1
|
Szydło W, Wosula EN, Knoell E, Hein GL, Mondal S, Tatineni S. Helper Component-Proteinase of Triticum Mosaic Virus Is a Viral Determinant of Wheat Curl Mite Transmission. PHYTOPATHOLOGY 2024; 114:1672-1679. [PMID: 38579745 DOI: 10.1094/phyto-02-24-0073-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
Triticum mosaic virus (TriMV; genus Poacevirus; family Potyviridae) is an economically important virus in the Great Plains region of the United States. TriMV is transmitted by the wheat curl mite (Aceria tosichella) Type 2 genotype but not by Type 1. Helper component-proteinase (HC-Pro) is a vector transmission determinant for several potyvirids, but the role of HC-Pro in TriMV transmission is unknown. In this study, we examined the requirement of the HC-Pro cistron of TriMV for wheat curl mite (Type 2) transmission through deletion and point mutations and constructing TriMV chimeras with heterologous HC-Pros from other potyvirids. TriMV with complete deletion of HC-Pro failed to be transmitted by wheat curl mites at detectable levels. Furthermore, TriMV chimeras with heterologous HC-Pros from aphid-transmitted turnip mosaic virus and tobacco etch virus, or wheat curl mite-transmitted wheat streak mosaic virus, failed to be transmitted by wheat curl mites. These data suggest that heterologous HC-Pros did not complement TriMV for wheat curl mite transmission. A decreasing series of progressive nested in-frame deletions at the N-terminal region of HC-Pro comprising amino acids 3 to 125, 3 to 50, 3 to 25, 3 to 15, 3 to 8, and 3 and 4 abolished TriMV transmission by wheat curl mites. Additionally, mutation of conserved His20, Cys49, or Cys52 to Ala in HC-Pro abolished TriMV transmissibility by wheat curl mites. These data suggest that the N-terminal region of HC-Pro is crucial for TriMV transmission by wheat curl mites. Collectively, these data demonstrate that the HC-Pro cistron of TriMV is a viral determinant for wheat curl mite transmission.
Collapse
Affiliation(s)
- Wiktoria Szydło
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68503, U.S.A
- Center for Advanced Technology and Population Ecology Lab, Institute of Environmental Biology, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland
| | - Everlyne N Wosula
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68503, U.S.A
| | - Elliot Knoell
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68503, U.S.A
| | - Gary L Hein
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68503, U.S.A
| | - Shaonpius Mondal
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68503, U.S.A
| | - Satyanarayana Tatineni
- U.S. Department of Agriculture-Agricultural Research Service, University of Nebraska-Lincoln, Lincoln, NE 68583, U.S.A
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE 68583, U.S.A
| |
Collapse
|
2
|
Qin L, Liu H, Liu P, Jiang L, Cheng X, Li F, Shen W, Qiu W, Dai Z, Cui H. Rubisco small subunit (RbCS) is co-opted by potyvirids as the scaffold protein in assembling a complex for viral intercellular movement. PLoS Pathog 2024; 20:e1012064. [PMID: 38437247 PMCID: PMC10939294 DOI: 10.1371/journal.ppat.1012064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/14/2024] [Accepted: 02/21/2024] [Indexed: 03/06/2024] Open
Abstract
Plant viruses must move through plasmodesmata (PD) to complete their life cycles. For viruses in the Potyviridae family (potyvirids), three viral factors (P3N-PIPO, CI, and CP) and few host proteins are known to participate in this event. Nevertheless, not all the proteins engaging in the cell-to-cell movement of potyvirids have been discovered. Here, we found that HCPro2 encoded by areca palm necrotic ring spot virus (ANRSV) assists viral intercellular movement, which could be functionally complemented by its counterpart HCPro from a potyvirus. Affinity purification and mass spectrometry identified several viral factors (including CI and CP) and host proteins that are physically associated with HCPro2. We demonstrated that HCPro2 interacts with both CI and CP in planta in forming PD-localized complexes during viral infection. Further, we screened HCPro2-associating host proteins, and identified a common host protein in Nicotiana benthamiana-Rubisco small subunit (NbRbCS) that mediates the interactions of HCPro2 with CI or CP, and CI with CP. Knockdown of NbRbCS impairs these interactions, and significantly attenuates the intercellular and systemic movement of ANRSV and three other potyvirids (turnip mosaic virus, pepper veinal mottle virus, and telosma mosaic virus). This study indicates that a nucleus-encoded chloroplast-targeted protein is hijacked by potyvirids as the scaffold protein to assemble a complex to facilitate viral movement across cells.
Collapse
Affiliation(s)
- Li Qin
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) and School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Hongjun Liu
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) and School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Peilan Liu
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) and School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Lu Jiang
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) and School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaofei Cheng
- College of Plant Protection/Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region of Chinese Education Ministry, Northeast Agricultural University, Harbin, China
| | - Fangfang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wentao Shen
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Wenping Qiu
- Center for Grapevine Biotechnology, William H. Darr College of Agriculture, Missouri State University, Mountain Grove, United States of America
| | - Zhaoji Dai
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) and School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Hongguang Cui
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) and School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| |
Collapse
|
3
|
Tatineni S, Alexander J, Kovacs F. The HC-Pro cistron of Triticum mosaic virus is dispensable for systemic infection in wheat but is required for symptom phenotype and efficient genome amplification. Virus Res 2024; 339:199277. [PMID: 38008221 PMCID: PMC10730876 DOI: 10.1016/j.virusres.2023.199277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 11/28/2023]
Abstract
Triticum mosaic virus (TriMV), the type species of the genus Poacevirus in the family Potyviridae, is an economically important wheat curl mite-transmitted wheat-infecting virus in the Great Plains region of the USA. In this study, the functional genomics of helper component-proteinase (HC-Pro) encoded by TriMV was examined using a reverse genetics approach. TriMV with complete deletion of HC-Pro cistron elicited systemic infection in wheat, indicating that HC-Pro cistron is dispensable for TriMV systemic infection. However, TriMV lacking HC-Pro caused delayed systemic infection with mild symptoms that resulted in little or no stunting of plants with a significant reduction in the accumulation of genomic RNA copies and coat protein (CP). Sequential deletion mutagenesis from the 5' end of HC-Pro cistron in the TriMV genome revealed that deletions within amino acids 3 to 25, except for amino acids 3 and 4, elicited mild symptoms with reduced accumulation of genomic RNA and CP. Surprisingly, TriMV with deletion of amino acids 3 to 50 or 3 to 125 in HC-Pro elicited severe symptoms with a substantial increase in genomic RNA copies but a drastic reduction in CP accumulation. Additionally, TriMV with heterologous HC-Pro from other potyvirids produced symptom phenotype and genomic RNA accumulation similar to that of TriMV without HC-Pro, suggesting that HC-Pros of other potyvirids were not effective in complementing TriMV in wheat. Our data indicate that HC-Pro is expendable for replication of TriMV but is required for efficient viral genomic RNA amplification and symptom development. The availability of TriMV with various deletions in the HC-Pro cistron will facilitate the examination of the requirement of HC-Pro for wheat curl mite transmission.
Collapse
Affiliation(s)
- Satyanarayana Tatineni
- United States Department of Agriculture-Agricultural Research Service, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE 68503, USA.
| | - Jeffrey Alexander
- United States Department of Agriculture-Agricultural Research Service, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Frank Kovacs
- Department of Chemistry, University of Nebraska-Kearney, Kearney, NE 68849, USA
| |
Collapse
|
4
|
Tatineni S, Alexander J, Nunna H. 6K1, NIa-VPg, NIa-Pro, and CP of Wheat Streak Mosaic Virus Are Collective Determinants of Wheat Streak Mosaic Disease in Wheat. PHYTOPATHOLOGY 2023; 113:1115-1127. [PMID: 36537846 DOI: 10.1094/phyto-10-22-0401-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Wheat streak mosaic virus (WSMV; genus Tritimovirus, family Potyviridae) is the causal agent of the most economically important wheat streak mosaic disease of wheat (Triticum aestivum) in the Great Plains region of the United States. WSMV determinants responsible for wheat streak mosaic disease in wheat are unknown. Triticum mosaic virus (TriMV), a wheat-infecting virus, was used as an expression vector for the transient expression of each of the WSMV-encoded cistrons in wheat. WSMV-encoded 6K1, NIa-VPg, NIa-Pro, and CP cistrons in TriMV elicited symptoms specific to different stages of wheat streak mosaic disease without significantly affecting the genomic RNA accumulation. WSMV 6K1 produced early wheat streak mosaic disease-like symptoms of severe chlorotic streaks and patches. NIa-VPg and CP caused severe chlorotic streaks, followed by moderate stunting (only with NIa-VPg) of wheat, mimicking early- and mid-stage symptoms of wheat streak mosaic disease. WSMV NIa-Pro caused mild chlorotic streaks, followed by dark green leaves with severe stunting, representing the late symptoms of wheat streak mosaic disease. Collectively, these data suggest that cumulative effects of WSMV-encoded 6K1, NIa-VPg, NIa-Pro, and CP are responsible for different stages of wheat streak mosaic disease symptoms in wheat. Furthermore, deletion analysis of wheat streak mosaic disease determinants revealed that complete 6K1 and NIa-Pro, amino acids 3 to 60 and 121 to 197 of NIa-VPg, and amino acids 101 to 294 of CP are responsible for wheat streak mosaic disease-like symptoms in wheat. This study suggests that management strategies for wheat streak mosaic disease in wheat should target WSMV determinants of the disease phenotype.
