1
|
Chen D, Zhang HY, Hu SM, He Z, Wu YQ, Zhang ZY, Wang Y, Han CG. The P2 protein of wheat yellow mosaic virus acts as a viral suppressor of RNA silencing in Nicotiana benthamiana to facilitate virus infection. PLANT, CELL & ENVIRONMENT 2024; 47:4543-4556. [PMID: 39016637 DOI: 10.1111/pce.15041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/18/2024] [Accepted: 07/08/2024] [Indexed: 07/18/2024]
Abstract
Wheat yellow mosaic virus (WYMV) causes severe viral wheat disease in Asia. The WYMV P1 protein encoded by RNA2 has viral suppressor of RNA silencing (VSR) activity to facilitate virus infection, however, VSR activity has not been identified for P2 protein encoded by RNA2. In this study, P2 protein exhibited strong VSR activity in Nicotiana benthamiana at the four-leaf stage, and point mutants P70A and G230A lost VSR activity. Protein P2 interacted with calmodulin (CaM) protein, a gene-silencing associated protein, while point mutants P70A and G230A did not interact with it. Competitive bimolecular fluorescence complementation and competitive co-immunoprecipitation experiments showed that P2 interfered with the interaction between CaM and calmodulin-binding transcription activator 3 (CAMTA3), but the point mutants P70A and G230A could not. Mechanical inoculation of wheat with in vitro transcripts of WYMV infectious cDNA clone further confirmed that VSR-deficient mutants P70A and G230A decreased WYMV infection in wheat plants compared with the wild type. In addition, RNA silencing, temperature, ubiquitination and autophagy had significant effects on accumulation of P2 protein in N. benthamiana leaves. In conclusion, WYMV P2 plays a VSR role in N. benthamiana and promotes virus infection by interfering with calmodulin-related antiviral RNAi defense.
Collapse
Affiliation(s)
- Dao Chen
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and College of Plant Protection, China Agricultural University, Beijing, China
| | - Hui-Ying Zhang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and College of Plant Protection, China Agricultural University, Beijing, China
| | - Shu-Ming Hu
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and College of Plant Protection, China Agricultural University, Beijing, China
| | - Zheng He
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and College of Plant Protection, China Agricultural University, Beijing, China
| | - Yong Qi Wu
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and College of Plant Protection, China Agricultural University, Beijing, China
| | - Zong-Ying Zhang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and College of Plant Protection, China Agricultural University, Beijing, China
| | - Ying Wang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and College of Plant Protection, China Agricultural University, Beijing, China
| | - Cheng-Gui Han
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
2
|
Johnson P, Needham J, Lim N, Simon A. Direct nanopore RNA sequencing of umbra-like virus-infected plants reveals long non-coding RNAs, specific cleavage sites, D-RNAs, foldback RNAs, and temporal- and tissue-specific profiles. NAR Genom Bioinform 2024; 6:lqae104. [PMID: 39157584 PMCID: PMC11327873 DOI: 10.1093/nargab/lqae104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/23/2024] [Accepted: 08/01/2024] [Indexed: 08/20/2024] Open
Abstract
The traditional view of plus (+)-strand RNA virus transcriptomes is that infected cells contain a limited variety of viral RNAs, such as full-length (+)-strand genomic RNA(s), (-)-strand replication intermediate(s), 3' co-terminal subgenomic RNA(s), and viral recombinant defective (D)-RNAs. To ascertain the full complement of viral RNAs associated with the simplest plant viruses, long-read direct RNA nanopore sequencing was used to perform transcriptomic analyses of two related umbra-like viruses: citrus yellow vein-associated virus (CY1) from citrus and CY2 from hemp. Analysis of different timepoints/tissues in CY1- and CY2-infected Nicotiana benthamiana plants and CY2-infected hemp revealed: (i) three 5' co-terminal RNAs of 281 nt, 442 nt and 671 nt, each generated by a different mechanism; (ii) D-RNA populations containing the 671 fragment at their 5'ends; (iii) many full-length genomic RNAs and D-RNAs with identical 3'end 61 nt truncations; (iv) virtually all (-)-strand reads missing 3 nt at their 3' termini; (v) (±) foldback RNAs comprising about one-third of all (-)-strand reads and (vi) a higher proportion of full-length gRNAs in roots than in leaves, suggesting that roots may be functioning as a gRNA reservoir. These findings suggest that viral transcriptomes are much more complex than previously thought.
Collapse
Affiliation(s)
- Philip Z Johnson
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, USA
| | - Jason M Needham
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, USA
| | - Natalie K Lim
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, USA
| | - Anne E Simon
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, USA
| |
Collapse
|
3
|
Tabara M, Matsumoto A, Kibayashi Y, Takeda A, Motomura K. Straightforward and affordable agroinfiltration with RUBY accelerates RNA silencing research. PLANT MOLECULAR BIOLOGY 2024; 114:61. [PMID: 38764076 PMCID: PMC11102880 DOI: 10.1007/s11103-024-01463-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/23/2024] [Indexed: 05/21/2024]
Abstract
Transient expression and induction of RNA silencing by agroinfiltration is a fundamental method in plant RNA biology. Here, we introduce a new reporter assay using RUBY, which encodes three key enzymes of the betalain biosynthesis pathway, as a polycistronic mRNA. The red pigmentation conferred by betalains allows visual confirmation of gene expression or silencing levels without tissue disruption, and the silencing levels can be quantitatively measured by absorbance in as little as a few minutes. Infiltration of RUBY in combination with p19, a well-known RNA silencing suppressor, induced a fivefold higher accumulation of betalains at 7 days post infiltration compared to infiltration of RUBY alone. We demonstrated that co-infiltration of RUBY with two RNA silencing inducers, targeting either CYP76AD1 or glycosyltransferase within the RUBY construct, effectively reduces RUBY mRNA and betalain levels, indicating successful RNA silencing. Therefore, compared to conventional reporter assays for RNA silencing, the RUBY-based assay provides a simple and rapid method for quantitative analysis without the need for specialized equipment, making it useful for a wide range of RNA silencing studies.
Collapse
Affiliation(s)
- Midori Tabara
- Ritsumeikan-Global Innovation Research Organization, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Ayumi Matsumoto
- Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Yuriko Kibayashi
- Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Atsushi Takeda
- Ritsumeikan-Global Innovation Research Organization, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
- College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Kazuki Motomura
- Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan.
- College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan.
- Japanese Science and Technology Agency, PRESTO, Kawaguchi, Saitama, 332-0012, Japan.
| |
Collapse
|
4
|
Legarda EG, Elena SF, Mushegian AR. Emergence of two distinct spatial folds in a pair of plant virus proteins encoded by nested genes. J Biol Chem 2024; 300:107218. [PMID: 38522515 PMCID: PMC11044054 DOI: 10.1016/j.jbc.2024.107218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 03/26/2024] Open
Abstract
Virus genomes may encode overlapping or nested open reading frames that increase their coding capacity. It is not known whether the constraints on spatial structures of the two encoded proteins limit the evolvability of nested genes. We examine the evolution of a pair of proteins, p22 and p19, encoded by nested genes in plant viruses from the genus Tombusvirus. The known structure of p19, a suppressor of RNA silencing, belongs to the RAGNYA fold from the alpha+beta class. The structure of p22, the cell-to-cell movement protein from the 30K family widespread in plant viruses, is predicted with the AlphaFold approach, suggesting a single jelly-roll fold core from the all-beta class, structurally similar to capsid proteins from plant and animal viruses. The nucleotide and codon preferences impose modest constraints on the types of secondary structures encoded in the alternative reading frames, nonetheless allowing for compact, well-ordered folds from different structural classes in two similarly-sized nested proteins. Tombusvirus p22 emerged through radiation of the widespread 30K family, which evolved by duplication of a virus capsid protein early in the evolution of plant viruses, whereas lineage-specific p19 may have emerged by a stepwise increase in the length of the overprinted gene and incremental acquisition of functionally active secondary structure elements by the protein product. This evolution of p19 toward the RAGNYA fold represents one of the first documented examples of protein structure convergence in naturally occurring proteins.
Collapse
Affiliation(s)
- Esmeralda G Legarda
- Instituto de Biología Integrativa de Sistemas (I2SysBio), CSIC-Universitat de València, Paterna, València, Spain
| | - Santiago F Elena
- Instituto de Biología Integrativa de Sistemas (I2SysBio), CSIC-Universitat de València, Paterna, València, Spain; The Santa Fe Institute, Santa Fe, New Mexico, USA
| | - Arcady R Mushegian
- Division of Molecular and Cellular Biosciences, National Science Foundation, Arlington, Virginia, USA.
| |
Collapse
|
5
|
Yan D, Han K, Lu Y, Peng J, Rao S, Wu G, Liu Y, Chen J, Zheng H, Yan F. The nanovirus U2 protein suppresses RNA silencing via three conserved cysteine residues. MOLECULAR PLANT PATHOLOGY 2024; 25:e13394. [PMID: 37823358 PMCID: PMC10782648 DOI: 10.1111/mpp.13394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/19/2023] [Accepted: 09/19/2023] [Indexed: 10/13/2023]
Abstract
Nanoviruses have multipartite, circular, single-stranded DNA genomes and cause huge production losses in legumes and other crops. No viral suppressor of RNA silencing (VSR) has yet been reported from a member of the genus Nanovirus. Here, we demonstrate that the nanovirus U2 protein is a VSR. The U2 protein of milk vetch dwarf virus (MDV) suppressed the silencing of the green fluorescent protein (GFP) gene induced by single-stranded and double-stranded RNA, and the systemic spread of the GFP silencing signal. An electrophoretic mobility shift assay showed that the U2 protein was able to bind double-stranded 21-nucleotide small interfering RNA (siRNA). The cysteine residues at positions 43, 79 and 82 in the MDV U2 protein are critical to its nuclear localization, self-interaction and siRNA-binding ability, and were essential for its VSR activity. In addition, expression of the U2 protein via a potato virus X vector induced more severe necrosis symptoms in Nicotiana benthamiana leaves. The U2 proteins of other nanoviruses also acted as VSRs, and the three conserved cysteine residues were indispensable for their VSR activity.
Collapse
Affiliation(s)
- Dankan Yan
- College of Life SciencesFujian Agriculture and Forestry UniversityFuzhouChina
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐Products, Institute of Plant VirologyNingbo UniversityNingboChina
- Institute of Plant Protection and Agro‐Products SafetyAnhui Academy of Agricultural SciencesHefeiChina
| | - Kelei Han
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐Products, Institute of Plant VirologyNingbo UniversityNingboChina
- Institute of Plant Protection and Agro‐Products SafetyAnhui Academy of Agricultural SciencesHefeiChina
| | - Yuwen Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐Products, Institute of Plant VirologyNingbo UniversityNingboChina
| | - Jiejun Peng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐Products, Institute of Plant VirologyNingbo UniversityNingboChina
| | - Shaofei Rao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐Products, Institute of Plant VirologyNingbo UniversityNingboChina
| | - Guanwei Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐Products, Institute of Plant VirologyNingbo UniversityNingboChina
| | - Yong Liu
- Institute of Plant ProtectionHunan Academy of Agricultural SciencesChangshaChina
| | - Jianping Chen
- College of Life SciencesFujian Agriculture and Forestry UniversityFuzhouChina
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐Products, Institute of Plant VirologyNingbo UniversityNingboChina
| | - Hongying Zheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐Products, Institute of Plant VirologyNingbo UniversityNingboChina
| | - Fei Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐Products, Institute of Plant VirologyNingbo UniversityNingboChina
| |
Collapse
|
6
|
Chen D, Zhang HY, Hu SM, Tian MY, Zhang ZY, Wang Y, Sun LY, Han CG. The P1 protein of wheat yellow mosaic virus exerts RNA silencing suppression activity to facilitate virus infection in wheat plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1717-1736. [PMID: 37751381 DOI: 10.1111/tpj.16461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 08/07/2023] [Accepted: 08/29/2023] [Indexed: 09/28/2023]
Abstract
Wheat yellow mosaic virus (WYMV) causes severe wheat viral disease in Asia. However, the viral suppressor of RNA silencing (VSR) encoded by WYMV has not been identified. Here, the P1 protein encoded by WYMV RNA2 was shown to suppress RNA silencing in Nicotiana benthamiana. Mutagenesis assays revealed that the alanine substitution mutant G175A of P1 abolished VSR activity and mutant Y10A VSR activity remained only in younger leaves. P1, but not G175A, interacted with gene silencing-related protein, N. benthamiana calmodulin-like protein (NbCaM), and calmodulin-binding transcription activator 3 (NbCAMTA3), and Y10A interacted with NbCAMTA3 only. Competitive Bimolecular fluorescence complementation and co-immunoprecipitation assays showed that the ability of P1 disturbing the interaction between NbCaM and NbCAMTA3 was stronger than Y10A, Y10A was stronger than G175A. In vitro transcript inoculation of infectious WYMV clones further demonstrated that VSR-defective mutants G175A and Y10A reduced WYMV infection in wheat (Triticum aestivum L.), G175A had a more significant effect on virus accumulation in upper leaves of wheat than Y10A. Moreover, RNA silencing, temperature, and autophagy have significant effects on the accumulation of P1 in N. benthamiana. Taken together, WYMV P1 acts as VSR by interfering with calmodulin-associated antiviral RNAi defense to facilitate virus infection in wheat, which has provided clear insights into the function of P1 in the process of WYMV infection.
