1
|
Mo M, Chen J, Yang Y, Yu Y, Wu W, Yang K, Yuan M. Autographa californica multiple nucleopolyhedrovirus ac106 is required for the nuclear egress of nucleocapsids and intranuclear microvesicle formation. J Virol 2024:e0113524. [PMID: 39431847 DOI: 10.1128/jvi.01135-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 09/20/2024] [Indexed: 10/22/2024] Open
Abstract
Autographa californica multiple nucleopolyhedrovirus (AcMNPV) orf106 (ac106) is highly conserved in baculoviruses. Previous studies have shown that ac106 is required for the production of infectious budded virions (BVs). However, the functional role of ac106 in virion morphogenesis remains unknown. In this report, an ac106 knockout virus and an ac106 repair virus were constructed. The effect of ac106 deletion on virion morphogenesis was investigated, and the expression and subcellular localization of the Ac106 protein were characterized. Our data indicated that ac106 is required for the nuclear egress of nucleocapsids and intranuclear microvesicle formation, as well as subsequent BV and occlusion-derived virion (ODV) production and the embedding of ODVs into polyhedra. Ac106 is a baculovirus late protein that is concentrated in discrete foci of virus-induced membrane structures in the intranuclear ring zone of virus-infected cells. Further studies on the relationship between Ac106 and four other proteins that are also required for intranuclear microvesicle formation, Ac75, Ac76, Ac93, and P48 (Ac103), revealed that Ac106 is associated with Ac75, Ac76, Ac93, P48, and itself. Ac106 is required for Ac75, Ac93, and P48 accumulation in foci of virus-induced intranuclear membrane structures and the intranuclear transport of Ac76. Analysis of the subcellular localization of ODV integral envelope proteins upon deletion of the genes required for intranuclear microvesicle formation indicated that intranuclear microvesicle formation may be essential for ODV integral envelope protein transport into the nucleus, supporting the hypothesis that intranuclear microvesicles originate from the nuclear membrane.IMPORTANCEBaculovirus occlusion-derived virions (ODVs) are known to acquire their envelopes from virus-induced intranuclear microvesicles within the nucleoplasm, and this strategy of intranuclear envelopment of nucleocapsids to form virions is unique among viruses. However, the mechanism of ODV morphogenesis, particularly intranuclear microvesicle formation, remains unclear. In this study, we identified ac106 as the fifth gene, in addition to ac75, ac76, ac93, and p48 (ac103), which are required for intranuclear microvesicle formation. Further studies on the relationship between ac106 and the other four genes, as well as the effect of ac106 or ac75 deletion on the localization of ODV integral envelope proteins, indicated that intranuclear microvesicle formation may be essential for the transport of ODV integral envelope proteins into the nucleus, which strongly supports the hypothesis that intranuclear microvesicles originate from the nuclear membrane. These findings greatly enhance our understanding of the molecular mechanism of baculovirus ODV morphogenesis.
Collapse
Affiliation(s)
- Mei Mo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jiannan Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yushan Yang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yinyin Yu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wenbi Wu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Kai Yang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Meijin Yuan
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
2
|
Huang L, Chen TT, Dong ZQ, Zhang Y, Lin Y, Chen P, Pan MH, Lu C. BmHSP19.9 targeting P6.9 and VLF-1 to mediate the formation of defective progeny viruses in the silkworm antiviral variety 871C. Int J Biol Macromol 2024; 275:133300. [PMID: 38914396 DOI: 10.1016/j.ijbiomac.2024.133300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/20/2024] [Accepted: 05/29/2024] [Indexed: 06/26/2024]
Abstract
The 871C silkworm strain exhibits a high level of resistance to Bombyx mori nucleopolyhedrovirus (BmNPV), making it a valuable variety for the sericulture industry. Understanding the underlying mechanism of its resistance holds great biological significance and economic value in addressing viral disease risks in sericulture. Initially, we infected the resistant strain 871C and its control strain 871 with BmNPV and conducted secondary infection experiments using the progeny occlusion bodies (OBs). As a result, a significant decrease in pathogenicity was observed. Electron microscopy analysis revealed that 871C produces progeny virions with defective DNA packaging, reducing virulence following BmNPV infection. Blood proteomic identification of the silkworm variety 871C and control 871 after BmNPV infection demonstrated the crucial role of the viral proteins P6.9 and VLF-1 in the production of defective viruses by impeding the proper encapsulation of viral DNA. Additionally, we discovered that BmHSP19.9 interacts with P6.9 and VLF-1 and that its expression is significantly upregulated after BmNPV infection. BmHSP19.9 exhibits strong antiviral activity, in part by preventing the entry of the proteins P6.9 and VLF-1 into the nucleus, thereby hindering viral nucleocapsid and viral DNA assembly. Our findings indicate that the antiviral silkworm strain 871C inhibits BmNPV proliferation by upregulating Bmhsp19.9 and impeding the nuclear localization of the viral proteins P6.9 and VLF-1, leading to the production of defective viral particles. This study offers a comprehensive analysis of the antiviral mechanism in silkworms from a viral perspective, providing a crucial theoretical foundation for future antiviral research and the breeding of resistant silkworm strains.
Collapse
Affiliation(s)
- Liang Huang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing 400716, China
| | - Ting-Ting Chen
- Pathogen Biology and Immunology Laboratory, Lab Teaching & Management Center, Chongqing Medical University, Chongqing 400716, China
| | - Zhan-Qi Dong
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing 400716, China
| | - Ya Zhang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing 400716, China
| | - Yu Lin
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing 400716, China
| | - Peng Chen
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing 400716, China
| | - Min-Hui Pan
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing 400716, China.
| | - Cheng Lu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing 400716, China.