Collapse
Affiliation(s)
- Satyanarayana Tatineni
- U.S. Department of Agriculture-Agricultural Research Service, University of Nebraska-Lincoln, Lincoln, NE 68583
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE 68503
| | - Jeffrey Alexander
- U.S. Department of Agriculture-Agricultural Research Service, University of Nebraska-Lincoln, Lincoln, NE 68583
| | - Haritha Nunna
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE 68503
| |
Collapse
|
5
|
Pasin F, Daròs JA, Tzanetakis IE. OUP accepted manuscript. FEMS Microbiol Rev 2022; 46:6534904. [PMID: 35195244 PMCID: PMC9249622 DOI: 10.1093/femsre/fuac011] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 02/02/2022] [Accepted: 02/08/2022] [Indexed: 11/17/2022] Open
Abstract
Potyviridae, the largest family of known RNA viruses (realm Riboviria), belongs to the picorna-like supergroup and has important agricultural and ecological impacts. Potyvirid genomes are translated into polyproteins, which are in turn hydrolyzed to release mature products. Recent sequencing efforts revealed an unprecedented number of potyvirids with a rich variability in gene content and genomic layouts. Here, we review the heterogeneity of non-core modules that expand the structural and functional diversity of the potyvirid proteomes. We provide a family-wide classification of P1 proteinases into the functional Types A and B, and discuss pretty interesting sweet potato potyviral ORF (PISPO), putative zinc fingers, and alkylation B (AlkB)—non-core modules found within P1 cistrons. The atypical inosine triphosphate pyrophosphatase (ITPase/HAM1), as well as the pseudo tobacco mosaic virus-like coat protein (TMV-like CP) are discussed alongside homologs of unrelated virus taxa. Family-wide abundance of the multitasking helper component proteinase (HC-pro) is revised. Functional connections between non-core modules are highlighted to support host niche adaptation and immune evasion as main drivers of the Potyviridae evolutionary radiation. Potential biotechnological and synthetic biology applications of potyvirid leader proteinases and non-core modules are finally explored.
Collapse
Affiliation(s)
- Fabio Pasin
- Corresponding author: Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València (CSIC-UPV), UPV Building 8E, Ingeniero Fausto Elio, 46011 Valencia, Spain. E-mail:
| | - José-Antonio Daròs
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València (CSIC-UPV), 46011 Valencia, Spain
| | - Ioannis E Tzanetakis
- Department of Entomology and Plant Pathology, Division of Agriculture, University of Arkansas System, 72701 Fayetteville, AR, USA
| |
Collapse
|
6
|
Tatineni S, Alexander J, Gupta AK, French R. Asymmetry in Synergistic Interaction Between Wheat streak mosaic virus and Triticum mosaic virus in Wheat. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:336-350. [PMID: 30106671 DOI: 10.1094/mpmi-07-18-0189-r] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Wheat streak mosaic virus (WSMV) and Triticum mosaic virus (TriMV), distinct members in the family Potyviridae, are economically important wheat-infecting viruses in the Great Plains region. Previously, we reported that coinfection of wheat by WSMV and TriMV caused disease synergism with increased concentration of both viruses. The mechanisms of synergistic interaction between WSMV and TriMV and the effects of prior infection of wheat by either of these "synergistically interacting partner" (SIP) viruses on the establishment of local and systemic infection by the other SIP virus are not known. In this study, using fluorescent protein-tagged viruses, we found that prior infection of wheat by WSMV or TriMV negatively affected the onset and size of local foci elicited by subsequent SIP virus infection compared with those in buffer-inoculated wheat. These data revealed that prior infection of wheat by an SIP virus has no measurable advantage for another SIP virus on the initiation of infection and cell-to-cell movement. In TriMV-infected wheat, WSMV exhibited accelerated long-distance movement and increased accumulation of genomic RNAs compared with those in buffer-inoculated wheat, indicating that TriMV-encoded proteins complemented WSMV for efficient systemic infection. In contrast, TriMV displayed delayed systemic infection in WSMV-infected wheat, with fewer genomic RNA copies in early stages of infection compared with those in buffer-inoculated wheat. However, during late stages of infection, TriMV accumulation in WSMV-infected wheat increased rapidly with accelerated long-distance movement compared with those in buffer-inoculated wheat. Taken together, these data suggest that interactions between synergistically interacting WSMV and TriMV are asymmetrical; thus, successful establishment of synergistic interaction between unrelated viruses will depend on the order of infection of plants by SIP viruses.
Collapse
Affiliation(s)
- Satyanarayana Tatineni
- 1 United States Department of Agriculture-Agricultural Research Service and Department of Plant Pathology and
| | - Jeff Alexander
- 1 United States Department of Agriculture-Agricultural Research Service and Department of Plant Pathology and
| | - Adarsh K Gupta
- 2 Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln 68583, U.S.A
| | - Roy French
- 1 United States Department of Agriculture-Agricultural Research Service and Department of Plant Pathology and
| |
Collapse
|
7
|
Singh K, Wegulo SN, Skoracka A, Kundu JK. Wheat streak mosaic virus: a century old virus with rising importance worldwide. MOLECULAR PLANT PATHOLOGY 2018; 19:2193-2206. [PMID: 29575495 PMCID: PMC6638073 DOI: 10.1111/mpp.12683] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/15/2018] [Accepted: 03/20/2018] [Indexed: 05/15/2023]
Abstract
Wheat streak mosaic virus (WSMV) causes wheat streak mosaic, a disease of cereals and grasses that threatens wheat production worldwide. It is a monopartite, positive-sense, single-stranded RNA virus and the type member of the genus Tritimovirus in the family Potyviridae. The only known vector is the wheat curl mite (WCM, Aceria tosichella), recently identified as a species complex of biotypes differing in virus transmission. Low rates of seed transmission have been reported. Infected plants are stunted and have a yellow mosaic of parallel discontinuous streaks on the leaves. In the autumn, WCMs move from WSMV-infected volunteer wheat and other grass hosts to newly emerged wheat and transmit the virus which survives the winter within the plant, and the mites survive as eggs, larvae, nymphs or adults in the crown and leaf sheaths. In the spring/summer, the mites move from the maturing wheat crop to volunteer wheat and other grass hosts and transmit WSMV, and onto newly emerged wheat in the fall to which they transmit the virus, completing the disease cycle. WSMV detection is by enzyme-linked immunosorbent assay (ELISA), reverse transcription-polymerase chain reaction (RT-PCR) or quantitative RT-PCR (RT-qPCR). Three types of WSMV are recognized: A (Mexico), B (Europe, Russia, Asia) and D (USA, Argentina, Brazil, Australia, Turkey, Canada). Resistance genes Wsm1, Wsm2 and Wsm3 have been identified. The most effective, Wsm2, has been introduced into several wheat cultivars. Mitigation of losses caused by WSMV will require enhanced knowledge of the biology of WCM biotypes and WSMV, new or improved virus detection techniques, the development of resistance through traditional and molecular breeding, and the adaptation of cultural management tactics to account for climate change.
Collapse
Affiliation(s)
- Khushwant Singh
- Crop Research Institute, Division of Crop Protection and Plant Health161 06 Prague 6Czech Republic
| | - Stephen N. Wegulo
- Department of Plant PathologyUniversity of Nebraska‐Lincoln, 406H Plant Sciences HallLincolnNE 68583USA
| | - Anna Skoracka
- Population Ecology Laboratory, Faculty of BiologyAdam Mickiewicz University in Poznań, Umultowska 89Poznań 61‐614Poland
| | - Jiban Kumar Kundu
- Crop Research Institute, Division of Crop Protection and Plant Health161 06 Prague 6Czech Republic
| |
Collapse
|
8
|
Tatineni S, Hein GL. Genetics and mechanisms underlying transmission of Wheat streak mosaic virus by the wheat curl mite. Curr Opin Virol 2018; 33:47-54. [PMID: 30077887 DOI: 10.1016/j.coviro.2018.07.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/06/2018] [Accepted: 07/19/2018] [Indexed: 10/28/2022]
Abstract
Wheat streak mosaic virus (WSMV, genus Tritimovirus; family Potyviridae) is the most economically important virus of wheat in the Great Plains region of the USA. WSMV is transmitted by the eriophyid wheat curl mite (WCM), Aceria tosichella Keifer. In contrast to Hemipteran-borne plant viruses, the mode and mechanism of eriophyid mite transmission of viruses have remained poorly understood, mostly due to difficulty of working with these ∼200 μm long microscopic creatures. Among eriophyid-transmitted plant viruses, relatively extensive work has been performed on population genetics of WCMs, WSMV determinants involved in WCM transmission, and localization of WSMV virions and inclusion bodies in WCMs. The main focus of this review is to appraise readers on WCM, WSMV encoded proteins required for WCM transmission and further details and questions on the mode of WSMV transmission by WCMs, and potential advances in management strategies for WCMs and WSMV with increased understanding of transmission.
Collapse
Affiliation(s)
- Satyanarayana Tatineni
- United States Department of Agriculture-Agricultural Research Service and Department of Plant Pathology, University of Nebraska-Lincoln, NE 68583, United States.
| | - Gary L Hein
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583, United States.
| |
Collapse
|
9
|
Valli AA, Gallo A, Rodamilans B, López‐Moya JJ, García JA. The HCPro from the Potyviridae family: an enviable multitasking Helper Component that every virus would like to have. MOLECULAR PLANT PATHOLOGY 2018; 19:744-763. [PMID: 28371183 PMCID: PMC6638112 DOI: 10.1111/mpp.12553] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 03/21/2017] [Accepted: 03/24/2017] [Indexed: 05/18/2023]
Abstract
RNA viruses have very compact genomes and so provide a unique opportunity to study how evolution works to optimize the use of very limited genomic information. A widespread viral strategy to solve this issue concerning the coding space relies on the expression of proteins with multiple functions. Members of the family Potyviridae, the most abundant group of RNA viruses in plants, offer several attractive examples of viral factors which play roles in diverse infection-related pathways. The Helper Component Proteinase (HCPro) is an essential and well-characterized multitasking protein for which at least three independent functions have been described: (i) viral plant-to-plant transmission; (ii) polyprotein maturation; and (iii) RNA silencing suppression. Moreover, multitudes of host factors have been found to interact with HCPro. Intriguingly, most of these partners have not been ascribed to any of the HCPro roles during the infectious cycle, supporting the idea that this protein might play even more roles than those already established. In this comprehensive review, we attempt to summarize our current knowledge about HCPro and its already attributed and putative novel roles, and to discuss the similarities and differences regarding this factor in members of this important viral family.