Collapse
Affiliation(s)
- Dao Chen
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, and State Key Laboratory of Agricultural Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Hui-Ying Zhang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, and State Key Laboratory of Agricultural Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Shu-Ming Hu
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, and State Key Laboratory of Agricultural Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Meng-Yuan Tian
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang, 712100, China
| | - Zong-Ying Zhang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, and State Key Laboratory of Agricultural Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Ying Wang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, and State Key Laboratory of Agricultural Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Li-Ying Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang, 712100, China
| | - Cheng-Gui Han
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, and State Key Laboratory of Agricultural Biotechnology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
7
|
Madirov A, Yermukhambetova R, Masalimov Z. Exploring the diversity and evolution of tombus-like viruses: phylogenetic analysis, recombination events, and suppressor protein homologs. Arch Virol 2023; 168:287. [PMID: 37947857 DOI: 10.1007/s00705-023-05909-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 07/09/2023] [Indexed: 11/12/2023]
Abstract
This study focuses on the phylogenetic analysis of previously unclassified tombus-like viruses, which are characterized by the presence of homologs of the suppressor protein p19. The primary objectives of this research were to investigate the evolutionary relationships among these viruses and to explore the impact of suppressor proteins and recombination events on their evolution. A dataset comprising 94 viral sequences was analyzed to achieve these goals. The phylogenetic analysis revealed the presence of two distinct clusters within the tombus-like virus group. One cluster consisted of viruses that encoded p19-like RNA suppressors, while the other cluster comprised viruses encoding p14-like suppressors. Based on these findings, we propose the classification of PGT-pt108 as an isolate of carnation Italian ringspot virus (CIRV), and both Tombusviridae sp. s48-k141_139792 and Tombusviridae sp. s51-k141_185213 as isolates of tomato bushy stunt virus (TBSV). Furthermore, this study suggests the establishment of two new genera within the family Tombusviridae, based on the observed divergence and distinct characteristics of these tombus-like viruses. Through the analysis of recombination events, we provide insights into the interspecies movement of CIRV, which is reflected in its phylogenetic positioning. This research contributes to our understanding of the evolutionary dynamics and classification of tombus-like viruses, shedding light on the role of suppressor proteins and recombination events in their evolution and interspecies transmission.
Collapse
Affiliation(s)
- Almas Madirov
- Scientific laboratory for Plant Biotechnology named after Rustem Omarov, L. N. Gumilev Eurasian National University, Astana, Kazakhstan.
| | - Roza Yermukhambetova
- Scientific laboratory for Plant Biotechnology named after Rustem Omarov, L. N. Gumilev Eurasian National University, Astana, Kazakhstan
| | - Zhaksylyk Masalimov
- Scientific laboratory for Plant Biotechnology named after Rustem Omarov, L. N. Gumilev Eurasian National University, Astana, Kazakhstan
| |
Collapse
|
8
|
Rademacher DJ, Bello AI, May JP. CASC3 Biomolecular Condensates Restrict Turnip Crinkle Virus by Limiting Host Factor Availability. J Mol Biol 2023; 435:167956. [PMID: 36642157 PMCID: PMC10338645 DOI: 10.1016/j.jmb.2023.167956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/15/2022] [Accepted: 01/07/2023] [Indexed: 01/15/2023]
Abstract
The exon-junction complex (EJC) plays a role in post-transcriptional gene regulation and exerts antiviral activity towards several positive-strand RNA viruses. However, the spectrum of RNA viruses that are targeted by the EJC or the underlying mechanisms are not well understood. EJC components from Arabidopsis thaliana were screened for antiviral activity towards Turnip crinkle virus (TCV, Tombusviridae). Overexpression of the accessory EJC component CASC3 inhibited TCV accumulation > 10-fold in Nicotiana benthamiana while knock-down of endogenous CASC3 resulted in a > 4-fold increase in TCV accumulation. CASC3 forms cytoplasmic condensates and deletion of the conserved SELOR domain reduced condensate size 7-fold and significantly decreased antiviral activity towards TCV. Mass spectrometry of CASC3 complexes did not identify endogenous stress granule or P-body markers and CASC3 failed to co-localize with an aggresome-specific dye suggesting that CASC3 condensates are distinct from well-established membraneless compartments. Mass spectrometry and bimolecular fluorescence complementation assays revealed that CASC3 sequesters Heat shock protein 70 (Hsp70-1) and Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), two host factors with roles in tombusvirus replication. Overexpression of Hsp70-1 or GAPDH reduced the antiviral activity of CASC3 2.1-fold and 2.8-fold, respectively, and suggests that CASC3 inhibits TCV by limiting host factor availability. Unrelated Tobacco mosaic virus (TMV) also depends on Hsp70-1 and CASC3 overexpression restricted TMV accumulation 4-fold and demonstrates that CASC3 antiviral activity is not TCV-specific. Like CASC3, Auxin response factor 19 (ARF19) forms poorly dynamic condensates but ARF19 overexpression failed to inhibit TCV accumulation and suggests that CASC3 has antiviral activities that are not ubiquitous among cytoplasmic condensates.
Collapse
Affiliation(s)
- Dana J Rademacher
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, 5009 Rockhill Road, Kansas City, MO 64110, USA
| | - Abudu I Bello
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, 5009 Rockhill Road, Kansas City, MO 64110, USA
| | - Jared P May
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, 5009 Rockhill Road, Kansas City, MO 64110, USA.
| |
Collapse
|
9
|
Sharma S, Sett S, Das T, Prasad A, Prasad M. Recent perspective of non-coding RNAs at the nexus of plant-pathogen interaction. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107852. [PMID: 37356385 DOI: 10.1016/j.plaphy.2023.107852] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/06/2023] [Accepted: 06/18/2023] [Indexed: 06/27/2023]
Abstract
In natural habitats, plants are exploited by pathogens in biotrophic or necrotrophic ways. Concurrently, plants have evolved their defense systems for rapid perception of pathogenic effectors and begin concerted cellular reprogramming pathways to confine the pathogens at the entry sites. During the reorganization of cellular signaling mechanisms following pathogen attack, non-coding RNAs serves an indispensable role either as a source of resistance or susceptibility. Besides the well-studied functions of non-coding RNAs related to plant development and abiotic stress responses, previous and recent discoveries have established that non-coding RNAs like miRNAs, siRNAs, lncRNAs and phasi-RNAs can fine tune plant defense responses by targeting various signaling pathways. In this review, recapitulation of previous reports associated with non-coding RNAs as a defense responder against virus, bacteria and fungus attacks and insightful discussion will lead us to conceive innovative ideas to fight against approaching threats of resistant breaking pathogens.
Collapse
Affiliation(s)
| | - Susmita Sett
- National Institute of Plant Genome Research, New Delhi, India.
| | - Tuhin Das
- National Institute of Plant Genome Research, New Delhi, India.
| | - Ashish Prasad
- Department of Botany, Kurukshetra University, Kurukshetra, India.
| | - Manoj Prasad
- National Institute of Plant Genome Research, New Delhi, India; Department of Plant Sciences, University of Hyderabad, Hyderabad, India.
| |
Collapse
|
10
|
Tong X, Zhao JJ, Feng YL, Zou JZ, Ye J, Liu J, Han C, Li D, Wang XB. A selective autophagy receptor VISP1 induces symptom recovery by targeting viral silencing suppressors. Nat Commun 2023; 14:3852. [PMID: 37385991 PMCID: PMC10310818 DOI: 10.1038/s41467-023-39426-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 06/09/2023] [Indexed: 07/01/2023] Open
Abstract
Selective autophagy is a double-edged sword in antiviral immunity and regulated by various autophagy receptors. However, it remains unclear how to balance the opposite roles by one autophagy receptor. We previously identified a virus-induced small peptide called VISP1 as a selective autophagy receptor that facilitates virus infections by targeting components of antiviral RNA silencing. However, we show here that VISP1 can also inhibit virus infections by mediating autophagic degradation of viral suppressors of RNA silencing (VSRs). VISP1 targets the cucumber mosaic virus (CMV) 2b protein for degradation and attenuates its suppression activity on RNA silencing. Knockout and overexpression of VISP1 exhibit compromised and enhanced resistance against late infection of CMV, respectively. Consequently, VISP1 induces symptom recovery from CMV infection by triggering 2b turnover. VISP1 also targets the C2/AC2 VSRs of two geminiviruses and enhances antiviral immunity. Together, VISP1 induces symptom recovery from severe infections of plant viruses through controlling VSR accumulation.
Collapse
Affiliation(s)
- Xin Tong
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, 100193, Beijing, China
- College of Plant Protection, China Agricultural University, 100193, Beijing, China
| | - Jia-Jia Zhao
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Ya-Lan Feng
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Jing-Ze Zou
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Jian Ye
- State Key laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Junfeng Liu
- College of Plant Protection, China Agricultural University, 100193, Beijing, China
| | - Chenggui Han
- College of Plant Protection, China Agricultural University, 100193, Beijing, China
| | - Dawei Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Xian-Bing Wang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, 100193, Beijing, China.
| |
Collapse
|
11
|
Atabekova AK, Solovieva AD, Chergintsev DA, Solovyev AG, Morozov SY. Role of Plant Virus Movement Proteins in Suppression of Host RNAi Defense. Int J Mol Sci 2023; 24:ijms24109049. [PMID: 37240394 DOI: 10.3390/ijms24109049] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
One of the systems of plant defense against viral infection is RNA silencing, or RNA interference (RNAi), in which small RNAs derived from viral genomic RNAs and/or mRNAs serve as guides to target an Argonaute nuclease (AGO) to virus-specific RNAs. Complementary base pairing between the small interfering RNA incorporated into the AGO-based protein complex and viral RNA results in the target cleavage or translational repression. As a counter-defensive strategy, viruses have evolved to acquire viral silencing suppressors (VSRs) to inhibit the host plant RNAi pathway. Plant virus VSR proteins use multiple mechanisms to inhibit silencing. VSRs are often multifunctional proteins that perform additional functions in the virus infection cycle, particularly, cell-to-cell movement, genome encapsidation, or replication. This paper summarizes the available data on the proteins with dual VSR/movement protein activity used by plant viruses of nine orders to override the protective silencing response and reviews the different molecular mechanisms employed by these proteins to suppress RNAi.
Collapse
Affiliation(s)
- Anastasia K Atabekova
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
| | - Anna D Solovieva
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia
| | - Denis A Chergintsev
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia
| | - Andrey G Solovyev
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia
| | - Sergey Y Morozov
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia
| |
Collapse
|
12
|
Assessment of the RNA Silencing Suppressor Activity of Protein P0 of Pepper Vein Yellows Virus 5: Uncovering Natural Variability, Relevant Motifs and Underlying Mechanism. BIOLOGY 2022; 11:biology11121801. [PMID: 36552310 PMCID: PMC9775047 DOI: 10.3390/biology11121801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/02/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
Pepper vein yellows virus 5 (PeVYV-5) belongs to a group of emerging poleroviruses (family Solemoviridae) which pose a risk to pepper cultivation worldwide. Since its first detection in Spain in 2013 and the determination of the complete genome sequence of an isolate in 2018, little is known on the presence, genomic variation and molecular properties of this pathogen. As other members of genus Polerovirus, PeVYV-5 encodes a P0 protein that was predicted to act as viral suppressor of RNA silencing (VSR), one of the major antiviral defense mechanisms in plants. The results of the present work have indicated that PeVYV-5 P0 is a potent VSR, which is able to induce the degradation of Argonaute (AGO) endonucleases, the main effectors of RNA silencing. New viral isolates have been identified in samples collected in 2020-2021 and sequencing of their P0 gene has revealed limited heterogeneity, suggesting that the protein is under negative selection. Analysis of natural and engineered P0 variants has pinpointed distinct protein motifs as critical for the VSR role. Moreover, a positive correlation between the VSR activity of the protein and its capability to promote AGO degradation could be established, supporting that such activity essentially relies on the clearance of core components of the RNA silencing machinery.
Collapse
|
13
|
Novel 3' Proximal Replication Elements in Umbravirus Genomes. Viruses 2022; 14:v14122615. [PMID: 36560619 PMCID: PMC9780821 DOI: 10.3390/v14122615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/25/2022] Open
Abstract
The 3' untranslated regions (UTRs) of positive-strand RNA plant viruses commonly contain elements that promote viral replication and translation. The ~700 nt 3'UTR of umbravirus pea enation mosaic virus 2 (PEMV2) contains three 3' cap-independent translation enhancers (3'CITEs), including one (PTE) found in members of several genera in the family Tombusviridae and another (the 3'TSS) found in numerous umbraviruses and several carmoviruses. In addition, three 3' terminal replication elements are found in nearly every umbravirus and carmovirus. For this report, we have identified a set of three hairpins and a putative pseudoknot, collectively termed "Trio", that are exclusively found in a subset of umbraviruses and are located just upstream of the 3'TSS. Modification of these elements had no impact on viral translation in wheat germ extracts or in translation of luciferase reporter constructs in vivo. In contrast, Trio hairpins were critical for viral RNA accumulation in Arabidopsis thaliana protoplasts and for replication of a non-autonomously replicating replicon using a trans-replication system in Nicotiana benthamiana leaves. Trio and other 3' terminal elements involved in viral replication are highly conserved in umbraviruses possessing different classes of upstream 3'CITEs, suggesting conservation of replication mechanisms among umbraviruses despite variation in mechanisms for translation enhancement.
