1
|
Asadi M, Naderi D, Jahanshahi F. Sudden sensorineural hearing loss after receiving an inactivated viral vaccine, Sinopharm: Two-case report. SAGE Open Med Case Rep 2023; 11:2050313X231191237. [PMID: 37576350 PMCID: PMC10413890 DOI: 10.1177/2050313x231191237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 07/13/2023] [Indexed: 08/15/2023] Open
Abstract
The prevalence of Coronavirus Disease 2019 is a global threat. Due to the high mortality rate caused by this disease, the vaccination is mandatory to protect patients against it and reduce the mortality. Rapid development and widespread use of vaccines have raised the possibility of adverse side effects over the course of administration and follow-up. In this study, we investigated an adverse event of sudden sensorineural hearing loss in two patients receiving first dose of Sinopharm, an inactivated viral vaccine. Both patients experienced sudden hearing loss in their left ear some days after receiving the first dose of the Sinopharm and had normal otoscopic examinations in both ears and mild to severe sensorineural hearing loss was reported in the left ear. After imaging evaluation with magnetic resonance imaging which showed no pathologic points. Two patients were treated with prednisolone and valacyclovir. Both patients experienced response and had good prognosis in their follow-up. Our study showed that there is no direct evidence of an association between Coronavirus Disease 2019 vaccination. A viral infection can cause sudden sensorineural hearing loss and should be considered as a possible side effect after vaccination. Although the number of side effects reported in clinical trials has been very low, long-term follow-up of patients is needed to assess the vaccine's safety, given the incidence of these cases.
Collapse
Affiliation(s)
- Mahboobe Asadi
- Department of Otolaryngology, Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Delaram Naderi
- Student Research Committee, Allied of Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Jahanshahi
- Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Wichova H, Miller ME, Derebery MJ. Otologic Manifestations After COVID-19 Vaccination: The House Ear Clinic Experience. Otol Neurotol 2021; 42:e1213-e1218. [PMID: 34267103 PMCID: PMC8443418 DOI: 10.1097/mao.0000000000003275] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE With the increasing numbers of COVID-19 vaccinations available there are some reports of new onset of otologic symptoms. We present our experience in recently vaccinated patients over a 30-day time frame. STUDY DESIGN Retrospective chart review. SETTING Tertiary otology ambulatory practice. PATIENTS All patients with available diagnostic codes, COVID-19 questionnaires and clinical notes. INTERVENTIONS Observational recordings. MAIN OUTCOME MEASURES Within the same 30-day time period in 2019, 2020, and 2021, 1.6, 2.4, and 3.8% respectively, of all office visits were for patients with the diagnosis of new onset idiopathic sensorineural hearing loss (SNHL) without other underlying otologic diagnoses. In this time frame in 2021, 30 patients out of the 1,325 clinical visits had new or significantly exacerbated otologic symptoms that began shortly after COVID-19 vaccination. Specifically, 18 patients received Moderna and 12 patients received Pfizer vaccine. Their mean age was 60.9±13.8 years old; 11 were women and 19 men. The mean onset of symptoms was 10.18 ± 9 days post-vaccination. Symptoms included 25 patients (83.3%) with hearing loss, 15 (50%) with tinnitus, eight (26.7%) with dizziness, and five (16.7%) with vertigo. Eleven patients had previous otologic diagnoses, including six patients with Menière's disease, two with autoimmune inner ear disease (AIED), and three having both. CONCLUSIONS There are no definite correlations to the COVID-19 pandemic or vaccination and new or worsened otologic symptoms. Vaccinated patients with new or exacerbated otologic symptoms should be promptly referred for evaluation. Suspected cases of post-vaccination otologic symptoms should be reported to the Center for Disease Control (CDC) vaccine adverse event reporting system (VAERS).