Collapse
Affiliation(s)
| | - Araiz Gallo
- Centro Nacional de Biotecnología (CNB‐CSIC)Madrid28049Spain
| | | | - Juan José López‐Moya
- Center for Research in Agricultural Genomics (CRAG‐CSIC‐IRTA‐UAB‐UB), Campus UABBellaterraBarcelona08193Spain
| | | |
Collapse
|
10
|
Wheat streak mosaic virus coat protein is a determinant for vector transmission by the wheat curl mite. Virology 2018; 514:42-49. [DOI: 10.1016/j.virol.2017.10.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 10/16/2017] [Accepted: 10/19/2017] [Indexed: 11/19/2022]
|
11
|
Tatineni S, Elowsky C, Graybosch RA. Wheat streak mosaic virus Coat Protein Deletion Mutants Elicit More Severe Symptoms Than Wild-Type Virus in Multiple Cereal Hosts. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2017; 30:974-983. [PMID: 28840785 DOI: 10.1094/mpmi-07-17-0182-r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Previously, we reported that coat protein (CP) of Wheat streak mosaic virus (WSMV) (genus Tritimovirus, family Potyviridae) tolerates deletion of amino acids 36 to 84 for efficient systemic infection of wheat. In this study, we demonstrated that WSMV mutants with deletion of CP amino acids 58 to 84 but not of 36 to 57 induced severe chlorotic streaks and spots, followed by acute chlorosis in wheat, maize, barley, and rye compared with mild to moderate chlorotic streaks and mosaic symptoms by wild-type virus. Deletion of CP amino acids 58 to 84 from the WSMV genome accelerated cell-to-cell movement, with increased accumulation of genomic RNAs and CP, compared with the wild-type virus. Microscopic examination of wheat tissues infected by green fluorescent protein-tagged mutants revealed that infection by mutants lacking CP amino acids 58 to 84 caused degradation of chloroplasts, resulting in acute macroscopic chlorosis. The profile of CP-specific proteins was altered in wheat infected by mutants causing acute chlorosis, compared with mutants eliciting wild-type symptoms. All deletion mutants accumulated CP-specific major protein similarly to that in wild-type virus; however, mutants that elicit acute chlorosis failed to accumulate a 31-kDa minor protein compared with wild-type virus or mutants lacking amino acids 36 to 57. Taken together, these data suggest that deletion of CP amino acids 58 to 84 from the WSMV genome enhanced accumulation of CP and genomic RNA, altered CP-specific protein profiles, and caused severe symptom phenotypes in multiple cereal hosts.
Collapse
Affiliation(s)
- Satyanarayana Tatineni
- 1 United States Department of Agriculture-Agricultural Research Service (USDA-ARS) and Department of Plant Pathology, University of Nebraska-Lincoln
| | - Christian Elowsky
- 2 Department of Agronomy and Horticulture, University of Nebraska-Lincoln; and
| | - Robert A Graybosch
- 3 USDA-ARS and Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583, U.S.A
| |
Collapse
|
12
|
Tatineni S. Wheat streak mosaic virus coat protein is a host-specific long-distance transport determinant in oat. Virus Res 2017; 242:37-42. [PMID: 28864424 DOI: 10.1016/j.virusres.2017.08.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 08/27/2017] [Accepted: 08/28/2017] [Indexed: 11/16/2022]
Abstract
Viral determinants involved in systemic infection of hosts by monocot-infecting plant viruses are poorly understood. Wheat streak mosaic virus (WSMV, genus Tritimovirus, family Potyviridae) exclusively infects monocotyledonous crops such as wheat, oat, barley, maize, triticale, and rye. Previously, we reported that WSMV CP amino acids 36-84 are expendable for systemic infection of wheat, maize, barley and rye. In this study, the role of coat protein (CP) in systemic infection of oat by WSMV was examined by using a series of viable deletion mutants. WSMV bearing deletions within or encompassing all of amino acids 36-57 efficiently infected oat, indicating that these amino acids are dispensable for systemic infection of oat. However, WSMV mutants lacking CP amino acids 58-84 or 85-100 failed to systemically infect oat. Furthermore, green fluorescent protein-tagged WSMV mutants lacking CP amino acids 58-100 elicited local foci in oat but failed to enter the vasculature. These data suggest that CP amino acids 58-100 are required for systemic infection of oat by WSMV by specifically facilitating virus long-distance transport in oat.
Collapse
Affiliation(s)
- Satyanarayana Tatineni
- United States Department of Agriculture-Agricultural Research Service and Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE 68583, United States.
| |
Collapse
|
13
|
Willemsen A, Zwart MP, Ambrós S, Carrasco JL, Elena SF. 2b or Not 2b: Experimental Evolution of Functional Exogenous Sequences in a Plant RNA Virus. Genome Biol Evol 2017; 9:297-310. [PMID: 28137747 PMCID: PMC5381683 DOI: 10.1093/gbe/evw300] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2016] [Indexed: 02/05/2023] Open
Abstract
Horizontal gene transfer (HGT) is pervasive in viruses and thought to be a key mechanism in their evolution. On the other hand, strong selective constraints against increasing genome size are an impediment for HGT, rapidly purging horizontally transferred sequences and thereby potentially hindering evolutionary innovation. Here, we explore experimentally the evolutionary fate of viruses with simulated HGT events, using the plant RNA virus Tobacco etch virus (TEV), by separately introducing two functional, exogenous sequences to its genome. One of the events simulates the acquisition of a new function though HGT of a conserved AlkB domain, responsible for the repair of alkylation or methylation damage in many organisms. The other event simulates the acquisition of a sequence that duplicates an existing function, through HGT of the 2b RNA silencing suppressor from Cucumber mosaic virus. We then evolved these two viruses, tracked the maintenance of the horizontally transferred sequences over time, and for the final virus populations, sequenced their genome and measured viral fitness. We found that the AlkB domain was rapidly purged from the TEV genome, restoring fitness to wild-type levels. Conversely, the 2b gene was stably maintained and did not have a major impact on viral fitness. Moreover, we found that 2b is functional in TEV, as it provides a replicative advantage when the RNA silencing suppression domain of HC-Pro is mutated. These observations suggest a potentially interesting role for HGT of short functional sequences in ameliorating evolutionary constraints on viruses, through the duplication of functions.
Collapse
Affiliation(s)
- Anouk Willemsen
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, València, Spain
- Present address: MIVEGEC (UMR CNRS 5290, IRD 224, UM), National Center for Scientific Research (CNRS), Montpellier, Cedex, France
| | - Mark P. Zwart
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, València, Spain
- Present address: Institute of Theoretical Physics, University of Cologne, Cologne, Germany
| | - Silvia Ambrós
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, València, Spain
| | - José L. Carrasco
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, València, Spain
| | - Santiago F. Elena
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, València, Spain
- The Santa Fe Institute, Santa Fe, NM
| |
Collapse
|
14
|
Tatineni S, French R. The Coat Protein and NIa Protease of Two Potyviridae Family Members Independently Confer Superinfection Exclusion. J Virol 2016; 90:10886-10905. [PMID: 27681136 PMCID: PMC5110166 DOI: 10.1128/jvi.01697-16] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 09/20/2016] [Indexed: 01/13/2023] Open
Abstract
Superinfection exclusion (SIE) is an antagonistic virus-virus interaction whereby initial infection by one virus prevents subsequent infection by closely related viruses. Although SIE has been described in diverse viruses infecting plants, humans, and animals, its mechanisms, including involvement of specific viral determinants, are just beginning to be elucidated. In this study, SIE determinants encoded by two economically important wheat viruses, Wheat streak mosaic virus (WSMV; genus Tritimovirus, family Potyviridae) and Triticum mosaic virus (TriMV; genus Poacevirus, family Potyviridae), were identified in gain-of-function experiments that used heterologous viruses to express individual virus-encoded proteins in wheat. Wheat plants infected with TriMV expressing WSMV P1, HC-Pro, P3, 6K1, CI, 6K2, NIa-VPg, or NIb cistrons permitted efficient superinfection by WSMV expressing green fluorescent protein (WSMV-GFP). In contrast, wheat infected with TriMV expressing WSMV NIa-Pro or coat protein (CP) substantially excluded superinfection by WSMV-GFP, suggesting that both of these cistrons are SIE effectors encoded by WSMV. Importantly, SIE is due to functional WSMV NIa-Pro or CP rather than their encoding RNAs, as altering the coded protein products by minimally changing RNA sequences led to abolishment of SIE. Deletion mutagenesis further revealed that elicitation of SIE by NIa-Pro requires the entire protein while CP requires only a 200-amino-acid (aa) middle fragment (aa 101 to 300) of the 349 aa. Strikingly, reciprocal experiments with WSMV-mediated expression of TriMV proteins showed that TriMV CP, and TriMV NIa-Pro to a lesser extent, likewise excluded superinfection by TriMV-GFP. Collectively, these data demonstrate that WSMV- and TriMV-encoded CP and NIa-Pro proteins are effectors of SIE and that these two proteins trigger SIE independently of each other. IMPORTANCE Superinfection exclusion (SIE) is an antagonistic virus-virus interaction that prevents secondary invasions by identical or closely related viruses in the same host cells. Although known to occur in diverse viruses, SIE remains an enigma in terms of key molecular determinants and action mechanisms. In this study, we found that Wheat streak mosaic virus (WSMV) and Triticum mosaic virus (TriMV) encode two independently functioning cistrons that serve as effectors of SIE at the protein but not the RNA level. The coat protein and NIa-Pro encoded by these two viruses, when expressed from a heterologous virus, exerted SIE to the cognate viruses. The identification of virus-encoded effectors of SIE and their transgenic expression could potentially facilitate the development of virus-resistant crop plants. Additionally, functional conservation of SIE in diverse virus groups suggests that a better understanding of the underlying mechanisms of SIE could facilitate the development of novel antiviral therapies against viral diseases.
