, Glebe D, Wang B, Yang D, Lu M, Roggendorf M. Enhancing virus-specific immunity in vivo by combining therapeutic vaccination and PD-L1 blockade in chronic hepadnaviral infection. PLoS Pathog 2014; 10:e1003856. [PMID: 24391505 PMCID: PMC3879364 DOI: 10.1371/journal.ppat.1003856] [Citation(s) in RCA: 209] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 11/13/2013] [Indexed: 12/13/2022] Open
Abstract
Hepatitis B virus (HBV) persistence is facilitated by exhaustion of CD8 T cells that express the inhibitory receptor programmed cell death-1 (PD-1). Improvement of the HBV-specific T cell function has been obtained in vitro by inhibiting the PD-1/PD-ligand 1 (PD-L1) interaction. In this study, we examined whether in vivo blockade of the PD-1 pathway enhances virus-specific T cell immunity and leads to the resolution of chronic hepadnaviral infection in the woodchuck model. The woodchuck PD-1 was first cloned, characterized, and its expression patterns on T cells from woodchucks with acute or chronic woodchuck hepatitis virus (WHV) infection were investigated. Woodchucks chronically infected with WHV received a combination therapy with nucleoside analogue entecavir (ETV), therapeutic DNA vaccination and woodchuck PD-L1 antibody treatment. The gain of T cell function and the suppression of WHV replication by this therapy were evaluated. We could show that PD-1 expression on CD8 T cells was correlated with WHV viral loads during WHV infection. ETV treatment significantly decreased PD-1 expression on CD8 T cells in chronic carriers. In vivo blockade of PD-1/PD-L1 pathway on CD8 T cells, in combination with ETV treatment and DNA vaccination, potently enhanced the function of virus-specific T cells. Moreover, the combination therapy potently suppressed WHV replication, leading to sustained immunological control of viral infection, anti-WHs antibody development and complete viral clearance in some woodchucks. Our results provide a new approach to improve T cell function in chronic hepatitis B infection, which may be used to design new immunotherapeutic strategies in patients. Chronic hepatitis B virus (HBV) infection is still one of the major public health problems. Two billion people worldwide have been infected with HBV, of whom more than 360 million developed chronic infection. Every year, approximately one million of these individuals will die from HBV-associated liver diseases such as cirrhosis and hepatocellular carcinoma (HCC). Treatment of chronic hepatitis B remains a clinical challenge, and alternative strategies to treat chronic HBV infection are urgently needed. Here, we designed a new combination strategy to enhance the patient's own antiviral immune response and to achieve long-term viral suppression. The therapeutic effect of our combination therapy strategy for chronic hepadnaviral infection was tested in the woodchuck model. We demonstrated that our novel combination therapy could elicit potent antiviral immune response and achieved a strong antiviral effect, leading to sustained immunological control of chronic hepadnaviral infection and complete viral clearance in treated woodchucks. The results of this study may have an impact on clinical trials of the immunotherapy in chronically HBV-infected patients.
Collapse
Affiliation(s)
- Jia Liu
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Ejuan Zhang
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Zhiyong Ma
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Weimin Wu
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Anna Kosinska
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Xiaoyong Zhang
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
- Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Inga Möller
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Pia Seiz
- Institute for Medical Virology, Justus-Liebig University Giessen, Giessen, Germany
| | - Dieter Glebe
- Institute for Medical Virology, Justus-Liebig University Giessen, Giessen, Germany
| | - Baoju Wang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dongliang Yang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengji Lu
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Michael Roggendorf
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
- * E-mail:
| |
Collapse
|
13
|
Li L, Shen H, Li A, Zhang Z, Wang B, Wang J, Zheng X, Wu J, Yang D, Lu M, Song J. Inhibition of hepatitis B virus (HBV) gene expression and replication by HBx gene silencing in a hydrodynamic injection mouse model with a new clone of HBV genotype B. Virol J 2013; 10:214. [PMID: 23805945 PMCID: PMC3751867 DOI: 10.1186/1743-422x-10-214] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 06/21/2013] [Indexed: 12/18/2022] Open
Abstract
Background It has been suggested that different hepatitis B virus (HBV) genotypes may have distinct virological characteristics that correlate with clinical outcomes during antiviral therapy and the natural course of infection. Hydrodynamic injection (HI) of HBV in the mouse model is a useful tool for study of HBV replication in vivo. However, only HBV genotype A has been used for studies with HI. Methods We constructed 3 replication-competent clones containing 1.1, 1.2 and 1.3 fold overlength of a HBV genotype B genome and tested them both in vitro and in vivo. Moreover, A HBV genotype B clone based on the pAAV-MCS vector was constructed with the 1.3 fold HBV genome, resulting in the plasmid pAAV-HBV1.3B and tested by HI in C57BL/6 mice. Application of siRNA against HBx gene was tested in HBV genotype B HI mouse model. Results The 1.3 fold HBV clone showed higher replication and gene expression than the 1.1 and 1.2 fold HBV clones. Compared with pAAV-HBV1.2 (genotype A), the mice HI with pAAV-HBV1.3B showed higher HBsAg and HBeAg expression as well as HBV DNA replication level but a higher clearance rate. Application of two plasmids pSB-HBxi285 and pSR-HBxi285 expressing a small/short interfering RNA (siRNA) to the HBx gene in HBV genotype B HI mouse model, leading to an inhibition of HBV gene expression and replication. However, HBV gene expression may resume in some mice despite an initial delay, suggesting that transient suppression of HBV replication by siRNA may be insufficient to prevent viral spread, particularly if the gene silencing is not highly effective. Conclusions Taken together, the HI mouse model with a HBV genotype B genome was successfully established and showed different characteristics in vivo compared with the genotype A genome. The effectiveness of gene silencing against HBx gene determines whether HBV replication may be sustainably inhibited by siRNA in vivo.