Collapse
|
3
|
ORF7 of Varicella-Zoster Virus Is Required for Viral Cytoplasmic Envelopment in Differentiated Neuronal Cells. J Virol 2017; 91:JVI.00127-17. [PMID: 28356523 DOI: 10.1128/jvi.00127-17] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/24/2017] [Indexed: 12/20/2022] Open
Abstract
Although a varicella-zoster virus (VZV) vaccine has been used for many years, the neuropathy caused by VZV infection is still a major health concern. Open reading frame 7 (ORF7) of VZV has been recognized as a neurotropic gene in vivo, but its neurovirulent role remains unclear. In the present study, we investigated the effect of ORF7 deletion on VZV replication cycle at virus entry, genome replication, gene expression, capsid assembly and cytoplasmic envelopment, and transcellular transmission in differentiated neural progenitor cells (dNPCs) and neuroblastoma SH-SY5Y (dSY5Y) cells. Our results demonstrate that the ORF7 protein is a component of the tegument layer of VZV virions. Deleting ORF7 did not affect viral entry, viral genome replication, or the expression of typical viral genes but clearly impacted cytoplasmic envelopment of VZV capsids, resulting in a dramatic increase of envelope-defective particles and a decrease in intact virions. The defect was more severe in differentiated neuronal cells of dNPCs and dSY5Y. ORF7 deletion also impaired transmission of ORF7-deficient virus among the neuronal cells. These results indicate that ORF7 is required for cytoplasmic envelopment of VZV capsids, virus transmission among neuronal cells, and probably the neuropathy induced by VZV infection.IMPORTANCE The neurological damage caused by varicella-zoster virus (VZV) reactivation is commonly manifested as clinical problems. Thus, identifying viral neurovirulent genes and characterizing their functions are important for relieving VZV related neurological complications. ORF7 has been previously identified as a potential neurotropic gene, but its involvement in VZV replication is unclear. In this study, we found that ORF7 is required for VZV cytoplasmic envelopment in differentiated neuronal cells, and the envelopment deficiency caused by ORF7 deletion results in poor dissemination of VZV among neuronal cells. These findings imply that ORF7 plays a role in neuropathy, highlighting a potential strategy to develop a neurovirulence-attenuated vaccine against chickenpox and herpes zoster and providing a new target for intervention of neuropathy induced by VZV.
Collapse
|
4
|
Gan L, Wang M, Chen JJ, Gershon MD, Gershon AA. Infected peripheral blood mononuclear cells transmit latent varicella zoster virus infection to the guinea pig enteric nervous system. J Neurovirol 2014; 20:442-56. [PMID: 24965252 PMCID: PMC4206585 DOI: 10.1007/s13365-014-0259-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 05/02/2014] [Accepted: 05/15/2014] [Indexed: 11/30/2022]
Abstract
Latent wild-type (WT) and vaccine (vOka) varicella zoster virus (VZV) are found in the human enteric nervous system (ENS). VZV also infects guinea pig enteric neurons in vitro, establishes latency and can be reactivated. We therefore determined whether lymphocytes infected in vitro with VZV secrete infectious virions and can transfer infection in vivo to the ENS of recipient guinea pigs. T lymphocytes (CD3-immunoreactive) were preferentially infected following co-culture of guinea pig or human peripheral blood mononuclear cells with VZV-infected HELF. VZV proliferated in the infected T cells and expressed immediate early and late VZV genes. Electron microscopy confirmed that VZV-infected T cells produced encapsulated virions. Extracellular virus, however, was pleomorphic, suggesting degradation occurred prior to release, which was confirmed by the failure of VZV-infected T cells to secrete infectious virions. Intravenous injection of WT- or vOka-infected PBMCs, nevertheless, transmitted VZV to recipient animals (guinea pig > human lymphocytes). Two days post-inoculation, lung and liver, but not gut, contained DNA and transcripts encoding ORFs 4, 40, 66 and 67. Twenty-eight days after infection, gut contained DNA and transcripts encoding ORFs 4 and 66 but neither DNA nor transcripts could any longer be found in lung or liver. In situ hybridization revealed VZV DNA in enteric neurons, which also expressed ORF63p (but not ORF68p) immunoreactivity. Observations suggest that VZV infects T cells, which can transfer VZV to and establish latency in enteric neurons in vivo. Guinea pigs may be useful for studies of VZV pathogenesis in the ENS.
