1
|
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) was discovered in 1980 as the first, and to date, the only retrovirus that causes human cancer. While HTLV-1 infection is generally asymptomatic, 3-5% of infected individuals develop a T cell neoplasm known as adult T cell leukemia/lymphoma (ATL) decades after infection. Since its discovery, HTLV-1 has served as a model for understanding retroviral oncogenesis, transcriptional regulation, cellular signal transduction, and cell-associated viral infection and spread. Much of the initial research was focused on the viral trans-activator/oncoprotein, Tax. Over the past decade, the study of HTLV-1 has entered the genomic era. With the development of new systems for studying HTLV-1 infection and pathogenesis, the completion of the whole genome, exome and transcriptome sequencing analyses of ATL, and the discovery of HBZ as another HTLV-1 oncogene, many established concepts about how HTLV-1 infects, persists and causes disease have undergone substantial revision. This chapter seeks to integrate our current understanding of the mechanisms of action of Tax and HBZ with the comprehensive genomic information of ATL to provide an overview of how HTLV-1 infects, replicates and causes leukemia.
Collapse
|
2
|
Omsland M, Silic-Benussi M, Moles R, Sarkis S, Purcell DFJ, Yurick D, Khoury G, D'Agostino DM, Ciminale V, Franchini G. Functional properties and sequence variation of HTLV-1 p13. Retrovirology 2020; 17:11. [PMID: 32398094 PMCID: PMC7218495 DOI: 10.1186/s12977-020-00517-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/10/2020] [Indexed: 01/06/2023] Open
Abstract
Human T cell leukemia virus type-1 (HTLV-1) was the first retrovirus found to cause cancer in humans, but the mechanisms that drive the development of leukemia and other diseases associated with HTLV-1 infection remain to be fully understood. This review describes the functional properties of p13, an 87-amino acid protein coded by HTLV-1 open reading frame II (orf-II). p13 is mainly localized in the inner membrane of the mitochondria, where it induces potassium (K+) influx and reactive oxygen species (ROS) production, which can trigger either proliferation or apoptosis, depending on the ROS setpoint of the cell. Recent evidence indicates that p13 may influence the cell’s innate immune response to viral infection and the infected cell phenotype. Association of the HTLV-1 transcriptional activator, Tax, with p13 increases p13’s stability, leads to its partial co-localization with Tax in nuclear speckles, and reduces the ability of Tax to interact with the transcription cofactor CBP/p300. Comparison of p13 sequences isolated from HTLV-1-infected individuals revealed a small number of amino acid variations in the domains controlling the subcellular localization of the protein. Disruptive mutations of p13 were found in samples obtained from asymptomatic patients with low proviral load. p13 sequences of HTLV-1 subtype C isolates from indigenous Australian patients showed a high degree of identity among each other, with all samples containing a pattern of 5 amino acids that distinguished them from other subtypes. Further characterization of p13’s functional properties and sequence variants may lead to a deeper understanding of the impact of p13 as a contributor to the clinical manifestations of HTLV-1 infection.
Collapse
Affiliation(s)
- Maria Omsland
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Ramona Moles
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sarkis Sarkis
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Damian F J Purcell
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| | - David Yurick
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| | - Georges Khoury
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia.,Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | | | - Vincenzo Ciminale
- Veneto Institute of Oncology IOV-IRCCS, Padua, Italy.,Department of Surgery, Oncology, and Gastroenterology, University of Padua, Padua, Italy
| | - Genoveffa Franchini
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
3
|
Georgieva ER, Borbat PP, Fanouraki C, Freed JH. High-yield production in E. coli and characterization of full-length functional p13 II protein from human T-cell leukemia virus type 1. Protein Expr Purif 2020; 173:105659. [PMID: 32360379 DOI: 10.1016/j.pep.2020.105659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 04/20/2020] [Accepted: 04/26/2020] [Indexed: 10/24/2022]
Abstract
Human T-cell leukemia virus type 1 is an oncovirus that causes aggressive adult T-cell leukemia but is also responsible for severe neurodegenerative and endocrine disorders. Combatting HTLV-1 infections requires a detailed understanding of the viral mechanisms in the host. Therefore, in vitro studies of important virus-encoded proteins would be critical. Our focus herein is on the HTLV-1-encoded regulatory protein p13II, which interacts with the inner mitochondrial membrane, increasing its permeability to cations (predominantly potassium, K+). Thereby, this protein affects mitochondrial homeostasis. We report on our progress in developing specific protocols for heterologous expression of p13II in E. coli, and methods for its purification and characterization. We succeeded in producing large quantities of highly-pure full-length p13II, deemed to be its fully functional form. Importantly, our particular approach based on the fusion of ubiquitin to the p13II C-terminus was instrumental in increasing the persistently low expression of soluble p13II in its native form. We subsequently developed approaches for protein spin labeling and a conformation study using double electron-electron resonance (DEER) spectroscopy and a fluorescence-based cation uptake assay for p13II in liposomes. Our DEER results point to large protein conformation changes occurring upon transition from the soluble to the membrane-bound state. The functional assay on p13II-assisted transport of thallium (Tl+) through the membrane, wherein Tl+ substituted for K+, suggests transmembrane potential involvement in p13II function. Our study lays the foundation for expansion of in vitro functional and structural investigations on p13II and would aid in the development of structure-based protein inhibitors and markers.
Collapse
Affiliation(s)
- Elka R Georgieva
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, NY, 14853, USA.
| | - Peter P Borbat
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, NY, 14853, USA; ACERT Center for Advanced ESR Technology, Cornell University, Ithaca, NY, 14853, USA
| | - Christina Fanouraki
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, NY, 14853, USA
| | - Jack H Freed
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, NY, 14853, USA; ACERT Center for Advanced ESR Technology, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
4
|
Harrod R. Silencers of HTLV-1 and HTLV-2: the pX-encoded latency-maintenance factors. Retrovirology 2019; 16:25. [PMID: 31492165 PMCID: PMC6731619 DOI: 10.1186/s12977-019-0487-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 08/30/2019] [Indexed: 11/10/2022] Open
Abstract
Of the members of the primate T cell lymphotropic virus (PTLV) family, only the human T-cell leukemia virus type-1 (HTLV-1) causes disease in humans—as the etiological agent of adult T-cell leukemia/lymphoma (ATLL), HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), and other auto-inflammatory disorders. Despite having significant genomic organizational and structural similarities, the closely related human T-cell lymphotropic virus type-2 (HTLV-2) is considered apathogenic and has been linked with benign lymphoproliferation and mild neurological symptoms in certain infected patients. The silencing of proviral gene expression and maintenance of latency are central for the establishment of persistent infections in vivo. The conserved pX sequences of HTLV-1 and HTLV-2 encode several ancillary factors which have been shown to negatively regulate proviral gene expression, while simultaneously activating host cellular proliferative and pro-survival pathways. In particular, the ORF-II proteins, HTLV-1 p30II and HTLV-2 p28II, suppress Tax-dependent transactivation from the viral promoter—whereas p30II also inhibits PU.1-mediated inflammatory-signaling, differentially augments the expression of p53-regulated metabolic/pro-survival genes, and induces lymphoproliferation which could promote mitotic proviral replication. The ubiquitinated form of the HTLV-1 p13II protein localizes to nuclear speckles and interferes with recruitment of the p300 coactivator by the viral transactivator Tax. Further, the antisense-encoded HTLV-1 HBZ and HTLV-2 APH-2 proteins and mRNAs negatively regulate Tax-dependent proviral gene expression and activate inflammatory signaling associated with enhanced T-cell lymphoproliferation. This review will summarize our current understanding of the pX latency-maintenance factors of HTLV-1 and HTLV-2 and discuss how these products may contribute to the differences in pathogenicity between the human PTLVs.