Collapse
Affiliation(s)
- Satyanarayana Tatineni
- United States Department of Agriculture-Agricultural Research Service and Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Roy French
- United States Department of Agriculture-Agricultural Research Service and Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
15
|
Tatineni S, Wosula EN, Bartels M, Hein GL, Graybosch RA. Temperature-Dependent Wsm1 and Wsm2 Gene-Specific Blockage of Viral Long-Distance Transport Provides Resistance to Wheat streak mosaic virus and Triticum mosaic virus in Wheat. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:724-738. [PMID: 27551888 DOI: 10.1094/mpmi-06-16-0110-r] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Wheat streak mosaic virus (WSMV) and Triticum mosaic virus (TriMV) are economically important viral pathogens of wheat. Wheat cvs. Mace, carrying the Wsm1 gene, is resistant to WSMV and TriMV, and Snowmass, with Wsm2, is resistant to WSMV. Viral resistance in both cultivars is temperature sensitive and is effective at 18°C or below but not at higher temperatures. The underlying mechanisms of viral resistance of Wsm1 and Wsm2, nonallelic single dominant genes, are not known. In this study, we found that fluorescent protein-tagged WSMV and TriMV elicited foci that were approximately similar in number and size at 18 and 24°C, on inoculated leaves of resistant and susceptible wheat cultivars. These data suggest that resistant wheat cultivars at 18°C facilitated efficient cell-to-cell movement. Additionally, WSMV and TriMV efficiently replicated in inoculated leaves of resistant wheat cultivars at 18°C but failed to establish systemic infection, suggesting that Wsm1- and Wsm2-mediated resistance debilitated viral long-distance transport. Furthermore, we found that neither virus was able to enter the leaf sheaths of inoculated leaves or crowns of resistant wheat cultivars at 18°C but both were able to do so at 24°C. Thus, wheat cvs. Mace and Snowmass provide resistance at the long-distance movement stage by specifically blocking virus entry into the vasculature. Taken together, these data suggest that both Wsm1 and Wsm2 genes similarly confer virus resistance by temperature-dependent impairment of viral long-distance movement.
Collapse
Affiliation(s)
- Satyanarayana Tatineni
- 1 United States Department of Agriculture-Agricultural Research Service (USDA-ARS) and Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE 68583, U.S.A
| | | | - Melissa Bartels
- 1 United States Department of Agriculture-Agricultural Research Service (USDA-ARS) and Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE 68583, U.S.A
| | - Gary L Hein
- 2 Department of Entomology, University of Nebraska-Lincoln; and
| | - Robert A Graybosch
- 3 USDA-ARS and Department of Agronomy and Horticulture, University of Nebraska-Lincoln
| |
Collapse
|
16
|
Hassan M. Genome sequence of two isolates of Yellow oatgrass mosaic virus, a new grass-infecting Tritimovirus. Virus Genes 2014; 49:116-23. [PMID: 24818694 DOI: 10.1007/s11262-014-1073-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 03/29/2014] [Indexed: 10/25/2022]
Abstract
Complete genome sequences of two Yellow oatgrass mosaic virus (YOgMV) isolates have been determined to be 9,292 nucleotides excluding the 3' polyadenylated tail. The viral RNA encodes a large putative open reading frame (ORF) of a single polyprotein consisting of 3,002 amino acids with typical genome organization of monopartite potyvirids. A small overlapping ORF encoding a pretty interesting Potyviridae ORF of 122 amino acids is found in the P3 cistron of both YOgMV isolates. The nucleotide and amino acid identities between the two YOgMV isolates are 90 and 97 %, respectively. Pairwise comparison of YOgMV putative mature proteins and proteinase cleavage sites with those of representative members of the family Potyviridae indicated that YOgMV is more closely related to members of the genus Tritimovirus. In phylogenetic trees constructed with sequences of putative polyprotein, YOgMV consistently groups with members of the genus Tritimovirus. These results suggest that YOgMV should be classified as a distinct species in the genus Tritimovirus in the family Potyviridae.
Collapse
Affiliation(s)
- Mohamed Hassan
- Department of Agricultural Botany, Faculty of Agriculture, Fayoum University, Fayoum, Egypt,
| |
Collapse
|
17
|
Tatineni S, French R. The C-terminus of Wheat streak mosaic virus coat protein is involved in differential infection of wheat and maize through host-specific long-distance transport. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:150-162. [PMID: 24111920 DOI: 10.1094/mpmi-09-13-0272-r] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Viral determinants and mechanisms involved in extension of host range of monocot-infecting viruses are poorly understood. Viral coat proteins (CP) serve many functions in almost every aspect of the virus life cycle. The role of the C-terminal region of Wheat streak mosaic virus (WSMV) CP in virus biology was examined by mutating six negatively charged aspartic acid residues at positions 216, 289, 290, 326, 333, and 334. All of these amino acid residues are dispensable for virion assembly, and aspartic acid residues at positions 216, 333, and 334 are expendable for normal infection of wheat and maize. However, mutants D289N, D289A, D290A, DD289/290NA, and D326A exhibited slow cell-to-cell movement in wheat, which resulted in delayed onset of systemic infection, followed by a rapid recovery of genomic RNA accumulation and symptom development. Mutants D289N, D289A, and D326A inefficiently infected maize, eliciting milder symptoms, while D290A and DD289/290NA failed to infect systemically, suggesting that the C-terminus of CP is involved in differential infection of wheat and maize. Mutation of aspartic acid residues at amino acid positions 289, 290, and 326 severely debilitated virus ingress into the vascular system of maize but not wheat, suggesting that these amino acids facilitate expansion of WSMV host range through host-specific long-distance transport.
Collapse
|
18
|
Wheat streak mosaic virus infects systemically despite extensive coat protein deletions: identification of virion assembly and cell-to-cell movement determinants. J Virol 2013; 88:1366-80. [PMID: 24227854 DOI: 10.1128/jvi.02737-13] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Viral coat proteins function in virion assembly and virus biology in a tightly coordinated manner with a role for virtually every amino acid. In this study, we demonstrated that the coat protein (CP) of Wheat streak mosaic virus (WSMV; genus Tritimovirus, family Potyviridae) is unusually tolerant of extensive deletions, with continued virion assembly and/or systemic infection found after extensive deletions are made. A series of deletion and point mutations was created in the CP cistron of wild-type and/or green fluorescent protein-tagged WSMV, and the effects of these mutations on cell-to-cell and systemic transport and virion assembly of WSMV were examined. Mutants with overlapping deletions comprising N-terminal amino acids 6 to 27, 36 to 84, 85 to 100, 48 to 100, and 36 to 100 or the C-terminal 14 or 17 amino acids systemically infected wheat with different efficiencies. However, mutation of conserved amino acids in the core domain, which may be involved in a salt bridge, abolished virion assembly and cell-to-cell movement. N-terminal amino acids 6 to 27 and 85 to 100 are required for efficient virion assembly and cell-to-cell movement, while the C-terminal 65 amino acids are dispensable for virion assembly but are required for cell-to-cell movement, suggesting that the C terminus of CP functions as a dedicated cell-to-cell movement determinant. In contrast, amino acids 36 to 84 are expendable, with their deletion causing no obvious effects on systemic infection or virion assembly. In total, 152 amino acids (amino acids 6 to 27 and 36 to 100 and the 65 amino acids at the C-terminal end) of 349 amino acids of CP are dispensable for systemic infection and/or virion assembly, which is rare for multifunctional viral CPs.
Collapse
|
19
|
Tall oatgrass mosaic virus (TOgMV): a novel member of the genus Tritimovirus infecting Arrhenatherum elatius. Arch Virol 2013; 159:1585-92. [PMID: 24193952 DOI: 10.1007/s00705-013-1905-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 10/23/2013] [Indexed: 10/26/2022]
Abstract
A novel tritimovirus of the family Potyviridae was isolated from tall oatgrass, Arrhenatherum elatius, exhibiting mosaic symptoms. The virus, for which the name tall oatgrass mosaic virus (TOgMV) is coined, has a filamentous particle of 720 nm and is associated with pinwheel inclusion bodies characteristic of members of the family Potyviridae. The virus was mechanically transmitted to tall oatgrass seedlings, which subsequently exhibited mosaic symptoms. The experimental host range was limited to a few monocot species. The complete genome sequence of TOgMV was determined to be 9359 nucleotides, excluding the 3' polyadenylated tail. The viral RNA encodes one large putative open reading frame of 3029 amino acids with a genome organization typical of monopartite potyvirids. Pairwise comparison of putative mature proteins and proteinase cleavage sites indicated that TOgMV is most closely related to members of the genus Tritimovirus. Phylogenetic analysis of the complete polyprotein and CP sequences of representative members of the family Potyviridae indicate that TOgMV is a distinct tritimovirus naturally infecting tall oatgrass.
