1
|
Randall RE, Young DF, Hughes DJ, Goodbourn S. Persistent paramyxovirus infections: in co-infections the parainfluenza virus type 5 persistent phenotype is dominant over the lytic phenotype. J Gen Virol 2023; 104:001916. [PMID: 37962188 PMCID: PMC10768688 DOI: 10.1099/jgv.0.001916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023] Open
Abstract
Parainfluenza virus type 5 (PIV5) can either have a persistent or a lytic phenotype in cultured cells. We have previously shown that the phenotype is determined by the phosphorylation status of the phosphoprotein (P). Single amino acid substitutions at critical residues, including a serine-to-phenylalanine substitution at position 157 on P, result in a switch between persistent and lytic phenotypes. Here, using PIV5 vectors expressing either mCherry or GFP with persistent or lytic phenotypes, we show that in co-infections the persistent phenotype is dominant. Thus, in contrast to the cell death observed with cells infected solely with the lytic variant, in co-infected cells persistence is immediately established and both lytic and persistent genotypes persist. Furthermore, 10-20 % of virus released from dually infected cells contains both genotypes, indicating that PIV5 particles can package more than one genome. Co-infected cells continue to maintain both genotypes/phenotypes during cell passage, as do individual colonies of cells derived from a culture of persistently infected cells. A refinement of our model on how the dynamics of virus selection may occur in vivo is presented.
Collapse
Affiliation(s)
- Richard E. Randall
- School of Biology, Centre for Biomolecular Sciences, BMS Building, North Haugh, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - Dan F. Young
- School of Biology, Centre for Biomolecular Sciences, BMS Building, North Haugh, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - David J. Hughes
- School of Biology, Centre for Biomolecular Sciences, BMS Building, North Haugh, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - Steve Goodbourn
- Section for Pathogen Research, Institute for Infection and Immunity, St George’s, University of London, London SW17 0RE, UK
| |
Collapse
|
2
|
Wang Y, Zhou J, Mackintosh SG, Du Y. RuvB-Like Protein 2 Interacts with the NS1 Protein of Influenza A Virus and Affects Apoptosis That Is Counterbalanced by Type I Interferons. Viruses 2021; 13:v13061038. [PMID: 34072766 PMCID: PMC8229658 DOI: 10.3390/v13061038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/12/2021] [Accepted: 05/28/2021] [Indexed: 11/29/2022] Open
Abstract
The NS1 protein of influenza A virus (IAV) plays important roles in viral pathogenesis and host immune response. Through a proteomic approach, we have identified RuvB-like proteins 1 and 2 (RuvBL1 and RuvBL2) as interacting partners of the NS1 protein of IAVs. Infection of human lung A549 cells with A/PR/8/34 (PR8) virus resulted in reductions in the protein levels of RuvBL2 but not RuvBL1. Further studies with RuvBL2 demonstrated that the NS1-RuvBL2 interaction is RNA-independent, and RuvBL2 binds the RNA-binding domain of the NS1. Infection of interferon (IFN)-deficient Vero cells with wild-type or delNS1 PR8 virus reduced RuvBL2 protein levels and induced apoptosis; delNS1 virus caused more reductions in RuvBL2 protein levels and induced more apoptosis than did wild-type virus. Knockdown of RuvBL2 by siRNAs induced apoptosis and overexpression of RuvBL2 resulted in increased resistance to infection-induced apoptosis in Vero cells. These results suggest that a non-NS1 viral element or elements induce apoptosis by suppressing RuvBL2 protein levels, and the NS1 inhibits the non-NS1 viral element-induced apoptosis by maintaining RuvBL2 abundance in infected cells in the absence of IFN influence. In contrast to Vero cells, infection of IFN-competent A549 cells with PR8 virus caused reductions in RuvBL2 protein levels but did not induce apoptosis. Concomitantly, pretreatment of Vero cells with a recombinant IFN resulted in resistance to infection-induced apoptosis. These results demonstrate that the infection-induced, RuvBL2-regulated apoptosis in infected cells is counterbalanced by IFN survival signals. Our results reveal a novel mechanism underlying the infection-induced apoptosis that can be modulated by the NS1 and type I IFN signaling in IAV-infected cells.
Collapse
Affiliation(s)
- Yimeng Wang
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA; (Y.W.); (J.Z.)
| | - Jianhong Zhou
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA; (Y.W.); (J.Z.)
| | - Samuel G. Mackintosh
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Yuchun Du
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA; (Y.W.); (J.Z.)
- Correspondence: ; Tel.: +1-479-575-6944
| |
Collapse
|
3
|
Wignall-Fleming EB, Vasou A, Young D, Short JAL, Hughes DJ, Goodbourn S, Randall RE. Innate Intracellular Antiviral Responses Restrict the Amplification of Defective Virus Genomes of Parainfluenza Virus 5. J Virol 2020; 94:e00246-20. [PMID: 32295916 PMCID: PMC7307174 DOI: 10.1128/jvi.00246-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/08/2020] [Indexed: 12/24/2022] Open
Abstract
During the replication of parainfluenza virus 5 (PIV5), copyback defective virus genomes (DVGs) are erroneously produced and are packaged into "infectious" virus particles. Copyback DVGs are the primary inducers of innate intracellular responses, including the interferon (IFN) response. While DVGs can interfere with the replication of nondefective (ND) virus genomes and activate the IFN-induction cascade before ND PIV5 can block the production of IFN, we demonstrate that the converse is also true, i.e., high levels of ND virus can block the ability of DVGs to activate the IFN-induction cascade. By following the replication and amplification of DVGs in A549 cells that are deficient in a variety of innate intracellular antiviral responses, we show that DVGs induce an uncharacterized IFN-independent innate response(s) that limits their replication. High-throughput sequencing was used to characterize the molecular structure of copyback DVGs. While there appears to be no sequence-specific break or rejoining points for the generation of copyback DVGs, our findings suggest there are region, size, and/or structural preferences selected for during for their amplification.IMPORTANCE Copyback defective virus genomes (DVGs) are powerful inducers of innate immune responses both in vitro and in vivo They impact the outcome of natural infections, may help drive virus-host coevolution, and promote virus persistence. Due to their potent interfering and immunostimulatory properties, DVGs may also be used therapeutically as antivirals and vaccine adjuvants. However, little is known of the host cell restrictions which limit their amplification. We show here that the generation of copyback DVGs readily occurs during parainfluenza virus 5 (PIV5) replication, but that their subsequent amplification is restricted by the induction of innate intracellular responses. Molecular characterization of PIV5 copyback DVGs suggests that while there are no genome sequence-specific breaks or rejoin points for the generation of copyback DVGs, genome region, size, and structural preferences are selected for during their evolution and amplification.