Collapse
Affiliation(s)
- Lei Li
- Department of Infectious Diseases, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Kosinska AD, Zhang E, Johrden L, Liu J, Seiz PL, Zhang X, Ma Z, Kemper T, Fiedler M, Glebe D, Wildner O, Dittmer U, Lu M, Roggendorf M. Combination of DNA prime--adenovirus boost immunization with entecavir elicits sustained control of chronic hepatitis B in the woodchuck model. PLoS Pathog 2013; 9:e1003391. [PMID: 23785279 PMCID: PMC3681757 DOI: 10.1371/journal.ppat.1003391] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 04/15/2013] [Indexed: 12/21/2022] Open
Abstract
A potent therapeutic T-cell vaccine may be an alternative treatment of chronic hepatitis B virus (HBV) infection. Previously, we developed a DNA prime-adenovirus (AdV) boost vaccination protocol that could elicit strong and specific CD8+ T-cell responses to woodchuck hepatitis virus (WHV) core antigen (WHcAg) in mice. In the present study, we first examined whether this new prime-boost immunization could induce WHcAg-specific T-cell responses and effectively control WHV replication in the WHV-transgenic mouse model. Secondly, we evaluated the therapeutic effect of this new vaccination strategy in chronically WHV-infected woodchucks in combination with a potent antiviral treatment. Immunization of WHV-transgenic mice by DNA prime-AdV boost regimen elicited potent and functional WHcAg-specific CD8+ T-cell response that consequently resulted in the reduction of the WHV load below the detection limit in more than 70% of animals. The combination therapy of entecavir (ETV) treatment and DNA prime-AdV boost immunization in chronic WHV carriers resulted in WHsAg- and WHcAg-specific CD4+ and CD8+ T-cell responses, which were not detectable in ETV-only treated controls. Woodchucks receiving the combination therapy showed a prolonged suppression of WHV replication and lower WHsAg levels compared to controls. Moreover, two of four immunized carriers remained WHV negative after the end of ETV treatment and developed anti-WHs antibodies. These results demonstrate that the combined antiviral and vaccination approach efficiently elicited sustained immunological control of chronic hepadnaviral infection in woodchucks and may be a new promising therapeutic strategy in patients. Chronic hepatitis B virus (HBV) infection is one of the major causes of liver cirrhosis and liver cancer worldwide. Recommended treatment regimens of chronic hepatitis B based on interferon alpha and nucleot(s)ide analogues do not lead to the satisfactory results. Over the last 20 years, continuous efforts have been undertaken to develop new immunotherapeutic approaches for the treatment of chronic hepatitis B, however, without satisfactory results. We proposed here that the combination of potent antivirals with a prime-boost vaccination protocol that is inducing appropriate virus-specific T-cell responses may restore immune control over HBV. To test this hypothesis we performed a proof-of-principle experiment using woodchucks, a widely accepted animal model of chronic HBV infection. We pretreated animals with entecavir to suppress viral replication and immunized them by a prime-boost regimen with DNA vaccines expressing woodchuck hepatitis virus (WHV) surface and core antigens and adenoviral vectors expressing WHV core antigen. Consistent with our hypothesis, the combination therapy achieved a stronger antiviral effect than the monotherapy alone, leading to sustained immunological control of chronic WHV infection and viral clearance in some animals. These data are encouraging and implicate the feasibility and usefulness of the immunotherapeutic strategies for the treatment of chronically HBV-infected patients.
Collapse
MESH Headings
- Adenoviridae
- Animals
- CD4-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/immunology
- Cells, Cultured
- Disease Models, Animal
- Hepatitis B Vaccines/genetics
- Hepatitis B Vaccines/immunology
- Hepatitis B Vaccines/pharmacology
- Hepatitis B, Chronic/genetics
- Hepatitis B, Chronic/immunology
- Hepatitis B, Chronic/prevention & control
- Humans
- Immunity, Cellular/drug effects
- Immunity, Cellular/genetics
- Immunity, Cellular/immunology
- Immunization, Secondary
- Marmota
- Mice
- Mice, Transgenic
- Vaccines, DNA/genetics
- Vaccines, DNA/microbiology
Collapse
Affiliation(s)
- Anna D. Kosinska
- Institute of Virology, University Hospital of Essen, Essen, Germany
| | - Ejuan Zhang
- Institute of Virology, University Hospital of Essen, Essen, Germany
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Lena Johrden
- Department of Molecular and Medical Virology, Institute of Microbiology and Hygiene, Ruhr-University Bochum, Bochum, Germany
| | - Jia Liu
- Institute of Virology, University Hospital of Essen, Essen, Germany
| | - Pia L. Seiz
- Institute of Medical Virology, National Reference Centre for Hepatitis B and D Viruses, Justus-Liebig University, Giessen, Germany
| | - Xiaoyong Zhang
- Institute of Virology, University Hospital of Essen, Essen, Germany
- Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Zhiyong Ma
- Institute of Virology, University Hospital of Essen, Essen, Germany
| | - Thekla Kemper
- Institute of Virology, University Hospital of Essen, Essen, Germany
| | - Melanie Fiedler
- Institute of Virology, University Hospital of Essen, Essen, Germany
| | - Dieter Glebe
- Institute of Medical Virology, National Reference Centre for Hepatitis B and D Viruses, Justus-Liebig University, Giessen, Germany