Collapse
Affiliation(s)
- Lin Gan
- Department of Microbiology, Anhui Medical University, Hefei, 230032, China
| | - Mingli Wang
- Department of Microbiology, Anhui Medical University, Hefei, 230032, China
| | - Jason J. Chen
- Department of Microbiology, Anhui Medical University, Hefei, 230032, China
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Michael D. Gershon
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Anne A. Gershon
- Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| |
Collapse
|
5
|
|
6
|
Kim S, Ahn BC, O'Callaghan DJ, Kim SK. The early UL31 gene of equine herpesvirus 1 encodes a single-stranded DNA-binding protein that has a nuclear localization signal sequence at the C-terminus. Virology 2012; 432:306-15. [PMID: 22721961 DOI: 10.1016/j.virol.2012.05.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 05/15/2012] [Accepted: 05/24/2012] [Indexed: 11/26/2022]
Abstract
The amino acid sequence of the UL31 protein (UL31P) of equine herpesvirus 1 (EHV-1) has homology to that of the ICP8 of herpes simplex virus type 1 (HSV-1). Here we show that the UL31 gene is synergistically trans-activated by the IEP and the UL5P (EICP27). Detection of the UL31 RNA transcript and the UL31P in EHV-1-infected cells at 6h post-infection (hpi) as well as metabolic inhibition assays indicated that UL31 is an early gene. The UL31P preferentially bound to single-stranded DNA over double-stranded DNA in gel shift assays. Subcellular localization of the green fluorescent protein (GFP)-UL31 fusion proteins revealed that the C-terminal 32 amino acid residues of the UL31P are responsible for the nuclear localization. These findings may contribute to defining the role of the UL31P single-stranded DNA-binding protein in EHV-1 DNA replication.
Collapse
Affiliation(s)
- Seongman Kim
- Department of Microbiology and Immunology, Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA
| | | | | | | |
Collapse
|
7
|
Kinchington PR, Leger AJS, Guedon JMG, Hendricks RL. Herpes simplex virus and varicella zoster virus, the house guests who never leave. HERPESVIRIDAE 2012; 3:5. [PMID: 22691604 PMCID: PMC3541251 DOI: 10.1186/2042-4280-3-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 05/12/2012] [Indexed: 12/16/2022]
Abstract
Human alphaherpesviruses including herpes simplex viruses (HSV-1, HSV-2) and varicella zoster virus (VZV) establish persistent latent infection in sensory neurons for the life of the host. All three viruses have the potential to reactivate causing recurrent disease. Regardless of the homology between the different virus strains, the three viruses are characterized by varying pathologies. This review will highlight the differences in infection pattern, immune response, and pathogenesis associated with HSV-1 and VZV.
Collapse
Affiliation(s)
- Paul R Kinchington
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | | | | | | |
Collapse
|
8
|
Vancurova I, Vancura A. Regulation and function of nuclear IκBα in inflammation and cancer. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL IMMUNOLOGY 2012; 1:56-66. [PMID: 23885315 PMCID: PMC3714182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 05/15/2012] [Indexed: 06/02/2023]
Abstract
The nuclear translocation and accumulation of IκBα represents an important mechanism regulating transcription of NFκB-dependent pro-inflammatory and anti-apoptotic genes. The nuclear accumulation of IκBα can be induced by post-induction repression in stimulated cells, inhibition of the CRM1-dependent nuclear IκBα export by leptomycin B, and by the inhibition of the 26S proteasome. In addition, IκBα is constitutively localized in the nucleus of human neutrophils, likely contributing to the high rate of spontaneous apoptosis in these cells. In the nucleus, IκBα suppresses transcription of NFκB-dependent pro-inflammatory and anti-apoptotic genes, representing an attractive therapeutic target. However, the inhibition of NFκB-dependent genes by nuclear IκBα is promoter specific, and depends on the subunit composition of NFκB dimers and post-translational modifications of the recruited NFκB proteins. In addition, several recent studies have demonstrated an NFκB-independent role of the nuclear IκBα. In this review, we discuss the mechanisms leading to the nuclear accumulation of IκBα and its nuclear functions as potential targets for anti-inflammatory and anti-cancer therapies.