Collapse
|
20
|
Tatineni S, Dawson WO. Enhancement or attenuation of disease by deletion of genes from Citrus tristeza virus. J Virol 2012; 86:7850-7. [PMID: 22593155 PMCID: PMC3421669 DOI: 10.1128/jvi.00916-12] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 05/08/2012] [Indexed: 11/20/2022] Open
Abstract
Stem pitting is a common virus-induced disease of perennial woody plants induced by a range of different viruses. The phenotype results from sporadic areas of the stem in which normal xylem and phloem development is prevented during growth of stems. These alterations interfere with carbohydrate transport, resulting in reduced plant growth and yield. Citrus tristeza virus (CTV), a phloem-limited closterovirus, induces economically important stem-pitting diseases of citrus. CTV has three nonconserved genes (p33, p18, and p13) that are not related to genes of other viruses and that are not required for systemic infection of some species of citrus, which allowed us to examine the effect of deletions of these genes on symptom phenotypes. In the most susceptible experimental host, Citrus macrophylla, the full-length virus causes only very mild stem-pitting symptoms. Surprisingly, we found that certain deletion combinations (p33 and p18 and/or p13) induced greatly increased stem-pitting symptoms, while other combinations (p13 or p13 plus p18) resulted in reduced stem pitting. These results suggest that the stem-pitting phenotype, which is one of more economically important disease phenotypes, can result not from a specific sequence or protein but from a balance between the expression of different viral genes. Unexpectedly, using green fluorescent protein-tagged full-length virus and deletion mutants (CTV9Δp33 and CTV9Δp33Δp18Δp13), the virus was found at pitted areas in abnormal locations outside the normal ring of phloem. Thus, increased stem pitting was associated not only with a prevention of xylem production but also with a proliferation of cells that supported viral replication, suggesting that at random areas of stems the virus can elicit changes in cellular differentiation and development.
Collapse
Affiliation(s)
- Satyanarayana Tatineni
- Citrus Research and Education Center, University of Florida, Institute of Food and Agricultural Sciences, Lake Alfred, Florida, USA
- United States Department of Agriculture, Agricultural Research Service, and Department of Plant Pathology, University of Nebraska—Lincoln, Lincoln, Nebraska, USA
| | - William O. Dawson
- Citrus Research and Education Center, University of Florida, Institute of Food and Agricultural Sciences, Lake Alfred, Florida, USA
| |
Collapse
|
21
|
Maliogka VI, Calvo M, Carbonell A, García JA, Valli A. Heterologous RNA-silencing suppressors from both plant- and animal-infecting viruses support plum pox virus infection. J Gen Virol 2012; 93:1601-1611. [PMID: 22513385 DOI: 10.1099/vir.0.042168-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
HCPro, the RNA-silencing suppressor (RSS) of viruses belonging to the genus Potyvirus in the family Potyviridae, is a multifunctional protein presumably involved in all essential steps of the viral infection cycle. Recent studies have shown that plum pox potyvirus (PPV) HCPro can be replaced successfully by cucumber vein yellowing ipomovirus P1b, a sequence-unrelated RSS from a virus of the same family. In order to gain insight into the requirement of a particular RSS to establish a successful potyviral infection, we tested the ability of different heterologous RSSs from both plant- and animal-infecting viruses to substitute for HCPro. Making use of engineered PPV chimeras, we show that PPV HCPro can be replaced functionally by some, but not all, unrelated RSSs, including the NS1 protein of the mammal-infecting influenza A virus. Interestingly, the capacity of a particular RSS to replace HCPro does not correlate strictly with its RNA silencing-suppression strength. Altogether, our results suggest that not all suppression strategies are equally suitable for efficient escape of PPV from the RNA-silencing machinery. The approach followed here, based on using PPV chimeras in which an under-consideration RSS substitutes for HCPro, could further help to study the function of diverse RSSs in a 'highly sensitive' RNA-silencing context, such as that taking place in plant cells during the process of a viral infection.
Collapse
Affiliation(s)
- Varvara I Maliogka
- Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - María Calvo
- Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Alberto Carbonell
- Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Juan Antonio García
- Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Adrian Valli
- Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
22
|
Young BA, Stenger DC, Qu F, Morris TJ, Tatineni S, French R. Tritimovirus P1 functions as a suppressor of RNA silencing and an enhancer of disease symptoms. Virus Res 2012; 163:672-7. [PMID: 22230313 DOI: 10.1016/j.virusres.2011.12.019] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 12/21/2011] [Accepted: 12/25/2011] [Indexed: 11/27/2022]
Abstract
Wheat streak mosaic virus (WSMV) is an eriophyid mite-transmitted virus of the genus Tritimovirus, family Potyviridae. Complete deletion of helper component-proteinase (HC-Pro) has no effect on WSMV virulence or disease synergism, suggesting that a different viral protein suppresses RNA silencing. RNA silencing suppression assays using Nicotiana benthamiana 16C plants expressing GFP were conducted with each WSMV protein; only P1 suppressed RNA silencing. Accumulation of GFP siRNAs was markedly reduced in leaves infiltrated with WSMV P1 at both 3 and 6 days post infiltration relative to WSMV HC-Pro and the empty vector control. On the other hand, helper component-proteinase (HC-Pro) of two species in the mite-transmitted genus Rymovirus, family Potyviridae was demonstrated to be a suppressor of RNA silencing. Symptom enhancement assays were conducted by inoculating Potato virus X (PVX) onto transgenic N. benthamiana. Symptoms produced by PVX were more severe on transgenic plants expressing WSMV P1 or potyvirus HC-Pro compared to transgenic plants expressing GFP or WSMV HC-Pro.
Collapse
Affiliation(s)
- Brock A Young
- United States Department of Agriculture, Agricultural Research Service, Lincoln, NE 68583, USA
| | | | | | | | | | | |
Collapse
|
23
|
Guo B, Lin J, Ye K. Structure of the autocatalytic cysteine protease domain of potyvirus helper-component proteinase. J Biol Chem 2011; 286:21937-43. [PMID: 21543324 DOI: 10.1074/jbc.m111.230706] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The helper-component proteinase (HC-Pro) of potyvirus is involved in polyprotein processing, aphid transmission, and suppression of antiviral RNA silencing. There is no high resolution structure reported for any part of HC-Pro, hindering mechanistic understanding of its multiple functions. We have determined the crystal structure of the cysteine protease domain of HC-Pro from turnip mosaic virus at 2.0 Å resolution. As a protease, HC-Pro only cleaves a Gly-Gly dipeptide at its own C terminus. The structure represents a postcleavage state in which the cleaved C terminus remains tightly bound at the active site cleft to prevent trans activity. The structure adopts a compact α/β-fold, which differs from papain-like cysteine proteases and shows weak similarity to nsP2 protease from Venezuelan equine encephalitis alphavirus. Nevertheless, the catalytic cysteine and histidine residues constitute an active site that is highly similar to these in papain-like and nsP2 proteases. HC-Pro recognizes a consensus sequence YXVGG around the cleavage site between the two glycine residues. The structure delineates the sequence specificity at sites P1-P4. Structural modeling and covariation analysis across the Potyviridae family suggest a tryptophan residue accounting for the glycine specificity at site P1'. Moreover, a surface of the protease domain is conserved in potyvirus but not in other genera of the Potyviridae family, likely due to extra functional constrain. The structure provides insight into the catalysis mechanism, cis-acting mode, cleavage site specificity, and other functions of the HC-Pro protease domain.
Collapse
Affiliation(s)
- Bihong Guo
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | | | | |
Collapse
|
24
|
The N-terminal region of wheat streak mosaic virus coat protein is a host- and strain-specific long-distance transport factor. J Virol 2010; 85:1718-31. [PMID: 21147925 DOI: 10.1128/jvi.02044-10] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Understanding the genetics underlying host range differences among plant virus strains can provide valuable insights into viral gene functions and virus-host interactions. In this study, we examined viral determinants and mechanisms of differential infection of Zea mays inbred line SDp2 by Wheat streak mosaic virus (WSMV) isolates. WSMV isolates Sidney 81 (WSMV-S81) and Type (WSMV-T) share 98.7% polyprotein sequence identity but differentially infect SDp2: WSMV-S81 induces a systemic infection, but WSMV-T does not. Coinoculation and sequential inoculation of SDp2 with WSMV-T and/or WSMV-S81 did not affect systemic infection by WSMV-S81, suggesting that WSMV-T does not induce a restrictive defense response but that virus-encoded proteins may be involved in differential infection of SDp2. The viral determinant responsible for strain-specific host range was mapped to the N terminus of coat protein (CP) by systematic exchanges of WSMV-S81 sequences with those of WSMV-T and by reciprocal exchanges of CP or CP codons 1 to 74. Green fluorescent protein (GFP)-tagged WSMV-S81 with CP or CP residues 1 to 74 from WSMV-T produced similar numbers of infection foci and genomic RNAs and formed virions in inoculated leaves as those produced with WSMV-S81, indicating that failure to infect SDp2 systemically is not due to defects in replication, cell-to-cell movement, or virion assembly. However, these GFP-tagged hybrids showed profound defects in long-distance transport of virus through the phloem. Furthermore, we found that four of the five differing amino acids in the N terminus of CP between the WSMV-S81 and WSMV-T isolates were collectively involved in systemic infection of SDp2. Taken together, these results demonstrate that the N-terminal region of tritimoviral CP functions in host- and strain-specific long-distance movement.