Collapse
Affiliation(s)
- Robert Harrod
- Laboratory of Molecular Virology, Department of Biological Sciences, and The Dedman College Center for Drug Discovery, Design & Delivery, Southern Methodist University, 6501 Airline Drive, 334-DLS, Dallas, TX, 75275-0376, USA.
| |
Collapse
|
5
|
Martinez MP, Al-Saleem J, Green PL. Comparative virology of HTLV-1 and HTLV-2. Retrovirology 2019; 16:21. [PMID: 31391116 PMCID: PMC6686503 DOI: 10.1186/s12977-019-0483-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 08/01/2019] [Indexed: 12/22/2022] Open
Abstract
Human T cell leukemia virus type 1 (HTLV-1) was the first discovered human retrovirus and the etiologic agent of adult T-cell leukemia and HTLV-1-associated myelopathy/tropical spastic paraparesis. Shortly after the discovery of HTLV-1, human T-cell leukemia virus type 2 (HTLV-2) was isolated from a patient with hairy cell leukemia. Despite possession of similar structural features to HTLV-1, HTLV-2 has not been definitively associated with lymphoproliferative disease. Since their discovery, studies have been performed with the goal of highlighting the differences between HTLV-1 and HTLV-2. A better understanding of these differences will shed light on the specific pathogenic mechanisms of HTLV-1 and lead to novel therapeutic targets. This review will compare and contrast the two oldest human retroviruses with regards to epidemiology, genomic structure, gene products, and pathobiology.
Collapse
Affiliation(s)
- Michael P Martinez
- Center for Retrovirus Research, The Ohio State University, Columbus, OH, USA.,Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | - Jacob Al-Saleem
- Center for Retrovirus Research, The Ohio State University, Columbus, OH, USA.,Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | - Patrick L Green
- Center for Retrovirus Research, The Ohio State University, Columbus, OH, USA. .,Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA. .,Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
6
|
Georgieva ER. Non-Structural Proteins from Human T-cell Leukemia Virus Type 1 in Cellular Membranes-Mechanisms for Viral Survivability and Proliferation. Int J Mol Sci 2018; 19:ijms19113508. [PMID: 30413005 PMCID: PMC6274929 DOI: 10.3390/ijms19113508] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/01/2018] [Accepted: 11/06/2018] [Indexed: 12/27/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is the causative agent of illnesses, such as adult T-cell leukemia/lymphoma, myelopathy/tropical spastic paraparesis (a neurodegenerative disorder), and other diseases. Therefore, HTLV-1 infection is a serious public health concern. Currently, diseases caused by HTLV-1 cannot be prevented or cured. Hence, there is a pressing need to comprehensively understand the mechanisms of HTLV-1 infection and intervention in host cell physiology. HTLV-1-encoded non-structural proteins that reside and function in the cellular membranes are of particular interest, because they alter cellular components, signaling pathways, and transcriptional mechanisms. Summarized herein is the current knowledge about the functions of the membrane-associated p8I, p12I, and p13II regulatory non-structural proteins. p12I resides in endomembranes and interacts with host proteins on the pathways of signal transduction, thus preventing immune responses to the virus. p8I is a proteolytic product of p12I residing in the plasma membrane, where it contributes to T-cell deactivation and participates in cellular conduits, enhancing virus transmission. p13II associates with the inner mitochondrial membrane, where it is proposed to function as a potassium channel. Potassium influx through p13II in the matrix causes membrane depolarization and triggers processes that lead to either T-cell activation or cell death through apoptosis.
Collapse
Affiliation(s)
- Elka R Georgieva
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
7
|
|
8
|
Inefficient viral replication of bovine leukemia virus induced by spontaneous deletion mutation in the G4 gene. J Gen Virol 2016; 97:2753-2762. [DOI: 10.1099/jgv.0.000583] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
9
|
Giam CZ, Semmes OJ. HTLV-1 Infection and Adult T-Cell Leukemia/Lymphoma-A Tale of Two Proteins: Tax and HBZ. Viruses 2016; 8:v8060161. [PMID: 27322308 PMCID: PMC4926181 DOI: 10.3390/v8060161] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 05/31/2016] [Accepted: 06/01/2016] [Indexed: 12/19/2022] Open
Abstract
HTLV-1 (Human T-cell lymphotropic virus type 1) is a complex human delta retrovirus that currently infects 10–20 million people worldwide. While HTLV-1 infection is generally asymptomatic, 3%–5% of infected individuals develop a highly malignant and intractable T-cell neoplasm known as adult T-cell leukemia/lymphoma (ATL) decades after infection. How HTLV-1 infection progresses to ATL is not well understood. Two viral regulatory proteins, Tax and HTLV-1 basic zipper protein (HBZ), encoded by the sense and antisense viral transcripts, respectively, are thought to play indispensable roles in the oncogenic process of ATL. This review focuses on the roles of Tax and HBZ in viral replication, persistence, and oncogenesis. Special emphasis is directed towards recent literature on the mechanisms of action of these two proteins and the roles of Tax and HBZ in influencing the outcomes of HTLV-1 infection including senescence induction, viral latency and persistence, genome instability, cell proliferation, and ATL development. Attempts are made to integrate results from cell-based studies of HTLV-1 infection and studies of HTLV-1 proviral integration site preference, clonality, and clonal expansion based on high throughput DNA sequencing. Recent data showing that Tax hijacks key mediators of DNA double-strand break repair signaling—the ubiquitin E3 ligase, ring finger protein 8 (RNF8) and the ubiquitin E2 conjugating enzyme (UBC13)—to activate the canonical nuclear factor kappa-light-chain-enhancer of activated B-cells (NF-κB) and other signaling pathways will be discussed. A perspective on how the Tax-RNF8 signaling axis might impact genomic instability and how Tax may collaborate with HBZ to drive oncogenesis is provided.