Collapse
Affiliation(s)
- Ivana Vancurova
- Department of Biological Sciences, St. John's University New York, NY 11439, USA
| | | |
Collapse
|
9
|
Kim JI, Jung GS, Kim YY, Ji GY, Kim HS, Wang WD, Park HS, Park SY, Kim GH, Kwon SN, Lee KM, Ahn JH, Yoon Y, Lee CH. Sequencing and characterization of Varicella-zoster virus vaccine strain SuduVax. Virol J 2011; 8:547. [PMID: 22176950 DOI: 10.1186/1743-422x-8-547] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 12/16/2011] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Varicella-zoster virus (VZV) causes chickenpox in children and shingles in older people. Currently, live attenuated vaccines based on the Oka strain are available worldwide. In Korea, an attenuated VZV vaccine has been developed from a Korean isolate and has been commercially available since 1994. Despite this long history of use, the mechanism for the attenuation of the vaccine strain is still elusive. We attempted to understand the molecular basis of attenuation mechanism by full genome sequencing and comparative genomic analyses of the Korean vaccine strain SuduVax. RESULTS SuduVax was found to contain a genome that was 124,759 bp and possessed 74 open reading frames (ORFs). SuduVax was genetically most close to Oka strains and these Korean-Japanese strains formed a strong clade in phylogenetic trees. SuduVax, similar to the Oka vaccine strains, underwent T- > C substitution at the stop codon of ORF0, resulting in a read-through mutation to code for an extended form of ORF0 protein. SuduVax also shared certain deletion and insertion mutations in ORFs 17, 29, 56 and 60 with Oka vaccine strains and some clinical strains. CONCLUSIONS The Korean VZV vaccine strain SuduVax is genetically similar to the Oka vaccine strains. Further comparative genomic and bioinformatics analyses will help to elucidate the molecular basis of the attenuation of the VZV vaccine strains.
Collapse
Affiliation(s)
- Jong Ik Kim
- Department of Microbiology, Chungbuk National University, Cheongju, South Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Chen JJ, Gershon AA, Li Z, Cowles RA, Gershon MD. Varicella zoster virus (VZV) infects and establishes latency in enteric neurons. J Neurovirol 2011; 17:578-89. [PMID: 22190254 PMCID: PMC3324263 DOI: 10.1007/s13365-011-0070-1] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 12/01/2011] [Accepted: 12/05/2011] [Indexed: 01/27/2023]
Abstract
Case reports have linked varicella-zoster virus (VZV) to gastrointestinal disorders, including severe abdominal pain preceding fatal varicella and acute colonic pseudoobstruction (Ogilvie's syndrome). Because we had previously detected DNA and transcripts encoding latency-associated VZV gene products in the human gut, we sought to determine whether latent VZV is present in the human enteric nervous system (ENS) and, if so, to identify the cells in which it is located and its route to the bowel. Neither DNA, nor transcripts encoding VZV gene products, could be detected in resected gut from any of seven control children (<1 year old) who had not received the varicella vaccine or experienced varicella; however, VZV DNA and transcripts were each found to be present in resected bowel from 6/6 of children with a past history of varicella and in that of 6/7 of children who received the varicella vaccine. Both wild-type (WT) and vaccine-type (vOka) VZV thus establish latent infection in human gut. To determine routes by which VZV might gain access to the bowel, we injected guinea pigs with human or guinea pig lymphocytes expressing green fluorescent protein (GFP) under the control of the VZV ORF66 gene (VZV(OKA66.GFP)). GFP-expressing enteric neurons were found throughout the bowel within 2 days and continued to be present for greater than 6 weeks. DNA encoding VZV gene products also appeared in enteric and dorsal root ganglion (DRG) neurons following intradermal administration of WT-VZV and in enteric neurons after intradermal injection of VZV(OKA66.GFP); moreover, a small number of guinea pig DRG neurons were found to project both to the skin and the intraperitoneal viscera. Viremia, in which lymphocytes carry VZV, or axonal transport from DRG neurons infected through their epidermal projections are thus each potential routes that enable VZV to gain access to the ENS.