Collapse
Affiliation(s)
| | - Andri Vasou
- School of Biology, Centre for Biomolecular Sciences, University of St. Andrews, St. Andrews, United Kingdom
| | - Dan Young
- School of Biology, Centre for Biomolecular Sciences, University of St. Andrews, St. Andrews, United Kingdom
| | - John A L Short
- School of Biology, Centre for Biomolecular Sciences, University of St. Andrews, St. Andrews, United Kingdom
| | - David J Hughes
- School of Biology, Centre for Biomolecular Sciences, University of St. Andrews, St. Andrews, United Kingdom
| | - Steve Goodbourn
- Institute for Infection and Immunity, St. George's, University of London, London, United Kingdom
| | - Richard E Randall
- School of Biology, Centre for Biomolecular Sciences, University of St. Andrews, St. Andrews, United Kingdom
| |
Collapse
|
4
|
Analysis of Paramyxovirus Transcription and Replication by High-Throughput Sequencing. J Virol 2019; 93:JVI.00571-19. [PMID: 31189700 PMCID: PMC6694822 DOI: 10.1128/jvi.00571-19] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 06/03/2019] [Indexed: 11/20/2022] Open
Abstract
High-throughput sequencing (HTS) of virus-infected cells can be used to study in great detail the patterns of virus transcription and replication. For paramyxoviruses, and by analogy for all other negative-strand RNA viruses, we show that directional sequencing must be used to distinguish between genomic RNA and mRNA/antigenomic RNA because significant amounts of genomic RNA copurify with poly(A)-selected mRNA. We found that the best method is directional sequencing of total cell RNA, after the physical removal of rRNA (and mitochondrial RNA), because quantitative information on the abundance of both genomic RNA and mRNA/antigenomes can be simultaneously derived. Using this approach, we revealed new details of the kinetics of virus transcription and replication for parainfluenza virus (PIV) type 2, PIV3, PIV5, and mumps virus, as well as on the relative abundance of the individual viral mRNAs. We have developed a high-throughput sequencing (HTS) workflow for investigating paramyxovirus transcription and replication. We show that sequencing of oligo(dT)-selected polyadenylated mRNAs, without considering the orientation of the RNAs from which they had been generated, cannot accurately be used to analyze the abundance of viral mRNAs because genomic RNA copurifies with the viral mRNAs. The best method is directional sequencing of infected cell RNA that has physically been depleted of ribosomal and mitochondrial RNA followed by bioinformatic steps to differentiate data originating from genomes from viral mRNAs and antigenomes. This approach has the advantage that the abundance of viral mRNA (and antigenomes) and genomes can be analyzed and quantified from the same data. We investigated the kinetics of viral transcription and replication during infection of A549 cells with parainfluenza virus type 2 (PIV2), PIV3, PIV5, or mumps virus and determined the abundances of individual viral mRNAs and readthrough mRNAs. We found that the mRNA abundance gradients differed significantly between all four viruses but that for each virus the pattern remained relatively stable throughout infection. We suggest that rapid degradation of non-poly(A) mRNAs may be primarily responsible for the shape of the mRNA abundance gradient in parainfluenza virus 3, whereas a combination of this factor and disengagement of RNA polymerase at intergenic sequences, particularly those at the NP:P and P:M gene boundaries, may be responsible in the other viruses. IMPORTANCE High-throughput sequencing (HTS) of virus-infected cells can be used to study in great detail the patterns of virus transcription and replication. For paramyxoviruses, and by analogy for all other negative-strand RNA viruses, we show that directional sequencing must be used to distinguish between genomic RNA and mRNA/antigenomic RNA because significant amounts of genomic RNA copurify with poly(A)-selected mRNA. We found that the best method is directional sequencing of total cell RNA, after the physical removal of rRNA (and mitochondrial RNA), because quantitative information on the abundance of both genomic RNA and mRNA/antigenomes can be simultaneously derived. Using this approach, we revealed new details of the kinetics of virus transcription and replication for parainfluenza virus (PIV) type 2, PIV3, PIV5, and mumps virus, as well as on the relative abundance of the individual viral mRNAs.
Collapse
|
5
|
Young DF, Wignall-Fleming EB, Busse DC, Pickin MJ, Hankinson J, Randall EM, Tavendale A, Davison AJ, Lamont D, Tregoning JS, Goodbourn S, Randall RE. The switch between acute and persistent paramyxovirus infection caused by single amino acid substitutions in the RNA polymerase P subunit. PLoS Pathog 2019; 15:e1007561. [PMID: 30742688 PMCID: PMC6386407 DOI: 10.1371/journal.ppat.1007561] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 02/22/2019] [Accepted: 01/04/2019] [Indexed: 12/24/2022] Open
Abstract
Paramyxoviruses can establish persistent infections both in vitro and in vivo, some of which lead to chronic disease. However, little is known about the molecular events that contribute to the establishment of persistent infections by RNA viruses. Using parainfluenza virus type 5 (PIV5) as a model we show that phosphorylation of the P protein, which is a key component of the viral RNA polymerase complex, determines whether or not viral transcription and replication becomes repressed at late times after infection. If the virus becomes repressed, persistence is established, but if not, the infected cells die. We found that single amino acid changes at various positions within the P protein switched the infection phenotype from lytic to persistent. Lytic variants replicated to higher titres in mice than persistent variants and caused greater infiltration of immune cells into infected lungs but were cleared more rapidly. We propose that during the acute phases of viral infection in vivo, lytic variants of PIV5 will be selected but, as the adaptive immune response develops, variants in which viral replication can be repressed will be selected, leading to the establishment of prolonged, persistent infections. We suggest that similar selection processes may operate for other RNA viruses.