| | - Oliver Wildner
- Paul-Ehrlich-Institut, Division of Medical Biotechnology, Langen, Germany
| | - Ulf Dittmer
- Institute of Virology, University Hospital of Essen, Essen, Germany
| | - Mengji Lu
- Institute of Virology, University Hospital of Essen, Essen, Germany
| | - Michael Roggendorf
- Institute of Virology, University Hospital of Essen, Essen, Germany
- * E-mail:
| |
Collapse
|
15
|
Jiang M, Liu J, Zhang E, Meng Z, Wang B, Roggendorf M, Yang D, Lu M, Xu Y. Molecular characterization of woodchuck interleukin-10 receptor and enhanced function of specific T cells from chronically infected woodchucks following its blockade. Comp Immunol Microbiol Infect Dis 2012; 35:563-73. [PMID: 22784930 DOI: 10.1016/j.cimid.2012.06.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Revised: 06/16/2012] [Accepted: 06/19/2012] [Indexed: 12/24/2022]
Abstract
Interleukin 10 (IL-10) is a pleiotropic cytokine acting on a variety of immune cells through the cell surface receptor (IL-10R). It has been suggested to resuscitate antiviral immunity by interfering with IL-10/IL-10R pathway. The woodchuck model infected by woodchuck hepatitis virus (WHV) represents an informative animal model to study hepatitis B virus (HBV) infection. In this study, the woodchuck IL-10R (wIL-10R) was molecularly cloned and characterized, showing high similarity of its nucleotide and amino acid sequences to that of other mammalian species. The expression level of wIL-10R mRNA in woodchuck peripheral blood mononuclear cells was significantly increased in acute WHV infection but down-regulated during chronic WHV infection. Specific rabbit antibodies against wIL-10R were prepared and showed the ability to enhance the proliferation and degranulation of specific T-cells from chronically WHV-infected woodchucks in vitro. The present work on wIL-10R provided a good basis for future preclinical studies on therapeutic approaches for chronic HBV infection.
Collapse
Affiliation(s)
- Min Jiang
- Department of Microbiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
DNA prime-adenovirus boost immunization induces a vigorous and multifunctional T-cell response against hepadnaviral proteins in the mouse and woodchuck model. J Virol 2012; 86:9297-310. [PMID: 22718818 DOI: 10.1128/jvi.00506-12] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Induction of hepatitis B virus (HBV)-specific cytotoxic T cells by therapeutic immunization may be a strategy to treat chronic hepatitis B. In the HBV animal model, woodchucks, the application of DNA vaccine expressing woodchuck hepatitis virus (WHV) core antigen (WHcAg) in combination with antivirals led to the prolonged control of viral replication. However, it became clear that the use of more potent vaccines is required to overcome WHV persistence. Therefore, we asked whether stronger and more functional T-cell responses could be achieved using the modified vaccines and an optimized prime-boost vaccination regimen. We developed a new DNA plasmid (pCGWHc) and recombinant adenoviruses (AdVs) showing high expression levels of WHcAg. Mice vaccinated with the improved plasmid pCGWHc elicited a stronger WHcAg-specific CD8(+) T-cell response than with the previously used vaccines. Using multicolor flow cytometry and an in vivo cytotoxicity assay, we showed that immunization in a DNA prime-AdV boost regimen resulted in an even more vigorous and functional T-cell response than immunization with the new plasmid alone. Immunization of naïve woodchucks with pCGWHc plasmid or AdVs induced a significant WHcAg-specific degranulation response prior to the challenge, this response had not been previously detected. Consistently, this response led to a rapid control of infection after the challenge. Our results demonstrate that high antigen expression levels and the DNA prime-AdV boost immunization improved the T-cell response in mice and induced significant T-cell responses in woodchucks. Therefore, this new vaccination strategy may be a candidate for a therapeutic vaccine against chronic HBV infection.
Collapse
|
17
|
Yang Y, Wang B, Yang D, Lu M, Xu Y. Prokaryotic expression of woodchuck cytotoxic T lymphocyte antigen 4 (wCTLA-4) and preparation of polyclonal antibody to wCTLA-4. Protein Expr Purif 2011; 81:181-5. [PMID: 22040606 DOI: 10.1016/j.pep.2011.10.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 10/14/2011] [Accepted: 10/15/2011] [Indexed: 12/17/2022]
Abstract
Cytotoxic T lymphocyte antigen 4 (CTLA-4) is an inhibitory T cell receptor predominately expressed on activated T cells and plays an important role in regulation of specific T cell responses to viral infection. The woodchuck model is an informative animal model for hepatitis B virus (HBV) infection. In this study, the extracellular region of woodchuck CTLA-4 (wCTLA-4) was cloned and the fusion protein of GST-wCTLA-4 was expressed and purified. Polyclonal antibody against GST-wCTLA-4 (anti-GST-wCTLA-4) was prepared. The full length wCTLA-4 protein expressed in transfected baby hamster kidney cells was detected by anti-GST-wCTLA-4 in western blot analysis and immunofluorescence staining. Anti-GST-wCTLA-4 provides a useful tool to study the role of CTLA-4 in T-cell response in the woodchuck model. Further, the blocking of CTLA-4 with anti-GST-wCTLA-4, as a novel therapy approach for chronic hepatitis B virus infection, could be studied in woodchuck model now.