Collapse
Affiliation(s)
- Jason J Chen
- Departments of Pathology and Cell Biology, Columbia University, College of P&S, New York, NY, USA
| | | | | | | | | |
Collapse
|
11
|
Abstract
Varicella zoster virus (VZV) infection results in the establishment of latency in human sensory neurons. Reactivation of VZV leads to herpes zoster which can be followed by persistent neuropathic pain, termed post-herpetic neuralgia (PHN). Humans are the only natural host for VZV, and the strict species specificity of the virus has restricted the development of an animal model of infection which mimics all phases of disease. In order to elucidate the mechanisms which control the establishment of latency and reactivation as well as the effect of VZV replication on neuronal function, in vitro models of neuronal infection have been developed. Currently these models involve culturing and infecting dissociated human fetal neurons, with or without their supporting cells, an intact explant fetal dorsal root ganglia (DRG) model, neuroblastoma cell lines and rodent neuronal cell models. Each of these models has distinct advantages as well as disadvantages, and all have contributed towards our understanding of VZV neuronal infection. However, as yet none have been able to recapitulate the full virus lifecycle from primary infection to latency through to reactivation. The development of such a model will be a crucial step towards advancing our understanding of the mechanisms involved in VZV replication in neuronal cells, and the design of new therapies to combat VZV-related disease.
Collapse
|
12
|
Nuclear import of the varicella-zoster virus latency-associated protein ORF63 in primary neurons requires expression of the lytic protein ORF61 and occurs in a proteasome-dependent manner. J Virol 2008; 82:8673-86. [PMID: 18562514 DOI: 10.1128/jvi.00685-08] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Varicella-zoster virus (VZV) open reading frame (ORF) 63 protein (ORF63p) is one of six VZV ORFs shown to be transcribed and translated in latently infected human dorsal root ganglia. ORF63p accumulates exclusively in the cytoplasm of latently infected sensory neurons, whereas it is both nuclear and cytoplasmic during lytic infection and following reactivation from latency. Here, we demonstrate that infection of primary guinea pig enteric neurons (EN) with an adenovirus expressing ORF63p results in the exclusive cytoplasmic localization of the protein reminiscent of its distribution during latent VZV infection in humans. We show that the addition of the simian virus 40 large-T-antigen nuclear localization signal (NLS) results in the nuclear import of ORF63p in EN and that the ORF63p endogenous NLSs are functional in EN when fused to a heterologous protein. These data suggest that the cytoplasmic localization of ORF63p in EN results from the masking of the NLSs, thus blocking nuclear import. However, the coexpression of ORF61p, a strictly lytic VZV protein, and ORF63p in EN results in the nuclear import of ORF63p in a proteasome-dependent manner, and both ORF63p NLSs are required for this event. We propose that the cytoplasmic localization of ORF63p in neurons results from NLS masking and that the expression of ORF61p removes this block, allowing nuclear import to proceed.