Collapse
Affiliation(s)
- Chou-Zen Giam
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd., Bethesda, MD 20814, USA.
| | - Oliver John Semmes
- Department of Microbiology and Molecular Cell Biology, The Leroy T. Canoles Jr Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA 23501, USA.
| |
Collapse
|
10
|
Ciminale V, Rende F, Bertazzoni U, Romanelli MG. HTLV-1 and HTLV-2: highly similar viruses with distinct oncogenic properties. Front Microbiol 2014; 5:398. [PMID: 25120538 PMCID: PMC4114287 DOI: 10.3389/fmicb.2014.00398] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 07/15/2014] [Indexed: 12/29/2022] Open
Abstract
HTLV-1 and HTLV-2 share broad similarities in their overall genetic organization and expression pattern, but they differ substantially in their pathogenic properties. This review outlines distinctive features of HTLV-1 and HTLV-2 that might provide clues to explain their distinct clinical outcomes. Differences in the kinetics of viral mRNA expression, functional properties of the regulatory and accessory proteins, and interactions with cellular factors and signal transduction pathways are discussed.
Collapse
Affiliation(s)
- Vincenzo Ciminale
- Department of Surgery, Oncology and Gastroenterology, University of Padua Padua, Italy
| | - Francesca Rende
- Department of Surgery, Oncology and Gastroenterology, University of Padua Padua, Italy
| | - Umberto Bertazzoni
- Department of Life and Reproduction Sciences, University of Verona Verona, Italy
| | - Maria G Romanelli
- Department of Life and Reproduction Sciences, University of Verona Verona, Italy
| |
Collapse
|
11
|
Aida Y, Murakami H, Takahashi M, Takeshima SN. Mechanisms of pathogenesis induced by bovine leukemia virus as a model for human T-cell leukemia virus. Front Microbiol 2013; 4:328. [PMID: 24265629 PMCID: PMC3820957 DOI: 10.3389/fmicb.2013.00328] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 10/17/2013] [Indexed: 11/27/2022] Open
Abstract
Bovine leukemia virus (BLV) and human T-cell leukemia virus type 1 (HTLV-1) make up a unique retrovirus family. Both viruses induce chronic lymphoproliferative diseases with BLV affecting the B-cell lineage and HTLV-1 affecting the T-cell lineage. The pathologies of BLV- and HTLV-induced infections are notably similar, with an absence of chronic viraemia and a long latency period. These viruses encode at least two regulatory proteins, namely, Tax and Rex, in the pX region located between the env gene and the 3′ long terminal repeat. The Tax protein is a key contributor to the oncogenic potential of the virus, and is also the key protein involved in viral replication. However, BLV infection is not sufficient for leukemogenesis, and additional events such as gene mutations must take place. In this review, we first summarize the similarities between the two viruses in terms of genomic organization, virology, and pathology. We then describe the current knowledge of the BLV model, which may also be relevant for the understanding of leukemogenesis caused by HTLV-1. In addition, we address our improved understanding of Tax functions through the newly identified BLV Tax mutants, which have a substitution between amino acids 240 and 265.
Collapse
Affiliation(s)
- Yoko Aida
- Viral Infectious Diseases Unit, RIKEN Wako, Saitama, Japan
| | | | | | | |
Collapse
|
12
|
Bai XT, Nicot C. Overview on HTLV-1 p12, p8, p30, p13: accomplices in persistent infection and viral pathogenesis. Front Microbiol 2012; 3:400. [PMID: 23248621 PMCID: PMC3518833 DOI: 10.3389/fmicb.2012.00400] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Indexed: 12/29/2022] Open
Abstract
The human T-lymphotropic virus type-1 (HTLV-1) is etiologically linked to adult T cell leukemia/lymphoma and tropical spastic paraparesis/HTLV-1-associated myelopathy. While the role of Tax and Rex in viral replication and pathogenesis has been extensively studied, recent evidence suggests that additional viral proteins are essential for the virus life cycle in vivo. In this review, we will summarize possible molecular mechanisms evoked in the literature to explain how p12, p8, p30, and p13 facilitate persistent viral infection of the host. We will explore several stratagems used by HTLV-1 accessory genes to escape immune surveillance, to establish latency, and to deregulate cell cycle and apoptosis to participate in virus-mediated cellular transformation.
Collapse
Affiliation(s)
- Xue Tao Bai
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center Kansas City, KS, USA
| | | |
Collapse
|
13
|
Ras signaling contributes to survival of human T-cell leukemia/lymphoma virus type 1 (HTLV-1) Tax-positive T-cells. Apoptosis 2012; 17:219-28. [PMID: 22127644 PMCID: PMC3279637 DOI: 10.1007/s10495-011-0676-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Ras signaling pathways play an important role in cellular proliferation and survival, and inappropriate activation of Ras frequently results in cell transformation and cancer. Human T-cell leukemia/lymphoma virus type 1 (HTLV-1) is the etiological agent of the adult T-cell leukemia/lymphoma (ATLL), a severe malignancy that has a poor prognosis and exhibits resistance to conventional chemotherapy. Although the mechanisms involved in cell transformation by HTLV-1 have not been completely clarified, it is generally thought that Tax plays a pivotal role in the process. We have previously proposed that a functionally active Ras protein is needed for efficient anti-apoptotic activity of Tax. In this study we report data indicating that the apoptotic resistance of cells expressing Tax, constitutively or transiently, is linked to the intracellular levels of Ras-GTP. Indeed, we found that Tax-positive cells have a high content of active Ras, and that inhibition of Ras signaling, using the antagonist farnesyl thyosalicylic acid (FTS), increases their sensitivity to apoptosis. FTS treatment was also accompanied by a decrease in ERK, but not Akt, phosphorylation. Thus, all together our data suggest that the interaction between Tax and Ras could be important to ATLL pathogenesis, and indicate Ras as a possible target for therapeutic intervention in ATLL patients.