Collapse
Affiliation(s)
- Dan F. Young
- School of Biology, Centre for Biomolecular Sciences, BMS Building, North Haugh, University of St. Andrews, St. Andrews, Fife, United Kingdom
| | - Elizabeth B. Wignall-Fleming
- School of Biology, Centre for Biomolecular Sciences, BMS Building, North Haugh, University of St. Andrews, St. Andrews, Fife, United Kingdom
- MRC–University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - David C. Busse
- Mucosal Infection and Immunity Group, Section of Virology, Imperial College London, London, United Kingdom
| | - Matthew J. Pickin
- Institute for Infection and Immunity, St. George's, University of London, London, United Kingdom
| | - Jack Hankinson
- Institute for Infection and Immunity, St. George's, University of London, London, United Kingdom
| | - Elizabeth M. Randall
- School of Biology, Centre for Biomolecular Sciences, BMS Building, North Haugh, University of St. Andrews, St. Andrews, Fife, United Kingdom
| | - Amy Tavendale
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Andrew J. Davison
- MRC–University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Douglas Lamont
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - John S. Tregoning
- Mucosal Infection and Immunity Group, Section of Virology, Imperial College London, London, United Kingdom
| | - Steve Goodbourn
- Institute for Infection and Immunity, St. George's, University of London, London, United Kingdom
| | - Richard E. Randall
- School of Biology, Centre for Biomolecular Sciences, BMS Building, North Haugh, University of St. Andrews, St. Andrews, Fife, United Kingdom
| |
Collapse
|
6
|
Respiratory Syncytial Virus Inhibitor AZ-27 Differentially Inhibits Different Polymerase Activities at the Promoter. J Virol 2015; 89:7786-98. [PMID: 25995255 DOI: 10.1128/jvi.00530-15] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 05/11/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Respiratory syncytial virus (RSV) is the leading cause of pediatric respiratory disease. RSV has an RNA-dependent RNA polymerase that transcribes and replicates the viral negative-sense RNA genome. The large polymerase subunit (L) has multiple enzymatic activities, having the capability to synthesize RNA and add and methylate a cap on each of the viral mRNAs. Previous studies (H. Xiong et al., Bioorg Med Chem Lett, 23:6789-6793, 2013, http://dx.doi.org/10.1016/j.bmcl.2013.10.018; C. L. Tiong-Yip et al., Antimicrob Agents Chemother, 58:3867-3873, 2014, http://dx.doi.org/10.1128/AAC.02540-14) had identified a small-molecule inhibitor, AZ-27, that targets the L protein. In this study, we examined the effect of AZ-27 on different aspects of RSV polymerase activity. AZ-27 was found to inhibit equally both mRNA transcription and genome replication in cell-based minigenome assays, indicating that it inhibits a step common to both of these RNA synthesis processes. Analysis in an in vitro transcription run-on assay, containing RSV nucleocapsids, showed that AZ-27 inhibits synthesis of transcripts from the 3' end of the genome to a greater extent than those from the 5' end, indicating that it inhibits transcription initiation. Consistent with this finding, experiments that assayed polymerase activity on the promoter showed that AZ-27 inhibited transcription and replication initiation. The RSV polymerase also can utilize the promoter sequence to perform a back-priming reaction. Interestingly, addition of AZ-27 had no effect on the addition of up to three nucleotides by back-priming but inhibited further extension of the back-primed RNA. These data provide new information regarding the mechanism of inhibition by AZ-27. They also suggest that the RSV polymerase adopts different conformations to perform its different activities at the promoter. IMPORTANCE Currently, there are no effective antiviral drugs to treat RSV infection. The RSV polymerase is an attractive target for drug development, but this large enzymatic complex is poorly characterized, hampering drug development efforts. AZ-27 is a small-molecule inhibitor previously shown to target the RSV large polymerase subunit (C. L. Tiong-Yip et al., Antimicrob Agents Chemother, 58:3867-3873, 2014, http://dx.doi.org/10.1128/AAC.02540-14), but its inhibitory mechanism was unknown. Understanding this would be valuable both for characterizing the polymerase and for further development of inhibitors. Here, we show that AZ-27 inhibits an early stage in mRNA transcription, as well as genome replication, by inhibiting initiation of RNA synthesis from the promoter. However, the compound does not inhibit back priming, another RNA synthesis activity of the RSV polymerase. These findings provide insight into the different activities of the RSV polymerase and will aid further development of antiviral agents against RSV.
Collapse
|
7
|
Heat shock protein 70 regulates degradation of the mumps virus phosphoprotein via the ubiquitin-proteasome pathway. J Virol 2014; 89:3188-99. [PMID: 25552722 DOI: 10.1128/jvi.03343-14] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED Mumps virus (MuV) infection induces formation of cytoplasmic inclusion bodies (IBs). Growing evidence indicates that IBs are the sites where RNA viruses synthesize their viral RNA. However, in the case of MuV infection, little is known about the viral and cellular compositions and biological functions of the IBs. In this study, pulldown purification and N-terminal amino acid sequencing revealed that stress-inducible heat shock protein 70 (Hsp72) was a binding partner of MuV phosphoprotein (P protein), which was an essential component of the IB formation. Immunofluorescence and immunoblotting analyses revealed that Hsp72 was colocalized with the P protein in the IBs, and its expression was increased during MuV infection. Knockdown of Hsp72 using small interfering RNAs (siRNAs) had little, if any, effect on viral propagation in cultured cells. Knockdown of Hsp72 caused accumulation of ubiquitinated P protein and delayed P protein degradation. These results show that Hsp72 is recruited to IBs and regulates the degradation of MuV P protein through the ubiquitin-proteasome pathway. IMPORTANCE Formation of cytoplasmic inclusion bodies (IBs) is a common characteristic feature in mononegavirus infections. IBs are considered to be the sites of viral RNA replication and transcription. However, there have been few studies focused on host factors recruited to the IBs and their biological functions. Here, we identified stress-inducible heat shock protein 70 (Hsp72) as the first cellular partner of mumps virus (MuV) phosphoprotein (P protein), which is an essential component of the IBs and is involved in viral RNA replication/transcription. We found that the Hsp72 mobilized to the IBs promoted degradation of the MuV P protein through the ubiquitin-proteasome pathway. Our data provide new insight into the role played by IBs in mononegavirus infection.
Collapse
|
8
|
Killip MJ, Smith M, Jackson D, Randall RE. Activation of the interferon induction cascade by influenza a viruses requires viral RNA synthesis and nuclear export. J Virol 2014; 88:3942-52. [PMID: 24478437 PMCID: PMC3993719 DOI: 10.1128/jvi.03109-13] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 01/19/2014] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED We have examined the requirements for virus transcription and replication and thus the roles of input and progeny genomes in the generation of interferon (IFN)-inducing pathogen-associated molecular patterns (PAMPs) by influenza A viruses using inhibitors of these processes. Using IFN regulatory factor 3 (IRF3) phosphorylation as a marker of activation of the IFN induction cascade that occurs upstream of the IFN-β promoter, we demonstrate strong activation of the IFN induction cascade in A549 cells infected with a variety of influenza A viruses in the presence of cycloheximide or nucleoprotein (NP) small interfering RNA (siRNA), which inhibits viral protein synthesis and thus complementary ribonucleoprotein (cRNP) and progeny viral RNP (vRNP) synthesis. In contrast, activation of the IFN induction cascade by influenza viruses was very effectively abrogated by treatment with actinomycin D and other transcription inhibitors, which correlated with the inhibition of the synthesis of all viral RNA species. Furthermore, 5,6-dichloro-1-β-d-ribofuranosyl-benzimidazole, an inhibitor that prevents viral RNA export from the nucleus, was also a potent inhibitor of IRF3 activation; thus, both viral RNA synthesis and nuclear export are required for IFN induction by influenza A viruses. While the exact nature of the viral PAMPs remains to be determined, our data suggest that in this experimental system the major influenza A virus PAMPs are distinct from those of incoming genomes or progeny vRNPs. IMPORTANCE The host interferon system exerts an extremely potent antiviral response that efficiently restricts virus replication and spread; the interferon response can thus dictate the outcome of a virus infection, and it is therefore important to understand how viruses induce interferon. Both input and progeny genomes have been linked to interferon induction by influenza viruses. However, our experiments in tissue culture cells show that viral RNA synthesis and nuclear export are required to activate this response. Furthermore, the interferon induction cascade is activated under conditions in which the synthesis of progeny genomes is inhibited. Therefore, in tissue culture cells, input and progeny genomes are not the predominant inducers of interferon generated by influenza A viruses; the major viral interferon inducer(s) still remains to be identified.