Collapse
|
13
|
Vu HY, Juvekar A, Ghosh C, Ramaswami S, Le DH, Vancurova I. Proteasome inhibitors induce apoptosis of prostate cancer cells by inducing nuclear translocation of IkappaBalpha. Arch Biochem Biophys 2008; 475:156-63. [PMID: 18468507 DOI: 10.1016/j.abb.2008.04.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Revised: 04/22/2008] [Accepted: 04/23/2008] [Indexed: 10/22/2022]
Abstract
Proteasome inhibitors are known to suppress the proteasome-mediated degradation of IkappaBalpha in stimulated cells. This results in the cytoplasmic retention of NFkappaB and its reduced nuclear transcriptional activity. In this study, we show that in the metastatic prostate cancer cells, the proteasome inhibitors exhibit a novel, previously unrecognized effect: they increase the cellular levels of IkappaBalpha, which then translocates to the nucleus, associates with the nuclear p65 NFkappaB, thus inhibiting the constitutive NFkappaB DNA binding activity and inducing apoptosis. The proteasome inhibition-induced nuclear translocation of IkappaBalpha is dependent on de novo protein synthesis, occurs also in other cell types, and does not require IkappaBalpha phosphorylation on Ser-32. Since NFkappaB activity is constitutively increased in many human cancers as well as in inflammatory disorders, the proteasome inhibition-induced nuclear translocation of IkappaBalpha could thus provide a new therapeutic strategy aimed at the specific inhibition of NFkappaB activity by the nuclear IkappaBalpha.
Collapse
Affiliation(s)
- Hai-Yen Vu
- Department of Biological Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, USA
| | | | | | | | | | | |
Collapse
|
14
|
Kyratsous CA, Silverstein SJ. BAG3, a host cochaperone, facilitates varicella-zoster virus replication. J Virol 2007; 81:7491-503. [PMID: 17475647 PMCID: PMC1933350 DOI: 10.1128/jvi.00442-07] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Accepted: 04/25/2007] [Indexed: 12/29/2022] Open
Abstract
Varicella-zoster virus (VZV) establishes a lifelong latent infection in the dorsal root ganglia of the host. During latency, a subset of virus-encoded regulatory proteins is detected; however, they are excluded from the nucleus. ORF29p, a single-stranded DNA binding protein, is one of these latency-associated proteins. We searched for cell proteins that interact with ORF29p and identified BAG3. BAG3, Hsp70/Hsc70, and Hsp90 colocalize with ORF29p in nuclear transcription/replication factories during lytic replication of VZV. Pharmacological intercession of Hsp90 activity with ansamycin antibiotics or depletion of BAG3 by small interfering RNA results in inhibition of virus replication. Replication in BAG3-depleted cell lines is restored by complementation with exogenous BAG3. Alteration of host chaperone activity provides a novel means of regulating virus replication.
Collapse
Affiliation(s)
- Christos A Kyratsous
- Department of Microbiology, College of Physicians and Surgeons, Columbia University, 701 W. 168th St., New York, NY 10032, USA
| | | |
Collapse
|
15
|
Cohen JI, Krogmann T, Pesnicak L, Ali MA. Absence or overexpression of the Varicella-Zoster Virus (VZV) ORF29 latency-associated protein impairs late gene expression and reduces VZV latency in a rodent model. J Virol 2006; 81:1586-91. [PMID: 17151102 PMCID: PMC1797561 DOI: 10.1128/jvi.01220-06] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Varicella-zoster virus (VZV) ORF29 encodes the viral single-stranded DNA binding protein and is expressed during latency in human ganglia. We constructed an ORF29 deletion mutant virus and showed that the virus could replicate only in cells expressing ORF29. An ORF29-repaired virus, in which ORF29 was driven by a cytomegalovirus promoter, grew to peak titers similar to those seen with the parental virus. The level of ORF29 protein in cells infected with the repaired virus was greater than that seen with parental virus. Infection of cells with either the ORF29 deletion or repaired virus resulted in similar levels of VZV immediate-early proteins but reduced levels of glycoprotein E compared to those observed with parental virus. Cotton rats infected with the ORF29 deletion mutant had a markedly reduced frequency of latent infection in dorsal root ganglia compared with those infected with parental virus (P < 0.00001). In contrast, infection of animals with the ORF29 deletion mutant resulted in a frequency of ganglionic infection at 3 days similar to that seen with the parental virus. Animals infected with the ORF29-repaired virus, which overexpresses ORF29, also had a reduced frequency of latent infection compared with those infected with parental virus (P = 0.0044). These studies indicate that regulation of ORF29 at appropriate levels is critical for VZV latency in a rodent model.