Collapse
Affiliation(s)
- Yinke Yang
- Department of Microbiology, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, China
| | | | | | | | | |
Collapse
|
18
|
The expression of PD-1 ligands and their involvement in regulation of T cell functions in acute and chronic woodchuck hepatitis virus infection. PLoS One 2011; 6:e26196. [PMID: 22022563 PMCID: PMC3194835 DOI: 10.1371/journal.pone.0026196] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 09/22/2011] [Indexed: 12/20/2022] Open
Abstract
Background The programmed cell death 1 (PD-1)/programmed death-1 ligand 1 (PD-L1) system may play a role in the negative regulation of T cell functions in hepatitis B virus (HBV) infection. Thus, it is important to study its role in the widely used animal model for HBV infection of woodchucks with woodchuck hepatitis virus (WHV). Methods Woodchuck PD-L1 (wPD-L1) and -L2 (wPD-L2) were cloned and characterized. The levels of wPD-L1 expression in primary woodchuck hepatocytes (PWH), peripheral blood mononuclear cells (PBMCs), and liver tissue of naive and WHV-infected woodchucks were examined by real time reverse transcription (RT)-PCR and flow cytometry. Using antibodies against wPD-L1 and -L2, the effect of blocking PD-1/PD-L1/PD-L2 interaction on the proliferation and degranulation of woodchuck PBMCs was examined. Principal Findings Both wPD-L1 and -L2 showed a high homology to their counterparts of other mammalian species and humans. WPD-L1 expression in PWH and PBMCs of naive animals was low but could be stimulated by Toll-like receptor (TLR) ligands and interferons (IFN). WPD-L1 expression in liver tissue was significantly higher than that measured in PWHs and was slightly elevated during acute and chronic WHV infection. However, wPD-1 and wPD-L1 expression on PBMCs was strongly up-regulated during acute and chronic infection. In vitro blockade with antibodies against wPD-L1 and -L2 partially enhanced proliferation and degranulation of PBMCs from WHV-infected woodchucks. Conclusions Our results demonstrated that wPD-1/wPD-L1 expression in hepatocytes and PBMCs can be induced by different inflammatory stimuli and is up-regulated mainly on PBMCs during WHV infection. A blockade of the woodchuck PD-1/PD-L pathway could partially enhance T cell functions in WHV infection.
Collapse
|
19
|
Liu F, Liang M, Cao S, Liu Q, Zhang Q, Li C, Zhang S, Wang S, Li D. Fusion with extracellular domain of cytotoxic T-lymphocyte-associated-antigen 4 leads to enhancement of immunogenicity of Hantaan virus DNA vaccines in C57BL/6 mice. Virol J 2011; 8:448. [PMID: 21943202 PMCID: PMC3204296 DOI: 10.1186/1743-422x-8-448] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 09/23/2011] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Hantaan virus (HTNV) is the causative agent of the most severe form of a rodent-borne disease known as hemorrhagic fever with renal syndrome (HFRS). A safe and effective HTNV vaccine is needed. Vaccination with DNA constructs expressing fused antigen with bioactive factors, has shown promising improvement of immunogenicity for viral agents in animal models, but the effect of fusion strategy on HTNV DNA vaccine has not been investigated. RESULTS DNA plasmids encoding the HTNV nucleocapsid protein (N) and glycoprotein (Gn and Gc) in fusion to the extracellular domain of cytotoxic T-lymphocyte-associated-antigen 4 (eCTLA-4) targeting to antigen presenting cells (APCs) were constructed. Intramuscular immunization of mice with plasmids expressing eCTLA-4-HTNV-N/GP fusion proteins leads to a significant enhancement of the specific antibody response as well as cytotoxic T-lymphocyte (CTL) response in C57BL/6 mice. Moreover, this effect could be further augmented when co-administered with CpG motifs. CONCLUSIONS Modification of viral antigen in fusion to bioactive factor will be promising to confer efficient antigen presentation and improve the potency of DNA vaccine in mice.
Collapse
Affiliation(s)
- Feng Liu
- Laboratory for Viral Hemorrhagic Fever, National Institute for Viral Disease Control and Prevention, China CDC 100 Ying Xin Jie, Xuan Wu Qu, Beijing 100052, China
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Yin Y, Wu C, Song J, Wang J, Zhang E, Liu H, Yang D, Chen X, Lu M, Xu Y. DNA immunization with fusion of CTLA-4 to hepatitis B virus (HBV) core protein enhanced Th2 type responses and cleared HBV with an accelerated kinetic. PLoS One 2011; 6:e22524. [PMID: 21799884 PMCID: PMC3142188 DOI: 10.1371/journal.pone.0022524] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 06/22/2011] [Indexed: 01/26/2023] Open
Abstract
Background Typically, DNA immunization via the intramuscular route induces specific, Th1-dominant immune responses. However, plasmids expressing viral proteins fused to cytotoxic T lymphocyte antigen 4 (CTLA-4) primed Th2-biased responses and were able to induced effective protection against viral challenge in the woodchuck model. Thus, we addressed the question in the mouse model how the Th1/Th2 bias of primed immune responses by a DNA vaccine influences hepatitis B virus (HBV) clearance. Principal Findings Plasmids expressing HBV core protein (HBcAg) or HBV e antigen and HBcAg fused to the extracellular domain of CTLA-4 (pCTLA-4-HBc), CD27, and full length CD40L were constructed. Immunizations of these DNA plasmids induced HBcAg-specific antibody and cytotoxic T-cell responses in mice, but with different characteristics regarding the titers and subtypes of specific antibodies and intensity of T-cell responses. The plasmid pHBc expressing HBcAg induced an IgG2a-dominant response while immunizations of pCTLA-4-HBc induced a balanced IgG1/IgG2a response. To assess the protective values of the immune responses of different characteristics, mice were pre-immunized with pCTLA-4-HBc and pHBc, and challenged by hydrodynamic injection (HI) of pAAV/HBV1.2. HBV surface antigen (HBsAg) and DNA in peripheral blood and HBcAg in liver tissue were cleared with significantly accelerated kinetics in both groups. The clearance of HBsAg was completed within 16 days in immunized mice while more than 50% of the control mice are still positive for HBsAg on day 22. Stronger HBcAg-specific T-cell responses were primed by pHBc correlating with a more rapid decline of HBcAg expression in liver tissue, while anti-HBs antibody response developed rapidly in the mice immunized with pCTLA-4-HBc, indicating that the Th1/Th2 bias of vaccine-primed immune responses influences the mode of viral clearance. Conclusion Viral clearance could be efficiently achieved by Th1/Th2-balanced immune response, with a small but significant shift in T-cell and B-cell immune responses.