Collapse
Affiliation(s)
- Marian J Killip
- School of Biology, Biomedical Sciences Research Complex, North Haugh, University of St. Andrews, St. Andrews, Fife, United Kingdom
| | | | | | | |
Collapse
|
9
|
Paramyxovirus activation and inhibition of innate immune responses. J Mol Biol 2013; 425:4872-92. [PMID: 24056173 DOI: 10.1016/j.jmb.2013.09.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 09/12/2013] [Accepted: 09/12/2013] [Indexed: 12/18/2022]
Abstract
Paramyxoviruses represent a remarkably diverse family of enveloped nonsegmented negative-strand RNA viruses, some of which are the most ubiquitous disease-causing viruses of humans and animals. This review focuses on paramyxovirus activation of innate immune pathways, the mechanisms by which these RNA viruses counteract these pathways, and the innate response to paramyxovirus infection of dendritic cells (DC). Paramyxoviruses are potent activators of extracellular complement pathways, a first line of defense that viruses must face during natural infections. We discuss mechanisms by which these viruses activate and combat complement to delay neutralization. Once cells are infected, virus replication drives type I interferon (IFN) synthesis that has the potential to induce a large number of antiviral genes. Here we describe four approaches by which paramyxoviruses limit IFN induction: by limiting synthesis of IFN-inducing aberrant viral RNAs, through targeted inhibition of RNA sensors, by providing viral decoy substrates for cellular kinase complexes, and through direct blocking of the IFN promoter. In addition, paramyxoviruses have evolved diverse mechanisms to disrupt IFN signaling pathways. We describe three general mechanisms, including targeted proteolysis of signaling factors, sequestering cellular factors, and upregulation of cellular inhibitors. DC are exceptional cells with the capacity to generate adaptive immunity through the coupling of innate immune signals and T cell activation. We discuss the importance of innate responses in DC following paramyxovirus infection and their consequences for the ability to mount and maintain antiviral T cells.
Collapse
|
10
|
Luo H, Zhang Z, Zheng Z, Ke X, Zhang X, Li Q, Liu Y, Bai B, Mao P, Hu Q, Wang H. Human bocavirus VP2 upregulates IFN-β pathway by inhibiting ring finger protein 125-mediated ubiquitination of retinoic acid-inducible gene-I. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2013; 191:660-9. [PMID: 23772026 DOI: 10.4049/jimmunol.1202933] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Precise regulation of innate immunity is crucial for maintaining optimal immune responses against infections. Whereas positive regulation of IFN signaling elicits rapid type I IFNs, negative regulation is equally important in preventing the production of superfluous IFNs that can be hazardous to the host. The positive regulators of IFN pathway are known to be the main targets of viruses to antagonize the innate immune system. Whether viruses target the negative regulators of IFN pathway remains to be fully investigated. In this study, we report that the structural protein VP2 of human Bocavirus modulates IFN pathway by targeting the ring finger protein 125 (RNF125), a negative regulator of type I IFN signaling, which conjugates Lys(48)-linked ubiquitination to retinoic acid-inducible gene-I (RIG-I) and subsequently leads to the proteasome-dependent degradation of RIG-I. VP2 not only upregulated Sendai virus (SeV)-induced IFNB promoter activity, but also enhanced SeV-induced IFN-β production at both mRNA and protein levels. In agreement, the level of Ser(396)-phosphorylated IFN regulatory factor 3 stimulated by SeV was enhanced in the presence of VP2. Furthermore, VP2 was demonstrated to physically interact with RNF125, resulting in the reduction of RNF125-mediated ubiquitination and proteasome-dependent degradation of RIG-I. Additional study indicated that endogenous RIG-I degradation was decreased in VP2-expressing cells. Our study delineates a unique phenomenon for aberrant activation of IFN regulatory factor 3 pathway and may represent a new mechanism underlying viral manipulation of the host immune system.
Collapse
Affiliation(s)
- Huanle Luo
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Killip MJ, Young DF, Gatherer D, Ross CS, Short JAL, Davison AJ, Goodbourn S, Randall RE. Deep sequencing analysis of defective genomes of parainfluenza virus 5 and their role in interferon induction. J Virol 2013; 87:4798-807. [PMID: 23449801 PMCID: PMC3624313 DOI: 10.1128/jvi.03383-12] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 02/20/2013] [Indexed: 12/24/2022] Open
Abstract
Preparations of parainfluenza virus 5 (PIV5) that are potent activators of the interferon (IFN) induction cascade were generated by high-multiplicity passage in order to accumulate defective interfering virus genomes (DIs). Nucleocapsid RNA from these virus preparations was extracted and subjected to deep sequencing. Sequencing data were analyzed using methods designed to detect internal deletion and "copyback" DIs in order to identify and characterize the different DIs present and to approximately quantify the ratio of defective to nondefective genomes. Trailer copybacks dominated the DI populations in IFN-inducing preparations of both the PIV5 wild type (wt) and PIV5-VΔC (a recombinant virus that does not encode a functional V protein). Although the PIV5 V protein is an efficient inhibitor of the IFN induction cascade, we show that nondefective PIV5 wt is unable to prevent activation of the IFN response by coinfecting copyback DIs due to the interfering effects of copyback DIs on nondefective virus protein expression. As a result, copyback DIs are able to very rapidly activate the IFN induction cascade prior to the expression of detectable levels of V protein by coinfecting nondefective virus.
Collapse
Affiliation(s)
- M. J. Killip
- School of Biology, Centre for Biomolecular Sciences, University of St. Andrews, St. Andrews, Fife, United Kingdom
| | - D. F. Young
- School of Biology, Centre for Biomolecular Sciences, University of St. Andrews, St. Andrews, Fife, United Kingdom
| | - D. Gatherer
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - C. S. Ross
- Division of Basic Medical Sciences, St. George's, University of London, London, United Kingdom
| | - J. A. L. Short
- School of Biology, Centre for Biomolecular Sciences, University of St. Andrews, St. Andrews, Fife, United Kingdom
| | - A. J. Davison
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - S. Goodbourn
- Division of Basic Medical Sciences, St. George's, University of London, London, United Kingdom
| | - R. E. Randall
- School of Biology, Centre for Biomolecular Sciences, University of St. Andrews, St. Andrews, Fife, United Kingdom
| |
Collapse
|
12
|
Andrejeva J, Norsted H, Habjan M, Thiel V, Goodbourn S, Randall RE. ISG56/IFIT1 is primarily responsible for interferon-induced changes to patterns of parainfluenza virus type 5 transcription and protein synthesis. J Gen Virol 2012; 94:59-68. [PMID: 23052390 PMCID: PMC3542720 DOI: 10.1099/vir.0.046797-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Interferon (IFN) induces an antiviral state in cells that results in alterations of the patterns and levels of parainfluenza virus type 5 (PIV5) transcripts and proteins. This study reports that IFN-stimulated gene 56/IFN-induced protein with tetratricopeptide repeats 1 (ISG56/IFIT1) is primarily responsible for these effects of IFN. It was shown that treating cells with IFN after infection resulted in an increase in virus transcription but an overall decrease in virus protein synthesis. As there was no obvious decrease in the overall levels of cellular protein synthesis in infected cells treated with IFN, these results suggested that ISG56/IFIT1 selectively inhibits the translation of viral mRNAs. This conclusion was supported by in vitro translation studies. Previous work has shown that ISG56/IFIT1 can restrict the replication of viruses lacking a 2′-O-methyltransferase activity, an enzyme that methylates the 2′-hydroxyl group of ribose sugars in the 5′-cap structures of mRNA. However, the data in the current study strongly suggested that PIV5 mRNAs are methylated at the 2′-hydroxyl group and thus that ISG56/IFIT1 selectively inhibits the translation of PIV5 mRNA by some as yet unrecognized mechanism. It was also shown that ISG56/IFIT1 is primarily responsible for the IFN-induced inhibition of PIV5.