| |
Collapse
|
3
|
Bai L, Sun Y, Yue X, Ji N, Yan F, Yang T, Feng G, Guo Y, Li Z. Multifaceted interactions between host ESCRT-III and budded virus-related proteins involved in entry and egress of the baculovirus Autographa californica multiple nucleopolyhedrovirus. J Virol 2024; 98:e0190023. [PMID: 38289107 PMCID: PMC10878073 DOI: 10.1128/jvi.01900-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 12/19/2023] [Indexed: 02/21/2024] Open
Abstract
The endosomal sorting complex required for transport (ESCRT) is a conserved protein machine mediating membrane remodeling and scission. In the context of viral infection, different components of the ESCRT-III complex, which serve as the core machinery to catalyze membrane fission, are involved in diverse viruses' entry, replication, and/or budding. However, the interplay between ESCRT-III and viral factors in the virus life cycle, especially for that of large enveloped DNA viruses, is largely unknown. Recently, the ESCRT-III components Vps2B, Vps20, Vps24, Snf7, Vps46, and Vps60 were determined for entry and/or egress of the baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV). Here, we identified the final three ESCRT-III components Chm7, Ist1, and Vps2A of Spodoptera frugiperda. Overexpression of the dominant-negative forms of these proteins or RNAi downregulation of their transcripts significantly reduced infectious budded viruses (BVs) production of AcMNPV. Quantitative PCR together with confocal and transmission electron microscopy analysis revealed that these proteins were required for internalization and trafficking of BV during entry and egress of nucleocapsids. In infected Sf9 cells, nine ESCRT-III components were distributed on the nuclear envelope and plasma membrane, and except for Chm7, the other components were also localized to the intranuclear ring zone. Y2H and BiFC analysis revealed that 42 out of 64 BV-related proteins including 35 BV structural proteins and 7 non-BV structural proteins interacted with single or multiple ESCRT-III components. By further mapping the interactome of 64 BV-related proteins, we established the interaction networks of ESCRT-III and the viral protein complexes involved in BV entry and egress.IMPORTANCEFrom archaea to eukaryotes, the endosomal sorting complex required for transport (ESCRT)-III complex is hijacked by many enveloped and nonenveloped DNA or RNA viruses for efficient replication. However, the mechanism of ESCRT-III recruitment, especially for that of large enveloped DNA viruses, remains elusive. Recently, we found the ESCRT-III components Vps2B, Vps20, Vps24, Snf7, Vps46, and Vps60 are necessary for the entry and/or egress of budded viruses (BVs) of Autographa californica multiple nucleopolyhedrovirus. Here, we demonstrated that the other three ESCRT-III components Chm7, Ist1, and Vps2A play similar roles in BV infection. By determining the subcellular localization of ESCRT-III components in infected cells and mapping the interaction of nine ESCRT-III components and 64 BV-related proteins, we built the interaction networks of ESCRT-III and the viral protein complexes involved in BV entry and egress. These studies provide a fundamental basis for understanding the mechanism of the ESCRT-mediated membrane remodeling for replication of baculoviruses.
Collapse
Affiliation(s)
- Lisha Bai
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Yu Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaorong Yue
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Ning Ji
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Fanye Yan
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Tian Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Guozhong Feng
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Ya Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhaofei Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
4
|
Lorenzi A, Arvin MJ, Burke GR, Strand MR. Functional characterization of Microplitis demolitor bracovirus genes that encode nucleocapsid components. J Virol 2023; 97:e0081723. [PMID: 37877717 PMCID: PMC10688341 DOI: 10.1128/jvi.00817-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/19/2023] [Indexed: 10/26/2023] Open
Abstract
IMPORTANCE Understanding how bracoviruses (BVs) function in wasps is of broad interest in the study of virus evolution. This study characterizes most of the Microplitis demolitor bracovirus (MdBV) genes whose products are nucleocapsid components. Results indicate several genes unknown outside of nudiviruses and BVs are essential for normal capsid assembly. Results also indicate most MdBV tyrosine recombinase family members and the DNA binding protein p6.9-1 are required for DNA processing and packaging into nucleocapsids.
Collapse
Affiliation(s)
- Ange Lorenzi
- Department of Entomology, University of Georgia, Athens, Georgia, USA
| | - Michael J. Arvin
- Department of Entomology, University of Georgia, Athens, Georgia, USA
| | - Gaelen R. Burke
- Department of Entomology, University of Georgia, Athens, Georgia, USA
| | - Michael R. Strand
- Department of Entomology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
5
|
Jia X, Gao Y, Huang Y, Sun L, Li S, Li H, Zhang X, Li Y, He J, Wu W, Venkannagari H, Yang K, Baker ML, Zhang Q. Architecture of the baculovirus nucleocapsid revealed by cryo-EM. Nat Commun 2023; 14:7481. [PMID: 37980340 PMCID: PMC10657434 DOI: 10.1038/s41467-023-43284-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 11/03/2023] [Indexed: 11/20/2023] Open
Abstract
Baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV) has been widely used as a bioinsecticide and a protein expression vector. Despite their importance, very little is known about the structure of most baculovirus proteins. Here, we show a 3.2 Å resolution structure of helical cylindrical body of the AcMNPV nucleocapsid, composed of VP39, as well as 4.3 Å resolution structures of both the head and the base of the nucleocapsid composed of over 100 protein subunits. AcMNPV VP39 demonstrates some features of the HK97-like fold and utilizes disulfide-bonds and a set of interactions at its C-termini to mediate nucleocapsid assembly and stability. At both ends of the nucleocapsid, the VP39 cylinder is constricted by an outer shell ring composed of proteins AC104, AC142 and AC109. AC101(BV/ODV-C42) and AC144(ODV-EC27) form a C14 symmetric inner layer at both capsid head and base. In the base, these proteins interact with a 7-fold symmetric capsid plug, while a portal-like structure is seen in the central portion of head. Additionally, we propose an application of AlphaFold2 for model building in intermediate resolution density.
Collapse
Affiliation(s)
- Xudong Jia
- State key laboratory of biocontrol, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China
| | - Yuanzhu Gao
- State key laboratory of biocontrol, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China
- Cryo-EM Facility Center, Southern University of Science and Technology, Shenzhen, China
| | - Yuxuan Huang
- State key laboratory of biocontrol, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China
| | - Linjun Sun
- State key laboratory of biocontrol, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China
| | - Siduo Li
- State key laboratory of biocontrol, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China
| | - Hongmei Li
- State key laboratory of biocontrol, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China
| | - Xueqing Zhang
- State key laboratory of biocontrol, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China
| | - Yinyin Li
- State key laboratory of biocontrol, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China
| | - Jian He
- State key laboratory of biocontrol, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China
| | - Wenbi Wu
- State key laboratory of biocontrol, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China
| | - Harikanth Venkannagari
- Department of Biochemistry and Molecular Biology, McGovern Medical School at the University of Texas Health Science Center, Houston, TX, 77030, USA
| | - Kai Yang
- State key laboratory of biocontrol, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China
| | - Matthew L Baker
- Department of Biochemistry and Molecular Biology, McGovern Medical School at the University of Texas Health Science Center, Houston, TX, 77030, USA.
| | - Qinfen Zhang
- State key laboratory of biocontrol, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China.