Collapse
Affiliation(s)
- Ying Yin
- Department of Microbiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunchen Wu
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Jingjiao Song
- Division of Clinical Immunology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Junzhong Wang
- Division of Clinical Immunology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Ejuan Zhang
- Department of Microbiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongyan Liu
- Institute of Virology, University Hospital of Essen, Essen, Germany
| | - Dongliang Yang
- Division of Clinical Immunology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Xinwen Chen
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Mengji Lu
- Department of Microbiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Virology, University Hospital of Essen, Essen, Germany
| | - Yang Xu
- Department of Microbiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- * E-mail:
| |
Collapse
|
21
|
Electroporation enhances immunogenicity of a DNA vaccine expressing woodchuck hepatitis virus surface antigen in woodchucks. J Virol 2011; 85:4853-62. [PMID: 21389124 DOI: 10.1128/jvi.02437-10] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The development of therapeutic vaccines for chronic hepatitis B virus (HBV) infection has been hampered by host immune tolerance and the generally low magnitude and inconsistent immune responses to conventional vaccines and proposed new delivery methods. Electroporation (EP) for plasmid DNA (pDNA) vaccine delivery has demonstrated the enhanced immunogenicity of HBV antigens in various animal models. In the present study, the efficiency of the EP-based delivery of pDNA expressing various reporter genes first was evaluated in normal woodchucks, and then the immunogenicity of an analog woodchuck hepatitis virus (WHV) surface antigen (WHsAg) pDNA vaccine was studied in this model. The expression of reporter genes was greatly increased when the cellular uptake of pDNA was facilitated by EP. The EP of WHsAg-pDNA resulted in enhanced, dose-dependent antibody and T-cell responses to WHsAg compared to those of the conventional hypodermic needle injection of WHsAg-pDNA. Although subunit WHsAg protein vaccine elicited higher antibody titers than the DNA vaccine delivered with EP, T-cell response rates were comparable. However, in WHsAg-stimulated mononuclear cell cultures, the mRNA expression of CD4 and CD8 leukocyte surface markers and Th1 cytokines was more frequent and was skewed following DNA vaccination compared to that of protein immunization. Thus, the EP-based vaccination of normal woodchucks with pDNA-WHsAg induced a skew in the Th1/Th2 balance toward Th1 immune responses, which may be considered more appropriate for approaches involving therapeutic vaccines to treat chronic HBV infection.
Collapse
|
22
|
Zhou C, Peng G, Jin X, Tang J, Chen Z. Vaccination with a fusion DNA vaccine encoding hepatitis B surface antigen fused to the extracellular domain of CTLA4 enhances HBV-specific immune responses in mice: Implication of its potential use as a therapeutic vaccine. Clin Immunol 2010; 137:190-8. [DOI: 10.1016/j.clim.2010.07.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 07/06/2010] [Accepted: 07/09/2010] [Indexed: 02/07/2023]
|
23
|
beta-Glucan oligosaccharide enhances CD8(+) T cells immune response induced by a DNA vaccine encoding hepatitis B virus core antigen. J Biomed Biotechnol 2010; 2010:645213. [PMID: 20625506 PMCID: PMC2896713 DOI: 10.1155/2010/645213] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 02/27/2010] [Accepted: 03/29/2010] [Indexed: 11/18/2022] Open
Abstract
DNA vaccination can induce specific CD8(+) T cell immune response, but the response level is low in large mammals and human beings. Coadministration of an adjuvant can optimize protective immunity elicited by a DNA vaccine. In this study, we investigated the effect of a synthetic glucohexaose (beta-glu6), an analogue of Lentinan basic unit, on specific CD8(+) T cell response induced by a DNA vaccine encoding HBcAg (pB144) in mice. We found that beta-glu6 promoted the recruitment and maturation of dendritic cells, enhanced the activation of CD8(+) and CD4(+) T cells and increased the number of specific CD8(+)/IFN-gamma(+) T cells in lymphoid and nonlymphoid tissues in mice immunized by pB144. Immunization with pB144 and beta-glu6 increased the anti-HBc IgG and IgG2a antibody titer. These results demonstrate that beta-glu6 can enhance the virus-specific CTL and Th1 responses induced by DNA vaccine, suggesting beta-glu6 as a candidate adjuvant in DNA vaccination.