Collapse
|
25
|
Efficient and stable expression of GFP through Wheat streak mosaic virus-based vectors in cereal hosts using a range of cleavage sites: formation of dense fluorescent aggregates for sensitive virus tracking. Virology 2010; 410:268-81. [PMID: 21145088 DOI: 10.1016/j.virol.2010.10.043] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Revised: 10/14/2010] [Accepted: 10/30/2010] [Indexed: 01/12/2023]
Abstract
A series of Wheat streak mosaic virus (WSMV)-based expression vectors were developed by engineering a cycle 3 GFP (GFP) cistron between P1 and HC-Pro cistrons with several catalytic/cleavage peptides at the C-terminus of GFP. WSMV-GFP vectors with the Foot-and-mouth disease virus 1D/2A or 2A catalytic peptides cleaved GFP from HC-Pro but expressed GFP inefficiently. WSMV-GFP vectors with homologous NIa-Pro heptapeptide cleavage sites did not release GFP from HC-Pro, but efficiently expressed GFP as dense fluorescent aggregates. However, insertion of one or two spacer amino acids on either side of NIb/CP heptapeptide cleavage site or deletion in HC-Pro cistron improved processing by NIa-Pro. WSMV-GFP vectors were remarkably stable in wheat for seven serial passages and for 120 days postinoculation. Mite transmission efficiencies of WSMV-GFP vectors correlated with the amount of free GFP produced. WSMV-GFP vectors infected the same range of cereal hosts as wild-type virus, and GFP fluorescence was detected in most wheat tissues.
Collapse
|
26
|
You Y, Shirako Y. Bymovirus reverse genetics: requirements for RNA2-encoded proteins in systemic infection. MOLECULAR PLANT PATHOLOGY 2010; 11:383-94. [PMID: 20447286 PMCID: PMC6640240 DOI: 10.1111/j.1364-3703.2010.00613.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Barley yellow mosaic virus (BaYMV), the type species of the genus Bymovirus in the family Potyviridae in the picornavirus-like superfamily, causes a yellow mosaic disease of winter barley with significant yield losses in Europe and East Asia. Until now, infectious in vitro transcripts for the bipartite plus-sense RNA genome of any bymovirus species have not been available, rendering molecular analyses of bymovirus pathogenicity and the host resistance mechanisms difficult. In this study, we constructed the first cDNA clones of BaYMV RNA1 and RNA2, from which infectious RNA can be transcribed in vitro. Using in vitro transcripts, we showed that RNA1, which encodes eight proteins, including a viral proteinase NIa-Pro, the RNA-dependent RNA polymerase NIb, genome-linked viral protein VPg and the capsid protein CP, replicated autonomously in barley mesophyll protoplasts in the absence of RNA2 optimally at 15 degrees C, a temperature similar to the optimum for causing disease in barley fields. For systemic infection of barley plants, RNA1 alone was not sufficient and RNA2 was also required. Of the two proteins encoded on RNA2 (P1 with cysteine proteinase activity and P2 with unknown functions), P1 was essential and P2 was dispensable for systemic infectivity. The expression of both P1 and P2, but not the precursor polyprotein, together with RNA1 increased systemic infection and caused mosaic leaf symptoms. The infectious cDNA clones of BaYMV will be vital for future studies of bymovirus-host-vector interactions at the molecular level.
Collapse
Affiliation(s)
- Yuan You
- Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | |
Collapse
|
27
|
Tugume AK, Mukasa SB, Kalkkinen N, Valkonen JPT. Recombination and selection pressure in the ipomovirus sweet potato mild mottle virus (Potyviridae) in wild species and cultivated sweetpotato in the centre of evolution in East Africa. J Gen Virol 2009; 91:1092-108. [DOI: 10.1099/vir.0.016089-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
28
|
Yap YK, Duangjit J, Panyim S. N-terminal of Papaya ringspot virus type-W (PRSV-W) helper component proteinase (HC-Pro) is essential for PRSV systemic infection in zucchini. Virus Genes 2009; 38:461-7. [PMID: 19322647 DOI: 10.1007/s11262-009-0348-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Accepted: 03/09/2009] [Indexed: 11/24/2022]
Abstract
The Papaya ringspot virus (PRSV) is one of the limiting factors affecting papaya and cucurbits production worldwide. PRSV belongs to the potyvirus genus which consists of 30% of known plant viruses. Two serological closely related strains, namely type-P and -W, have been reported. PRSV type-P infects both papaya and cucurbits, while type-W infects only cucurbits. The genome of PRSV Thailand isolate consists of a (+) RNA molecule of 10323 nucleotides, which is first translated into a single polypeptide and further cleaved by three viral encoded proteases into ten gene products. Helper-component proteinase (HC-Pro), which is encoded by the 2nd cistron of the potyviral genome, has been implicated in aphid transmission, viral movement, viral replication and suppression of host viral defense system. Studies of the Tobacco etch virus (TEV), Lettuce mosaic virus (LMV), Onion yellow dwarf virus (OYDV) and Wheat streak mosaic virus (WSMV) indicate that the N-terminal of HC-Pro is dispensable for systemic infection in their respective hosts. However, deletion analysis of the Tobacco vein mottling virus (TVMV) indicates otherwise. In this study, we examined whether HC-Pro is essential for PRSV systemic infection in cucurbits and the role of its N-terminal in systemic infection. Our results indicated that HC-Pro is indispensable for PRSV infection in zucchini. Deletion analysis of PRSV HC-Pro showed that deletion of as few as 54 amino acids at the N-terminal of HC-Pro completely abolished the infectivity of the corresponding cDNA clone. Therefore, it is proposed that the N-terminal of HC-Pro is involved in systemic infection of PRSV, in addition to its conserved function in aphid transmission.
Collapse
Affiliation(s)
- Yun-Kiam Yap
- Institute of Molecular Biology and Genetics, Mahidol University, Salaya campus, 25/25, Putthamonthon 4 Road, Salaya, Putthamonthon, Nakhon Pathom, 73170, Thailand.
| | | | | |
Collapse
|
29
|
From hypo- to hypersuppression: effect of amino acid substitutions on the RNA-silencing suppressor activity of the Tobacco etch potyvirus HC-Pro. Genetics 2008; 180:1039-49. [PMID: 18780745 DOI: 10.1534/genetics.108.091363] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
RNA silencing participates in several important functions: from the regulation of cell metabolism and organism development to sequence-specific antiviral defense. Most plant viruses have evolved proteins that suppress RNA silencing and that in many cases are multifunctional. Tobacco etch potyvirus (TEV) HC-Pro protein suppresses RNA silencing and participates in aphid-mediated transmission, polyprotein processing, and genome amplification. In this study, we have generated 28 HC-Pro amino acid substitution mutants and quantified their capacity as suppressors of RNA silencing in a transient expression assay. Most mutations either had no quantitative effect or completely abolished silencing suppression (10 in each class), 3 caused a significant decrease in the activity, and 5 significantly increased it, revealing an unexpected high frequency of mutations conferring hypersuppressor activity. A representative set of the mutant alleles, containing both hypo- and hypersuppressors, was further analyzed for their effect on TEV accumulation and the strength of induced symptoms. Whereas TEV variants with hyposuppressor mutants were far less virulent than wild-type TEV, those with hypersuppressor alleles induced symptoms that were not more severe than those characteristic of the wild-type virus, suggesting that there is not a perfect match between suppression and virulence.
Collapse
|
30
|
Li W, Hilf ME, Webb SE, Baker CA, Adkins S. Presence of P1b and absence of HC-Pro in Squash vein yellowing virus suggests a general feature of the genus Ipomovirus in the family Potyviridae. Virus Res 2008; 135:213-9. [DOI: 10.1016/j.virusres.2008.03.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2008] [Revised: 03/21/2008] [Accepted: 03/21/2008] [Indexed: 10/22/2022]
|
31
|
Kelloniemi J, Mäkinen K, Valkonen JPT. Three heterologous proteins simultaneously expressed from a chimeric potyvirus: infectivity, stability and the correlation of genome and virion lengths. Virus Res 2008; 135:282-91. [PMID: 18511144 DOI: 10.1016/j.virusres.2008.04.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2007] [Revised: 03/25/2008] [Accepted: 04/07/2008] [Indexed: 01/24/2023]
Abstract
Three heterologous proteins were simultaneously expressed from a chimeric potyvirus Potato virus A (PVA) in Nicotiana benthamiana. The genes for green fluorescent protein of Aequoria victoriae ("G"; 714 nucleotides, nt), luciferase of Renilla reniformis ("L", 933 nt) and beta-glucuronidase of Escherichia coli ("U", 1806 nt) were inserted into the engineered cloning sites at the N-terminus of the P1 domain, the junction of P1 and helper component protein (HC-Pro), and the junction of the viral replicase (NIb) and coat protein (CP), respectively, in an infectious PVA cDNA. The proteins were expressed as part of the viral polyprotein and subsequently released by cleavage at the flanking proteolytic cleavage sites by P1 (one site) or the NIa-Pro proteinase (other sites). The engineered viral genome (pGLU, 13311 nt) was 39.2% larger than wild-type PVA (9565 nt) and infected plants of N. benthamiana systemically. pGLU was stable and expressed all three heterologous proteins, also following the second infection cycle initiated by sap-inoculation of new plants with the progeny viruses. The gene for GUS showed some inherent instabilities, as also reported in other studies. Accumulation of pGLU in infected leaves was lower by a magnitude as compared to the vector viruses pG0U and p0LU used to express two heterologous proteins. Hence, pGLU may have reached the maximum genome size that can still function and complete the PVA infection cycle. Examination of virions by electron microscopy indicated that the virion lengths of PVA chimera with various numbers of inserts were directly proportional to their genome lengths.