Collapse
|
14
|
Cotranscriptional Chromatin Remodeling by Small RNA Species: An HTLV-1 Perspective. LEUKEMIA RESEARCH AND TREATMENT 2012; 2012:984754. [PMID: 23213554 PMCID: PMC3504244 DOI: 10.1155/2012/984754] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 10/28/2011] [Accepted: 11/03/2011] [Indexed: 12/22/2022]
Abstract
Cell type specificity of human T cell leukemia virus 1 has been proposed as a possible reason for differential viral outcome in primary target cells versus secondary. Through chromatin remodeling, the HTLV-1 transactivator protein Tax interacts with cellular factors at the chromosomally integrated viral promoter to activate downstream genes and control viral transcription. RNA interference is the host innate defense mechanism mediated by short RNA species (siRNA or miRNA) that regulate gene expression. There exists a close collaborative functioning of cellular transcription factors with miRNA in order to regulate the expression of a number of eukaryotic genes including those involved in suppression of cell growth, induction of apoptosis, as well as repressing viral replication and propagation. In addition, it has been suggested that retroviral latency is influenced by chromatin alterations brought about by miRNA. Since Tax requires the assembly of transcriptional cofactors to carry out viral gene expression, there might be a close association between miRNA influencing chromatin alterations and Tax-mediated LTR activation. Herein we explore the possible interplay between HTLV-1 infection and miRNA pathways resulting in chromatin reorganization as one of the mechanisms determining HTLV-1 cell specificity and viral fate in different cell types.
Collapse
|
15
|
Comparison of the Genetic Organization, Expression Strategies and Oncogenic Potential of HTLV-1 and HTLV-2. LEUKEMIA RESEARCH AND TREATMENT 2011; 2012:876153. [PMID: 23213551 PMCID: PMC3504254 DOI: 10.1155/2012/876153] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 09/24/2011] [Indexed: 11/30/2022]
Abstract
Human T cell leukemia virus types 1 and 2 (HTLV-1 and HTLV-2) are genetically related complex retroviruses that are capable of immortalizing human T-cells in vitro and establish life-long persistent infections in vivo. In spite of these apparent similarities, HTLV-1 and HTLV-2 exhibit a significantly different pathogenic potential. HTLV-1 is recognized as the causative agent of adult T-cell leukemia/lymphoma (ATLL) and tropical spastic paraparesis/HTLV-1-associated myelopathy (TSP/HAM). In contrast, HTLV-2 has not been causally linked to human malignancy, although it may increase the risk of developing inflammatory neuropathies and infectious diseases. The present paper is focused on the studies aimed at defining the viral genetic determinants of the pathobiology of HTLV-1 and HTLV-2 through a comparison of the expression strategies and functional properties of the different gene products of the two viruses.
Collapse
|
16
|
Cavallari I, Rende F, D'Agostino DM, Ciminale V. Converging strategies in expression of human complex retroviruses. Viruses 2011; 3:1395-414. [PMID: 21994786 PMCID: PMC3185809 DOI: 10.3390/v3081395] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 07/28/2011] [Accepted: 07/28/2011] [Indexed: 12/27/2022] Open
Abstract
The discovery of human retroviruses in the early 1980s revealed the existence of viral-encoded non-structural genes that were not evident in previously described animal retroviruses. Based on the absence or presence of these additional genes retroviruses were classified as ‘simple’ and ‘complex’, respectively. Expression of most of these extra genes is achieved through the generation of alternatively spliced mRNAs. The present review summarizes the genetic organization and expression strategies of human complex retroviruses and highlights the converging mechanisms controlling their life cycles.
Collapse
Affiliation(s)
- Ilaria Cavallari
- Department of Oncology and Surgical Sciences, University of Padova, Via Gattamelata 64, I-35128 Padova, Italy; E-Mails: (I.C.); (F.R.); (D.M.D.)
| | - Francesca Rende
- Department of Oncology and Surgical Sciences, University of Padova, Via Gattamelata 64, I-35128 Padova, Italy; E-Mails: (I.C.); (F.R.); (D.M.D.)
- Istituto Oncologico Veneto-IRCCS, I-35128 Padova, Italy
| | - Donna M. D'Agostino
- Department of Oncology and Surgical Sciences, University of Padova, Via Gattamelata 64, I-35128 Padova, Italy; E-Mails: (I.C.); (F.R.); (D.M.D.)
| | - Vincenzo Ciminale
- Department of Oncology and Surgical Sciences, University of Padova, Via Gattamelata 64, I-35128 Padova, Italy; E-Mails: (I.C.); (F.R.); (D.M.D.)
- Istituto Oncologico Veneto-IRCCS, I-35128 Padova, Italy
- Author to whom correspondence should be addressed; E-Mail: ; Tel.:+39-049-821-5885; Fax: +39-049-807-2854
| |
Collapse
|
17
|
Lairmore MD, Anupam R, Bowden N, Haines R, Haynes RAH, Ratner L, Green PL. Molecular determinants of human T-lymphotropic virus type 1 transmission and spread. Viruses 2011; 3:1131-65. [PMID: 21994774 PMCID: PMC3185783 DOI: 10.3390/v3071131] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 07/01/2011] [Accepted: 07/02/2011] [Indexed: 01/23/2023] Open
Abstract
Human T-lymphotrophic virus type-1 (HTLV-1) infects approximately 15 to 20 million people worldwide, with endemic areas in Japan, the Caribbean, and Africa. The virus is spread through contact with bodily fluids containing infected cells, most often from mother to child through breast milk or via blood transfusion. After prolonged latency periods, approximately 3 to 5% of HTLV-1 infected individuals will develop either adult T-cell leukemia/lymphoma (ATL), or other lymphocyte-mediated disorders such as HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). The genome of this complex retrovirus contains typical gag, pol, and env genes, but also unique nonstructural proteins encoded from the pX region. These nonstructural genes encode the Tax and Rex regulatory proteins, as well as novel proteins essential for viral spread in vivo such as, p30, p12, p13 and the antisense encoded HBZ. While progress has been made in the understanding of viral determinants of cell transformation and host immune responses, host and viral determinants of HTLV-1 transmission and spread during the early phases of infection are unclear. Improvements in the molecular tools to test these viral determinants in cellular and animal models have provided new insights into the early events of HTLV-1 infection. This review will focus on studies that test HTLV-1 determinants in context to full length infectious clones of the virus providing insights into the mechanisms of transmission and spread of HTLV-1.
Collapse
Affiliation(s)
- Michael D. Lairmore
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA; E-Mails: (R.A.); (N.B.); (R.H.); (R.A.H.H.); (P.L.G.)
- Comprehensive Cancer Center, The Arthur G. James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-614-292-9203; Fax: +1-614-292-6473
| | - Rajaneesh Anupam
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA; E-Mails: (R.A.); (N.B.); (R.H.); (R.A.H.H.); (P.L.G.)
| | - Nadine Bowden
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA; E-Mails: (R.A.); (N.B.); (R.H.); (R.A.H.H.); (P.L.G.)
| | - Robyn Haines
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA; E-Mails: (R.A.); (N.B.); (R.H.); (R.A.H.H.); (P.L.G.)
| | - Rashade A. H. Haynes
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA; E-Mails: (R.A.); (N.B.); (R.H.); (R.A.H.H.); (P.L.G.)
| | - Lee Ratner
- Department of Medicine, Pathology, and Molecular Microbiology, Division of Biology and Biological Sciences, Washington University School of Medicine, Campus Box 8069, 660 S. Euclid Ave., St. Louis, MO 63110, USA; E-Mail: (L.R.)
| | - Patrick L. Green
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA; E-Mails: (R.A.); (N.B.); (R.H.); (R.A.H.H.); (P.L.G.)