Collapse
|
24
|
Inhibition of woodchuck hepatitis virus gene expression in primary hepatocytes by siRNA enhances the cellular gene expression. Virology 2008; 384:88-96. [PMID: 19064272 DOI: 10.1016/j.virol.2008.11.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2008] [Revised: 10/01/2008] [Accepted: 11/10/2008] [Indexed: 02/07/2023]
Abstract
Small interfering RNA (siRNA) has been shown to be active to inhibit the hepatitis B virus gene expression and replication in transient and stable transfection systems. Here in primary hepatocytes prepared from naturally woodchuck hepatitis virus (WHV)-infected woodchucks, four siRNAs targeting the WHV preS1, S, C, and X region led to a depletion of WHV transcripts and replicative intermediates with different kinetics and a decreased production of viral particles. Two siRNAs targeting WHV S and X region had the highest efficacy to deplete 70% of WHV transcripts and replicative intermediates. In addition, siRNA-mediated suppression of WHV enhanced the expression of cellular genes like MxA and MHC I. Specific siRNAs are able to inhibit the hepadnaviral replication and enhance the expression of cellular genes relevant for antiviral actions. Thus, siRNAs might be useful as novel antiviral agents for the treatment of chronic HBV infection.
Collapse
|
25
|
Thermet A, Buronfosse T, Werle-Lapostolle B, Chevallier M, Pradat P, Trepo C, Zoulim F, Cova L. DNA vaccination in combination or not with lamivudine treatment breaks humoral immune tolerance and enhances cccDNA clearance in the duck model of chronic hepatitis B virus infection. J Gen Virol 2008; 89:1192-1201. [PMID: 18420797 DOI: 10.1099/vir.0.83583-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
This study used a duck hepatitis B virus (DHBV) model to evaluate whether a novel DNA vaccination protocol alone or associated with antiviral (lamivudine) treatment was able to clear the intrahepatic covalently closed, circular viral DNA (cccDNA) pool responsible for persistence of infection. DHBV carriers received DNA vaccine (on weeks 6, 10, 13, 14, 28 and 35) targeting the large envelope and/or core proteins alone or combined with lamivudine treatment (on weeks 1-8) or lamivudine monotherapy. After 10 months of follow-up, a dramatic decrease in viraemia and liver DHBV cccDNA (below 0.08 cccDNA copies per cell) was observed in 9/30 ducks (30 %) receiving DNA mono- or combination therapy, compared with 0/12 (0 %) from lamivudine monotherapy or the control groups, suggesting a significant antiviral effect of DNA immunization. However, association with the drug did not significantly improve DHBV DNA vaccine efficacy (33 % cccDNA clearance for the combination vs 27 % for DNA monotherapy), probably due to the low antiviral potency of lamivudine in the duck model. Seroconversion to anti-preS was observed in 6/9 (67 %) ducks showing cccDNA clearance, compared with 1/28 (3.6 %) without clearance, suggesting a significant correlation (P<0.001) between humoral response restoration and cccDNA elimination. Importantly, an early (weeks 10-12) drop in viraemia was observed in seroconverted animals, and virus replication did not rebound following the cessation of immunotherapy, indicating a sustained effect. This study provides the first evidence that therapeutic DNA vaccination is able to enhance hepadnaviral cccDNA clearance, which is tightly associated with a break in humoral immune tolerance. These results also highlight the importance of antiviral drug potency and an effective DNA immunization protocol for the design of therapeutic vaccines against chronic hepatitis B.
Collapse
Affiliation(s)
- Alexandre Thermet
- Université Lyon 1, IFR62, F-69008 Lyon, France.,INSERM, Unit 871, F-69424 Lyon, France
| | - Thierry Buronfosse
- Ecole Nationale Vétérinaire de Lyon, F-69280 Marcy l'Etoile, France.,Université Lyon 1, IFR62, F-69008 Lyon, France.,INSERM, Unit 871, F-69424 Lyon, France
| | | | | | - Pierre Pradat
- Hospices Civiles de Lyon, Department of Hepatology, Hotel-Dieu, F-69002 Lyon, France
| | - Christian Trepo
- Hospices Civiles de Lyon, Department of Hepatology, Hotel-Dieu, F-69002 Lyon, France.,Université Lyon 1, IFR62, F-69008 Lyon, France.,INSERM, Unit 871, F-69424 Lyon, France
| | - Fabien Zoulim
- Hospices Civiles de Lyon, Department of Hepatology, Hotel-Dieu, F-69002 Lyon, France.,Université Lyon 1, IFR62, F-69008 Lyon, France.,INSERM, Unit 871, F-69424 Lyon, France
| | - Lucyna Cova
- Université Lyon 1, IFR62, F-69008 Lyon, France.,INSERM, Unit 871, F-69424 Lyon, France
| |
Collapse
|
26
|
Lu M, Yao X, Xu Y, Lorenz H, Dahmen U, Chi H, Dirsch O, Kemper T, He L, Glebe D, Gerlich WH, Wen Y, Roggendorf M. Combination of an antiviral drug and immunomodulation against hepadnaviral infection in the woodchuck model. J Virol 2008; 82:2598-603. [PMID: 18160442 PMCID: PMC2258919 DOI: 10.1128/jvi.01613-07] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Accepted: 12/14/2007] [Indexed: 12/29/2022] Open
Abstract
The essential role of multispecific immune responses for the control of hepatitis B virus (HBV) infection implies the need of multimodal therapeutic strategies for chronic HBV infection, including antiviral chemotherapy and immunomodulation. This hypothesis was tested in the woodchuck model by a combination of lamivudine pretreatment and subsequent immunizations of woodchucks chronically infected with woodchuck hepatitis virus. The immunizations were performed with DNA vaccines or antigen-antibody immune complexes (IC)/DNA vaccines. Immunizations with IC/DNA vaccines led to an anti-woodchuck hepatitis virus surface antibody response and significant reductions of viral load and antigenemia, suggesting that such a strategy may be effective against chronic HBV infection.