Collapse
Affiliation(s)
- J Andrejeva
- School of Biology, Centre for Biomolecular Sciences, BMS Building, North Haugh, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - H Norsted
- School of Biology, Centre for Biomolecular Sciences, BMS Building, North Haugh, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - M Habjan
- Kantonal Hospital St Gallen, Institute of Immunobiology, CH-9007 St Gallen, Switzerland
| | - V Thiel
- Kantonal Hospital St Gallen, Institute of Immunobiology, CH-9007 St Gallen, Switzerland
| | - S Goodbourn
- Division of Basic Medical Sciences, St George's, University of London, London SW17 0RE, UK
| | - R E Randall
- School of Biology, Centre for Biomolecular Sciences, BMS Building, North Haugh, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| |
Collapse
|
13
|
Gellatly SA, Kalujnaia S, Cramb G. Cloning, tissue distribution and sub-cellular localisation of phospholipase C X-domain containing protein (PLCXD) isoforms. Biochem Biophys Res Commun 2012; 424:651-6. [PMID: 22732399 DOI: 10.1016/j.bbrc.2012.06.079] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 06/17/2012] [Indexed: 10/28/2022]
Abstract
Phosphatidylinositol-specific phospholipase C (PI-PLC) enzymes comprise a small family of receptor-regulated phosphodiesterases that control many cellular processes by the regulation of cytosolic calcium and/or the activity of several protein kinases. To date, six distinct classes of PI-PLC are known to exist in mammals. Here we characterise a seventh class of PI-PLC, which contains only the catalytic X domain in its structure, termed phospholipase C X-domain containing protein (PLCXD). At least three tissue-specific PLCXD isoforms exist in humans, comprising hPLCXD-1, hPLCXD-2 and hPLCXD-3, with hPLCXD-2 exhibiting three C-terminal spliceforms (2.1, 2.2 and 2.3). Specific amino acids known to be essential for the catalytic function of PI-PLCs were found to be conserved in all three human PLCXDs and over-expression of hPLCXD-1, 2.1 and 3 in the HeLa cell line increased endogenous PI-PLC activity. Human PLCXD isoforms exhibited tissue-specific expression profiles in mice and humans and immunocytochemistry revealed distinct sub-cellular localisations when over-expressed in human cultured cell lines. These novel proteins may therefore possess fundamental, and as yet uncharacterised roles in cell physiology.
Collapse
Affiliation(s)
- Steven A Gellatly
- School of Medicine, University of St Andrews, Medical and Biological Sciences Building, North Haugh, St Andrews, Fife, KY16 9TF, UK
| | | | | |
Collapse
|
14
|
A vesiculovirus showing a steepened transcription gradient and dominant trans-repression of virus transcription. J Virol 2012; 86:8884-9. [PMID: 22674990 DOI: 10.1128/jvi.00358-12] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Vesicular stomatitis virus (VSV) is a prototype nonsegmented, negative-sense virus used to examine viral functions of a broad family of viruses, including human pathogens. Here we demonstrate that S(2) VSV, an isolate with a small plaque phenotype compared to other Indiana strain viruses, has a transcription defect resulting in an altered pattern and rapid decline of transcription. The S(2) VSV transcription gradient is dominant over the wild-type transcription in a coinfection. This is the first characterization of an altered gradient of transcription not dependent on RNA template sequence or host response and may provide insight into new approaches to viral attenuation.
Collapse
|
15
|
Killip MJ, Young DF, Ross CS, Chen S, Goodbourn S, Randall RE. Failure to activate the IFN-β promoter by a paramyxovirus lacking an interferon antagonist. Virology 2011; 415:39-46. [PMID: 21511322 PMCID: PMC3107429 DOI: 10.1016/j.virol.2011.03.027] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 03/21/2011] [Accepted: 03/31/2011] [Indexed: 12/24/2022]
Abstract
It is generally thought that pathogen-associated molecular patterns (PAMPs) responsible for triggering interferon (IFN) induction are produced during virus replication and, to limit the activation of the IFN response by these PAMPs, viruses encode antagonists of IFN induction. Here we have studied the induction of IFN by parainfluenza virus type 5 (PIV5) at the single-cell level, using a cell line expressing GFP under the control of the IFN-β promoter. We demonstrate that a recombinant PIV5 (termed PIV5-VΔC) that lacks a functional V protein (the viral IFN antagonist) does not activate the IFN-β promoter in the majority of infected cells. We conclude that viral PAMPs capable of activating the IFN induction cascade are not produced or exposed during the normal replication cycle of PIV5, and suggest instead that defective viruses are primarily responsible for inducing IFN during PIV5 infection in this system.
Collapse
Affiliation(s)
- M J Killip
- School of Biology, Centre for Biomolecular Sciences, North Haugh, University of St. Andrews, St. Andrews, Fife, UK
| | | | | | | | | | | |
Collapse
|
16
|
Briggs CM, Holder RC, Reid SD, Parks GD. Activation of human macrophages by bacterial components relieves the restriction on replication of an interferon-inducing parainfluenza virus 5 (PIV5) P/V mutant. Microbes Infect 2010; 13:359-68. [PMID: 21185944 DOI: 10.1016/j.micinf.2010.12.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 12/04/2010] [Accepted: 12/15/2010] [Indexed: 12/26/2022]
Abstract
Macrophages regulate immune responses during many viral infections, and can be a major determinant of pathogenesis, virus replication and immune response to infection. Here, we have addressed the question of the outcome of infection of primary human macrophages with parainfluenza virus 5 (PIV5) and a PIV5 mutant (P/V-CPI-) that is unable to counteract interferon (IFN) responses. In cultures of naïve monocyte-derived macrophages (MDMs), WT PIV5 established a highly productive infection, whereas the P/V-CPI- mutant was restricted for replication in MDMs by IFN-beta. Restricted replication in vitro was relieved in MDM that had been activated by prior exposure to heat killed Gram positive bacteria, including Listeria monocytogenes, Streptococcus pyogenes, and Bacillus anthracis. Enhanced replication of the P/V mutant in MDM previously activated by bacterial components correlated with a reduced ability to produce IFN-beta in response to virus infection, whereas IFN signaling was intact. Activated MDM were found to upregulate the synthesis of IRAK-M, which has been previously shown to negatively regulate factors involved in TLR signaling and IFN-beta production. We discuss these results in terms of the implications for mixed bacteria-virus infections and for the use of live RNA virus vectors that have been engineered to be attenuated for IFN sensitivity.