Collapse
|
14
|
Jin L, Chen M, Xiang M, Guo Z. RNAi-Based Antiviral Innate Immunity in Plants. Viruses 2022; 14:v14020432. [PMID: 35216025 PMCID: PMC8875485 DOI: 10.3390/v14020432] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 12/13/2022] Open
Abstract
Multiple antiviral immunities were developed to defend against viral infection in hosts. RNA interference (RNAi)-based antiviral innate immunity is evolutionarily conserved in eukaryotes and plays a vital role against all types of viruses. During the arms race between the host and virus, many viruses evolve viral suppressors of RNA silencing (VSRs) to inhibit antiviral innate immunity. Here, we reviewed the mechanism at different stages in RNAi-based antiviral innate immunity in plants and the counteractions of various VSRs, mainly upon infection of RNA viruses in model plant Arabidopsis. Some critical challenges in the field were also proposed, and we think that further elucidating conserved antiviral innate immunity may convey a broad spectrum of antiviral strategies to prevent viral diseases in the future.
Collapse
|
15
|
Valli AA, García López R, Ribaya M, Martínez FJ, Gómez DG, García B, Gonzalo I, Gonzalez de Prádena A, Pasin F, Montanuy I, Rodríguez-Gonzalo E, García JA. Maf/ham1-like pyrophosphatases of non-canonical nucleotides are host-specific partners of viral RNA-dependent RNA polymerases. PLoS Pathog 2022; 18:e1010332. [PMID: 35180277 PMCID: PMC8893687 DOI: 10.1371/journal.ppat.1010332] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 03/03/2022] [Accepted: 02/02/2022] [Indexed: 11/18/2022] Open
Abstract
Cassava brown streak disease (CBSD), dubbed the “Ebola of plants”, is a serious threat to food security in Africa caused by two viruses of the family Potyviridae: cassava brown streak virus (CBSV) and Ugandan (U)CBSV. Intriguingly, U/CBSV, along with another member of this family and one secoviridae, are the only known RNA viruses encoding a protein of the Maf/ham1-like family, a group of widespread pyrophosphatase of non-canonical nucleotides (ITPase) expressed by all living organisms. Despite the socio-economic impact of CDSD, the relevance and role of this atypical viral factor has not been yet established. Here, using an infectious cDNA clone and reverse genetics, we demonstrate that UCBSV requires the ITPase activity for infectivity in cassava, but not in the model plant Nicotiana benthamiana. HPLC-MS/MS experiments showed that, quite likely, this host-specific constraint is due to an unexpected high concentration of non-canonical nucleotides in cassava. Finally, protein analyses and experimental evolution of mutant viruses indicated that keeping a fraction of the yielded UCBSV ITPase covalently bound to the viral RNA-dependent RNA polymerase (RdRP) optimizes viral fitness, and this seems to be a feature shared by the other members of the Potyviridae family expressing Maf/ham1-like proteins. All in all, our work (i) reveals that the over-accumulation of non-canonical nucleotides in the host might have a key role in antiviral defense, and (ii) provides the first example of an RdRP-ITPase partnership, reinforcing the idea that RNA viruses are incredibly versatile at adaptation to different host setups. Cassava is one the most important staple food around the world in term of caloric intake. The cassava brown streak disease, caused by cassava brown streak virus (CBSV) and Ugandan (U)CBSV–Ipomovirus genus, Potyviridae family-, produces massive losses in cassava production. Curiously, these two viruses, unlike the vast majority of members of the family, encode a Maf1/ham1-like pyrophosphatase (HAM1) of non-canonical nucleotides with unknown relevance and function in viruses. This study aims to fill this gap in our knowledge by using reverse genetics, biochemistry, metabolomics and directed virus evolution. Hence, we found that HAM1 is required for UCBSV to infect cassava, where its pyrophosphatase activity resulted critical, but not to propagate in the model plant Nicotiana benthamiana. In addition, we demonstrated that HAM1 works in partnership with the viral RdRP during infection. Unexpected high levels of ITP/XTP non-canonical nucleotides found in cassava, and the known flexibility of RNA viruses to incorporate additional factors when required, supports the idea that the high concentration of ITP/XTP worked as a selection pressure to promote the acquisition of HAM1 into the virus in order to promote a successful infection.
Collapse
Affiliation(s)
- Adrian A. Valli
- Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
- * E-mail:
| | | | - María Ribaya
- Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | | | - Diego García Gómez
- Departamento de Química Analítica, Nutrición y Bromatología, Universidad de Salamanca, Salamanca, Spain
| | - Beatriz García
- Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Irene Gonzalo
- Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | | | - Fabio Pasin
- Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Inmaculada Montanuy
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria, Madrid, Spain
| | | | | |
Collapse
|
16
|
Dalmadi Á, Miloro F, Bálint J, Várallyay É, Havelda Z. Controlled RISC loading efficiency of miR168 defined by miRNA duplex structure adjusts ARGONAUTE1 homeostasis. Nucleic Acids Res 2021; 49:12912-12928. [PMID: 34850097 PMCID: PMC8682782 DOI: 10.1093/nar/gkab1138] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 10/25/2021] [Accepted: 11/16/2021] [Indexed: 11/12/2022] Open
Abstract
Micro RNAs (miRNAs) are processed from precursor RNA molecules with precisely defined secondary stem-loop structures. ARGONAUTE1 (AGO1) is the main executor component of miRNA pathway and its expression is controlled via the auto-regulatory feedback loop activity of miR168 in plants. Previously we have shown that AGO1 loading of miR168 is strongly restricted leading to abundant cytoplasmic accumulation of AGO-unbound miR168. Here, we report, that intrinsic RNA secondary structure of MIR168a precursor not only defines the processing of miR168, but also precisely adjusts AGO1 loading efficiency determining the biologically active subset of miR168 pool. Our results show, that modification of miRNA duplex structure of MIR168a precursor fragment or expression from artificial precursors can alter the finely adjusted loading efficiency of miR168. In dcl1-9 mutant where, except for miR168, production of most miRNAs is severely reduced this mechanism ensures the elimination of unloaded AGO1 proteins via enhanced AGO1 loading of miR168. Based on this data, we propose a new competitive loading mechanism model for miR168 action: the miR168 surplus functions as a molecular buffer for controlled AGO1 loading continuously adjusting the amount of AGO1 protein in accordance with the changing size of the cellular miRNA pool.
Collapse
Affiliation(s)
- Ágnes Dalmadi
- Hungarian University of Agriculture and Life Sciences, Institute of Genetics and Biotechnology, Páter Károly Street 1, Gödöllő 2100, Hungary
| | - Fabio Miloro
- Hungarian University of Agriculture and Life Sciences, Institute of Genetics and Biotechnology, Páter Károly Street 1, Gödöllő 2100, Hungary
| | - Jeannette Bálint
- National Agricultural Research and Innovation Centre, Agricultural Biotechnology Institute, Szent-Györgyi Albert Street 4, Gödöllő 2100, Hungary
| | - Éva Várallyay
- Hungarian University of Agriculture and Life Sciences, Institute of Plant Protection, Ménesi Street 44, Budapest 1118, Hungary
| | - Zoltán Havelda
- Hungarian University of Agriculture and Life Sciences, Institute of Genetics and Biotechnology, Páter Károly Street 1, Gödöllő 2100, Hungary
| |
Collapse
|
17
|
Distinct and Overlapping Functions of Miscanthus sinensis MYB Transcription Factors SCM1 and MYB103 in Lignin Biosynthesis. Int J Mol Sci 2021; 22:ijms222212395. [PMID: 34830276 PMCID: PMC8625797 DOI: 10.3390/ijms222212395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/02/2021] [Accepted: 11/12/2021] [Indexed: 11/16/2022] Open
Abstract
Cell wall recalcitrance is a major constraint for the exploitation of lignocellulosic biomass as a renewable resource for energy and bio-based products. Transcriptional regulators of the lignin biosynthetic pathway represent promising targets for tailoring lignin content and composition in plant secondary cell walls. However, knowledge about the transcriptional regulation of lignin biosynthesis in lignocellulosic feedstocks, such as Miscanthus, is limited. In Miscanthus leaves, MsSCM1 and MsMYB103 are expressed at growth stages associated with lignification. The ectopic expression of MsSCM1 and MsMYB103 in N. benthamiana leaves was sufficient to trigger secondary cell wall deposition with distinct sugar and lignin compositions. Moreover, RNA-seq analysis revealed that the transcriptional responses to MsSCM1 and MsMYB103 overexpression showed an extensive overlap with the response to the NAC master transcription factor MsSND1, but were distinct from each other, underscoring the inherent complexity of secondary cell wall formation. Furthermore, conserved and previously described promoter elements as well as novel and specific motifs could be identified from the target genes of the three transcription factors. Together, MsSCM1 and MsMYB103 represent interesting targets for manipulations of lignin content and composition in Miscanthus towards a tailored biomass.
Collapse
|
18
|
Brown SL, Garrison DJ, May JP. Phase separation of a plant virus movement protein and cellular factors support virus-host interactions. PLoS Pathog 2021; 17:e1009622. [PMID: 34543360 PMCID: PMC8483311 DOI: 10.1371/journal.ppat.1009622] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 09/30/2021] [Accepted: 09/13/2021] [Indexed: 12/27/2022] Open
Abstract
Both cellular and viral proteins can undergo phase separation and form membraneless compartments that concentrate biomolecules. The p26 movement protein from single-stranded, positive-sense Pea enation mosaic virus 2 (PEMV2) separates into a dense phase in nucleoli where p26 and related orthologues must interact with fibrillarin (Fib2) as a pre-requisite for systemic virus movement. Using in vitro assays, viral ribonucleoprotein complexes containing p26, Fib2, and PEMV2 genomic RNAs formed droplets that may provide the basis for self-assembly in planta. Mutating basic p26 residues (R/K-G) blocked droplet formation and partitioning into Fib2 droplets or the nucleolus and prevented systemic movement of a Tobacco mosaic virus (TMV) vector in Nicotiana benthamiana. Mutating acidic residues (D/E-G) reduced droplet formation in vitro, increased nucleolar retention 6.5-fold, and prevented systemic movement of TMV, thus demonstrating that p26 requires electrostatic interactions for droplet formation and charged residues are critical for nucleolar trafficking and virus movement. p26 readily partitioned into stress granules (SGs), which are membraneless compartments that assemble by clustering of the RNA binding protein G3BP following stress. G3BP is upregulated during PEMV2 infection and over-expression of G3BP restricted PEMV2 RNA accumulation >20-fold. Deletion of the NTF2 domain that is required for G3BP condensation restored PEMV2 RNA accumulation >4-fold, demonstrating that phase separation enhances G3BP antiviral activity. These results indicate that p26 partitions into membraneless compartments with either proviral (Fib2) or antiviral (G3BP) factors.
Collapse
Affiliation(s)
- Shelby L. Brown
- Department of Cell and Molecular Biology and Biochemistry, School of Biological and Chemical Sciences, University of Missouri-Kansas City, Kansas City, Missouri, United States of America
| | - Dana J. Garrison
- Department of Cell and Molecular Biology and Biochemistry, School of Biological and Chemical Sciences, University of Missouri-Kansas City, Kansas City, Missouri, United States of America
| | - Jared P. May
- Department of Cell and Molecular Biology and Biochemistry, School of Biological and Chemical Sciences, University of Missouri-Kansas City, Kansas City, Missouri, United States of America
| |
Collapse
|
19
|
Wang L, Chen W, Ma H, Li J, Hao X, Wu Y. Identification of RNA silencing suppressor encoded by wheat blue dwarf (WBD) phytoplasma. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23:843-849. [PMID: 33749977 DOI: 10.1111/plb.13257] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/14/2021] [Indexed: 06/12/2023]
Abstract
Plants possess an innate immune system for defence against pathogens. In turn, pathogens have various strategies to overcome complex plant defences. Among diverse pathogens, phytoplasmas are associated with serious diseases in a range of species. RNA silencing serves as an efficient defence system against pathogens in eukaryotes but can be interrupted by RNA silencing suppressors (RSSs) encoded by pathogens. Currently, many RSSs have been identified in viruses, bacteria, oomycetes and fungi. Phytoplasmas are pathogens in several hundred plant species. In this research, 37 candidate effectors of wheat blue dwarf (WBD) phytoplasma were screened for presence of RSS. Agro-infiltration assay, yeast expression system, floral-dip method for constructing transgenic A. thaliana, Western blotting and RT-qPCR were used for identification of RNA silencing suppressors. SWP16 encoded by WBD phytoplasma was found to be a secretory protein that inhibited accumulation of GFP siRNA and led to the accumulation of GPF mRNA in systemic N. benthamiana 16c. Furthermore, in A. thaliana SWP16 inhibited production of miRNAs, which are components of RNA silencing. SWP16 also promoted infection of potato virus X. We conclude that SWP16 encoded by WBD phytoplasma was an RSS, suppressing systemic RNA silencing. This is the first evidence that a phytoplasma encodes an RSS and provides a theoretical basis for research on the interaction mechanisms between pathogens and plants.