- Comprehensive Cancer Center, The Arthur G. James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
18
|
Orf-I and orf-II-encoded proteins in HTLV-1 infection and persistence. Viruses 2011; 3:861-85. [PMID: 21994758 PMCID: PMC3185781 DOI: 10.3390/v3060861] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 05/25/2011] [Accepted: 05/26/2011] [Indexed: 01/10/2023] Open
Abstract
The 3′ end of the human T-cell leukemia/lymphoma virus type-1 (HTLV-1) genome contains four overlapping open reading frames (ORF) that encode regulatory proteins. Here, we review current knowledge of HTLV-1 orf-I and orf-II protein products. Singly spliced mRNA from orf-I encodes p12, which can be proteolytically cleaved to generate p8, while differential splicing of mRNA from orf-II results in production of p13 and p30. These proteins have been demonstrated to modulate transcription, apoptosis, host cell activation and proliferation, virus infectivity and transmission, and host immune responses. Though these proteins are not essential for virus replication in vitro, p8, p12, p13, and p30 have an important role in the establishment and maintenance of HTLV-1 infection in vivo.
Collapse
|
19
|
Suppression of HTLV-1 replication by Tax-mediated rerouting of the p13 viral protein to nuclear speckles. Blood 2011; 118:1549-59. [PMID: 21677314 DOI: 10.1182/blood-2010-06-293340] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Disease development in human T-cell leukemia virus type 1 (HTLV-1)-infected individuals is positively correlated with the level of integrated viral DNA in T cells. HTLV-1 replication is positively regulated by Tax and Rex and negatively regulated by the p30 and HBZ proteins. In the present study, we demonstrate that HTLV-1 encodes another negative regulator of virus expression, the p13 protein. Expressed separately, p13 localizes to the mitochondria, whereas in the presence of Tax, part of it is ubiquitinated, stabilized, and rerouted to the nuclear speckles. The p13 protein directly binds Tax, decreases Tax binding to the CBP/p300 transcriptional coactivator, and, by reducing Tax transcriptional activity, suppresses viral expression. Because Tax stabilizes its own repressor, these findings suggest that HTLV-1 has evolved a complex mechanism to control its own replication. Further, these results highlight the importance of studying the function of the HTLV-1 viral proteins, not only in isolation, but also in the context of full viral replication.
Collapse
|
20
|
Human T Lymphotropic Virus Type 1 (HTLV-1): Molecular Biology and Oncogenesis. Viruses 2010; 2:2037-2077. [PMID: 21994719 PMCID: PMC3185741 DOI: 10.3390/v2092037] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 08/25/2010] [Accepted: 09/15/2010] [Indexed: 12/13/2022] Open
Abstract
Human T lymphotropic viruses (HTLVs) are complex deltaretroviruses that do not contain a proto-oncogene in their genome, yet are capable of transforming primary T lymphocytes both in vitro and in vivo. There are four known strains of HTLV including HTLV type 1 (HTLV-1), HTLV-2, HTLV-3 and HTLV-4. HTLV-1 is primarily associated with adult T cell leukemia (ATL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). HTLV-2 is rarely pathogenic and is sporadically associated with neurological disorders. There have been no diseases associated with HTLV-3 or HTLV-4 to date. Due to the difference in the disease manifestation between HTLV-1 and HTLV-2, a clear understanding of their individual pathobiologies and the role of various viral proteins in transformation should provide insights into better prognosis and prevention strategies. In this review, we aim to summarize the data accumulated so far in the transformation and pathogenesis of HTLV-1, focusing on the viral Tax and HBZ and citing appropriate comparisons to HTLV-2.
Collapse
|
21
|
Redox regulation of T-cell turnover by the p13 protein of human T-cell leukemia virus type 1: distinct effects in primary versus transformed cells. Blood 2010; 116:54-62. [DOI: 10.1182/blood-2009-07-235861] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
AbstractThe present study investigated the function of p13, a mitochondrial protein of human T-cell leukemia virus type 1 (HTLV-1). Although necessary for viral propagation in vivo, the mechanism of function of p13 is incompletely understood. Drawing from studies in isolated mitochondria, we analyzed the effects of p13 on mitochondrial reactive oxygen species (ROS) in transformed and primary T cells. In transformed cells (Jurkat, HeLa), p13 did not affect ROS unless the cells were subjected to glucose deprivation, which led to a p13-dependent increase in ROS and cell death. Using RNA interference we confirmed that expression of p13 also influences glucose starvation-induced cell death in the context of HTLV-1–infected cells. ROS measurements showed an increasing gradient from resting to mitogen-activated primary T cells to transformed T cells (Jurkat). Expression of p13 in primary T cells resulted in their activation, an effect that was abrogated by ROS scavengers. These findings suggest that p13 may have a distinct impact on cell turnover depending on the inherent ROS levels; in the context of the HTLV-1 propagation strategy, p13 could increase the pool of “normal” infected cells while culling cells acquiring a transformed phenotype, thus favoring lifelong persistence of the virus in the host.
Collapse
|
22
|
Biasiotto R, Aguiari P, Rizzuto R, Pinton P, D'Agostino DM, Ciminale V. The p13 protein of human T cell leukemia virus type 1 (HTLV-1) modulates mitochondrial membrane potential and calcium uptake. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:945-51. [DOI: 10.1016/j.bbabio.2010.02.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Revised: 02/18/2010] [Accepted: 02/19/2010] [Indexed: 11/24/2022]
|
23
|
Silic-Benussi M, Biasiotto R, Andresen V, Franchini G, D'Agostino DM, Ciminale V. HTLV-1 p13, a small protein with a busy agenda. Mol Aspects Med 2010; 31:350-8. [PMID: 20332002 DOI: 10.1016/j.mam.2010.03.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Revised: 03/17/2010] [Accepted: 03/17/2010] [Indexed: 01/16/2023]
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) infection is characterized by life-long persistence of the virus in the host. While most infected individuals remain asymptomatic, 3-5% will eventually develop adult T-cell leukemia/lymphoma (ATLL) or tropical spastic paraparesis/HTLV-associated myelopathy (TSP/HAM) after a clinical latency that can span years (TSP/HAM) to decades (ATLL). The major oncogenic determinant among HTLV-1 proteins is the Tax transactivator, which influences the expression and function of a great number of cellular proteins, drives cell proliferation, reduces cell death, and induces genetic instability. The present review is focused on the current knowledge of p13, an HTLV-1 accessory protein targeted to the inner mitochondrial membrane and, under certain conditions, to the nucleus. In mitochondria, p13 produces an inward K+current that results in an increased production of ROS by mitochondria. These effects are linked to the protein's effects on cell turnover which include activation of primary T-cells and reduced proliferation/sensitization to death of tumor cells. Recent findings suggest that in the presence of Tax, p13 is subjected to ubiquitylation and partly targeted to the nucleus. Nuclear p13 binds Tax and inhibits its transcriptional activity. These findings suggest that the protein might exert distinct functions depending on its intracellular localization and influence both the turnover of infected cells and the balance between viral latency and productive infection.