Collapse
Affiliation(s)
- Jani Kelloniemi
- Department of Applied Biology, P.O. Box 27, FIN-00014 University of Helsinki, Finland
| | | | | |
Collapse
|
32
|
Tatineni S, Robertson CJ, Garnsey SM, Bar-Joseph M, Gowda S, Dawson WO. Three genes of Citrus tristeza virus are dispensable for infection and movement throughout some varieties of citrus trees. Virology 2008; 376:297-307. [PMID: 18456299 DOI: 10.1016/j.virol.2007.12.038] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2007] [Revised: 12/07/2007] [Accepted: 12/22/2007] [Indexed: 11/26/2022]
Abstract
Citrus tristeza virus (CTV), a member of the Closteroviridae, possesses a 19.3-kb positive-stranded RNA genome that is organized into twelve open reading frames (ORFs). The CTV genome contains two sets of conserved genes, which are characteristic of this virus group, the replication gene block (ORF 1a and 1b) and the quintuple gene block (p6, HSP70 h, p61, CPm, and CP). With the exception of the p6 gene, they are required for replication and virion assembly. CTV contains five additional genes, p33, p18, p13, p20 and p23, in the 3' half of the genome, some of which (p33, p18 and p13) are not conserved among other members of this virus group, and have been proposed to have evolved for specific interactions with the citrus host. In the present study, the requirements for systemic infection of citrus trees of p33, p6, p18, p13 and p20 were examined. Viral mutants with a deletion in the p6 or the p20 ORF failed to infect citrus plants systemically, suggesting their possible roles in virus translocation/systemic infection. However, we found that deletions within the p33, p18 or p13 ORF individually resulted in no significant loss of ability of the virus to infect, multiply, and spread throughout citrus trees. Furthermore, deletions in the p33, p18 and p13 genes in all possible combinations including deletions in all three genes allowed the virus to systemically invade citrus trees. Green fluorescent protein-tagged CTV variants with deletions in the p33 ORF or the p33, p18 and p13 ORFs demonstrated that the movement and distribution of these deletion mutants were similar to that of the wild-type virus.
Collapse
Affiliation(s)
- Satyanarayana Tatineni
- Citrus Research and Education Center, University of Florida, 700 Experiment Station Road, Lake Alfred, FL 33850, USA
| | | | | | | | | | | |
Collapse
|
33
|
Cuellar WJ, Tairo F, Kreuze JF, Valkonen JPT. Analysis of gene content in sweet potato chlorotic stunt virus RNA1 reveals the presence of the p22 RNA silencing suppressor in only a few isolates: implications for viral evolution and synergism. J Gen Virol 2008; 89:573-582. [DOI: 10.1099/vir.0.83471-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sweet potato chlorotic stunt virus (genus Crinivirus) belongs to the family Closteroviridae, members of which have a conserved overall genomic organization but are variable in gene content. In the bipartite criniviruses, heterogeneity is pronounced in the 3′-proximal region of RNA1, which in sweet potato chlorotic stuat virus (SPCSV) encodes two novel proteins, RNase3 (RNase III endonuclease) and p22 (RNA silencing suppressor). This study showed that two Ugandan SPCSV isolates contained the p22 gene, in contrast to three isolates of the East African strain from Tanzania and Peru and an isolate of the West African strain from Israel, which were missing a 767 nt fragment of RNA1 that included the p22 gene. Regardless of the presence of p22, all tested SPCSV isolates acted synergistically with potyvirus sweet potato feathery mottle virus (SPFMV; genus Potyvirus, family Potyviridae) in co-infected sweetpotato plants (Ipomoea batatas), which greatly enhanced SPFMV titres and caused severe sweetpotato virus disease (SPVD). Therefore, the results indicate that any efforts to engineer pathogen-derived RNA silencing-based resistance to SPCSV and SPVD in sweetpotato should not rely on p22 as the transgene. The data from this study demonstrate that isolates of this virus species can vary in the genes encoding RNA silencing suppressor proteins. This study also provides the first example of intraspecific variability in gene content of the family Closteroviridae and may be a new example of the recombination-mediated gene gain that is characteristic of virus evolution in this virus family.
Collapse
Affiliation(s)
- Wilmer J. Cuellar
- Department of Applied Biology, PO Box 27, FIN-00014 University of Helsinki, Finland
| | - Fred Tairo
- Mikocheni Agriculture Research Institute, PO Box 6226, Dar es Salaam, Tanzania
| | - Jan F. Kreuze
- International Potato Center (CIP), Apartado 1558, Lima 12, Peru
| | - Jari P. T. Valkonen
- Department of Applied Biology, PO Box 27, FIN-00014 University of Helsinki, Finland
| |
Collapse
|
34
|
Valli A, Dujovny G, García JA. Protease activity, self interaction, and small interfering RNA binding of the silencing suppressor p1b from cucumber vein yellowing ipomovirus. J Virol 2008; 82:974-86. [PMID: 17989179 PMCID: PMC2224578 DOI: 10.1128/jvi.01664-07] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Accepted: 10/25/2007] [Indexed: 12/25/2022] Open
Abstract
The RNA silencing pathway mediated by small interfering RNAs (siRNAs) plays an important antiviral role in eukaryotes. To counteract this defense barrier, a large number of plant viruses express proteins with RNA silencing suppression activity. Recently, it was reported that the ipomovirus Cucumber vein yellowing virus (CVYV), which lacks the typical silencing suppressor of members of the family Potyviridae, i.e., HCPro, has a duplicated P1 coding sequence and that the downstream P1 copy, named P1b, has silencing suppression activity. In this study, we provide experimental evidence that P1b is a serine protease that self-cleaves at its C terminus but that its proteolytic activity is not essential for silencing suppression. In contrast, a putative zinc finger and a conserved basic motif in the N-terminal region of the protein are required for efficient silencing suppression. In vitro gel filtration-fast protein liquid chromatography and in vivo bimolecular fluorescence complementation assays showed that P1b binds itself to form oligomeric structures and that the zinc finger-like motif is essential for the self interaction. Moreover, we observed that CVYV P1b forms complexes with synthetic siRNAs, and this ability correlated with both silencing suppression activity and enhancement of Potato virus X pathogenicity in a mutational analysis. Together, these results suggest that CVYV P1b resembles potyviral HCPro and other viral proteins in interfering RNA silencing by preventing siRNA loading into the RNA-induced silencing complex.
Collapse
Affiliation(s)
- Adrian Valli
- Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | | | |
Collapse
|
35
|
Stenger DC, Young BA, Qu F, Morris TJ, French R. Wheat streak mosaic virus Lacking Helper Component-Proteinase Is Competent to Produce Disease Synergism in Double Infections with Maize chlorotic mottle virus. PHYTOPATHOLOGY 2007; 97:1213-21. [PMID: 18943679 DOI: 10.1094/phyto-97-10-1213] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
ABSTRACT The tritimovirus Wheat streak mosaic virus (WSMV) and the machlomovirus Maize chlorotic mottle virus (MCMV) each cause systemic chlorosis in infected maize plants. Infection of maize with both viruses produces corn lethal necrosis disease (CLND). Here, we report that complete deletion of the WSMV helper component-proteinase (HC-Pro) coding region had no effect on induction of CLND symptoms following coinoculation of maize with WSMV and MCMV. We further demonstrated that elevation of virus titers in double infections, relative to single infections, also was independent of WSMV HC-Pro. Thus, unlike potyvirus HC-Pro, WSMV HC-Pro was dispensable for disease synergism. Because disease synergism involving potyviruses requires HC-Pro-mediated suppression of posttranscriptional gene silencing (PTGS), we hypothesized that WSMV HC-Pro may not be a suppressor of PTGS. Indeed, WSMV HC-Pro did not suppress PTGS of a green fluorescent protein (GFP) transgene in an Agrobacterium-mediated coinfiltration assay in which potyvirus HC-Pro acted as a strong suppressor. Furthermore, coinfiltration with potyvirus HC-Pro, but not WSMV HC-Pro, resulted in elevated levels of the GFP target mRNA under conditions which trigger PTGS. Collectively, these results revealed significant differences in HC-Pro function among divergent genera of the family Potyviridae and suggest that the tritimovirus WSMV utilizes a gene other than HC-Pro to suppress PTGS and mediate synergistic interactions with unrelated viruses.
Collapse
|
36
|
Shiboleth YM, Haronsky E, Leibman D, Arazi T, Wassenegger M, Whitham SA, Gaba V, Gal-On A. The conserved FRNK box in HC-Pro, a plant viral suppressor of gene silencing, is required for small RNA binding and mediates symptom development. J Virol 2007; 81:13135-48. [PMID: 17898058 PMCID: PMC2169133 DOI: 10.1128/jvi.01031-07] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The helper component-proteinase (HC-Pro) protein of potyviruses is a suppressor of gene silencing and has been shown to elicit plant developmental-defect-like symptoms. In Zucchini yellow mosaic virus (ZYMV), a mutation in the highly conserved FR180NK box of HC-Pro to FI180NK causes attenuation of these symptoms. At 5 days postinoculation and before symptoms appear, virus accumulation, HC-Pro protein levels, and viral short interfering RNA (siRNA) levels are similar for the severe (FRNK) and attenuated (FINK) strains. At this stage, ZYMV(FRNK) caused greater accumulation of most microRNAs (miRNAs), and especially of their complementary miRNA "passenger" strands (miRNA*s), in systemically infected leaves than the attenuated ZYMV(FINK) did. HC-Pro(FRNK) specifically bound artificial siRNA and miRNA/miRNA* duplexes with a much higher affinity than the mutated HC-Pro(FINK). Further analysis of the mutant and wild-type HC-Pro proteins revealed that suppressor activity of the ZYMV HC(FINK) mutant was not diminished. However, the FINK mutation caused a loss of HC-Pro suppressor function in other potyviruses. Replacement of the second positively charged amino acid in the ZYMV FRNK box to result in FRNA also caused symptom attenuation and reduced small RNA duplex-binding affinity without loss of suppressor activity. Our data suggest that the highly conserved FRNK box in the HC-Pro of potyviruses is a probable point of contact with siRNA and miRNA duplexes. The interaction of the FRNK box with populations of miRNAs directly influences their accumulation levels and regulatory functions, resulting in symptom development.