| |
Collapse
|
6
|
Cornman RS. Data mining reveals tissue-specific expression and host lineage-associated forms of Apis mellifera filamentous virus. PeerJ 2023; 11:e16455. [PMID: 38025724 PMCID: PMC10655722 DOI: 10.7717/peerj.16455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Background Apis mellifera filamentous virus (AmFV) is a large double-stranded DNA virus of uncertain phylogenetic position that infects honey bees (Apis mellifera). Little is known about AmFV evolution or molecular aspects of infection. Accurate annotation of open-reading frames (ORFs) is challenged by weak homology to other known viruses. This study was undertaken to evaluate ORFs (including coding-frame conservation, codon bias, and purifying selection), quantify genetic variation within AmFV, identify host characteristics that covary with infection rate, and examine viral expression patterns in different tissues. Methods Short-read data were accessed from the Sequence Read Archive (SRA) of the National Center for Biotechnology Information (NCBI). Sequence reads were downloaded from accessions meeting search criteria and scanned for kmers representative of AmFV genomic sequence. Samples with kmer counts above specified thresholds were downloaded in full for mapping to reference sequences and de novo assembly. Results At least three distinct evolutionary lineages of AmFV exist. Clade 1 predominates in Europe but in the Americas and Africa it is replaced by the other clades as infection level increases in hosts. Only clade 3 was found at high relative abundance in hosts with African ancestry, whereas all clades achieved high relative abundance in bees of non-African ancestry. In Europe and Africa, clade 2 was generally detected only in low-level infections but was locally dominant in some North American samples. The geographic distribution of clade 3 was consistent with an introduction to the Americas with 'Africanized' honey bees in the 1950s. Localized genomic regions of very high nucleotide divergence in individual isolates suggest recombination with additional, as-yet unidentified AmFV lineages. A set of 155 high-confidence ORFs was annotated based on evolutionary conservation in six AmFV genome sequences representative of the three clades. Pairwise protein-level identity averaged 94.6% across ORFs (range 77.1-100%), which generally exhibited low evolutionary rates and moderate to strong codon bias. However, no robust example of positive diversifying selection on coding sequence was found in these alignments. Most of the genome was detected in RNA short-read alignments. Transcriptome assembly often yielded contigs in excess of 50 kb and containing ORFs in both orientations, and the termini of long transcripts were associated with tandem repeats. Lower levels of AmFV RNA were detected in brain tissue compared to abdominal tissue, and a distinct set of ORFs had minimal to no detectable expression in brain tissue. A scan of DNA accessions from the parasitic mite Varroa destructor was inconclusive with respect to replication in that species. Discussion Collectively, these results expand our understanding of this enigmatic virus, revealing transcriptional complexity and co-evolutionary associations with host lineage.
Collapse
|
7
|
Bruder MR, Aucoin MG. A sensitive assay for scrutiny of Autographa californica multiple nucleopolyhedrovirus genes using CRISPR-Cas9. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12462-y. [PMID: 37233755 DOI: 10.1007/s00253-023-12462-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 02/09/2023] [Accepted: 02/27/2023] [Indexed: 05/27/2023]
Abstract
Baculoviruses have very large genomes and previous studies have demonstrated improvements in recombinant protein production and genome stability through the removal of some nonessential sequences. However, recombinant baculovirus expression vectors (rBEVs) in widespread use remain virtually unmodified. Traditional approaches for generating knockout viruses (KOVs) require several experimental steps to remove the target gene prior to the generation of the virus. In order to optimize rBEV genomes by removing nonessential sequences, more efficient techniques for establishing and evaluating KOVs are required. Here, we have developed a sensitive assay utilizing CRISPR-Cas9-mediated gene targeting to examine the phenotypic impact of disruption of endogenous Autographa californica multiple nucleopolyhedrovirus (AcMNPV) genes. For validation, 13 AcMNPV genes were targeted for disruption and evaluated for the production of GFP and progeny virus - traits that are essential for their use as vectors for recombinant protein production. The assay involves transfection of sgRNA into a Cas9-expressing Sf9 cell line followed by infection with a baculovirus vector carrying the gfp gene under the p10 or p6.9 promoters. This assay represents an efficient strategy for scrutinizing AcMNPV gene function through targeted disruption, and represents a valuable tool for developing an optimized rBEV genome. KEY POINTS: [Formula: see text] A method to scrutinize the essentiality of baculovirus genes was developed. [Formula: see text] The method uses Sf9-Cas9 cells, a targeting plasmid carrying a sgRNA, and a rBEV-GFP. [Formula: see text] The method allows scrutiny by only needing to modify the targeting sgRNA plasmid.
Collapse
Affiliation(s)
- Mark R Bruder
- Department of Chemical Engineering, University of Waterloo, 200 University Ave. W., Waterloo, N2L 3G1, Ontario, Canada
| | - Marc G Aucoin
- Department of Chemical Engineering, University of Waterloo, 200 University Ave. W., Waterloo, N2L 3G1, Ontario, Canada.
| |
Collapse
|
8
|
Petersen JM, Bézier A, Drezen JM, van Oers MM. The naked truth: An updated review on nudiviruses and their relationship to bracoviruses and baculoviruses. J Invertebr Pathol 2022; 189:107718. [DOI: 10.1016/j.jip.2022.107718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 10/19/2022]
|
9
|
Li S, Ou B, Lv Y, Gan T, Zhao H, Liu W. VP39 of Spodoptera litura multicapsid nucleopolyhedrovirus cannot efficiently rescue the nucleocapsid assembly of vp39-null Autographa californica multiple nucleopolyhedrovirus. Virol J 2021; 18:81. [PMID: 33879205 PMCID: PMC8059189 DOI: 10.1186/s12985-021-01553-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 04/14/2021] [Indexed: 11/25/2022] Open
Abstract
Background Autographa californica multiple nucleopolyhedrovirus (AcMNPV) vp39 is conserved in all sequenced baculovirus genomes. In previous studies, VP39 has been identified as the major capsid structure protein of baculoviruses and found to be essential for nucleocapsid assembly. The nucleocapsid composition and structure of Group I and II NPVs of the Alphabaculovirus genus are very similar. It is not clear whether the major capsid structure protein VP39 of Group I NPVs is functionally identical to or substitutable with the Group II NPV VP39. In this study, the function of Group II Spodoptera litura MNPV (SpltMNPV) VP39 in Group I AcMNPV was characterized. Methods Sequence alignment of AcMNPV VP39 and SpltMNPV VP39 was performed using Clustal X and edited with GeneDoc. To determine whether VP39 of Group I NPVs can be functionally substituted by Group II NPV VP39, a vp39-null AcMNPV (vAcvp39KO) and a vp39-pseudotyped AcMNPV (vAcSpltvp39:FLAG), in which the Group I AcMNPV vp39 coding sequence was replaced with that of SpltMNPV from Group II NPVs, were constructed via homologous recombination in Escherichia coli. Using an anti-FLAG monoclonal antibody, immunoblot analysis was performed to examine SpltMNPV VP39 expression. Fluorescence and light microscopy were used to monitor viral replication and infection. Viral growth curve analysis was performed using a fifty percent tissue culture infective dose (TCID50) endpoint dilution assay. Viral morphogenesis was detected using an electron microscope. Results Sequence alignment indicated that the N-termini of AcMNPV VP39 and SpltMNPV VP39 are relatively conserved, whereas the C-terminus of SpltMNPV VP39 lacks the domain of amino acid residues 306–334 homologous to AcMNPV VP39. Immunoblot analysis showed that SpltMNPV VP39 was expressed in vAcSpltvp39:FLAG. Fluorescence and light microscopy showed that vAcSpltvp39:FLAG did not spread by infection. Viral growth curve analysis confirmed a defect in infectious budded virion production. Electron microscopy revealed that although masses of abnormally elongated empty capsid structures existed inside the nuclei of Sf9 cells transfected with vAcSpltvp39:FLAG, no nucleocapsids were observed. Conclusion Altogether, our results demonstrated that VP39 from SpltMNPV cannot efficiently substitute AcMNPV VP39 during nucleocapsid assembly in AcMNPV.