Collapse
Affiliation(s)
- L Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest Agriculture & Forestry University, Yangling, P. R. China
| | - W Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest Agriculture & Forestry University, Yangling, P. R. China
| | - H Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest Agriculture & Forestry University, Yangling, P. R. China
| | - J Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest Agriculture & Forestry University, Yangling, P. R. China
| | - X Hao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest Agriculture & Forestry University, Yangling, P. R. China
| | - Y Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest Agriculture & Forestry University, Yangling, P. R. China
| |
Collapse
|
20
|
Liu P, Zhang X, Zhang F, Xu M, Ye Z, Wang K, Liu S, Han X, Cheng Y, Zhong K, Zhang T, Li L, Ma Y, Chen M, Chen J, Yang J. A virus-derived siRNA activates plant immunity by interfering with ROS scavenging. MOLECULAR PLANT 2021; 14:1088-1103. [PMID: 33798746 DOI: 10.1016/j.molp.2021.03.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 01/24/2021] [Accepted: 03/28/2021] [Indexed: 05/27/2023]
Abstract
Virus-derived small interference RNAs (vsiRNAs) not only suppress virus infection in plants via induction of RNA silencing but also enhance virus infection by regulating host defensive gene expression. However, the underlying mechanisms that control vsiRNA-mediated host immunity or susceptibility remain largely unknown. In this study, we generated several transgenic wheat lines using four artificial microRNA expression vectors carrying vsiRNAs from Wheat yellow mosaic virus (WYMV) RNA1. Laboratory and field tests showed that two transgenic wheat lines expressing amiRNA1 were highly resistant to WYMV infection. Further analyses showed that vsiRNA1 could modulate the expression of a wheat thioredoxin-like gene (TaAAED1), which encodes a negative regulator of reactive oxygen species (ROS) production in the chloroplast. The function of TaAAED1 in ROS scavenging could be suppressed by vsiRNA1 in a dose-dependent manner. Furthermore, transgenic expression of amiRNA1 in wheat resulted in broad-spectrum disease resistance to Chinese wheat mosaic virus, Barley stripe mosaic virus, and Puccinia striiformis f. sp. tritici infection, suggesting that vsiRNA1 is involved in wheat immunity via ROS signaling. Collectively, these findings reveal a previously unidentified mechanism underlying the arms race between viruses and plants.
Collapse
Affiliation(s)
- Peng Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Xiaoxiang Zhang
- Institute of Agricultural Sciences in Lixiahe District of Jiangsu Province, Yangzhou, Jiangsu 225007, China
| | - Fan Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Miaoze Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Zhuangxin Ye
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Ke Wang
- National Key Facility for Crop Genetic Resources and Genetic Improvement, Key Laboratory of Crop Genetics and Breeding, Ministry of Agriculture, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shuang Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Xiaolei Han
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Ye Cheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Kaili Zhong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Tianye Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Linzhi Li
- Yantai Academy of Agricultural Science, Shandong Province, No. 26 Gangcheng West Street, Fushan District, Yantai City, Shandong 265500, P.R. China
| | - Youzhi Ma
- National Key Facility for Crop Genetic Resources and Genetic Improvement, Key Laboratory of Crop Genetics and Breeding, Ministry of Agriculture, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ming Chen
- National Key Facility for Crop Genetic Resources and Genetic Improvement, Key Laboratory of Crop Genetics and Breeding, Ministry of Agriculture, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Institute of Plant Virology, Ningbo University, Ningbo 315211, China.
| | - Jian Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Institute of Plant Virology, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
21
|
Auth M, Nyikó T, Auber A, Silhavy D. The role of RST1 and RIPR proteins in plant RNA quality control systems. PLANT MOLECULAR BIOLOGY 2021; 106:271-284. [PMID: 33864582 PMCID: PMC8116306 DOI: 10.1007/s11103-021-01145-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 03/22/2021] [Indexed: 05/03/2023]
Abstract
To keep mRNA homeostasis, the RNA degradation, quality control and silencing systems should act in balance in plants. Degradation of normal mRNA starts with deadenylation, then deadenylated transcripts are degraded by the SKI-exosome 3'-5' and/or XRN4 5'-3' exonucleases. RNA quality control systems identify and decay different aberrant transcripts. RNA silencing degrades double-stranded transcripts and homologous mRNAs. It also targets aberrant and silencing prone transcripts. The SKI-exosome is essential for mRNA homeostasis, it functions in normal mRNA degradation and different RNA quality control systems, and in its absence silencing targets normal transcripts. It is highly conserved in eukaryotes, thus recent reports that the plant SKI-exosome is associated with RST1 and RIPR proteins and that, they are required for SKI-exosome-mediated decay of silencing prone transcripts were unexpected. To clarify whether RST1 and RIPR are essential for all SKI-exosome functions or only for the elimination of silencing prone transcripts, degradation of different reporter transcripts was studied in RST1 and RIPR inactivated Nicotiana benthamiana plants. As RST1 and RIPR, like the SKI-exosome, were essential for Non-stop and No-go decay quality control systems, and for RNA silencing- and minimum ORF-mediated decay, we propose that RST1 and RIPR are essential components of plant SKI-exosome supercomplex.
Collapse
Affiliation(s)
- Mariann Auth
- Biological Research Centre, Institute of Plant Biology, ELKH, Temesvári krt 62, 6726, Szeged, Hungary
- Agricultural Biotechnology Institute, Department of Genetics, NARIC, Gödöllő, Hungary
| | - Tünde Nyikó
- Agricultural Biotechnology Institute, Department of Genetics, NARIC, Gödöllő, Hungary
| | - Andor Auber
- Agricultural Biotechnology Institute, Department of Genetics, NARIC, Gödöllő, Hungary
| | - Dániel Silhavy
- Biological Research Centre, Institute of Plant Biology, ELKH, Temesvári krt 62, 6726, Szeged, Hungary.
- Agricultural Biotechnology Institute, Department of Genetics, NARIC, Gödöllő, Hungary.
| |
Collapse
|
22
|
Liao GR, Tseng YY, Tseng CY, Huang YP, Tsai CH, Liu HP, Hsu WL. K160 in the RNA-binding domain of the orf virus virulence factor OV20.0 is critical for its functions in counteracting host antiviral defense. FEBS Lett 2021; 595:1721-1733. [PMID: 33909294 DOI: 10.1002/1873-3468.14099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/09/2021] [Accepted: 04/22/2021] [Indexed: 11/10/2022]
Abstract
The OV20.0 virulence factor of orf virus antagonizes host antiviral responses. One mechanism through which it functions is by inhibiting activation of the dsRNA-activated protein kinase R (PKR) by sequestering dsRNA and by physically interacting with PKR. Sequence alignment indicated that several key residues critical for dsRNA binding were conserved in OV20.0, and their contribution to OV20.O function was investigated in this study. We found that residues F141, K160, and R164 were responsible for the dsRNA-binding ability of OV20.0. Interestingly, mutation at K160 (K160A) diminished the OV20.0-PKR interaction and further reduced the inhibitory effect of OV20.0 on PKR activation. Nevertheless, OV20.0 homodimerization was not influenced by K160A. The contribution of the dsRNA-binding domain and K160 to the suppression of RNA interference by OV20.0 was further demonstrated in plants. In summary, K160 is essential for the function of OV20.0, particularly its interaction with dsRNA and PKR that ultimately contributes to the suppression of PKR activation.
Collapse
Affiliation(s)
- Guan-Ru Liao
- Graduate Institute of Microbiology and Public Health, National Chung Hsing University, Taichung, Taiwan
| | - Yeu-Yang Tseng
- WHO Collaborating Centre for Reference and Research on Influenza, VIDRL, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Australia
| | - Ching-Yu Tseng
- Graduate Institute of Microbiology and Public Health, National Chung Hsing University, Taichung, Taiwan
| | - Ying-Ping Huang
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Ching-Hsiu Tsai
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Hao-Ping Liu
- Department of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Wei-Li Hsu
- Graduate Institute of Microbiology and Public Health, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
23
|
Liu J, Carino E, Bera S, Gao F, May JP, Simon AE. Structural Analysis and Whole Genome Mapping of a New Type of Plant Virus Subviral RNA: Umbravirus-Like Associated RNAs. Viruses 2021; 13:646. [PMID: 33918656 PMCID: PMC8068935 DOI: 10.3390/v13040646] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 03/31/2021] [Accepted: 04/03/2021] [Indexed: 12/13/2022] Open
Abstract
We report the biological and structural characterization of umbravirus-like associated RNAs (ulaRNAs), a new category of coat-protein dependent subviral RNA replicons that infect plants. These RNAs encode an RNA-dependent RNA polymerase (RdRp) following a -1 ribosomal frameshift event, are 2.7-4.6 kb in length, and are related to umbraviruses, unlike similar RNA replicons that are related to tombusviruses. Three classes of ulaRNAs are proposed, with citrus yellow vein associated virus (CYVaV) placed in Class 2. With the exception of CYVaV, Class 2 and Class 3 ulaRNAs encode an additional open reading frame (ORF) with movement protein-like motifs made possible by additional sequences just past the RdRp termination codon. The full-length secondary structure of CYVaV was determined using Selective 2' Hydroxyl Acylation analyzed by Primer Extension (SHAPE) structure probing and phylogenic comparisons, which was used as a template for determining the putative structures of the other Class 2 ulaRNAs, revealing a number of distinctive structural features. The ribosome recoding sites of nearly all ulaRNAs, which differ significantly from those of umbraviruses, may exist in two conformations and are highly efficient. The 3' regions of Class 2 and Class 3 ulaRNAs have structural elements similar to those of nearly all umbraviruses, and all Class 2 ulaRNAs have a unique, conserved 3' cap-independent translation enhancer. CYVaV replicates independently in protoplasts, demonstrating that the reported sequence is full-length. Additionally, CYVaV contains a sequence in its 3' UTR that confers protection to nonsense mediated decay (NMD), thus likely obviating the need for umbravirus ORF3, a known suppressor of NMD. This initial characterization lays down a road map for future investigations into these novel virus-like RNAs.
Collapse
Affiliation(s)
- Jingyuan Liu
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, College Park, MD 20742, USA; (J.L.); (E.C.); (S.B.)
| | - Elizabeth Carino
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, College Park, MD 20742, USA; (J.L.); (E.C.); (S.B.)
| | - Sayanta Bera
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, College Park, MD 20742, USA; (J.L.); (E.C.); (S.B.)
| | - Feng Gao
- Silvec Biologics, Rockville, MD 20850, USA;
| | - Jared P. May
- Department of Cell and Molecular Biology and Biochemistry, University of Missouri-Kansas City, Kansas City, MO 64110, USA;
| | - Anne E. Simon
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, College Park, MD 20742, USA; (J.L.); (E.C.); (S.B.)
| |
Collapse
|
24
|
Li M, Li C, Jiang K, Li K, Zhang J, Sun M, Wu G, Qing L. Characterization of Pathogenicity-Associated V2 Protein of Tobacco Curly Shoot Virus. Int J Mol Sci 2021; 22:E923. [PMID: 33477652 PMCID: PMC7831499 DOI: 10.3390/ijms22020923] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 11/17/2022] Open
Abstract
V2 proteins encoded by some whitefly-transmitted geminiviruses were reported to be functionally important proteins. However, the functions of the V2 protein of tobacco curly shoot virus (TbCSV), a monopartite begomovirus that causes leaf curl disease on tomato and tobacco in China, remains to be characterized. In our report, an Agrobacterium infiltration-mediated transient expression assay indicated that TbCSV V2 can suppress local and systemic RNA silencing and the deletion analyses demonstrated that the amino acid region 1-92 of V2, including the five predicted α-helices, are required for local RNA silencing suppression. Site-directed substitutions showed that the conserved basic and ring-structured amino acids in TbCSV V2 are critical for its suppressor activity. Potato virus X-mediated heteroexpression of TbCSV V2 in Nicotiana benthamiana induced hypersensitive response-like (HR-like) cell death and systemic necrosis in a manner independent of V2's suppressor activity. Furthermore, TbCSV infectious clone mutant with untranslated V2 protein (TbCSV∆V2) could not induce visual symptoms, and coinfection with betasatellite (TbCSB) could obviously elevate the viral accumulation and symptom development. Interestingly, symptom recovery occurred at 15 days postinoculation (dpi) and onward in TbCSV∆V2/TbCSB-inoculated plants. The presented work contributes to understanding the RNA silencing suppression activity of TbCSV V2 and extends our knowledge of the multifunctional role of begomovirus-encoded V2 proteins during viral infections.