Collapse
Affiliation(s)
- Caitlin M Briggs
- Department of Microbiology and Immunology, Wake Forest University, School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157-1064, United States
| | | | | | | |
Collapse
|
17
|
Chen S, Short JAL, Young DF, Killip MJ, Schneider M, Goodbourn S, Randall RE. Heterocellular induction of interferon by negative-sense RNA viruses. Virology 2010; 407:247-55. [PMID: 20833406 PMCID: PMC2963793 DOI: 10.1016/j.virol.2010.08.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Accepted: 08/11/2010] [Indexed: 12/24/2022]
Abstract
The infection of cells by RNA viruses is associated with the recognition of virus PAMPs (pathogen-associated molecular patterns) and the production of type I interferon (IFN). To counter this, most, if not all, RNA viruses encode antagonists of the IFN system. Here we present data on the dynamics of IFN production and response during developing infections by paramyxoviruses, influenza A virus and bunyamwera virus. We show that only a limited number of infected cells are responsible for the production of IFN, and that this heterocellular production is a feature of the infecting virus as opposed to an intrinsic property of the cells.
Collapse
Affiliation(s)
- S Chen
- School of Biology, Centre for Biomolecular Sciences, BMS Building, North Haugh, University of St. Andrews, St. Andrews, Fife, KY16 9ST, UK
| | | | | | | | | | | | | |
Collapse
|
18
|
Goodbourn S, Randall RE. The regulation of type I interferon production by paramyxoviruses. J Interferon Cytokine Res 2010; 29:539-47. [PMID: 19702509 DOI: 10.1089/jir.2009.0071] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Experimentally, paramyxoviruses are conventionally considered good inducers of type I interferons (IFN-alpha/beta), and have been used as agents in the commercial production of human IFN-alpha. However, in the last few years it has become clear that viruses in general mount a major challenge to the IFN system, and paramyxoviruses are no exception. Indeed, most paramyxoviruses encode mechanisms to inhibit both the production of, and response to, type I IFN. Here we review our knowledge of the type I IFN-inducing signals (by so-called pathogen-associated molecular patterns, or PAMPs) produced during paramyxovirus infections, and discuss how paramyxoviruses limit the production of PAMPs and inhibit the cellular responses to PAMPs by interfering with the activities of the pattern recognition receptors (PRRs), mda-5, and RIG-I, as well as downstream components in the type I IFN induction cascades.
Collapse
Affiliation(s)
- Stephen Goodbourn
- Division of Basic Medical Sciences, St. George's, University of London, London, United Kingdom
| | | |
Collapse
|
19
|
Ramachandran A, Horvath CM. Paramyxovirus disruption of interferon signal transduction: STATus report. J Interferon Cytokine Res 2010; 29:531-7. [PMID: 19694544 DOI: 10.1089/jir.2009.0070] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
RNA viruses in the paramyxovirus family have evolved a number of strategies to escape host cell surveillance and antiviral responses. One mechanism exploited by a number of viruses in this family is direct targeting of cytokine-inducible transcription regulators in the STAT family. Diverse members of this large virus family effectively suppress STAT signaling by the actions of their V proteins, or the related proteins derived from alternate viral mRNAs. These viral proteins have distinct means of targeting STATs, resulting in a variety of negative effects on STATs and their signal transduction. Recent developments in understanding STAT targeting will be reviewed.
Collapse
Affiliation(s)
- Aparna Ramachandran
- Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, Evanston, Illinois 60208, USA
| | | |
Collapse
|
20
|
Young DF, Galiano MC, Lemon K, Chen YH, Andrejeva J, Duprex WP, Rima BK, Randall RE. Mumps virus Enders strain is sensitive to interferon (IFN) despite encoding a functional IFN antagonist. J Gen Virol 2009; 90:2731-2738. [PMID: 19625458 PMCID: PMC2885035 DOI: 10.1099/vir.0.013722-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Although the Enders strain of mumps virus (MuV) encodes a functional V protein that acts as an interferon (IFN) antagonist, in multi-cycle growth assays MuV Enders grew poorly in naïve ('IFN-competent' Hep2) cells but grew to high titres in 'IFN-compromised' Hep2 cells. Even so, the growth rate of MuV Enders was significantly slower in 'IFN-compromised' Hep2 cells when compared with its replication rate in Vero cells and with the replication rate of parainfluenza virus type 5 (a closely related paramyxovirus) in both naïve and 'IFN-compromised' Hep2 cells. This suggests that a consequence of slower growth is that the IFN system of naïve Hep2 cells can respond quickly enough to control the growth of MuV Enders. This is supported by the finding that rapidly growing variants of MuV Enders that were selected on 'IFN-compromised' Hep2 cells (i.e. in the absence of any selection pressure exerted by the IFN response) also grew to high titres on naïve Hep2 cells. Sequencing of the complete genome of one of these variants identified a single point mutation that resulted in a substitution of a conserved asparagine by histidine at position 498 of the haemagglutinin-neuraminidase protein, although this mutation was not present in all rapidly growing variants. These results support the concept that there is a race between the ability of a cell to detect and respond to virus infection and the ability of a virus to block the IFN response. Importantly, this emphasizes that factors other than viral IFN antagonists influence the sensitivity of viruses to IFN.