Collapse
Affiliation(s)
- Sainan Li
- Department of Biology, Zhaoqing University, Zhaoqing, 526061, China.
| | - Bingming Ou
- Department of Biology, Zhaoqing University, Zhaoqing, 526061, China
| | - Yina Lv
- Department of Biology, Zhaoqing University, Zhaoqing, 526061, China
| | - Tian Gan
- Department of Biology, Zhaoqing University, Zhaoqing, 526061, China
| | - Haizhou Zhao
- Department of Biology, Zhaoqing University, Zhaoqing, 526061, China
| | - Wenhua Liu
- Department of Biology, Zhaoqing University, Zhaoqing, 526061, China
| |
Collapse
|
10
|
Yu H, Ou-Yang YY, Yang CJ, Li N, Nakai M, Huang GH. 3H-31, A Non-structural Protein of Heliothis virescens ascovirus 3h, Inhibits the Host Larval Cathepsin and Chitinase Activities. Virol Sin 2021; 36:1036-1051. [PMID: 33830433 DOI: 10.1007/s12250-021-00374-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 11/16/2020] [Indexed: 11/29/2022] Open
Abstract
3h-31 of Heliothis virescens ascovirus 3h (HvAV-3h) is a highly conserved gene of ascoviruses. As an early gene of HvAV-3h, 3h-31 codes for a non-structural protein (3H-31) of HvAV-3h. In the study, 3h-31 was initially transcribed and expressed at 3 h post-infection (hpi) in the infected Spodoptera exigua fat body cells (SeFB). 3h-31 was further inserted into the bacmid of Autographa californica nucleopolyhedrovirus (AcMNPV) to generate an infectious baculovirus (AcMNPV-31). In vivo experiments showed that budded virus production and viral DNA replication decreased with the expression of 3H-31, and lucent tubular structures were found around the virogenic stroma in the AcMNPV-31-infected SeFB cells. In vivo, both LD50 and LD90 values of AcMNPV-31 were significantly higher than those of the wild-type AcMNPV (AcMNPV-wt) in third instar S. exigua larvae. An interesting finding was that the liquefaction of the larvae killed by the infection of AcMNPV-31 was delayed. Chitinase and cathepsin activities of AcMNPV-31-infected larvae were significantly lower than those of AcMNPV-wt-infected larvae. The possible regulatory function of the chitinase and cathepsin for 3H-31 was further confirmed by RNAi, which showed that larval cathepsin activity was significantly upregulated, but chitinase activity was not significantly changed due to the RNAi of 3h-31. Based on the obtained results, we assumed that the function of 3H-31 was associated with the inhibition of host larval chitinase and cathepsin activities, so as to restrain the hosts in their larval stages.
Collapse
Affiliation(s)
- Huan Yu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, 410128, China.,College of Plant Protection, Hunan Agricultural University, Changsha, 410128, China
| | - Yi-Yi Ou-Yang
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, 410128, China.,College of Plant Protection, Hunan Agricultural University, Changsha, 410128, China
| | - Chang-Jin Yang
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, 410128, China.,College of Plant Protection, Hunan Agricultural University, Changsha, 410128, China
| | - Ni Li
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, 410128, China.,College of Plant Protection, Hunan Agricultural University, Changsha, 410128, China
| | - Madoka Nakai
- Tokyo University of Agriculture and Technology, Saiwai, Fuchu, Tokyo, 183-8509, Japan
| | - Guo-Hua Huang
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, 410128, China. .,College of Plant Protection, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
11
|
Li Y, Zhang J, Kong X, Chen N, Zeng X, Wu X. Bombyx mori nucleopolyhedrovirus Bm46 is essential for efficient production of infectious BV and nucleocapsid morphogenesis. Virus Res 2020; 289:198145. [PMID: 32889106 DOI: 10.1016/j.virusres.2020.198145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/18/2020] [Accepted: 08/23/2020] [Indexed: 10/23/2022]
Abstract
Bombyx mori nucleopolyhedrovirus (BmNPV) orf46 (Bm46), the orthologues of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) ac57, is a highly conserved gene in group Ⅰ and group Ⅱ nucleopolyhedroviruses (NPVs). However, its function in viral life cycle is unclear. Our results indicated that Bm46 transcript was detected from infected cells at 12 h post infection, while Bm46 protein was detectable from 24 to 72 h post infection. Upon the deletion of Bm46, fewer infectious BVs were produced by titer assays, but neither viral DNA synthesis nor occlusion bodies (OBs) production was affected. Electron microscopy revealed that Bm46 knockout interrupted nucleocapsid assembly and occlusion-derived virus (ODV) embedding, resulting in aberrant capsid-like tubular structures accumulated in the RZ (ring zone). Interestingly, this abnormally elongated capsid structures were consistent with the immunofluorescence microscopy results showing that VP39 assembled into long filaments and cables in the RZ. Moreover, DNA copies decreased by 30 % in occlusion bodies (OBs) produced by Bm46-knockout virus. qRT-PCR and Western blot analysis showed that the expression of VP39 was affected by Bm46 disruption. Taken together, our findings clearly pointed out that Bm46 played an important role in BV production and the proper formation of nucleocapsid morphogenesis.
Collapse
Affiliation(s)
- Yang Li
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China; Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou, PR China
| | - Jianjia Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Xiangshuo Kong
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Nan Chen
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Xiaoqun Zeng
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Xiaofeng Wu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China; Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou, PR China.
| |
Collapse
|
12
|
Abstract
The dynamics of nuclear envelope has a critical role in multiple cellular processes. However, little is known regarding the structural changes occurring inside the nucleus or at the inner and outer nuclear membranes. For viruses assembling inside the nucleus, remodeling of the intranuclear membrane plays an important role in the process of virion assembly. Here, we monitored the changes associated with viral infection in the case of nudiviruses. Our data revealed dramatic membrane remodeling inside the nuclear compartment during infection with Oryctes rhinoceros nudivirus, an important biocontrol agent against coconut rhinoceros beetle, a devastating pest for coconut and oil palm trees. Based on these findings, we propose a model for nudivirus assembly in which nuclear packaging occurs in fully enveloped virions. Enveloped viruses hijack cellular membranes in order to provide the necessary material for virion assembly. In particular, viruses that replicate and assemble inside the nucleus have developed special approaches to modify the nuclear landscape for their advantage. We used electron microscopy to investigate cellular changes occurring during nudivirus infection and we characterized a unique mechanism for assembly, packaging, and transport of new virions across the nuclear membrane and through the cytoplasm. Our three-dimensional reconstructions describe the complex remodeling of the nuclear membrane necessary to release vesicle-associated viruses into the cytoplasm. This is the first report of nuclear morphological reconfigurations that occur during nudiviral infection.