Collapse
Affiliation(s)
- Mengji Lu
- Institut für Virologie, Universitätsklinikum Essen, Hufelandstrasse 55, 45122 Essen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Lu M, Menne S, Yang D, Xu Y, Roggendorf M. Immunomodulation as an option for the treatment of chronic hepatitis B virus infection: preclinical studies in the woodchuck model. Expert Opin Investig Drugs 2007; 16:787-801. [PMID: 17501692 DOI: 10.1517/13543784.16.6.787] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
New therapeutic approaches for chronic hepatitis B virus infection based on immunomodulation are now under investigation. The woodchuck model for hepatitis B virus infection has emerged as a useful animal model for the evaluation of such approaches, after developing necessary assays and reagents for immunologic studies in this model. Conventional and novel vaccines such as DNA vaccines were tested in woodchucks for their ability to induce protective immune responses against challenge infection with the woodchuck hepatitis virus (WHV). Furthermore, immunotherapeutic approaches for the control of chronic hepadnaviral infection were evaluated in woodchucks. Immunizations with WHV proteins and DNA vaccines led to the development of antibodies to the WHV surface antigen and to a significant decrease of viral load in chronically WHV-infected woodchucks. Viral vector-mediated gene transfer was explored for the delivery of antiviral cytokines IFN-alpha in woodchucks and resulted in the decrease of viral replication. It is now generally accepted that a combination of antiviral treatment and immunization will be necessary to achieve successful immunomodulation with a long-term control of chronic hepatitis B virus infection.
Collapse
Affiliation(s)
- Mengji Lu
- Institut für Virologie, Universitätsklinikum Essen, Essen, Germany.
| | | | | | | | | |
Collapse
|
28
|
Menne S, Cote PJ. The woodchuck as an animal model for pathogenesis and therapy of chronic hepatitis B virus infection. World J Gastroenterol 2007; 13:104-24. [PMID: 17206759 PMCID: PMC4065868 DOI: 10.3748/wjg.v13.i1.104] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2006] [Revised: 08/25/2006] [Accepted: 10/04/2006] [Indexed: 02/06/2023] Open
Abstract
This review describes the woodchuck and the woodchuck hepatitis virus (WHV) as an animal model for pathogenesis and therapy of chronic hepatitis B virus (HBV) infection and disease in humans. The establishment of woodchuck breeding colonies, and use of laboratory-reared woodchucks infected with defined WHV inocula, have enhanced our understanding of the virology and immunology of HBV infection and disease pathogenesis, including major sequelae like chronic hepatitis and hepatocellular carcinoma. The role of persistent WHV infection and of viral load on the natural history of infection and disease progression has been firmly established along the way. More recently, the model has shed new light on the role of host immune responses in these natural processes, and on how the immune system of the chronic carrier can be manipulated therapeutically to reduce or delay serious disease sequelae through induction of the recovery phenotype. The woodchuck is an outbred species and is not well defined immunologically due to a limitation of available host markers. However, the recent development of several key host response assays for woodchucks provides experimental opportunities for further mechanistic studies of outcome predictors in neonatal- and adult-acquired infections. Understanding the virological and immunological mechanisms responsible for resolution of self-limited infection, and for the onset and maintenance of chronic infection, will greatly facilitate the development of successful strategies for the therapeutic eradication of established chronic HBV infection. Likewise, the results of drug efficacy and toxicity studies in the chronic carrier woodchucks are predictive for responses of patients chronically infected with HBV. Therefore, chronic WHV carrier woodchucks provide a well-characterized mammalian model for preclinical evaluation of the safety and efficacy of drug candidates, experimental therapeutic vaccines, and immunomodulators for the treatment and prevention of HBV disease sequelae.
Collapse
Affiliation(s)
- Stephan Menne
- Department of Clinical Sciences, College of Veterinary Medicine, Veterinary Medical Center, Cornell University, Ithaca, NY 14853, USA.
| | | |
Collapse
|
29
|
Wang J, Gujar SA, Cova L, Michalak TI. Bicistronic woodchuck hepatitis virus core and gamma interferon DNA vaccine can protect from hepatitis but does not elicit sterilizing antiviral immunity. J Virol 2006; 81:903-16. [PMID: 17079319 PMCID: PMC1797430 DOI: 10.1128/jvi.01537-06] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The immunity elicited against nucleocapsid of hepatitis B virus (HBV) and closely related woodchuck hepatitis virus (WHV) has been shown to be important in resolution of hepatitis and protection from infection. Further, activity of gamma interferon (IFN-gamma), which may directly inhibit hepadnavirus replication, promotes antiviral defense and favors T helper cell type 1 (Th1) response, which is seemingly a prerequisite of HBV clearance. In this study, to enhance induction of protective immunity against hepadnavirus, healthy woodchucks were immunized with a bicistronic DNA vaccine carrying WHV core (WHc) and woodchuck IFN-gamma (wIFN-gamma) gene sequences. Three groups, each group containing three animals, were injected once or twice with 0.5 mg, 0.9 mg, or 1.5 mg per dose of this vaccine. In addition, four animals received two injections of 0.6 mg or 1 mg WHc DNA alone. All animals were challenged with WHV. The results showed that four of nine animals injected with the bicistronic vaccine and one of four immunized with WHc DNA became protected from serologically evident infection and hepatitis. This protection was not linked to induction of WHc antigen-specific antibodies or T-cell proliferative response and was not associated with enhanced transcription of Th1 cytokines or 2',5'-oligoadenylate synthetase. Strikingly, all animals protected from hepatitis became reactive for WHV DNA and carried low levels of replicating virus in hepatic and lymphoid tissues after challenge with WHV. This study shows that the bicistronic DNA vaccine encoding both hepadnavirus core antigen and IFN-gamma was more effective in preventing hepatitis than that encoding virus core alone, but neither of them could mount sterile immunity against the virus or prevent establishment of occult infection.