Collapse
Affiliation(s)
- Mingjun Li
- Correspondence: (M.L.); (L.Q.); Tel.: +86-023-68250517 (L.Q.)
| | | | | | | | | | | | | | - Ling Qing
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing 400716, China; (C.L.); (K.J.); (K.L.); (J.Z.); (M.S.); (G.W.)
| |
Collapse
|
25
|
Ramesh SV, Yogindran S, Gnanasekaran P, Chakraborty S, Winter S, Pappu HR. Virus and Viroid-Derived Small RNAs as Modulators of Host Gene Expression: Molecular Insights Into Pathogenesis. Front Microbiol 2021; 11:614231. [PMID: 33584579 PMCID: PMC7874048 DOI: 10.3389/fmicb.2020.614231] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 11/19/2020] [Indexed: 02/01/2023] Open
Abstract
Virus-derived siRNAs (vsiRNAs) generated by the host RNA silencing mechanism are effectors of plant’s defense response and act by targeting the viral RNA and DNA in post-transcriptional gene silencing (PTGS) and transcriptional gene silencing (TGS) pathways, respectively. Contrarily, viral suppressors of RNA silencing (VSRs) compromise the host RNA silencing pathways and also cause disease-associated symptoms. In this backdrop, reports describing the modulation of plant gene(s) expression by vsiRNAs via sequence complementarity between viral small RNAs (sRNAs) and host mRNAs have emerged. In some cases, silencing of host mRNAs by vsiRNAs has been implicated to cause characteristic symptoms of the viral diseases. Similarly, viroid infection results in generation of sRNAs, originating from viroid genomic RNAs, that potentially target host mRNAs causing typical disease-associated symptoms. Pathogen-derived sRNAs have been demonstrated to have the propensity to target wide range of genes including host defense-related genes, genes involved in flowering and reproductive pathways. Recent evidence indicates that vsiRNAs inhibit host RNA silencing to promote viral infection by acting as decoy sRNAs. Nevertheless, it remains unclear if the silencing of host transcripts by viral genome-derived sRNAs are inadvertent effects due to fortuitous pairing between vsiRNA and host mRNA or the result of genuine counter-defense strategy employed by viruses to enhance its survival inside the plant cell. In this review, we analyze the instances of such cross reaction between pathogen-derived vsiRNAs and host mRNAs and discuss the molecular insights regarding the process of pathogenesis.
Collapse
Affiliation(s)
- S V Ramesh
- ICAR-Central Plantation Crops Research Institute, Kasaragod, India
| | - Sneha Yogindran
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Prabu Gnanasekaran
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| | | | - Stephan Winter
- Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Braunschweig, Germany
| | - Hanu R Pappu
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| |
Collapse
|
26
|
Zhang CW, Liu Q, Zeng Q, Huang WT, Wang Q, Cheng YQ. p24 G1 Encoded by Grapevine Leafroll-Associated Virus 1 Suppresses RNA Silencing and Elicits Hypersensitive Response-Like Necrosis in Nicotiana Species. Viruses 2020; 12:E1111. [PMID: 33007975 PMCID: PMC7601950 DOI: 10.3390/v12101111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/19/2020] [Accepted: 09/29/2020] [Indexed: 01/21/2023] Open
Abstract
Grapevine leafroll-associated virus 1 (GLRaV-1) is a major pathogen associated with grapevine leafroll disease. However, the molecular mechanisms underlying GLRaV-1 interactions with plant cells are unclear. Using Agrobacterium infiltration-mediated RNA-silencing assays, we demonstrated that GLRaV-1 p24 protein (p24G1) acts as an RNA-silencing suppressor (RSS), inhibiting local and systemic RNA silencing. Electrophoretic mobility shift assays showed that p24G1 binds double-stranded 21-nucleotide small interfering RNA (siRNA), and that siRNA binding is required but not sufficient for its RSS activity. p24G1 localizes in the nucleus and can self-interact through its amino acid 10 to 210 region. Dimerization is needed for p24G1 interaction with importin α1 before moving to the nucleus, but is not required for its siRNA binding and RSS activity. Expression of p24G1 from a binary pGD vector or potato virus X-based vector elicited a strong hypersensitive response in Nicotiana species, indicating that p24G1 may be a factor in pathogenesis. Furthermore, p24G1 function in pathogenesis required its RSS activity, dimerization and nuclear localization. In addition, the region of amino acids 122-139 played a crucial role in the nuclear import, siRNA binding, silencing suppression and pathogenic activity of p24G1. These results contribute to our understanding of the molecular mechanisms underlying GLRaV-1 infection.
Collapse
Affiliation(s)
- Chen-Wei Zhang
- Department of Pomology, China Agricultural University, Beijing 100193, China; (C.-W.Z.); (Q.L.); (Q.Z.); (W.-T.H.)
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture, Beijing 100083, China
| | - Qing Liu
- Department of Pomology, China Agricultural University, Beijing 100193, China; (C.-W.Z.); (Q.L.); (Q.Z.); (W.-T.H.)
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture, Beijing 100083, China
| | - Qi Zeng
- Department of Pomology, China Agricultural University, Beijing 100193, China; (C.-W.Z.); (Q.L.); (Q.Z.); (W.-T.H.)
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture, Beijing 100083, China
| | - Wen-Ting Huang
- Department of Pomology, China Agricultural University, Beijing 100193, China; (C.-W.Z.); (Q.L.); (Q.Z.); (W.-T.H.)
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture, Beijing 100083, China
| | - Qi Wang
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China;
| | - Yu-Qin Cheng
- Department of Pomology, China Agricultural University, Beijing 100193, China; (C.-W.Z.); (Q.L.); (Q.Z.); (W.-T.H.)
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture, Beijing 100083, China
| |
Collapse
|
27
|
May JP, Johnson PZ, Ilyas M, Gao F, Simon AE. The Multifunctional Long-Distance Movement Protein of Pea Enation Mosaic Virus 2 Protects Viral and Host Transcripts from Nonsense-Mediated Decay. mBio 2020; 11:e00204-20. [PMID: 32156817 PMCID: PMC7064760 DOI: 10.1128/mbio.00204-20] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 02/03/2020] [Indexed: 02/07/2023] Open
Abstract
The nonsense-mediated decay (NMD) pathway presents a challenge for RNA viruses with termination codons that precede extended 3' untranslated regions (UTRs). The umbravirus Pea enation mosaic virus 2 (PEMV2) is a nonsegmented, positive-sense RNA virus with an unusually long 3' UTR that is susceptible to NMD. To establish a systemic infection, the PEMV2 long-distance movement protein p26 was previously shown to both stabilize viral RNAs and bind them for transport through the plant's vascular system. The current study demonstrated that p26 protects both viral and nonviral messenger RNAs from NMD. Although p26 localizes to both the cytoplasm and nucleolus, p26 exerts its anti-NMD effects exclusively in the cytoplasm independently of long-distance movement. Using a transcriptome-wide approach in the model plant Nicotiana benthamiana, p26 protected a subset of cellular NMD target transcripts, particularly those containing long, structured, GC-rich 3' UTRs. Furthermore, transcriptome sequencing (RNA-seq) revealed that the NMD pathway is highly dysfunctional during PEMV2 infection, with 1,820 (48%) of NMD targets increasing in abundance. Widespread changes in the host transcriptome are common during plant RNA virus infections, and these results suggest that, in at least some instances, virus-mediated NMD inhibition may be a major contributing factor.IMPORTANCE Nonsense-mediated decay (NMD) represents an RNA regulatory pathway that degrades both natural and faulty messenger RNAs with long 3' untranslated regions. NMD targets diverse families of RNA viruses, requiring that viruses counteract the NMD pathway for successful amplification in host cells. A protein required for long-distance movement of Pea enation mosaic virus 2 (PEMV2) is shown to also protect both viral and host mRNAs from NMD. RNA-seq analyses of the Nicotiana benthamiana transcriptome revealed that PEMV2 infection significantly impairs the host NMD pathway. RNA viruses routinely induce large-scale changes in host gene expression, and, like PEMV2, may use NMD inhibition to alter the host transcriptome in an effort to increase virus amplification.
Collapse
Affiliation(s)
- Jared P May
- Department of Cell Biology and Molecular Genetics, University of Maryland-College Park, College Park, Maryland, USA
| | - Philip Z Johnson
- Department of Cell Biology and Molecular Genetics, University of Maryland-College Park, College Park, Maryland, USA
| | - Muhammad Ilyas
- Department of Cell Biology and Molecular Genetics, University of Maryland-College Park, College Park, Maryland, USA
| | - Feng Gao
- Department of Cell Biology and Molecular Genetics, University of Maryland-College Park, College Park, Maryland, USA
| | - Anne E Simon
- Department of Cell Biology and Molecular Genetics, University of Maryland-College Park, College Park, Maryland, USA
| |
Collapse
|
28
|
Discovery and characterization of a novel alphavirus-like RNA virus from the red firebug Pyrrhocoris apterus L. (Heteroptera). J Invertebr Pathol 2019; 166:107213. [DOI: 10.1016/j.jip.2019.107213] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/25/2019] [Accepted: 06/27/2019] [Indexed: 11/22/2022]
|
29
|
Gupta AK, Tatineni S. RNA silencing suppression mechanisms of Triticum mosaic virus P1: dsRNA binding property and mapping functional motifs. Virus Res 2019; 269:197640. [DOI: 10.1016/j.virusres.2019.197640] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/08/2019] [Accepted: 06/14/2019] [Indexed: 11/24/2022]
|
30
|
Gupta AK, Hein GL, Tatineni S. P7 and P8 proteins of High Plains wheat mosaic virus, a negative-strand RNA virus, employ distinct mechanisms of RNA silencing suppression. Virology 2019; 535:20-31. [PMID: 31254744 DOI: 10.1016/j.virol.2019.06.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/14/2019] [Accepted: 06/16/2019] [Indexed: 10/26/2022]
Abstract
High Plains wheat mosaic virus (genus Emaravirus), an octapartite negative-sense RNA virus, encodes two RNA silencing suppressors, P7 and P8. In this study, we found that P7 and P8 efficiently delayed the onset of dsRNA-induced transitive pathway of RNA silencing. Electrophoretic mobility shift assays (EMSA) revealed that only P7 protected long dsRNAs from dicing in vitro and bound weakly to 21- and 24-nt PTGS-like ds-siRNAs. In contrast, P8 bound strongly and relatively weakly to 21- and 24-nt ds-siRNAs, respectively, suggesting size-specific binding. In EMSA, neither protein bound to 180-nt and 21-nt ssRNAs at detectable levels. Sequence analysis revealed that P7 contains a conserved GW motif. Mutational disruption of this motif resulted in loss of suppression of RNA silencing and pathogenicity enhancement, and failure to complement the silencing suppression-deficient wheat streak mosaic virus. Collectively, these data suggest that P7 and P8 proteins utilize distinct mechanisms to overcome host RNA silencing for successful establishment of systemic infection in planta.
Collapse
Affiliation(s)
- Adarsh K Gupta
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Gary L Hein
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Satyanarayana Tatineni
- United States Department of Agriculture-Agricultural Research Service and Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA.
| |
Collapse
|
31
|
Nyikó T, Auber A, Bucher E. Functional and molecular characterization of the conserved Arabidopsis PUMILIO protein, APUM9. PLANT MOLECULAR BIOLOGY 2019; 100:199-214. [PMID: 30868544 PMCID: PMC6513901 DOI: 10.1007/s11103-019-00853-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 03/01/2019] [Indexed: 05/08/2023]
Abstract
Here we demonstrate that the APUM9 RNA-binding protein and its co-factors play a role in mRNA destabilization and how this activity might regulate early plant development. APUM9 is a conserved PUF RNA-binding protein (RBP) under complex transcriptional control mediated by a transposable element (TE) that restricts its expression in Arabidopsis. Currently, little is known about the functional and mechanistic details of the plant PUF regulatory system and the biological relevance of the TE-mediated repression of APUM9 in plant development and stress responses. By combining a range of transient assays, we show here, that APUM9 binding to target transcripts can trigger their rapid decay via its conserved C-terminal RNA-binding domain. APUM9 directly interacts with DCP2, the catalytic subunit of the decapping complex and DCP2 overexpression induces rapid decay of APUM9 targeted mRNAs. We show that APUM9 negatively regulates the expression of ABA signaling genes during seed imbibition, and thereby might contribute to the switch from dormant stage to seed germination. By contrast, strong TE-mediated repression of APUM9 is important for normal plant growth in the later developmental stages. Finally, APUM9 overexpression plants show slightly enhanced heat tolerance suggesting that TE-mediated control of APUM9, might have a role not only in embryonic development, but also in plant adaptation to heat stress conditions.