Collapse
|
13
|
Etebari K, Filipović I, Rašić G, Devine GJ, Tsatsia H, Furlong MJ. Complete genome sequence of Oryctes rhinoceros nudivirus isolated from the coconut rhinoceros beetle in Solomon Islands. Virus Res 2020; 278:197864. [PMID: 31945420 DOI: 10.1016/j.virusres.2020.197864] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/07/2020] [Accepted: 01/12/2020] [Indexed: 11/18/2022]
Abstract
Oryctes rhinoceros nudivirus (OrNV) has been an effective biocontrol agent against the insect pest Oryctes rhinoceros (Coleoptera: Scarabaeidae) for decades, but there is evidence that resistance could be evolving in some host populations. We detected OrNV infection in O. rhinoceros from Solomon Islands and used Oxford Nanopore Technologies (ONT) long-read sequencing to determine the full length of the virus genomic sequence isolated from an individual belonging to a mitochondrial lineage (CRB-G) that was previously reported as resistant to OrNV. The complete circular genome of the virus consisted of 125,917 nucleotides, 1.698 bp shorter than the originally-described full genome sequence of Ma07 strain from Malaysia. We found 130 out of 139 previously annotated ORFs (seven contained interrupted/non-coding sequences, two were identified as duplicated versions of the existing genes), as well as a putatively inverted regions containing four genes. These results demonstrate the usefulness of a long-read sequencing technology for resolving potential structural variations when describing new virus isolates. While the Solomon Islands isolate exhibited 99.41 % nucleotide sequence identity with the originally described strain, we found several genes, including a core gene (vlf-1), that contained multiple amino acid insertions and/or deletions as putative polymorphisms of large effect. Our complete annotated genome sequence of a newly found isolate in Solomon Islands provides a valuable resource to help elucidate the mechanisms that compromise the efficacy of OrNV as a biocontrol agent against the coconut rhinoceros beetle.
Collapse
Affiliation(s)
- Kayvan Etebari
- School of Biological Sciences, The University of Queensland, Brisbane, Australia.
| | - Igor Filipović
- School of Biological Sciences, The University of Queensland, Brisbane, Australia; QIMR Berghofer Medical Research Institute, Royal Brisbane Hospital, Brisbane, Australia.
| | - Gordana Rašić
- QIMR Berghofer Medical Research Institute, Royal Brisbane Hospital, Brisbane, Australia.
| | - Gregor J Devine
- QIMR Berghofer Medical Research Institute, Royal Brisbane Hospital, Brisbane, Australia.
| | - Helen Tsatsia
- Ministry of Agriculture and Livestock, Honiara, Solomon Islands.
| | - Michael J Furlong
- School of Biological Sciences, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
14
|
Hinsberger A, Graillot B, Blachère Lopez C, Juliant S, Cerutti M, King LA, Possee RD, Gallardo F, Lopez Ferber M. Tracing Baculovirus AcMNPV Infection Using a Real-Time Method Based on ANCHOR TM DNA Labeling Technology. Viruses 2020; 12:E50. [PMID: 31906433 PMCID: PMC7019957 DOI: 10.3390/v12010050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 12/23/2019] [Accepted: 12/25/2019] [Indexed: 12/12/2022] Open
Abstract
Many steps in the baculovirus life cycle, from initial ingestion to the subsequent infection of all larval cells, remain largely unknown; primarily because it has hitherto not been possible to follow individual genomes and their lineages. Use of ANCHORTM technology allows a high intensity fluorescent labelling of DNA. When applied to a virus genome, it is possible to follow individual particles, and the overall course of infection. This technology has been adapted to enable labelling of the baculovirus Autographa californica Multiple NucleoPolyhedroVirus genome, as a first step to its application to other baculoviruses. AcMNPV was modified by inserting the two components of ANCHORTM: a specific DNA-binding protein fused to a fluorescent reporter, and the corresponding DNA recognition sequence. The resulting modified virus was stable, infectious, and replicated correctly in Spodoptera frugiperda 9 (Sf9) cells and in vivo. Both budded viruses and occlusion bodies were clearly distinguishable, and infecting cells or larvae allowed the infection process to be monitored in living cells or tissues. The level of fluorescence in the culture medium of infected cells in vitro showed a good correlation with the number of infectious budded viruses. A cassette that can be used in other baculoviruses has been designed. Altogether our results introduce for the first time the generation of autofluorescent baculovirus and their application to follow infection dynamics directly in living cells or tissues.
Collapse
Affiliation(s)
- Aurélie Hinsberger
- LGEI, IMT Mines Alès, Institut Mines-Télécom et Université de Montpellier Sud de France, 6 Avenue de Clavières, 30100 Alès, France; (A.H.); (B.G.); (C.B.L.)
| | - Benoît Graillot
- LGEI, IMT Mines Alès, Institut Mines-Télécom et Université de Montpellier Sud de France, 6 Avenue de Clavières, 30100 Alès, France; (A.H.); (B.G.); (C.B.L.)
| | - Christine Blachère Lopez
- LGEI, IMT Mines Alès, Institut Mines-Télécom et Université de Montpellier Sud de France, 6 Avenue de Clavières, 30100 Alès, France; (A.H.); (B.G.); (C.B.L.)
- INRA, SPE, 400 route des Chappes BP 167, 06903 Sophia-Antipolis CEDEX, France
| | - Sylvie Juliant
- CNRS UPS3044 Baculovirus et Thérapie, LabEx-53, 30380 Saint Christol lèz Alès, France; (S.J.); (M.C.)
| | - Martine Cerutti
- CNRS UPS3044 Baculovirus et Thérapie, LabEx-53, 30380 Saint Christol lèz Alès, France; (S.J.); (M.C.)
| | - Linda A. King
- Department of Biological & Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford OX3 0BP, UK;
| | - Robert D. Possee
- Oxford Expression Technologies Ltd. BioInnovation Hub, Oxford OX3 0BP, UK;
| | - Franck Gallardo
- NeoVirTech SAS, 1 Place Pierre Potier, 31000 Toulouse, France
- Institute for Advanced Life Science Technology; ITAV USR3505, 1 Place Pierre Potier, 31000 Toulouse, France
| | - Miguel Lopez Ferber
- LGEI, IMT Mines Alès, Institut Mines-Télécom et Université de Montpellier Sud de France, 6 Avenue de Clavières, 30100 Alès, France; (A.H.); (B.G.); (C.B.L.)
| |
Collapse
|
15
|
The first clawed lobster virus Homarus gammarus nudivirus (HgNV n. sp.) expands the diversity of the Nudiviridae. Sci Rep 2019; 9:10086. [PMID: 31300678 PMCID: PMC6626001 DOI: 10.1038/s41598-019-46008-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 06/20/2019] [Indexed: 12/20/2022] Open
Abstract
Viral diseases of crustaceans are increasingly recognised as challenges to shellfish farms and fisheries. Here we describe the first naturally-occurring virus reported in any clawed lobster species. Hypertrophied nuclei with emarginated chromatin, characteristic histopathological lesions of DNA virus infection, were observed within the hepatopancreatic epithelial cells of juvenile European lobsters (Homarus gammarus). Transmission electron microscopy revealed infection with a bacilliform virus containing a rod shaped nucleocapsid enveloped in an elliptical membrane. Assembly of PCR-free shotgun metagenomic sequencing produced a circular genome of 107,063 bp containing 97 open reading frames, the majority of which share sequence similarity with a virus infecting the black tiger shrimp: Penaeus monodon nudivirus (PmNV). Multiple phylogenetic analyses confirm the new virus to be a novel member of the Nudiviridae: Homarus gammarus nudivirus (HgNV). Evidence of occlusion body formation, characteristic of PmNV and its closest relatives, was not observed, questioning the horizontal transmission strategy of HgNV outside of the host. We discuss the potential impacts of HgNV on juvenile lobster growth and mortality and present HgNV-specific primers to serve as a diagnostic tool for monitoring the virus in wild and farmed lobster stocks.