Collapse
Affiliation(s)
- Yoel Moshe Shiboleth
- Department of Plant Pathology, Agricultural Research Organization, the Volcani Center, P.O. Box 6, Bet Dagan 50250, Israel
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Young BA, Hein GL, French R, Stenger DC. Substitution of conserved cysteine residues in wheat streak mosaic virus HC-Pro abolishes virus transmission by the wheat curl mite. Arch Virol 2007; 152:2107-11. [PMID: 17680324 DOI: 10.1007/s00705-007-1034-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Accepted: 06/14/2007] [Indexed: 11/29/2022]
Abstract
Substitutions in the amino-proximal region of wheat streak mosaic virus (WSMV) HC-Pro were evaluated for effects on transmission by the wheat curl mite (Aceria tosichella Keifer). Alanine substitution at cysteine residues 16, 46 and 49 abolished vector transmission. Although alanine substitution at Cys(20) had no effect, substitution with arginine reduced vector transmission efficiency. Random substitutions at other positions (Lys(7) to Asn, Asn(19) to Ile, and Arg(45) to Lys) did not affect vector transmission. These results suggest that a zinc-finger-like motif (His(13)-X2-Cys(16)-X29-Cys(46)-X2-Cys(49)) in WSMV HC-Pro is essential for vector transmission.
Collapse
Affiliation(s)
- B A Young
- United States Department of Agriculture-Agricultural Research Service, Department of Plant Pathology, University of Nebraska, Lincoln, NE, USA
| | | | | | | |
Collapse
|
38
|
Valli A, López-Moya JJ, García JA. Recombination and gene duplication in the evolutionary diversification of P1 proteins in the family Potyviridae. J Gen Virol 2007; 88:1016-1028. [PMID: 17325376 DOI: 10.1099/vir.0.82402-0] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Genome structure and sequence are notably conserved between members of the family Potyviridae. However, some genomic regions of these viruses, such as that encoding the P1 protein, show strikingly high variability. In this study, some partially conserved motifs were identified upstream of the quite well-conserved protease domain located near the P1 C terminus. The irregular distribution of these motifs suggests that the potyviral P1 proteins have undergone complex evolutionary diversification. Evidence was found of recombination events in the P1 N-terminal region, similar to those reported in potyviruses of the bean common mosaic virus subgroup, but also affecting other potyviruses. Moreover, intergeneric recombination events affecting potyviruses and ipomoviruses were also observed. Evidence that these recombination events could be linked to host adaptation is provided. Specific sequence features and differences in net charge help to classify the P1 proteins of members of the family Potyviridae into two groups: those from potyviruses and rymoviruses and those from tritimoviruses. The ipomovirus Cucumber vein yellowing virus has two P1 copies arranged in tandem, the most N-terminal one being of the potyvirus type and the other being of the tritimovirus type. These findings suggest that both recombination and gene duplication have contributed to P1 evolution and helped to facilitate successful adaptation of members of the family Potyviridae to a wide range of host species.
Collapse
Affiliation(s)
- Adrian Valli
- Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Juan José López-Moya
- Laboratori de Genètica Molecular Vegetal, Consorci CSIC-IRTA, IBMB, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Juan Antonio García
- Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
39
|
Valli A, Martín-Hernández AM, López-Moya JJ, García JA. RNA silencing suppression by a second copy of the P1 serine protease of Cucumber vein yellowing ipomovirus, a member of the family Potyviridae that lacks the cysteine protease HCPro. J Virol 2006; 80:10055-63. [PMID: 17005683 PMCID: PMC1617295 DOI: 10.1128/jvi.00985-06] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2006] [Accepted: 07/26/2006] [Indexed: 11/20/2022] Open
Abstract
The P1 protein of viruses of the family Potyviridae is a serine proteinase, which is highly variable in length and sequence, and its role in the virus infection cycle is not clear. One of the proposed activities of P1 is to assist HCPro, the product that viruses of the genus Potyvirus use to counteract antiviral defense mediated by RNA silencing. Indeed, an HCPro-coding region is present in all the genomes of members of the genera Potyvirus, Rymovirus, and Tritimovirus that have been sequenced. However, it was recently reported that a sequence coding for HCPro is lacking in the genome of Cucumber vein yellowing virus (CVYV), a member of the genus Ipomovirus, the fourth monopartite genus of the family. In this study, we provide further evidence that P1 enhances the activity of HCPro in members of the genus Potyvirus and show that it is duplicated in the ipomovirus CVYV. The two CVYV P1 copies are arranged in tandem, and the second copy (P1b) has RNA silencing suppression activity. CVYV P1b suppressed RNA silencing induced either by sense green fluorescent protein (GFP) mRNA or by a GFP inverted repeat RNA, indicating that CVYV P1b acts downstream of the formation of double-stranded RNA. CVYV P1b also suppressed local silencing in agroinfiltrated patches of transgenic Nicotiana benthamiana line 16c and delayed its propagation to the neighboring cells. However, neither the short-distance nor long-distance systemic spread of silencing of the GFP transgene was completely blocked by CVYV P1b. CVYV P1b and P1-HCPro from the potyvirus Plum pox virus showed very similar behaviors in all the assays carried out, suggesting that evolution has found a way to counteract RNA silencing by similar mechanisms using very different proteins in viruses of the same family.
Collapse
Affiliation(s)
- Adrian Valli
- Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | | | | | |
Collapse
|
40
|
Stenger DC, Young BA, French R. Random mutagenesis of wheat streak mosaic virus HC-Pro: non-infectious interfering mutations in a gene dispensable for systemic infection of plants. J Gen Virol 2006; 87:2741-2747. [PMID: 16894215 DOI: 10.1099/vir.0.81933-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mutations within the HC-Pro coding region of Wheat streak mosaic virus (WSMV) were introduced by misincorporation during PCR and evaluated for phenotype within the context of an infectious clone. Nine synonymous substitutions and 15 of 25 non-synonymous substitutions had no phenotypic effect. Four non-synonymous substitutions, including one that reverted consistently to wild type, resulted in attenuated systemic infection. Six non-synonymous substitutions and one nonsense substitution abolished systemic infectivity. Mutants bearing the GUS reporter gene were evaluated for the ability to establish primary infection foci. All attenuated mutants and two systemic infection-deficient mutants produced localized regions of GUS expression on inoculated leaves 3 days post-inoculation. In vitro assays revealed that mutants able to establish infection foci retained HC-Pro proteinase activity. Among mutants unable to establish infection foci, HC-Pro proteinase activity was retained, reduced or absent. As a complete HC-Pro deletion mutant can infect plants systemically, certain substitutions in this dispensable gene probably prevented infection of WSMV via interference.
Collapse
Affiliation(s)
- Drake C Stenger
- United States Department of Agriculture - Agricultural Research Service and Department of Plant Pathology, University of Nebraska, 344 Keim Hall, Lincoln, NE 68583, USA
| | - Brock A Young
- United States Department of Agriculture - Agricultural Research Service and Department of Plant Pathology, University of Nebraska, 344 Keim Hall, Lincoln, NE 68583, USA
| | - Roy French
- United States Department of Agriculture - Agricultural Research Service and Department of Plant Pathology, University of Nebraska, 344 Keim Hall, Lincoln, NE 68583, USA
| |
Collapse
|
41
|
Stenger DC, Hein GL, French R. Nested deletion analysis of Wheat streak mosaic virus HC-Pro: Mapping of domains affecting polyprotein processing and eriophyid mite transmission. Virology 2006; 350:465-74. [PMID: 16540139 DOI: 10.1016/j.virol.2006.02.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2006] [Revised: 02/06/2006] [Accepted: 02/08/2006] [Indexed: 11/24/2022]
Abstract
A series of in-frame and nested deletion mutations which progressively removed 5'-proximal sequences of the Wheat streak mosaic virus (WSMV) HC-Pro coding region (1152 nucleotides) was constructed and evaluated for pathogenicity to wheat. WSMV HC-Pro mutants with 5'-proximal deletions of 12 to 720 nucleotides systemically infected wheat. Boundary sequences flanking the deletions were stable and unaltered by passage through plants for all deletion mutants except HCD12 (lacking HC-Pro codons 3-6) that exhibited strong bias for G to A substitution at nucleotide 1190 in HC-Pro codon 2 (aspartic acid to asparagine). HC-Pro mutants with 5'-proximal deletions of up to 720 nucleotides retained autoproteolytic activity in vitro. In contrast, 5'-proximal deletion of 852 nucleotides of the HC-Pro coding region (HCD852) abolished both infectivity and in vitro proteolytic activity, confirming that the proteolytic domain of WSMV HC-Pro resides within the carboxy-terminal third of the protein and includes the cysteine proteinase motif (GYCY) conserved among four genera of the family Potyviridae. Inoculation of wheat with HC-Pro deletion mutants also bearing the GUS reporter gene revealed that HCD852 was unable to establish primary infection foci in inoculated leaves, indicating that processing of the P3 amino-terminus was essential. Deletion of as few as 24 nucleotides of HC-Pro (codons 3-10) eliminated transmission by the eriophyid mite vector Aceria tosichella Keifer. Collectively, these results demonstrated similar organization of proteinase and vector transmission functional domains among divergent HC-Pro homologues encoded by potyviruses and tritimoviruses.
Collapse
Affiliation(s)
- Drake C Stenger
- Agricultural Research Service, United States Department of Agriculture, University of Nebraska, Lincoln, NE 68583, USA.
| | | | | |
Collapse
|