Collapse
Affiliation(s)
- Tünde Nyikó
- Université d'Angers, UMR1345 Institut de Recherche en Horticulture et Semences (IRHS-INRA), 42 rue Georges Morel, 24, 49071, Beaucouzé, France
- Agricultural Biotechnology Institute, Szent-Györgyi Albert 4, Gödöllő, 2100, Hungary
| | - Andor Auber
- Agricultural Biotechnology Institute, Szent-Györgyi Albert 4, Gödöllő, 2100, Hungary
| | - Etienne Bucher
- Université d'Angers, UMR1345 Institut de Recherche en Horticulture et Semences (IRHS-INRA), 42 rue Georges Morel, 24, 49071, Beaucouzé, France.
| |
Collapse
|
32
|
May JP, Yuan X, Sawicki E, Simon AE. RNA virus evasion of nonsense-mediated decay. PLoS Pathog 2018; 14:e1007459. [PMID: 30452463 PMCID: PMC6277124 DOI: 10.1371/journal.ppat.1007459] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 12/03/2018] [Accepted: 11/06/2018] [Indexed: 12/24/2022] Open
Abstract
Nonsense-mediated decay (NMD) is a host RNA control pathway that removes aberrant transcripts with long 3' untranslated regions (UTRs) due to premature termination codons (PTCs) that arise through mutation or defective splicing. To maximize coding potential, RNA viruses often contain internally located stop codons that should also be prime targets for NMD. Using an agroinfiltration-based NMD assay in Nicotiana benthamiana, we identified two segments conferring NMD-resistance in the carmovirus Turnip crinkle virus (TCV) genome. The ribosome readthrough structure just downstream of the TCV p28 termination codon stabilized an NMD-sensitive reporter as did a frameshifting element from umbravirus Pea enation mosaic virus. In addition, a 51-nt unstructured region (USR) at the beginning of the TCV 3' UTR increased NMD-resistance 3-fold when inserted into an unrelated NMD-sensitive 3' UTR. Several additional carmovirus 3' UTRs also conferred varying levels of NMD resistance depending on the construct despite no sequence similarity in the analogous region. Instead, these regions displayed a marked lack of RNA structure immediately following the NMD-targeted stop codon. NMD-resistance was only slightly reduced by conversion of 19 pyrimidines in the USR to purines, but resistance was abolished when a 2-nt mutation was introduced downstream of the USR that substantially increased the secondary structure in the USR through formation of a stable hairpin. The same 2-nt mutation also enhanced the NMD susceptibility of a subgenomic RNA expressed independently of the genomic RNA. The conserved lack of RNA structure among most carmoviruses at the 5' end of their 3' UTR could serve to enhance subgenomic RNA stability, which would increase expression of the encoded capsid protein that also functions as the RNA silencing suppressor. These results demonstrate that the TCV genome has features that are inherently NMD-resistant and these strategies could be widespread among RNA viruses and NMD-resistant host mRNAs with long 3' UTRs.
Collapse
Affiliation(s)
- Jared P. May
- Department of Cell Biology and Molecular Genetics, University of Maryland–College Park, College Park, Maryland, United States of America
| | - Xuefeng Yuan
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong Province, P.R.China
| | - Erika Sawicki
- Department of Cell Biology and Molecular Genetics, University of Maryland–College Park, College Park, Maryland, United States of America
| | - Anne E. Simon
- Department of Cell Biology and Molecular Genetics, University of Maryland–College Park, College Park, Maryland, United States of America
| |
Collapse
|
33
|
Szádeczky-Kardoss I, Gál L, Auber A, Taller J, Silhavy D. The No-go decay system degrades plant mRNAs that contain a long A-stretch in the coding region. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 275:19-27. [PMID: 30107878 DOI: 10.1016/j.plantsci.2018.07.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/18/2018] [Accepted: 07/19/2018] [Indexed: 05/04/2023]
Abstract
RNA quality control systems identify and degrade aberrant mRNAs, thereby preventing the accumulation of faulty proteins. Non-stop decay (NSD) and No-go decay (NGD) are closely related RNA quality control systems that act during translation. NSD degrades mRNAs lacking a stop codon, while NGD recognizes and decays mRNAs that contain translation elongation inhibitory structures. NGD has been intensively studied in yeast and animals but it has not been described in plants yet. In yeast, NGD is induced if the elongating ribosome is stalled by a strong inhibitory structure. Then, the mRNA is cleaved by an unknown nuclease and the cleavage fragments are degraded. Here we show that NGD also operates in plant. We tested several potential NGD cis-elements and found that in plants, unlike in yeast, only long A-stretches induce NGD. These long A-stretches trigger endonucleolytic cleavage, and then the 5' fragments are degraded in a Pelota-, HBS1- and SKI2- dependent manner, while XRN4 eliminates the 3' fragment. We also show that plant NGD operates gradually, the longer the A-stretch, the more efficient the cleavage. Our data suggest that mechanistically NGD is conserved in eukaryotes, although the NGD inducing cis-elements could be different. Moreover, we found that Arabidopsis AtPelota1 functions in both NGD and NSD, while AtPelota2 represses these quality control systems. The function of plant NGD will be discussed.
Collapse
Affiliation(s)
| | - Luca Gál
- Agricultural Biotechnology Institute, Szent-Györgyi 4, H-2100, Gödöllő, Hungary
| | - Andor Auber
- Agricultural Biotechnology Institute, Szent-Györgyi 4, H-2100, Gödöllő, Hungary
| | - János Taller
- University Pannonia Georgikon, Festetics 7, 8360, Keszthely, Hungary
| | - Dániel Silhavy
- Agricultural Biotechnology Institute, Szent-Györgyi 4, H-2100, Gödöllő, Hungary.
| |
Collapse
|
34
|
Varanda CM, Materatski P, Campos MD, Clara MIE, Nolasco G, Félix MDR. Olive Mild Mosaic Virus Coat Protein and P6 Are Suppressors of RNA Silencing, and Their Silencing Confers Resistance against OMMV. Viruses 2018; 10:E416. [PMID: 30096871 PMCID: PMC6115721 DOI: 10.3390/v10080416] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/03/2018] [Accepted: 08/06/2018] [Indexed: 12/16/2022] Open
Abstract
RNA silencing is an important defense mechanism in plants, yet several plant viruses encode proteins that suppress this mechanism. In this study, the genome of the Olive mild mosaic virus (OMMV) was screened for silencing suppressors. The full OMMV cDNA and 5 OMMV open reading frames (ORFs) were cloned into the Gateway binary vector pK7WG2, transformed into Agrobacterium tumefaciens, and agroinfiltrated into N. benthamiana 16C plants. CP and p6 showed suppressor activity, with CP showing significantly higher activity than p6, yet activity that was lower than the full OMMV, suggesting a complementary action of CP and p6. These viral suppressors were then used to induce OMMV resistance in plants based on RNA silencing. Two hairpin constructs targeting each suppressor were agroinfiltrated in N. benthamiana plants, which were then inoculated with OMMV RNA. When silencing of both suppressors was achieved, a significant reduction in viral accumulation and symptom attenuation was observed as compared to those of the controls, as well as to when each construct was used alone, proving them to be effective against OMMV infection. This is the first time that a silencing suppressor was found in a necrovirus, and that two independent proteins act as silencing suppressors in a virus member of the Tombusviridae family.
Collapse
Affiliation(s)
- Carla Mr Varanda
- ICAAM-Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Instituto de Investigação e Formação Avançada, Universidade de Évora, Pólo da Mitra, Ap.94, 7006-554 Évora, Portugal.
| | - Patrick Materatski
- ICAAM-Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Instituto de Investigação e Formação Avançada, Universidade de Évora, Pólo da Mitra, Ap.94, 7006-554 Évora, Portugal.
| | - Maria Doroteia Campos
- ICAAM-Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Instituto de Investigação e Formação Avançada, Universidade de Évora, Pólo da Mitra, Ap.94, 7006-554 Évora, Portugal.
| | - Maria Ivone E Clara
- Departamento de Fitotecnia, ICAAM-Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Escola de Ciências e Tecnologia, Universidade de Évora, Pólo da Mitra, Ap.94, 7006-554 Évora, Portugal.
| | - Gustavo Nolasco
- MeditBio-Centro para os Recursos Biológicos e Alimentos Mediterrânicos, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| | - Maria do Rosário Félix
- Departamento de Fitotecnia, ICAAM-Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Escola de Ciências e Tecnologia, Universidade de Évora, Pólo da Mitra, Ap.94, 7006-554 Évora, Portugal.
| |
Collapse
|
35
|
Szádeczky-Kardoss I, Csorba T, Auber A, Schamberger A, Nyikó T, Taller J, Orbán TI, Burgyán J, Silhavy D. The nonstop decay and the RNA silencing systems operate cooperatively in plants. Nucleic Acids Res 2018; 46:4632-4648. [PMID: 29672715 PMCID: PMC5961432 DOI: 10.1093/nar/gky279] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 03/28/2018] [Accepted: 04/11/2018] [Indexed: 12/27/2022] Open
Abstract
Translation-dependent mRNA quality control systems protect the protein homeostasis of eukaryotic cells by eliminating aberrant transcripts and stimulating the decay of their protein products. Although these systems are intensively studied in animals, little is known about the translation-dependent quality control systems in plants. Here, we characterize the mechanism of nonstop decay (NSD) system in Nicotiana benthamiana model plant. We show that plant NSD efficiently degrades nonstop mRNAs, which can be generated by premature polyadenylation, and stop codon-less transcripts, which are produced by endonucleolytic cleavage. We demonstrate that in plants, like in animals, Pelota, Hbs1 and SKI2 proteins are required for NSD, supporting that NSD is an ancient and conserved eukaryotic quality control system. Relevantly, we found that NSD and RNA silencing systems cooperate in plants. Plant silencing predominantly represses target mRNAs through endonucleolytic cleavage in the coding region. Here we show that NSD is required for the elimination of 5' cleavage product of mi- or siRNA-guided silencing complex when the cleavage occurs in the coding region. We also show that NSD and nonsense-mediated decay (NMD) quality control systems operate independently in plants.
Collapse
Affiliation(s)
| | - Tibor Csorba
- Agricultural Biotechnology Institute, Szent-Györgyi 4, H-2100 Gödöllő, Hungary
| | - Andor Auber
- Agricultural Biotechnology Institute, Szent-Györgyi 4, H-2100 Gödöllő, Hungary
| | - Anita Schamberger
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, 1117 Budapest, Hungary
| | - Tünde Nyikó
- Agricultural Biotechnology Institute, Szent-Györgyi 4, H-2100 Gödöllő, Hungary
| | - János Taller
- University Pannonia Georgikon, Festetics 7, 8360 Keszthely, Hungary
| | - Tamás I Orbán
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, 1117 Budapest, Hungary
| | - József Burgyán
- Agricultural Biotechnology Institute, Szent-Györgyi 4, H-2100 Gödöllő, Hungary
| | - Dániel Silhavy
- Agricultural Biotechnology Institute, Szent-Györgyi 4, H-2100 Gödöllő, Hungary
| |
Collapse
|
36
|
Fodor J, Kámán-Tóth E, Dankó T, Schwarczinger I, Bozsó Z, Pogány M. Description of the Nicotiana benthamiana-Cercospora nicotianae Pathosystem. PHYTOPATHOLOGY 2018; 108:149-155. [PMID: 28853320 DOI: 10.1094/phyto-12-16-0448-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Nicotiana benthamiana is a valuable model organism in plant biology research. This report describes its extended applicability in the field of molecular plant pathology by introducing a nonbiotrophic fungal pathogen Cercospora nicotianae that can be conveniently used under laboratory conditions, consistently induces a necrotic leaf spot disease on Nicotiana benthamiana, and is specialized on solanaceous plants. Our inoculation studies showed that C. nicotianae more effectively colonizes N. benthamiana than its conventional host, N. tabacum. The functions of two critical regulators of host immunity, coronatine-insensitive 1 (COI1) and ethylene-insensitive 2 (EIN2), were studied in N. benthamiana using Tobacco rattle virus-based virus-induced gene silencing (VIGS). Perturbation of jasmonic acid or ethylene signaling by VIGS of either COI1 or EIN2, respectively, resulted in markedly increased Cercospora leaf spot symptoms on N. benthamiana plants. These results suggest that the N. benthamiana-C. nicotianae host-pathogen interaction is a prospective but hitherto unutilized pathosystem for studying gene functions in diseased plants.
Collapse
Affiliation(s)
- József Fodor
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, H-1022 Budapest, Herman Ottó út 15
| | - Evelin Kámán-Tóth
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, H-1022 Budapest, Herman Ottó út 15
| | - Tamás Dankó
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, H-1022 Budapest, Herman Ottó út 15
| | - Ildikó Schwarczinger
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, H-1022 Budapest, Herman Ottó út 15
| | - Zoltán Bozsó
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, H-1022 Budapest, Herman Ottó út 15
| | - Miklós Pogány
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, H-1022 Budapest, Herman Ottó út 15
| |
Collapse
|
37
|
Complete genome sequence of rice virus A, a new member of the family Tombusviridae. Arch Virol 2017; 162:3247-3250. [PMID: 28695276 DOI: 10.1007/s00705-017-3472-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 06/03/2017] [Indexed: 10/19/2022]
Abstract
An evaluation of the virus population in rice plants using next-generation sequencing technologies resulted in the discovery of a new RNA virus, tentatively named rice virus A (RVA). The complete RVA genome sequence was determined and analyzed, revealing a genome organization resembling that of viruses classified in the genera Aureusvirus, Tombusvirus and Zeavirus within the family Tombusviridae. With 4,832 nucleotides, the RVA genome may be the largest monopartite genome sequenced to date in the family Tombusviridae. The 453-amino acid RVA coat protein shares the highest identity with the gp3 protein of an unclassified carascovirus, SF1 (GenBank accession no. KF510027) isolated from San Francisco wastewater, rather than the coat protein of any known member of the family Tombusviridae. These novel characteristics represent a significant divergence from the genomes of viruses belonging to the sixteen existing genera of the family Tombusviridae, demonstrating that RVA is likely a new family member.