Collapse
|
16
|
Nucleocapsid Assembly of Baculoviruses. Viruses 2019; 11:v11070595. [PMID: 31266177 PMCID: PMC6669607 DOI: 10.3390/v11070595] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/27/2019] [Accepted: 06/30/2019] [Indexed: 01/27/2023] Open
Abstract
The baculovirus nucleocapsid is formed through a rod-like capsid encapsulating a genomic DNA molecule of 80~180 kbp. The viral capsid is a large oligomer composed of many copies of various protein subunits. The assembly of viral capsids is a complex oligomerization process. The timing of expression of nucleocapsid-related proteins, transport pathways, and their interactions can affect the assembly process of preformed capsids. In addition, the selection of viral DNA and the injection of the viral genome into empty capsids are the critical steps in nucleocapsid assembly. This paper reviews the replication and recombination of baculovirus DNA, expression and transport of capsid proteins, formation of preformed capsids, DNA encapsulation, and nucleocapsid formation. This review will provide a basis for further study of the nucleocapsid assembly mechanism of baculovirus.
Collapse
|
17
|
Burke GR. Common themes in three independently derived endogenous nudivirus elements in parasitoid wasps. CURRENT OPINION IN INSECT SCIENCE 2019; 32:28-35. [PMID: 31113628 DOI: 10.1016/j.cois.2018.10.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 10/12/2018] [Accepted: 10/15/2018] [Indexed: 06/09/2023]
Abstract
Endogenous Viral Elements (EVEs) are remnants of viral genomes that are permanently integrated into the genome of another organism. Parasitoid wasps have independently acquired nudivirus-derived EVEs in three lineages. Each parasitoid produces virions or virus-like particles (VLPs) that are injected into hosts during parasitism to function in subversion of host defenses. Comparing the inventory of nudivirus-like genes in different lineages of parasitoids can provide insights into the importance of each encoded function in virus or VLP production and parasitism success. Comparisons revealed the following conserved features: first, retention of genes encoding a viral RNA polymerase and infectivity factors; second, loss of the ancestral DNA polymerase gene; and third, signatures of viral ancestry in patterns of gene retention.
Collapse
Affiliation(s)
- Gaelen R Burke
- Department of Entomology, University of Georgia, Athens, GA, United States.
| |
Collapse
|
18
|
Costa Navarro GS, Amalfi S, López MG, Llauger G, Arneodo JD, Taboga O, Alfonso V. The autographa californica multiple nucleopolyhedrovirus Ac12: A non-essential F box-like protein that interacts with cellular SKP1 component of the E3 ubiquitin ligase complex. Virus Res 2018; 260:67-77. [PMID: 30472094 DOI: 10.1016/j.virusres.2018.11.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 11/15/2018] [Accepted: 11/19/2018] [Indexed: 12/24/2022]
Abstract
The Autographa californica multiple nucleopolyhedrovirus (AcMNPV) ac12 gene, which is conserved in ten other baculovirus, codes a predicted 217 amino acid protein of unknown function. In this study, we investigated the role of ac12 during baculovirus infection, by generating an ac12 knockout virus. The transfection of the recombinant genome in insect cells resulted in unaltered viral dispersion and occlusion body production when compared to the control bacmid. This finding demonstrates that ac12 is a non-essential gene. Transmission and scanning electron microscopy (SEM) analyses showed that ac12 knockout virus produced occlusion bodies morphologically similar to those obtained with the control and capable to occlude virions. However, a slight but significant size difference was detected by SEM observation of purified occlusion bodies. This difference suggests that ac12 may be involved in regulatory pathways of polyhedrin production or occlusion body assembly without affecting either viral occlusion or oral infectivity in Rachiplusia nu larvae. This was evidenced by bioassays that showed no significant differences in the conditions tested. A qPCR analysis of viral gene expression during infection evidenced regulatory effects of ac12 over some representative genes of different stages of the viral cycle. In this study, we also showed that ac12 is transcribed at early times after infection and remains detectable up to 72 hours post-infection. The mRNA is translated during the infection and results in a protein that encodes an F-box domain that interacts in vivo and in vitro with S phase kinase associated protein 1 (SKP1) adaptor protein, which is potentially involved in protein ubiquitination pathways.
Collapse
Affiliation(s)
- Guadalupe S Costa Navarro
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria (INTA), De los Reseros y N. Repetto s/n, 1686, Hurlingham, Argentina
| | - Sabrina Amalfi
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria (INTA), De los Reseros y N. Repetto s/n, 1686, Hurlingham, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - María Gabriela López
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria (INTA), De los Reseros y N. Repetto s/n, 1686, Hurlingham, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Gabriela Llauger
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria (INTA), De los Reseros y N. Repetto s/n, 1686, Hurlingham, Argentina
| | - Joel D Arneodo
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Instituto de Microbiología y Zoología Agrícola, INTA, De los Reseros y N. Repetto s/n, 1686, Hurlingham, Argentina
| | - Oscar Taboga
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria (INTA), De los Reseros y N. Repetto s/n, 1686, Hurlingham, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Victoria Alfonso
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria (INTA), De los Reseros y N. Repetto s/n, 1686, Hurlingham, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| |
Collapse
|
19
|
Leobold M, Bézier A, Pichon A, Herniou EA, Volkoff AN, Drezen JM. The Domestication of a Large DNA Virus by the Wasp Venturia canescens Involves Targeted Genome Reduction through Pseudogenization. Genome Biol Evol 2018; 10:1745-1764. [PMID: 29931159 PMCID: PMC6054256 DOI: 10.1093/gbe/evy127] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2018] [Indexed: 12/13/2022] Open
Abstract
Polydnaviruses (PDVs) are compelling examples of viral domestication, in which wasps express a large set of genes originating from a chromosomally integrated virus to produce particles necessary for their reproductive success. Parasitoid wasps generally use PDVs as a virulence gene delivery system allowing the protection of their progeny in the body of parasitized host. However, in the wasp Venturia canescens an independent viral domestication process led to an alternative strategy as the wasp incorporates virulence proteins in viral liposomes named virus-like particles (VLPs), instead of DNA molecules. Proteomic analysis of purified VLPs and transcriptome sequencing revealed the loss of some viral functions. In particular, the genes coding for capsid components are no longer expressed, which explains why VLPs do not incorporate DNA. Here a thorough examination of V. canescens genome revealed the presence of the pseudogenes corresponding to most of the genes involved in lost functions. This strongly suggests that an accumulation of mutations that leads to gene specific pseudogenization precedes the loss of viral genes observed during virus domestication. No evidence was found for block loss of collinear genes, although extensive gene order reshuffling of the viral genome was identified from comparisons between endogenous and exogenous viruses. These results provide the first insights on the early stages of large DNA virus domestication implicating massive genome reduction through gene-specific pseudogenization, a process which differs from the large deletions described for bacterial endosymbionts.