Collapse
Affiliation(s)
- Micol Silic-Benussi
- Department of Oncology and Surgical Sciences, University of Padova, Padova, Italy
| | | | | | | | | | | |
Collapse
|
24
|
Silic-Benussi M, Marin O, Biasiotto R, D'Agostino DM, Ciminale V. Effects of human T-cell leukemia virus type 1 (HTLV-1) p13 on mitochondrial K+ permeability: A new member of the viroporin family? FEBS Lett 2010; 584:2070-5. [PMID: 20170654 PMCID: PMC7163934 DOI: 10.1016/j.febslet.2010.02.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2009] [Revised: 01/29/2010] [Accepted: 02/11/2010] [Indexed: 11/06/2022]
Abstract
Human T-cell leukemia virus type-1 (HTLV-1) encodes a mitochondrial protein named p13. p13 mediates an inward K+ current in isolated mitochondria that leads to mitochondrial swelling, depolarization, increased respiratory chain activity and reactive oxygen species (ROS) production. These effects trigger the opening of the permeability transition pore and are dependent on the presence of K+ and on the amphipathic alpha helical domain of p13. In the context of cells, p13 acts as a sensitizer to selected apoptotic stimuli. Although it is not known whether p13 influences the activity of endogenous K+ channels or forms a channel itself, it shares some structural and functional analogies with viroporins, a class of small integral membrane proteins that form pores and alter membrane permeability.
Collapse
Affiliation(s)
- Micol Silic-Benussi
- Department of Oncology and Surgical Sciences, University of Padova, I-35128 Padova, Italy
| | | | | | | | | |
Collapse
|
25
|
Bagossi P, Bander P, Bozóki B, Tözsér J. Discovery and significance of new human T-lymphotropic viruses: HTLV-3 and HTLV-4. Expert Rev Anti Infect Ther 2010; 7:1235-49. [PMID: 19968515 DOI: 10.1586/eri.09.97] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Human T-lymphotropic virus type 1 (HTLV-1) and type 2 (HTLV-2) were discovered approximately 30 years ago and they are associated with various lymphoproliferative and neurological diseases. The estimated number of infected people is 10-20 million worldwide. In 2005, two new HTLV-1/HTLV-2-related viruses were detected, HTLV-3 and HTLV-4, from the same geographical area of Africa. In the last 4 years, their complete genomic sequences were determined and some of their characteristic features were studied in detail. These newly discovered retroviruses alongside their human (HTLV-1 and -2) and animal relatives (simian T-lymphotropic virus type 1-3) are reviewed. The potential risks associated with these viruses and the potential antiretroviral therapies are also discussed.
Collapse
Affiliation(s)
- Péter Bagossi
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary.
| | | | | | | |
Collapse
|
26
|
Silic-Benussi M, Cannizzaro E, Venerando A, Cavallari I, Petronilli V, La Rocca N, Marin O, Chieco-Bianchi L, Di Lisa F, D'Agostino DM, Bernardi P, Ciminale V. Modulation of mitochondrial K(+) permeability and reactive oxygen species production by the p13 protein of human T-cell leukemia virus type 1. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:947-54. [PMID: 19366603 DOI: 10.1016/j.bbabio.2009.02.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Revised: 01/31/2009] [Accepted: 02/05/2009] [Indexed: 01/28/2023]
Abstract
Human T-cell leukemia virus type-1 (HTLV-1) expresses an 87-amino acid protein named p13 that is targeted to the inner mitochondrial membrane. Previous studies showed that a synthetic peptide spanning an alpha helical domain of p13 alters mitochondrial membrane permeability to cations, resulting in swelling. The present study examined the effects of full-length p13 on isolated, energized mitochondria. Results demonstrated that p13 triggers an inward K(+) current that leads to mitochondrial swelling and confers a crescent-like morphology distinct from that caused by opening of the permeability transition pore. p13 also induces depolarization, with a matching increase in respiratory chain activity, and augments production of reactive oxygen species (ROS). These effects require an intact alpha helical domain and strictly depend on the presence of K(+) in the assay medium. The effects of p13 on ROS are mimicked by the K(+) ionophore valinomycin, while the protonophore FCCP decreases ROS, indicating that depolarization induced by K(+) vs. H(+) currents has different effects on mitochondrial ROS production, possibly because of their opposite effects on matrix pH (alkalinization and acidification, respectively). The downstream consequences of p13-induced mitochondrial K(+) permeability are likely to have an important influence on the redox state and turnover of HTLV-1-infected cells.
Collapse
Affiliation(s)
- Micol Silic-Benussi
- Department of Oncology and Surgical Sciences, University of Padova, I-35128 Padova, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Taylor JM, Nicot C. HTLV-1 and apoptosis: role in cellular transformation and recent advances in therapeutic approaches. Apoptosis 2008; 13:733-47. [PMID: 18421579 DOI: 10.1007/s10495-008-0208-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A universal cellular defense mechanism against viral invasion is the elimination of infected cells through apoptotic cell death. To counteract host defenses many viruses have evolved complex apoptosis evasion strategies. The oncogenic human retrovirus HTLV-1 is the etiological agent of adult-T-cell leukemia/lymphoma (ATLL) and the neurodegenerative disease known as HTLV-associated myelopathy/tropical spastic paraparesis (HAM/TSP). The poor prognosis in HTLV-1-induced ATLL is linked to the resistance of neoplastic T cells against conventional therapies and the immuno-compromised state of patients. Nevertheless, several studies have shown that the apoptotic pathway is largely intact and can be reactivated in ATLL tumor cells to induce specific killing. A better understanding of the molecular mechanisms employed by HTLV-1 to counteract cellular death pathways remains an important challenge for future therapies and the treatment of HTLV-1-associated diseases.