Collapse
|
38
|
Robles Luna G, Reyes CA, Peña EJ, Ocolotobiche E, Baeza C, Borniego MB, Kormelink R, García ML. Identification and characterization of two RNA silencing suppressors encoded by ophioviruses. Virus Res 2017; 235:96-105. [PMID: 28428007 DOI: 10.1016/j.virusres.2017.04.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 03/22/2017] [Accepted: 04/14/2017] [Indexed: 12/22/2022]
Abstract
Citrus psorosis virus and Mirafiori lettuce big-vein virus are two members of the genus Ophiovirus, family Ophioviridae. So far, how these viruses can interfere in the antiviral RNA silencing pathway is not known. In this study, using a local GFP silencing assay on Nicotiana benthamiana, the 24K-25K and the movement protein (MP) of both viruses were identified as RNA silencing suppressor proteins. Upon their co-expression with GFP in N. benthamiana 16c plants, the proteins also showed to suppress systemic RNA (GFP) silencing. The MPCPsV and 24KCPsV proteins bind long (114 nucleotides) but not short-interfering (21 nt) dsRNA, and upon transgenic expression, plants showed developmental abnormalities that coincided with an altered miRNA accumulation pattern. Furthermore, both proteins were able to suppress miRNA-induced silencing of a GFP-sensor construct and the co-expression of MPCPsV and 24KCPsV exhibited a stronger effect, suggesting they act at different stages of the RNAi pathway.
Collapse
Affiliation(s)
- Gabriel Robles Luna
- Instituto de Biotecnología y Biología Molecular, CCT-La Plata, CONICET-UNLP, Calles 47 y 115, 1900, La Plata, Buenos Aires, Argentina
| | - Carina A Reyes
- Instituto de Biotecnología y Biología Molecular, CCT-La Plata, CONICET-UNLP, Calles 47 y 115, 1900, La Plata, Buenos Aires, Argentina.
| | - Eduardo J Peña
- Instituto de Biotecnología y Biología Molecular, CCT-La Plata, CONICET-UNLP, Calles 47 y 115, 1900, La Plata, Buenos Aires, Argentina
| | - Eliana Ocolotobiche
- Instituto de Biotecnología y Biología Molecular, CCT-La Plata, CONICET-UNLP, Calles 47 y 115, 1900, La Plata, Buenos Aires, Argentina
| | - Cecilia Baeza
- Instituto de Biotecnología y Biología Molecular, CCT-La Plata, CONICET-UNLP, Calles 47 y 115, 1900, La Plata, Buenos Aires, Argentina
| | - Maria Belén Borniego
- Instituto de Biotecnología y Biología Molecular, CCT-La Plata, CONICET-UNLP, Calles 47 y 115, 1900, La Plata, Buenos Aires, Argentina
| | - Richard Kormelink
- Laboratory of Virology, Department of Plant Sciences, Wageningen University, The Netherlands
| | - María Laura García
- Instituto de Biotecnología y Biología Molecular, CCT-La Plata, CONICET-UNLP, Calles 47 y 115, 1900, La Plata, Buenos Aires, Argentina
| |
Collapse
|
39
|
Iki T, Tschopp MA, Voinnet O. Biochemical and genetic functional dissection of the P38 viral suppressor of RNA silencing. RNA (NEW YORK, N.Y.) 2017; 23:639-654. [PMID: 28148824 PMCID: PMC5393175 DOI: 10.1261/rna.060434.116] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 01/25/2017] [Indexed: 05/08/2023]
Abstract
Phytoviruses encode viral suppressors of RNA silencing (VSRs) to counteract the plant antiviral silencing response, which relies on virus-derived small interfering (si)RNAs processed by Dicer RNaseIII enzymes and subsequently loaded into ARGONAUTE (AGO) effector proteins. Here, a tobacco cell-free system was engineered to recapitulate the key steps of antiviral RNA silencing and, in particular, the most upstream double-stranded (ds)RNA processing reaction, not kinetically investigated thus far in the context of plant VSR studies. Comparative biochemical analyses of distinct VSRs in the reconstituted assay showed that in all cases tested, VSR interactions with siRNA duplexes inhibited the loading, but not the activity, of antiviral AGO1 and AGO2. Turnip crinkle virus P38 displayed the additional and unique property to bind both synthetic and RNA-dependent-RNA-polymerase-generated long dsRNAs, and inhibited the processing into siRNAs. Single amino acid substitutions in P38 could dissociate dsRNA-processing from AGO-loading inhibition in vitro and in vivo, illustrating dual-inhibitory strategies discriminatively deployed within a single viral protein, which, we further show, are bona fide suppressor functions that evolved independently of the conserved coat protein function of P38.
Collapse
Affiliation(s)
- Taichiro Iki
- Department of Biology, Swiss Federal Institute of Technology (ETH), 8092 Zürich, Switzerland
| | - Marie-Aude Tschopp
- Department of Biology, Swiss Federal Institute of Technology (ETH), 8092 Zürich, Switzerland
| | - Olivier Voinnet
- Department of Biology, Swiss Federal Institute of Technology (ETH), 8092 Zürich, Switzerland
| |
Collapse
|
40
|
Nyikó T, Auber A, Szabadkai L, Benkovics A, Auth M, Mérai Z, Kerényi Z, Dinnyés A, Nagy F, Silhavy D. Expression of the eRF1 translation termination factor is controlled by an autoregulatory circuit involving readthrough and nonsense-mediated decay in plants. Nucleic Acids Res 2017; 45:4174-4188. [PMID: 28062855 PMCID: PMC5397192 DOI: 10.1093/nar/gkw1303] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 11/24/2016] [Accepted: 12/28/2016] [Indexed: 12/28/2022] Open
Abstract
When a ribosome reaches a stop codon, the eukaryotic Release Factor 1 (eRF1) binds to the A site of the ribosome and terminates translation. In yeasts and plants, both over- and underexpression of eRF1 lead to altered phenotype indicating that eRF1 expression should be strictly controlled. However, regulation of eRF1 level is still poorly understood. Here we show that expression of plant eRF1 is controlled by a complex negative autoregulatory circuit, which is based on the unique features of the 3΄untranslated region (3΄UTR) of the eRF1-1 transcript. The stop codon of the eRF1-1 mRNA is in a translational readthrough promoting context, while its 3΄UTR induces nonsense-mediated decay (NMD), a translation termination coupled mRNA degradation mechanism. We demonstrate that readthrough partially protects the eRF1-1 mRNA from its 3΄UTR induced NMD, and that elevated eRF1 levels inhibit readthrough and stimulate NMD. Thus, high eRF1 level leads to reduced eRF1-1 expression, as weakened readthrough fails to protect the eRF1-1 mRNA from the more intense NMD. This eRF1 autoregulatory circuit might serve to finely balance general translation termination efficiency.
Collapse
Affiliation(s)
- Tünde Nyikó
- Department of Genetics, Agricultural Biotechnology Institute, Gödöllő, Szent-Györgyi 4, H-2100, Hungary
| | - Andor Auber
- Department of Genetics, Agricultural Biotechnology Institute, Gödöllő, Szent-Györgyi 4, H-2100, Hungary
| | - Levente Szabadkai
- Department of Genetics, Agricultural Biotechnology Institute, Gödöllő, Szent-Györgyi 4, H-2100, Hungary
| | - Anna Benkovics
- Department of Genetics, Agricultural Biotechnology Institute, Gödöllő, Szent-Györgyi 4, H-2100, Hungary
| | - Mariann Auth
- Department of Genetics, Agricultural Biotechnology Institute, Gödöllő, Szent-Györgyi 4, H-2100, Hungary
| | - Zsuzsanna Mérai
- Department of Genetics, Agricultural Biotechnology Institute, Gödöllő, Szent-Györgyi 4, H-2100, Hungary
| | - Zoltán Kerényi
- Department of Genetics, Agricultural Biotechnology Institute, Gödöllő, Szent-Györgyi 4, H-2100, Hungary
| | - Andrea Dinnyés
- Department of Genetics, Agricultural Biotechnology Institute, Gödöllő, Szent-Györgyi 4, H-2100, Hungary
| | - Ferenc Nagy
- Institute of Plant Biology, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Temesvári 62, H-6726, Hungary
| | - Dániel Silhavy
- Department of Genetics, Agricultural Biotechnology Institute, Gödöllő, Szent-Györgyi 4, H-2100, Hungary
| |
Collapse
|
41
|
Hedil M, Kormelink R. Viral RNA Silencing Suppression: The Enigma of Bunyavirus NSs Proteins. Viruses 2016; 8:v8070208. [PMID: 27455310 PMCID: PMC4974542 DOI: 10.3390/v8070208] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 07/18/2016] [Accepted: 07/19/2016] [Indexed: 12/21/2022] Open
Abstract
The Bunyaviridae is a family of arboviruses including both plant- and vertebrate-infecting representatives. The Tospovirus genus accommodates plant-infecting bunyaviruses, which not only replicate in their plant host, but also in their insect thrips vector during persistent propagative transmission. For this reason, they are generally assumed to encounter antiviral RNA silencing in plants and insects. Here we present an overview on how tospovirus nonstructural NSs protein counteracts antiviral RNA silencing in plants and what is known so far in insects. Like tospoviruses, members of the related vertebrate-infecting bunyaviruses classified in the genera Orthobunyavirus, Hantavirus and Phlebovirus also code for a NSs protein. However, for none of them RNA silencing suppressor activity has been unambiguously demonstrated in neither vertebrate host nor arthropod vector. The second part of this review will briefly describe the role of these NSs proteins in modulation of innate immune responses in mammals and elaborate on a hypothetical scenario to explain if and how NSs proteins from vertebrate-infecting bunyaviruses affect RNA silencing. If so, why this discovery has been hampered so far.
Collapse
Affiliation(s)
- Marcio Hedil
- Laboratory of Virology, Department of Plant Sciences, Wageningen University, Wageningen, 6708PB, The Netherlands.
| | - Richard Kormelink
- Laboratory of Virology, Department of Plant Sciences, Wageningen University, Wageningen, 6708PB, The Netherlands.
| |
Collapse
|
42
|
Allison JR, Lechner M, Hoeppner MP, Poole AM. Positive Selection or Free to Vary? Assessing the Functional Significance of Sequence Change Using Molecular Dynamics. PLoS One 2016; 11:e0147619. [PMID: 26871901 PMCID: PMC4752228 DOI: 10.1371/journal.pone.0147619] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 01/06/2016] [Indexed: 11/18/2022] Open
Abstract
Evolutionary arms races between pathogens and their hosts may be manifested as selection for rapid evolutionary change of key genes, and are sometimes detectable through sequence-level analyses. In the case of protein-coding genes, such analyses frequently predict that specific codons are under positive selection. However, detecting positive selection can be non-trivial, and false positive predictions are a common concern in such analyses. It is therefore helpful to place such predictions within a structural and functional context. Here, we focus on the p19 protein from tombusviruses. P19 is a homodimer that sequesters siRNAs, thereby preventing the host RNAi machinery from shutting down viral infection. Sequence analysis of the p19 gene is complicated by the fact that it is constrained at the sequence level by overprinting of a viral movement protein gene. Using homology modeling, in silico mutation and molecular dynamics simulations, we assess how non-synonymous changes to two residues involved in forming the dimer interface—one invariant, and one predicted to be under positive selection—impact molecular function. Interestingly, we find that both observed variation and potential variation (where a non-synonymous change to p19 would be synonymous for the overprinted movement protein) does not significantly impact protein structure or RNA binding. Consequently, while several methods identify residues at the dimer interface as being under positive selection, MD results suggest they are functionally indistinguishable from a site that is free to vary. Our analyses serve as a caveat to using sequence-level analyses in isolation to detect and assess positive selection, and emphasize the importance of also accounting for how non-synonymous changes impact structure and function.
Collapse
Affiliation(s)
- Jane R. Allison
- Centre for Theoretical Chemistry and Physics & Institute of Natural and Mathematical Sciences, Massey University Albany, Auckland, New Zealand
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Massey University Albany, Auckland, New Zealand
- * E-mail: (JA); (AP)
| | - Marcus Lechner
- Department of Pharmaceutical Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Marc P. Hoeppner
- Christian-Albrechts-University of Kiel, Institute of Clinical Molecular Biology, Kiel, Germany
| | - Anthony M. Poole
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
- * E-mail: (JA); (AP)
| |
Collapse
|
43
|
Landeo-Ríos Y, Navas-Castillo J, Moriones E, Cañizares MC. The p22 RNA silencing suppressor of the crinivirus Tomato chlorosis virus preferentially binds long dsRNAs preventing them from cleavage. Virology 2016; 488:129-36. [PMID: 26629953 PMCID: PMC7111720 DOI: 10.1016/j.virol.2015.11.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 09/19/2015] [Accepted: 11/10/2015] [Indexed: 12/04/2022]
Abstract
Viruses encode silencing suppressor proteins to counteract RNA silencing. Because dsRNA plays a key role in silencing, a general silencing suppressor strategy is dsRNA binding. The p22 suppressor of the plant virus Tomato chlorosis virus (ToCV; genus Crinivirus, family Closteroviridae) has been described as having one of the longest lasting local suppressor activities. However, the mechanism of action of p22 has not been characterized. Here, we show that ToCV p22 binds long dsRNAs in vitro, thus interfering with their processing into small RNAs (sRNAs) by an RNase III-type Dicer homolog enzyme. Additionally, we have studied whether a putative zinc finger motif found in p22 has a role in dsRNA binding and suppressor function. The efficient ability of p22 to suppress RNA silencing, triggered by hairpin transcripts transiently expressed in planta, supports the relationship between its ability to bind dsRNA in vitro and its ability to inhibit RNA silencing in vivo.