Collapse
Affiliation(s)
- Matthieu Leobold
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261, CNRS - Université de Tours, UFR des Sciences et Techniques, Parc de Grandmont, Tours, France
| | - Annie Bézier
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261, CNRS - Université de Tours, UFR des Sciences et Techniques, Parc de Grandmont, Tours, France
| | - Apolline Pichon
- Diversity, Genomes and Interactions Microorganisms-Insect, UMR INRA 1333, Université de Montpellier 2, Montpellier, France
| | - Elisabeth A Herniou
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261, CNRS - Université de Tours, UFR des Sciences et Techniques, Parc de Grandmont, Tours, France
| | - Anne-Nathalie Volkoff
- Diversity, Genomes and Interactions Microorganisms-Insect, UMR INRA 1333, Université de Montpellier 2, Montpellier, France
| | - Jean-Michel Drezen
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261, CNRS - Université de Tours, UFR des Sciences et Techniques, Parc de Grandmont, Tours, France
| |
Collapse
|
20
|
Saxena A, Byram PK, Singh SK, Chakraborty J, Murhammer D, Giri L. A structured review of baculovirus infection process: integration of mathematical models and biomolecular information on cell–virus interaction. J Gen Virol 2018; 99:1151-1171. [DOI: 10.1099/jgv.0.001108] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Abha Saxena
- 1Indian Institute of Technology Hyderabad, Chemical Engineering, Village Kandi, Sangareddy, Hyderabad, Telangana 502205, India
| | - Prasanna Kumar Byram
- 1Indian Institute of Technology Hyderabad, Chemical Engineering, Village Kandi, Sangareddy, Hyderabad, Telangana 502205, India
| | - Suraj Kumar Singh
- 1Indian Institute of Technology Hyderabad, Chemical Engineering, Village Kandi, Sangareddy, Hyderabad, Telangana 502205, India
| | - Jayanta Chakraborty
- 2Indian Institute of Technology Kharagpur, Chemical Engineering, Kharagpur, West Bengal 721302, India
| | - David Murhammer
- 3The University of Iowa, Department of Chemical and Biochemical Engineering, Iowa City, IA 52242-1527, USA
| | - Lopamudra Giri
- 1Indian Institute of Technology Hyderabad, Chemical Engineering, Village Kandi, Sangareddy, Hyderabad, Telangana 502205, India
| |
Collapse
|
21
|
Rao G, Fu Y, Li N, Yin J, Zhang J, Wang M, Hu Z, Cao S. Controllable Assembly of Flexible Protein Nanotubes for Loading Multifunctional Modules. ACS APPLIED MATERIALS & INTERFACES 2018; 10:25135-25145. [PMID: 29989404 DOI: 10.1021/acsami.8b07611] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Viruses with filamentous morphologies, such as tobacco mosaic virus (TMV) and M13 bacteriophage, have long been studied as multivalent nanoscaffolds for loading functional motifs. Structural assembly of the capsid proteins (CPs) of filamentous viruses often requires the presence of DNA or RNA molecules, which has limited their applications. Here, we describe a strategy for controllable assembly of flexible bio-nanotubes consisting of Escherichia coli expressed CP of baculovirus Helicoverpa armigera nucleopolyhedrovirus (HearNPV) in vitro. These protein-only nanotubes were studied as a new structural platform for high-density presentation of multiple active molecules on the exterior surface by direct fusion of the protein of interest to the N-terminus of HearNPV CP (HaCP). Structural characterization using cryoelectron microscopy demonstrated that the HaCP could assemble into two closely related but structurally distinct tube types, suggesting the tunable HaCP interaction network is the major contributor to the flexibility of HaCP nanotubes. Our flexible nanotubes could tolerate larger molecular modifications compared with TMV-based templates and could be used as promising candidates for versatile molecular loading applications.
Collapse
Affiliation(s)
- Guibo Rao
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | | | - Na Li
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Jiayi Yin
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Jie Zhang
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | | | | | | |
Collapse
|
22
|
Burke GR, Simmonds TJ, Sharanowski BJ, Geib SM. Rapid Viral Symbiogenesis via Changes in Parasitoid Wasp Genome Architecture. Mol Biol Evol 2018; 35:2463-2474. [DOI: 10.1093/molbev/msy148] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Gaelen R Burke
- Department of Entomology, University of Georgia, Athens, GA
| | | | | | - Scott M Geib
- Tropical Crop and Commodity Protection Research Unit, USDA-ARS Daniel K Inouye U.S. Pacific Basin Agricultural Research Center, USDA-ARS, Hilo, HI
| |
Collapse
|
23
|
Baculovirus AC102 Is a Nucleocapsid Protein That Is Crucial for Nuclear Actin Polymerization and Nucleocapsid Morphogenesis. J Virol 2018. [PMID: 29540600 DOI: 10.1128/jvi.00111-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV), the type species of alphabaculoviruses, is an enveloped DNA virus that infects lepidopteran insects and is commonly known as a vector for protein expression and cell transduction. AcMNPV belongs to a diverse group of viral and bacterial pathogens that target the host cell actin cytoskeleton during infection. AcMNPV is unusual, however, in that it absolutely requires actin translocation into the nucleus early in infection and actin polymerization within the nucleus late in infection coincident with viral replication. Of the six viral factors that are sufficient, when coexpressed, to induce the nuclear localization of actin, only AC102 is essential for viral replication and the nuclear accumulation of actin. We therefore sought to better understand the role of AC102 in actin mobilization in the nucleus early and late in infection. Although AC102 was proposed to function early in infection, we found that AC102 is predominantly expressed as a late protein. In addition, we observed that AC102 is required for F-actin assembly in the nucleus during late infection, as well as for proper formation of viral replication structures and nucleocapsid morphogenesis. Finally, we found that AC102 is a nucleocapsid protein and a newly recognized member of a complex consisting of the viral proteins EC27, C42, and the actin polymerization protein P78/83. Taken together, our findings suggest that AC102 is necessary for nucleocapsid morphogenesis and actin assembly during late infection through its role as a component of the P78/83-C42-EC27-AC102 protein complex.IMPORTANCE The baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV) is an important biotechnological tool for protein expression and cell transduction, and related nucleopolyhedroviruses are also used as environmentally benign insecticides. One impact of our work is to better understand the fundamental mechanisms through which AcMNPV exploits the cellular machinery of the host for replication, which may aid in the development of improved baculovirus-based research and industrial tools. Moreover, AcMNPV's ability to mobilize the host actin cytoskeleton within the cell's nucleus during infection makes it a powerful cell biological tool. It is becoming increasingly clear that actin plays important roles in the cell's nucleus, and yet the regulation and function of nuclear actin is poorly understood. Our work to better understand how AcMNPV relocalizes and polymerizes actin within the nucleus may reveal fundamental mechanisms that govern nuclear actin regulation and function, even in the absence of viral infection.