Collapse
Affiliation(s)
- D F Young
- Centre for Biomolecular Sciences, University of St Andrews, St Andrews, Fife KY16 9ST, UK
| | - M C Galiano
- Centre for Biomolecular Sciences, University of St Andrews, St Andrews, Fife KY16 9ST, UK
| | - K Lemon
- Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, The Queen's University of Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Y-H Chen
- Centre for Biomolecular Sciences, University of St Andrews, St Andrews, Fife KY16 9ST, UK
| | - J Andrejeva
- Centre for Biomolecular Sciences, University of St Andrews, St Andrews, Fife KY16 9ST, UK
| | - W P Duprex
- Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, The Queen's University of Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - B K Rima
- Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, The Queen's University of Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - R E Randall
- Centre for Biomolecular Sciences, University of St Andrews, St Andrews, Fife KY16 9ST, UK
| |
Collapse
|
21
|
Carlos TS, Young DF, Schneider M, Simas JP, Randall RE. Parainfluenza virus 5 genomes are located in viral cytoplasmic bodies whilst the virus dismantles the interferon-induced antiviral state of cells. J Gen Virol 2009; 90:2147-56. [PMID: 19458173 PMCID: PMC2885057 DOI: 10.1099/vir.0.012047-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Although the replication cycle of parainfluenza virus type 5 (PIV5) is initially severely impaired in cells in an interferon (IFN)-induced antiviral state, the virus still targets STAT1 for degradation. As a consequence, the cells can no longer respond to IFN and after 24−48 h, they go out of the antiviral state and normal virus replication is established. Following infection of cells in an IFN-induced antiviral state, viral nucleocapsid proteins are initially localized within small cytoplasmic bodies, and appearance of these cytoplasmic bodies correlates with the loss of STAT1 from infected cells. In situ hybridization, using probes specific for the NP and L genes, demonstrated the presence of virus genomes within these cytoplasmic bodies. These viral cytoplasmic bodies do not co-localize with cellular markers for stress granules, cytoplasmic P-bodies or autophagosomes. Furthermore, they are not large insoluble aggregates of viral proteins and/or nucleocapsids, as they can simply and easily be dispersed by ‘cold-shocking’ live cells, a process that disrupts the cytoskeleton. Given that during in vivo infections, PIV5 will inevitably infect cells in an IFN-induced antiviral state, we suggest that these cytoplasmic bodies are areas in which PIV5 genomes reside whilst the virus dismantles the antiviral state of the cells. Consequently, viral cytoplasmic bodies may play an important part in the strategy that PIV5 uses to circumvent the IFN system.
Collapse
Affiliation(s)
- T S Carlos
- School of Biology, University of St Andrews, Fife KY16 9ST, Scotland, UK
| | | | | | | | | |
Collapse
|
22
|
Randall RE, Goodbourn S. Interferons and viruses: an interplay between induction, signalling, antiviral responses and virus countermeasures. J Gen Virol 2008; 89:1-47. [PMID: 18089727 DOI: 10.1099/vir.0.83391-0] [Citation(s) in RCA: 1221] [Impact Index Per Article: 76.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The interferon (IFN) system is an extremely powerful antiviral response that is capable of controlling most, if not all, virus infections in the absence of adaptive immunity. However, viruses can still replicate and cause disease in vivo, because they have some strategy for at least partially circumventing the IFN response. We reviewed this topic in 2000 [Goodbourn, S., Didcock, L. & Randall, R. E. (2000). J Gen Virol 81, 2341-2364] but, since then, a great deal has been discovered about the molecular mechanisms of the IFN response and how different viruses circumvent it. This information is of fundamental interest, but may also have practical application in the design and manufacture of attenuated virus vaccines and the development of novel antiviral drugs. In the first part of this review, we describe how viruses activate the IFN system, how IFNs induce transcription of their target genes and the mechanism of action of IFN-induced proteins with antiviral action. In the second part, we describe how viruses circumvent the IFN response. Here, we reflect upon possible consequences for both the virus and host of the different strategies that viruses have evolved and discuss whether certain viruses have exploited the IFN response to modulate their life cycle (e.g. to establish and maintain persistent/latent infections), whether perturbation of the IFN response by persistent infections can lead to chronic disease, and the importance of the IFN system as a species barrier to virus infections. Lastly, we briefly describe applied aspects that arise from an increase in our knowledge in this area, including vaccine design and manufacture, the development of novel antiviral drugs and the use of IFN-sensitive oncolytic viruses in the treatment of cancer.
Collapse
Affiliation(s)
- Richard E Randall
- School of Biology, University of St Andrews, The North Haugh, St Andrews KY16 9ST, UK
| | - Stephen Goodbourn
- Division of Basic Medical Sciences, St George's, University of London, London SW17 0RE, UK
| |
Collapse
|
23
|
RNA-containing cytoplasmic inclusion bodies in ciliated bronchial epithelium months to years after acute Kawasaki disease. PLoS One 2008; 3:e1582. [PMID: 18270572 PMCID: PMC2216059 DOI: 10.1371/journal.pone.0001582] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Accepted: 01/15/2008] [Indexed: 11/19/2022] Open
Abstract
Background Kawasaki Disease (KD) is the most common cause of acquired heart disease in children in developed nations. The KD etiologic agent is unknown but likely to be a ubiquitous microbe that usually causes asymptomatic childhood infection, resulting in KD only in genetically susceptible individuals. KD synthetic antibodies made from prevalent IgA gene sequences in KD arterial tissue detect intracytoplasmic inclusion bodies (ICI) resembling viral ICI in acute KD but not control infant ciliated bronchial epithelium. The prevalence of ICI in late-stage KD fatalities and in older individuals with non-KD illness should be low, unless persistent infection is common. Methods and Principal Findings Lung tissue from late-stage KD fatalities and non-infant controls was examined by light microscopy for the presence of ICI. Nucleic acid stains and transmission electron microscopy (TEM) were performed on tissues that were strongly positive for ICI. ICI were present in ciliated bronchial epithelium in 6/7 (86%) late-stage KD fatalities and 7/27 (26%) controls ages 9–84 years (p = 0.01). Nucleic acid stains revealed RNA but not DNA within the ICI. ICI were also identified in lung macrophages in some KD cases. TEM of bronchial epithelium and macrophages from KD cases revealed finely granular homogeneous ICI. Significance These findings are consistent with a previously unidentified, ubiquitous RNA virus that forms ICI and can result in persistent infection in bronchial epithelium and macrophages as the etiologic agent of KD.
Collapse
|
24
|
Precious BL, Carlos TS, Goodbourn S, Randall RE. Catalytic turnover of STAT1 allows PIV5 to dismantle the interferon-induced anti-viral state of cells. Virology 2007; 368:114-21. [PMID: 17640695 DOI: 10.1016/j.virol.2007.06.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2007] [Revised: 05/30/2007] [Accepted: 06/15/2007] [Indexed: 10/23/2022]
Abstract
A dynamic model of STAT1 degradation by the V protein of parainfluenza virus 5 (PIV5; formerly SV5) has been proposed. In it, the V protein functions as a bipartite adaptor linking DDB1, a component of a cellular SCF-like ubiquitin E3 ligase complex, to STAT2, which in turn binds STAT1 and presents STAT1 to the E3 ligase complex for ubiquitination and subsequent degradation. Furthermore, it appears that loss of STAT1 from the complex results in decreased affinity of V for STAT2 such that STAT2 either dissociates from V or is displaced by STAT1/STAT2 complexes, facilitating the cycling of the DDB1/PIV5 V containing E3 complex for further rounds of STAT1 ubiquitination and degradation. By determining the approximate number of molecules of V, DDB1, STAT1 and STAT2 present in IFN-treated 2fTGH cells, we provide additional evidence for this dynamic model of STAT1 degradation. These results show that (i) in IFN-treated cells there is approximately 4-fold less STAT2 and 15-fold less DDB1 than STAT1 per cell and thus DDB1 and STAT2 must repeatedly acquire more STAT1 for degradation to go to completion, and (ii) approximately 600 molecules of V protein per cell can target as many as 120,000 molecules of STAT1 for degradation in the absence of either viral or cellular protein synthesis. The importance of this mechanism in terms of the ability of the virus to dismantle the IFN-induced anti-viral state of cells is discussed.