Collapse
Affiliation(s)
- Yazmín Landeo-Ríos
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora"- Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Estación Experimental "La Mayora", 29750 Algarrobo-Costa, Málaga, Spain
| | - Jesús Navas-Castillo
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora"- Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Estación Experimental "La Mayora", 29750 Algarrobo-Costa, Málaga, Spain
| | - Enrique Moriones
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora"- Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Estación Experimental "La Mayora", 29750 Algarrobo-Costa, Málaga, Spain
| | - M Carmen Cañizares
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora"- Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Estación Experimental "La Mayora", 29750 Algarrobo-Costa, Málaga, Spain.
| |
Collapse
|
44
|
Zhang C, Wu Z, Li Y, Wu J. Biogenesis, Function, and Applications of Virus-Derived Small RNAs in Plants. Front Microbiol 2015; 6:1237. [PMID: 26617580 PMCID: PMC4637412 DOI: 10.3389/fmicb.2015.01237] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 10/26/2015] [Indexed: 11/13/2022] Open
Abstract
RNA silencing, an evolutionarily conserved and sequence-specific gene-inactivation system, has a pivotal role in antiviral defense in most eukaryotic organisms. In plants, a class of exogenous small RNAs (sRNAs) originating from the infecting virus called virus-derived small interfering RNAs (vsiRNAs) are predominantly responsible for RNA silencing-mediated antiviral immunity. Nowadays, the process of vsiRNA formation and the role of vsiRNAs in plant viral defense have been revealed through deep sequencing of sRNAs and diverse genetic analysis. The biogenesis of vsiRNAs is analogous to that of endogenous sRNAs, which require diverse essential components including dicer-like (DCL), argonaute (AGO), and RNA-dependent RNA polymerase (RDR) proteins. vsiRNAs trigger antiviral defense through post-transcriptional gene silencing (PTGS) or transcriptional gene silencing (TGS) of viral RNA, and they hijack the host RNA silencing system to target complementary host transcripts. Additionally, several applications that take advantage of the current knowledge of vsiRNAs research are being used, such as breeding antiviral plants through genetic engineering technology, reconstructing of viral genomes, and surveying viral ecology and populations. Here, we will provide an overview of vsiRNA pathways, with a primary focus on the advances in vsiRNA biogenesis and function, and discuss their potential applications as well as the future challenges in vsiRNAs research.
Collapse
Affiliation(s)
- Chao Zhang
- Key Laboratory of Plant Virology of Fujian Province, Institute of Plant Virology, Fujian Agriculture and Forestry University Fuzhou, China
| | - Zujian Wu
- Key Laboratory of Plant Virology of Fujian Province, Institute of Plant Virology, Fujian Agriculture and Forestry University Fuzhou, China
| | - Yi Li
- Peking-Yale Joint Center for Plant Molecular Genetics and Agrobiotechnology, The National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University Beijing, China
| | - Jianguo Wu
- Key Laboratory of Plant Virology of Fujian Province, Institute of Plant Virology, Fujian Agriculture and Forestry University Fuzhou, China ; Peking-Yale Joint Center for Plant Molecular Genetics and Agrobiotechnology, The National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University Beijing, China
| |
Collapse
|
45
|
Csorba T, Kontra L, Burgyán J. viral silencing suppressors: Tools forged to fine-tune host-pathogen coexistence. Virology 2015; 479-480:85-103. [DOI: 10.1016/j.virol.2015.02.028] [Citation(s) in RCA: 368] [Impact Index Per Article: 40.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 01/31/2015] [Accepted: 02/16/2015] [Indexed: 12/27/2022]
|
46
|
Wieczorek P, Obrępalska-Stęplowska A. Suppress to Survive-Implication of Plant Viruses in PTGS. PLANT MOLECULAR BIOLOGY REPORTER 2015; 33:335-346. [PMID: 25999662 PMCID: PMC4432016 DOI: 10.1007/s11105-014-0755-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
In higher plants, evolutionarily conserved processes playing an essential role during gene expression rely on small noncoding RNA molecules (sRNA). Within a wide range of sRNA-dependent cellular events, there is posttranscriptional gene silencing, the process that is activated in response to the presence of double-stranded RNAs (dsRNAs) in planta. The sequence-specific mechanism of silencing is based on RNase-mediated trimming of dsRNAs into translationally inactive short molecules. Viruses invading and replicating in host are also a source of dsRNAs and are recognized as such by cellular posttranscriptional silencing machinery leading to degradation of the pathogenic RNA. However, viruses are not totally defenseless. In parallel with evolving plant defense strategies, viruses have managed a wide range of multifunctional proteins that efficiently impede the posttranscriptional gene silencing. These viral counteracting factors are known as suppressors of RNA silencing. The aim of this review is to summarize the role and the mode of action of several functionally characterized RNA silencing suppressors encoded by RNA viruses directly involved in plant-pathogen interactions. Additionally, we point out that the widely diverse functions, structures, and modes of action of viral suppressors can be performed by different proteins, even in related viruses. All those adaptations have been evolved to achieve the same goal: to maximize the rate of viral genetic material replication by interrupting the evolutionary conserved plant defense mechanism of posttranscriptional gene silencing.
Collapse
Affiliation(s)
- Przemysław Wieczorek
- Interdepartmental Laboratory of Molecular Biology, Institute of Plant Protection-National Research Institute, 20 Władysława Węgorka St, 60-318 Poznań, Poland
| | - Aleksandra Obrępalska-Stęplowska
- Interdepartmental Laboratory of Molecular Biology, Institute of Plant Protection-National Research Institute, 20 Władysława Węgorka St, 60-318 Poznań, Poland
| |
Collapse
|
47
|
Rossi M, Vallino M, Abbà S, Ciuffo M, Balestrini R, Genre A, Turina M. The Importance of the KR-Rich Region of the Coat Protein of Ourmia melon virus for Host Specificity, Tissue Tropism, and Interference With Antiviral Defense. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:30-41. [PMID: 25494356 DOI: 10.1094/mpmi-07-14-0197-r] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The N-terminal region of the Ourmia melon virus (OuMV) coat protein (CP) contains a short lysine/arginine-rich (KR) region. By alanine scanning mutagenesis, we showed that the KR region influences pathogenicity and virulence of OuMV without altering viral particle assembly. A mutant, called OuMV6710, with three basic residue substitutions in the KR region, was impaired in the ability to maintain the initial systemic infection in Nicotiana benthamiana and to infect both cucumber and melon plants systemically. The integrity of this protein region was also crucial for encapsidation of viral genomic RNA; in fact, certain mutations within the KR region partially compromised the RNA encapsidation efficiency of the CP. In Arabidopsis thaliana Col-0, OuMV6710 was impaired in particle accumulation; however, this phenotype was abolished in dcl2/dcl4 and dcl2/dcl3/dcl4 Arabidopsis mutants defective for antiviral silencing. Moreover, in contrast to CPwt, in situ immunolocalization experiments indicated that CP6710 accumulates efficiently in the spongy mesophyll tissue of infected N. benthamiana and A. thaliana leaves but only occasionally infects palisade tissues. These results provided strong evidence of a crucial role for OuMV CP during viral infection and highlighted the relevance of the KR region in determining tissue tropism, host range, pathogenicity, and RNA affinity, which may be all correlated with a possible CP silencing-suppression activity.
Collapse
|
48
|
Pérez-Cañamás M, Hernández C. Key importance of small RNA binding for the activity of a glycine-tryptophan (GW) motif-containing viral suppressor of RNA silencing. J Biol Chem 2014; 290:3106-20. [PMID: 25505185 DOI: 10.1074/jbc.m114.593707] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Viruses express viral suppressors of RNA silencing (VSRs) to counteract RNA silencing-based host defenses. Although virtually all stages of the antiviral silencing pathway can be inhibited by VSRs, small RNAs (sRNAs) and Argonaute (AGO) proteins seem to be the most frequent targets. Recently, GW/WG motifs of some VSRs have been proposed to dictate their suppressor function by mediating interaction with AGO(s). Here we have studied the VSR encoded by Pelargonium line pattern virus (family Tombusviridae). The results show that p37, the viral coat protein, blocks RNA silencing. Site-directed mutagenesis of some p37 sequence traits, including a conserved GW motif, allowed generation of suppressor-competent and -incompetent molecules and uncoupling of the VSR and particle assembly capacities. The engineered mutants were used to assess the importance of p37 functions for viral infection and the relative contribution of diverse molecular interactions to suppressor activity. Two main conclusions can be drawn: (i) the silencing suppression and encapsidation functions of p37 are both required for systemic Pelargonium line pattern virus infection, and (ii) the suppressor activity of p37 relies on the ability to bind sRNAs rather than on interaction with AGOs. The data also caution against potential misinterpretations of results due to overlap of sequence signals related to distinct protein properties. This is well illustrated by mutation of the GW motif in p37 that concurrently affects nucleolar localization, efficient interaction with AGO1, and sRNA binding capability. These concomitant effects could have been overlooked in other GW motif-containing suppressors, as we exemplify with the orthologous p38 of turnip crinkle virus.
Collapse
Affiliation(s)
- Miryam Pérez-Cañamás
- From the Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia), Ciudad Politécnica de la Innovación, Ed. 8E. Camino de Vera s/n, 46022 Valencia, Spain
| | - Carmen Hernández
- From the Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia), Ciudad Politécnica de la Innovación, Ed. 8E. Camino de Vera s/n, 46022 Valencia, Spain
| |
Collapse
|
49
|
Koh KW, Lu HC, Chan MT. Virus resistance in orchids. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 228:26-38. [PMID: 25438783 DOI: 10.1016/j.plantsci.2014.04.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Revised: 04/07/2014] [Accepted: 04/17/2014] [Indexed: 06/04/2023]
Abstract
Orchid plants, Phalaenopsis and Dendrobium in particular, are commercially valuable ornamental plants sold worldwide. Unfortunately, orchid plants are highly susceptible to viral infection by Cymbidium mosaic virus (CymMV) and Odotoglossum ringspot virus (ORSV), posing a major threat and serious economic loss to the orchid industry worldwide. A major challenge is to generate an effective method to overcome plant viral infection. With the development of optimized orchid transformation biotechnological techniques and the establishment of concepts of pathogen-derived resistance (PDR), the generation of plants resistant to viral infection has been achieved. The PDR concept involves introducing genes that is(are) derived from the virus into the host plant to induce RNA- or protein-mediated resistance. We here review the fundamental mechanism of the PDR concept, and illustrate its application in protecting against viral infection of orchid plants.
Collapse
Affiliation(s)
- Kah Wee Koh
- Academia Sinica Biotechnology Center in Southern Taiwan, Tainan, Taiwan
| | - Hsiang-Chia Lu
- Academia Sinica Biotechnology Center in Southern Taiwan, Tainan, Taiwan
| | - Ming-Tsair Chan
- Academia Sinica Biotechnology Center in Southern Taiwan, Tainan, Taiwan; Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
50
|
Supervised learning classification models for prediction of plant virus encoded RNA silencing suppressors. PLoS One 2014; 9:e97446. [PMID: 24828116 PMCID: PMC4020838 DOI: 10.1371/journal.pone.0097446] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 04/21/2014] [Indexed: 12/21/2022] Open
Abstract
Viral encoded RNA silencing suppressor proteins interfere with the host RNA silencing machinery, facilitating viral infection by evading host immunity. In plant hosts, the viral proteins have several basic science implications and biotechnology applications. However in silico identification of these proteins is limited by their high sequence diversity. In this study we developed supervised learning based classification models for plant viral RNA silencing suppressor proteins in plant viruses. We developed four classifiers based on supervised learning algorithms: J48, Random Forest, LibSVM and Naïve Bayes algorithms, with enriched model learning by correlation based feature selection. Structural and physicochemical features calculated for experimentally verified primary protein sequences were used to train the classifiers. The training features include amino acid composition; auto correlation coefficients; composition, transition, and distribution of various physicochemical properties; and pseudo amino acid composition. Performance analysis of predictive models based on 10 fold cross-validation and independent data testing revealed that the Random Forest based model was the best and achieved 86.11% overall accuracy and 86.22% balanced accuracy with a remarkably high area under the Receivers Operating Characteristic curve of 0.95 to predict viral RNA silencing suppressor proteins. The prediction models for plant viral RNA silencing suppressors can potentially aid identification of novel viral RNA silencing suppressors, which will provide valuable insights into the mechanism of RNA silencing and could be further explored as potential targets for designing novel antiviral therapeutics. Also, the key subset of identified optimal features may help in determining compositional patterns in the viral proteins which are important determinants for RNA silencing suppressor activities. The best prediction model developed in the study is available as a freely accessible web server pVsupPred at http://bioinfo.icgeb.res.in/pvsup/.
Collapse
|