Collapse
Affiliation(s)
- Jinguo Wang
- Molecular Virology and Hepatology Research, Division of Basic Medical Science, Faculty of Medicine, Health Sciences Centre, Memorial University, St. John's, Newfoundland, Canada
| | | | | | | |
Collapse
|
30
|
Zhang W, Dong SF, Sun SH, Wang Y, Li GD, Qu D. Coimmunization with IL-15 plasmid enhances the longevity of CD8 T cells induced by DNA encoding hepatitis B virus core antigen. World J Gastroenterol 2006; 12:4727-35. [PMID: 16937447 PMCID: PMC4087841 DOI: 10.3748/wjg.v12.i29.4727] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To test the feasibility of delivering a plasmid encoding IL-15 as a DNA vaccine adjuvant for improving the immune responses induced by hepatitis B virus core gene DNA vaccine.
METHODS: We used RT-PCR based strategies to develop IL-15 expression constructs. We first confirmed that the gene could be expressed in Escherichia coli due to the poor expression of IL-15. Then the bioactivity of IL-15 plasmid expression product was identified by CTLL-2 proliferation assay. One hundred micrograms of DNA from each of the IL-15 eukaryotic expressed plasmid and the recombinant plasmid harboring DNA encoding the 144 amino acids of the N-terminus of HBV core gene (abbreviated pHBc144) was used to co-immunize C57 BL/6 mice. The titer of anti-HBcIgG was detected by ELISA and the antigen-specific CD8+ T cells (CD8+IFN-γ+ T cells) were detected by intracellular cytokine staining at different time points.
RESULTS: After co-immunization by pIL-15 and pHBc144 DNA vaccine the antigen-specific CD8+ cells of mice increased gradually, the first peak of immune response appeared 14 d later, then the number of antigen-specific CD8+ Ts cells decreased gradually and maintained at a steady level in 3 mo. After boosting, the number of antigen-specific CD8+ T cells reached the second peak 10 d later with a double of the 1st peak, then the number of antigen-specific CD8+ T cells decreased slowly. IL-15 as a gene adjuvant had no significant effect on humoral immune responses induced by hepatitis B virus core gene DNA vaccine, but increased the memory antigen-specific CD8+ T cells induced by hepatitis B virus core gene DNA vaccine.
CONCLUSION: DNA vaccine constructed by HBc Ag 1-144 amino acid induces effective cell immunity, and cytokine plasmid-delivered IL-15 enhances the longevity of CD8+ T cells.
Collapse
MESH Headings
- Adjuvants, Immunologic
- Animals
- CD4-Positive T-Lymphocytes/drug effects
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/pathology
- CD8-Positive T-Lymphocytes/drug effects
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/pathology
- Cell Line
- Cell Survival/drug effects
- Cell Survival/physiology
- DNA, Viral/genetics
- DNA, Viral/pharmacology
- DNA, Viral/therapeutic use
- Escherichia coli/immunology
- Escherichia coli/metabolism
- Female
- Gene Expression Regulation, Viral
- Hepatitis B/drug therapy
- Hepatitis B/pathology
- Hepatitis B/prevention & control
- Hepatitis B Core Antigens/genetics
- Hepatitis B Core Antigens/pharmacology
- Hepatitis B Core Antigens/therapeutic use
- Hepatitis B Vaccines/genetics
- Hepatitis B Vaccines/immunology
- Hepatitis B Vaccines/therapeutic use
- Immunologic Memory/immunology
- Immunotherapy, Active/methods
- Interleukin-15/immunology
- Interleukin-15/metabolism
- Interleukin-15/therapeutic use
- Mice
- Mice, Inbred C57BL
- Plasmids/genetics
- Vaccination/methods
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
- Vaccines, DNA/therapeutic use
Collapse
Affiliation(s)
- Wei Zhang
- Key Laboratory of Medical Molecular Virology, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | | | | | | | | | | |
Collapse
|
31
|
Abstract
With 18 monoclonal antibody (mAb) products currently on the market and more than 100 in clinical trials, it is clear that engineered antibodies have come of age as biopharmaceuticals. In fact, by 2008, engineered antibodies are predicted to account for >30% of all revenues in the biotechnology market. Smaller recombinant antibody fragments (for example, classic monovalent antibody fragments (Fab, scFv)) and engineered variants (diabodies, triabodies, minibodies and single-domain antibodies) are now emerging as credible alternatives. These fragments retain the targeting specificity of whole mAbs but can be produced more economically and possess other unique and superior properties for a range of diagnostic and therapeutic applications. Antibody fragments have been forged into multivalent and multi-specific reagents, linked to therapeutic payloads (such as radionuclides, toxins, enzymes, liposomes and viruses) and engineered for enhanced therapeutic efficacy. Recently, single antibody domains have been engineered and selected as targeting reagents against hitherto immunosilent cavities in enzymes, receptors and infectious agents. Single-domain antibodies are anticipated to significantly expand the repertoire of antibody-based reagents against the vast range of novel biomarkers being discovered through proteomics. As this review aims to show, there is tremendous potential for all antibody fragments either as robust diagnostic reagents (for example in biosensors), or as nonimmunogenic in vivo biopharmaceuticals with superior biodistribution and blood clearance properties.
Collapse
Affiliation(s)
- Philipp Holliger
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK
| | | |
Collapse
|