Collapse
Affiliation(s)
- B L Precious
- School of Biology, University of St. Andrews, Fife KY16 9ST, Scotland, UK
| | | | | | | |
Collapse
|
25
|
Young DF, Carlos TS, Hagmaier K, Fan L, Randall RE. AGS and other tissue culture cells can unknowingly be persistently infected with PIV5; a virus that blocks interferon signalling by degrading STAT1. Virology 2007; 365:238-40. [PMID: 17509637 DOI: 10.1016/j.virol.2007.03.061] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2007] [Accepted: 03/27/2007] [Indexed: 10/23/2022]
Abstract
Whilst screening various cell lines for their ability to respond to interferon (IFN), we noted that in comparison to other tissue culture cells AGS tumour cells, which are widely used in biomedical research, had very low levels of STAT1. Subsequent analysis showed that the reason for this is that AGS cells are persistently infected with parainfluenza virus type 5 (PIV5; formally known as SV5), a virus that blocks the interferon (IFN) response by targeting STAT1 for proteasome-mediated degradation. Virus protein expression in AGS is altered in comparison to the normal pattern of virus protein synthesis observed in acutely infected cells, suggesting that the AGS virus is defective. We discuss the relevance of these results in terms of the need to screen cell lines for persistent virus infections that can alter cellular functions.
Collapse
Affiliation(s)
- D F Young
- School of Biology, University of St. Andrews, Fife KY16 9ST, Scotland, UK
| | | | | | | | | |
Collapse
|
26
|
Carlos TS, Young D, Stertz S, Kochs G, Randall RE. Interferon-induced inhibition of parainfluenza virus type 5; the roles of MxA, PKR and oligo A synthetase/RNase L. Virology 2007; 363:166-73. [PMID: 17307214 DOI: 10.1016/j.virol.2007.01.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2006] [Revised: 12/21/2006] [Accepted: 01/10/2007] [Indexed: 11/20/2022]
Abstract
We have previously reported that the addition of interferon (IFN) to the culture medium of Vero cells (which cannot produce IFN) that were infected with the CPI- strain of parainfluenza virus 5 (PIV5, formally known as SV5), that fails to block IFN signaling, rapidly induces alterations in the relative levels of virus mRNA and protein synthesis. In addition, IFN treatment also caused a rapid redistribution of virus proteins and enhanced the formation of cytoplasmic viral inclusion bodies. The most studied IFN-induced genes with known anti-viral activity are MxA, PKR and the Oligo A synthetase/RNase L system. We therefore examined the effects of these proteins on the replication cycle of PIV5. These studies revealed that while these proteins had some anti-viral activity against PIV5 they were not primarily responsible for the very rapid alteration in virus protein synthesis observed following IFN treatment, nor for the IFN-induced formation of virus inclusion bodies, in CPI- infected cells.
Collapse
Affiliation(s)
- T S Carlos
- School of Biology, University of St. Andrews, Fife KY16 9ST, Scotland, UK
| | | | | | | | | |
Collapse
|
27
|
Childs K, Stock N, Ross C, Andrejeva J, Hilton L, Skinner M, Randall R, Goodbourn S. mda-5, but not RIG-I, is a common target for paramyxovirus V proteins. Virology 2006; 359:190-200. [PMID: 17049367 DOI: 10.1016/j.virol.2006.09.023] [Citation(s) in RCA: 241] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2006] [Revised: 09/05/2006] [Accepted: 09/13/2006] [Indexed: 01/01/2023]
Abstract
The induction of IFN-beta by the paramyxovirus PIV5 (formerly known as SV5) is limited by the action of the viral V protein that targets the cellular RNA helicase mda-5. Here we show that 12 other paramyxoviruses also target mda-5 by a direct interaction between the conserved cysteine-rich C-terminus of their V proteins and the helicase domain of mda-5. The inhibition of IFN-beta induction is not species-restricted, being observed in a range of mammalian cells as well as in avian cells, and we show that the inhibition of mda-5 function is also not restricted to mammalian cells. In contrast, the V proteins do not bind to the related RNA helicase RIG-I and do not inhibit its activity. The relative contributions of mda-5 and RIG-I to IFN-beta induction are discussed.
Collapse
Affiliation(s)
- Kay Childs
- Division of Basic Medical Sciences, St. George's, University of London, London SW17 0RE, UK
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Hale BG, Jackson D, Chen YH, Lamb RA, Randall RE. Influenza A virus NS1 protein binds p85beta and activates phosphatidylinositol-3-kinase signaling. Proc Natl Acad Sci U S A 2006; 103:14194-9. [PMID: 16963558 PMCID: PMC1599933 DOI: 10.1073/pnas.0606109103] [Citation(s) in RCA: 245] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Influenza A virus NS1 is a multifunctional protein, and in virus-infected cells NS1 modulates a number of host-cell processes by interacting with cellular factors. Here, we report that NS1 binds directly to p85beta, a regulatory subunit of phosphatidylinositol-3-kinase (PI3K), but not to the related p85alpha subunit. Activation of PI3K in influenza virus-infected cells depended on genome replication, and showed kinetics that correlated with NS1 expression. Additionally, it was found that expression of NS1 alone was sufficient to constitutively activate PI3K, causing the phosphorylation of a downstream mediator of PI3K signal transduction, Akt. Mutational analysis of a potential SH2-binding motif within NS1 indicated that the highly conserved tyrosine at residue 89 is important for both the interaction with p85beta, and the activation of PI3K. A mutant influenza virus (A/Udorn/72) expressing NS1 with the Y89F amino acid substitution exhibited a small-plaque phenotype, and grew more slowly in tissue culture than WT virus. These data suggest that activation of PI3K signaling in influenza A virus-infected cells is important for efficient virus replication.
Collapse
Affiliation(s)
- Benjamin G. Hale
- *Centre for Biomolecular Sciences, University of St. Andrews, St. Andrews, Fife KY16 9ST, United Kingdom; and
| | - David Jackson
- Howard Hughes Medical Institute and Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, IL 60208-3500
| | - Yun-Hsiang Chen
- *Centre for Biomolecular Sciences, University of St. Andrews, St. Andrews, Fife KY16 9ST, United Kingdom; and
| | - Robert A. Lamb
- Howard Hughes Medical Institute and Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, IL 60208-3500
| | - Richard E. Randall
- *Centre for Biomolecular Sciences, University of St. Andrews, St. Andrews, Fife KY16 9ST, United Kingdom; and
| |
Collapse
|