Collapse
Affiliation(s)
- John M Taylor
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kansas Medical Center, 3025 Wahl Hall West, 3901 Rainbow Blvd., Kansas City, KS 66160, USA
| | | |
Collapse
|
28
|
Abstract
Human T-cell lymphotropic virus-I (HTLV-I) is the cause of adult T-cell leukaemia/lymphoma. Various viral proteins, especially, but not exclusively, Tax have been implicated in oncogenesis, mostly through in vitro studies. Tax transactivates a large and apparently ever expanding list of human genes through transcriptional factors. Elucidating not only the pathways but also the timing of action of HTLV proteins is important for understanding the pathogenesis and development of new treatments.
Collapse
Affiliation(s)
- G Taylor
- Infectious Diseases Section, Division of Medicine Faculty, St Mary's Campus, Imperial College London, London, UK.
| |
Collapse
|
29
|
Yasunaga JI, Matsuoka M. Leukaemogenic mechanism of human T-cell leukaemia virus type I. Rev Med Virol 2007; 17:301-11. [PMID: 17621367 DOI: 10.1002/rmv.548] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Adult T-cell leukaemia (ATL) is a neoplastic disease derived from CD4(+) T-lymphocytes and etiologically associated with human T-cell leukaemia virus type I (HTLV-I). In addition to structural genes, HTLV-I encodes regulatory and accessory genes in the pX region. Among them, Tax is thought to play a central role in leukaemogenesis through its potent transforming activity. However, since Tax is a major target of the host immune system, its expression is often lost in ATL cells, indicating Tax is dispensable in the last phase of leukaemogenesis. The HTLV-I bZIP factor (HBZ), encoded on the HTLV-I minus strand, was recently shown to be expressed in all ATL cells, and to support growth of human T-cell lines. These findings suggest that HBZ is critical to ATL onset. In addition to viral factors and genetic and epigenetic changes in cellular genes, the host immune status and genetic background also function in leukaemogenesis.
Collapse
Affiliation(s)
- Jun-ichirou Yasunaga
- Laboratory of Virus Immunology, Institute for Virus Research, Kyoto University, Kyoto, Japan.
| | | |
Collapse
|
30
|
Yasunaga JI, Matsuoka M. [HTLV-I and leukemogenesis]. Uirusu 2007; 56:241-9. [PMID: 17446673 DOI: 10.2222/jsv.56.241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Human T-cell leukemia virus type I (HTLV-I) is a causative virus of adult T-cell leukemia (ATL). ATL is a highly aggressive neoplastic disease of CD4 positive T lymphocyte, which is featured by the pleomorphic tumor cells with hypersegmented nuclei, called " flower cell". HTLV-I increases its copy number by clonal proliferation of the host cells, not by replication of the virus. Therefore, HTLV-I eventually induces ATL. Tax, encoded by HTLV-I pX region, has been recognized as a protein that plays a central role of the transformation of HTLV-I-infected cells by its pleiotropic actions. However, fresh ATL cells frequently lose Tax protein expression by several mechanisms. Recently, HBZ was identified in the complementary strand of HTLV-I and it is suggested that HBZ is a critical gene in leukemogenesis. Furthermore, there is a long latency period before onset of ATL, indicating the multistep mechanisms of leukemogenesis. Therefore, it is suggested that multiple factors, such as viral proteins, genetic and epigenetic changes of host genome, and immune status of the hosts, could be implicated in leukemogenesis of ATL.
Collapse
Affiliation(s)
- Jun-ichirou Yasunaga
- Laboratory of Human Tumor Viruses Department of Viral Oncology Institute for Virus Research, Kyoto University.
| | | |
Collapse
|
31
|
Xia S, Forman LW, Faller DV. Protein kinase C delta is required for survival of cells expressing activated p21RAS. J Biol Chem 2007; 282:13199-210. [PMID: 17350960 PMCID: PMC3527128 DOI: 10.1074/jbc.m610225200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Inhibition of protein kinase C (PKC) activity in transformed cells and tumor cells containing activated p21(RAS) results in apoptosis. To investigate the pro-apoptotic pathway induced by the p21(RAS) oncoprotein, we first identified the specific PKC isozyme necessary to prevent apoptosis in the presence of activated p21(RAS). Dominant-negative mutants of PKC, short interfering RNA vectors, and PKC isozyme-specific chemical inhibitors directed against the PKCdelta isozyme demonstrated that PKCdelta plays a critical role in p21(RAS)-mediated apoptosis. An activating p21(RAS) mutation, or activation of the phosphatidylinositol 3-kinase (PI3K) Ras effector pathway, increased the levels of PKCdelta protein and activity in cells, whereas inhibition of p21(RAS) activity decreased the expression of the PKCdelta protein. Activation of the Akt survival pathway by oncogenic Ras required PKCdelta activity. Akt activity was dramatically decreased after PKCdelta suppression in cells containing activated p21(RAS). Conversely, constitutively activated Akt rescued cells from apoptosis induced by PKCdelta inhibition. Collectively, these findings demonstrate that p21(RAS), through its downstream effector PI3K, induces PKCdelta expression and that this increase in PKCdelta activity, acting through Akt, is required for cell survival. The p21(RAS) effector molecule responsible for the initiation of the apoptotic signal after suppression of PKCdelta activity was also determined to be PI3K. PI3K (p110(C)(AAX), where AA is aliphatic amino acid) was sufficient for induction of apoptosis after PKCdelta inhibition. Thus, the same p21(RAS) effector, PI3K, is responsible for delivering both a pro-apoptotic signal and a survival signal, the latter being mediated by PKCdelta and Akt. Selective suppression of PKCdelta activity and consequent induction of apoptosis is a potential strategy for targeting of tumor cells containing an activated p21(RAS).
Collapse
Affiliation(s)
- Shuhua Xia
- Cancer Research Center, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | |
Collapse
|
32
|
Kim SJ, Nair AM, Fernandez S, Mathes L, Lairmore MD. Enhancement of LFA-1-mediated T cell adhesion by human T lymphotropic virus type 1 p12I1. THE JOURNAL OF IMMUNOLOGY 2006; 176:5463-70. [PMID: 16622014 PMCID: PMC2668115 DOI: 10.4049/jimmunol.176.9.5463] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cell-to-cell transmission of retroviruses, such as human T lymphotropic virus type 1 (HTLV-1), is well documented, but the roles of viral regulatory or other nonstructural proteins in the modulation of T cell adhesion are incompletely understood. In this study we tested the role of the HTLV-1 accessory protein, p12(I), on LFA-1-mediated cell adhesion. p12(I) is critical for early HTLV-1 infection by causing the release of calcium from the endoplasmic reticulum to activate NFAT-mediated transcription. We tested the role of this novel viral protein in mediating LFA-1-dependent cell adhesion. Our data indicated that T cells expressing a mutant HTLV-1 provirus that does not produce p12(I) mRNA (ACH.p12(I)) exhibited reduced LFA-1-mediated adhesion compared with wild-type HTLV-1-expressing cells (ACH). Furthermore, the expression of p12(I) in Jurkat T cells using lentiviral vectors enhanced LFA-1-mediated cell adhesion, which was inhibited by the calcium chelator BAPTA-AM, the calcium channel blocker SK&F 96365, and calpeptin, an inhibitor of the calcium-dependent protease calpain. Similar to the intracellular calcium mobilizer, thapsigargin, the expression of p12(I) in Jurkat T cells induced cell surface clustering of LFA-1 without changing the level of integrin expression. Our data are the first to indicate that HTLV-1 p12(I), in addition to enhancing T cell activation, promotes cell-to-cell spread by inducing LFA-1 clustering on T cells via calcium-dependent signaling.