Collapse
Affiliation(s)
- Jeffrey I Cohen
- Laboratory of Clinical Infectious Diseases, Bldg. 10, Room 11N234, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
16
|
Gray WL, Davis K, Ou Y, Ashburn C, Ward TM. Simian varicella virus gene 61 encodes a viral transactivator but is non-essential for in vitro replication. Arch Virol 2006; 152:553-63. [PMID: 17115302 DOI: 10.1007/s00705-006-0866-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2006] [Accepted: 09/01/2006] [Indexed: 11/25/2022]
Abstract
Simian varicella virus (SVV) is closely related to varicella-zoster virus (VZV), the causative agent of chickenpox and shingles. The SVV and VZV gene 61 polypeptides are homologs of the HSV-1 ICP0, a viral transactivator which appears to play a role in viral latency and reactivation. In this study, the molecular properties of the SVV 61 were characterized. The SVV open reading frame (ORF) 61 encodes a 54.1-kDa polypeptide with 37% amino acid identity to the VZV 61. Homology to the HSV-1 ICP-0 is limited to a conserved RING finger motif at the amino terminus of the protein. A nuclear localization sequence (nls) at the carboxy-terminus directs the SVV 61 to the cell nucleus, while a SVV 61nls(-) mutant is confined to the cell cytoplasm. The SVV 61 transactivates its own promoter as well as SVV immediate early (IE, ORF 62), early (ORFs 28 and 29), and late (ORF 68) gene promoters in transfected Vero cells. The RING finger and nls motifs are required for efficient SVV 61 transactivation. The SVV 61 has no effect on the ability of the major SVV transactivator (IE62) to induce SVV promoters. Generation and propagation of a SVV gene 61 deletion mutant demonstrated that the SVV 61 is non-essential for in vitro replication. SVV gene 61 is expressed in liver, lung, and neural ganglia of infected monkeys during acute simian varicella.
Collapse
Affiliation(s)
- W L Gray
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | | | | | | | | |
Collapse
|
17
|
Stallings CL, Silverstein SJ. Posttranslational modification and cell type-specific degradation of varicella-zoster virus ORF29p. J Virol 2006; 80:10836-46. [PMID: 16956951 PMCID: PMC1641786 DOI: 10.1128/jvi.00966-06] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ORF29 gene of varicella-zoster virus encodes a single-stranded DNA binding protein that is predominantly nuclear during lytic infection but appears to be restricted to the cytoplasm of latently infected neurons. Following reactivation, ORF29p accumulates in the nuclei of neurons, suggesting that its confinement to the cytosol may be critical for maintaining quiescence. When autonomously expressed, ORF29p accumulates in the nuclei of fibroblasts and the cytoplasm of cells (guinea pig enteric neurons) and cell lines (U373MG) of neuronal origin. Inhibition of the 26S proteasome redirects the accumulation of ORF29p to the nucleus in cells of neuronal origin. Here, we show that ORF29p is ubiquitinated and sumoylated in 293T cells and subsequently degraded from the N terminus. Ubiquitinated ORF29p accumulates in both the nuclei and the cytoplasm of fibroblasts, but degradation products are seen primarily in the cytoplasm. Modification and degradation of ORF29p occurs in 293T, U373MG, and MeWo cells. Therefore, these processes are ubiquitous; however, the robustness of the degradation process is cell type specific. The proteasome-mediated mechanism of nuclear exclusion in U373MG cells is an active process that is not specific for the endogenous ORF29p nuclear localization signal but can be saturated by protein stabilization or overexpression, which leads to nuclear accumulation of ORF29p. The evidence for ORF29p ubiquitination and previous data regarding the effect of proteasome inhibitors on the abundance and distribution of ORF29p implicate the 26S proteasome in influencing the protein's cell type-specific localization.
Collapse
|