Collapse
Affiliation(s)
- Seung-jae Kim
- Center for Retrovirus Research and Department of Veterinary Biosciences, Ohio State University, Columbus, OH 43210
| | - Amrithraj M. Nair
- Center for Retrovirus Research and Department of Veterinary Biosciences, Ohio State University, Columbus, OH 43210
| | | | - Lawrence Mathes
- Center for Retrovirus Research and Department of Veterinary Biosciences, Ohio State University, Columbus, OH 43210
- Comprehensive Cancer Center, The Arthur G. James Cancer Hospital and Solove Research Institute, Ohio State University, Columbus, OH 43210
- Department of Molecular Virology, Immunology, and Medical Genetics, Ohio State University, Columbus, OH 43210
| | - Michael D. Lairmore
- Center for Retrovirus Research and Department of Veterinary Biosciences, Ohio State University, Columbus, OH 43210
- Comprehensive Cancer Center, The Arthur G. James Cancer Hospital and Solove Research Institute, Ohio State University, Columbus, OH 43210
- Department of Molecular Virology, Immunology, and Medical Genetics, Ohio State University, Columbus, OH 43210
- Address correspondence and reprint requests to Dr. Michael D. Lairmore, Center for Retrovirus Research and Department of Veterinary Biosciences, The Ohio State University, 1925 Coffey Road, Columbus, OH 43210-1093. E-mail address:
| |
Collapse
|
33
|
Law PYP, Liu YM, Geng H, Kwan KH, Waye MMY, Ho YY. Expression and functional characterization of the putative protein 8b of the severe acute respiratory syndrome-associated coronavirus. FEBS Lett 2006; 580:3643-8. [PMID: 16753150 PMCID: PMC7094570 DOI: 10.1016/j.febslet.2006.05.051] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2006] [Accepted: 05/19/2006] [Indexed: 12/17/2022]
Abstract
SARS 8b is one of the putative accessory proteins of the severe acute respiratory syndrome‐associated coronavirus (SARS‐CoV) with unknown functions. In this study, the cellular localization and activity of this estimated 9.6 kDa protein were examined. Confocal microscopy results indicated that SARS 8b is localized in both nucleus and cytoplasm of mammalian cells. Functional study revealed that overexpression of SARS 8b induced DNA synthesis. Coexpression of SARS 8b and SARS 6, a previously characterized SARS‐CoV accessory protein, did not elicit synergistic effects on DNA synthesis.
Collapse
Affiliation(s)
- Pui Ying Peggy Law
- The Department of Biochemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | - Yuet-Man Liu
- The Department of Biochemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | - Hua Geng
- The Department of Biochemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | - Ka Ho Kwan
- The Molecular Biotechnology Program, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Mary Miu-Yee Waye
- The Department of Biochemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
- Croucher Laboratory for Human Genomics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Yuan-Yuan Ho
- The Department of Biochemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| |
Collapse
|
34
|
Hiraragi H, Kim SJ, Phipps AJ, Silic-Benussi M, Ciminale V, Ratner L, Green PL, Lairmore MD. Human T-lymphotropic virus type 1 mitochondrion-localizing protein p13(II) is required for viral infectivity in vivo. J Virol 2006; 80:3469-76. [PMID: 16537614 PMCID: PMC1440407 DOI: 10.1128/jvi.80.7.3469-3476.2006] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human T-lymphotropic virus type 1 (HTLV-1), the etiological agent of adult T-cell leukemia, encodes unique regulatory and accessory proteins in the pX region of the provirus, including the open reading frame II product p13(II). p13(II) localizes to mitochondria, binds farnesyl pyrophosphate synthetase, an enzyme involved in posttranslational farnesylation of Ras, and alters Ras-dependent cell signaling and control of apoptosis. The role of p13(II) in virus infection in vivo remains undetermined. Herein, we analyzed the functional significance of p13(II) in HTLV-1 infection. We compared the infectivity of a human B-cell line that harbors an infectious molecular clone of HTLV-1 with a selective mutation that prevents the translation of p13(II) (729.ACH.p13) to the infectivity of a wild-type HTLV-1-expressing cell line (729.ACH). 729.ACH and 729.ACH.p13 producer lines had comparable infectivities for cultured rabbit peripheral blood mononuclear cells (PBMC), and the fidelity of the start codon mutation in ACH.p13 was maintained after PBMC passage. In contrast, zero of six rabbits inoculated with 729.ACH.p13 cells failed to establish viral infection, whereas six of six rabbits inoculated with wild-type HTLV-1-expressing cells (729.ACH) were infected as measured by antibody responses, proviral load, and HTLV-1 p19 matrix antigen production from ex vivo-cultured PBMC. Our data are the first to indicate that the HTLV-1 mitochondrion-localizing protein p13(II) has an essential biological role during the early phase of virus infection in vivo.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/metabolism
- Blotting, Western
- Cell Line, Tumor
- Cells, Cultured
- Coculture Techniques
- Codon, Initiator
- Disease Models, Animal
- Enzyme-Linked Immunosorbent Assay
- Female
- Gene Products, gag/blood
- Genome, Viral
- Geranyltranstransferase/physiology
- HTLV-I Infections/virology
- Human T-lymphotropic virus 1/genetics
- Human T-lymphotropic virus 1/immunology
- Human T-lymphotropic virus 1/pathogenicity
- Human T-lymphotropic virus 1/physiology
- Humans
- Leukocytes, Mononuclear/virology
- Mitochondria/enzymology
- Mutation
- Polymerase Chain Reaction
- Proviruses/genetics
- Proviruses/isolation & purification
- Rabbits
- Retroviridae Proteins, Oncogenic/blood
- Viral Load
- gag Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- Hajime Hiraragi
- Center for Retrovirus Research and Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | |
Collapse
|