Collapse
|
24
|
The 38K-Mediated Specific Dephosphorylation of the Viral Core Protein P6.9 Plays an Important Role in the Nucleocapsid Assembly of Autographa californica Multiple Nucleopolyhedrovirus. J Virol 2018; 92:JVI.01989-17. [PMID: 29444944 PMCID: PMC5899202 DOI: 10.1128/jvi.01989-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 02/07/2018] [Indexed: 02/02/2023] Open
Abstract
Encapsidation of the viral genomes, leading to the assembly of the nucleocapsids to form infectious progeny virions, is a key step in many virus life cycles. Baculovirus nucleocapsid assembly is a complex process that involves many proteins. Our previous studies showed that the deletion of the core gene 38K (ac98) interrupted the nucleocapsid assembly by producing capsid sheaths devoid of viral genomes by an unknown mechanism. All homologs of 38K contain conserved motifs of the haloacid dehalogenase superfamily, which are involved in phosphoryl transfer. The requirements of these motifs for nucleocapsid assembly, confirmed in the present study, suggest that 38K may be a functioning haloacid dehalogenase. P6.9 is also encoded by a core gene (ac100) and is required for viral genome encapsidation. It has been reported that multiple phosphorylated species of P6.9 are present in virus-infected cells, while only an unphosphorylated species is detected in the budded virus. Therefore, whether 38K mediates the dephosphorylation of P6.9 was investigated. An additional phosphorylated species of P6.9 in 38K-deleted or -mutated virus-transfected cells was detected, and the dephosphorylated sites mediated by 38K were determined by mass spectrometry. To assess the effects of dephosphorylation of P6.9 mediated by 38K on virus replication, these sites were mutated to glutamic acids (phosphorylation-mimic mutant) or to alanines (phosphorylation-deficient mutant). Studies showed that the nucleocapsid assembly was interrupted in phosphorylation-mimic mutant virus-transfected cells. Taken together, our findings demonstrate that 38K mediates the dephosphorylation of specific sites at the C terminus of P6.9, which is essential for viral genome encapsidation.IMPORTANCE Genome packaging is a fundamental process in the virus life cycle, and viruses have different strategies to perform this step. For several double-stranded DNA (dsDNA) viruses, the procapsid is formed before genome encapsidation, which may require basic proteins that help to neutralize the nucleic acid charge repulsion to facilitate the compaction of the genome within the confined capsid space. Baculovirus encodes a small basic protein, P6.9, which is required for a variety of processes in the virus infection cycle. The phosphorylation of P6.9 is thought to result in nucleocapsid uncoating, while the dephosphorylation of P6.9 is involved in viral DNA encapsidation during nucleocapsid assembly. Here, we demonstrate that a haloacid dehalogenase homolog encoded by baculovirus core gene 38K is involved in nucleocapsid assembly by mediating the dephosphorylation of 5 specific sites at the C terminus of P6.9. This finding contributes to the understanding of the mechanisms of virus nucleocapsid assembly.
Collapse
|
25
|
Autographa californica Multiple Nucleopolyhedrovirus ac75 Is Required for the Nuclear Egress of Nucleocapsids and Intranuclear Microvesicle Formation. J Virol 2018; 92:JVI.01509-17. [PMID: 29212928 DOI: 10.1128/jvi.01509-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 11/27/2017] [Indexed: 01/15/2023] Open
Abstract
Autographa californica multiple nucleopolyhedrovirus (AcMNPV) orf75 (ac75) is a highly conserved gene of unknown function. In this study, we constructed an ac75 knockout AcMNPV bacmid and investigated the role of ac75 in the baculovirus life cycle. The expression and distribution of the Ac75 protein were characterized, and its interaction with another viral protein was analyzed to further understand its function. Our data indicated that ac75 was required for the nuclear egress of nucleocapsids, intranuclear microvesicle formation, and subsequent budded virion (BV) formation, as well as occlusion-derived virion (ODV) envelopment and embedding of ODVs into polyhedra. Western blot analyses showed that two forms, of 18 and 15 kDa, of FLAG-tagged Ac75 protein were detected. Ac75 was associated with both nucleocapsid and envelope fractions of BVs but with only the nucleocapsid fraction of ODVs; the 18-kDa form was associated with only BVs, whereas the 15-kDa form was associated with both types of virion. Ac75 was localized predominantly in the intranuclear ring zone during infection and exhibited a nuclear rim distribution during the early phase of infection. A phase separation assay suggested that Ac75 was not an integral membrane protein. A coimmunoprecipitation assay revealed an interaction between Ac75 and the integral membrane protein Ac76, and bimolecular fluorescence complementation assays identified the sites of the interaction within the cytoplasm and at the nuclear membrane and ring zone in AcMNPV-infected cells. Our results have identified ac75 as a second gene that is required for both the nuclear egress of nucleocapsids and the formation of intranuclear microvesicles.IMPORTANCE During the baculovirus life cycle, the morphogenesis of both budded virions (BVs) and occlusion-derived virions (ODVs) is proposed to involve a budding process at the nuclear membrane, which occurs while nucleocapsids egress from the nucleus or when intranuclear microvesicles are produced. However, the exact mechanism of virion morphogenesis remains unknown. In this study, we identified ac75 as a second gene, in addition to ac93, that is essential for the nuclear egress of nucleocapsids, intranuclear microvesicle formation, and subsequent BV formation, as well as ODV envelopment and embedding of ODVs into polyhedra. Ac75 is not an integral membrane protein. However, it interacts with an integral membrane protein (Ac76) and is associated with the nuclear membrane. These data enhance our understanding of the commonalities between nuclear egress of nucleocapsids and intranuclear microvesicle formation and may help to reveal insights into the mechanism of baculovirus virion morphogenesis.
Collapse
|
26
|
Liang C, Su X, Xu G, Dai X, Zhao S. Autographa californica multiple nucleopolyhedrovirus PK1 is a factor that regulates high-level expression of very late genes in viral infection. Virology 2017; 512:56-65. [DOI: 10.1016/j.virol.2017.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 09/05/2017] [Accepted: 09/06/2017] [Indexed: 11/28/2022]
|
27
|
A Conserved Glycine Residue Is Required for Proper Functioning of a Baculovirus VP39 Protein. J Virol 2017; 91:JVI.02253-16. [PMID: 28077638 DOI: 10.1128/jvi.02253-16] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 12/29/2016] [Indexed: 01/25/2023] Open
Abstract
The baculovirus VP39 protein is a major nucleocapsid protein essential for viral propagation. However, the critical domains or residues of the VP39 protein have not yet been identified. Here, we performed mutagenesis experiments with Bombyx mori nucleopolyhedrovirus (BmNPV) using 5-bromo-2'-deoxyuridine and isolated a BmNPV mutant that produced fewer occlusion bodies than the wild-type virus. This mutant also produced fewer infectious budded viruses (BVs) than the wild-type virus in both cultured cells and B. mori larvae. Marker rescue experiments using genomic libraries identified a single nucleotide mutation in the vp39 gene. This mutation resulted in an amino acid substitution at glycine 276 (Gly-276) to serine, which was required for all the defective phenotypes observed in the mutant. Sequence comparison revealed that this residue is completely conserved among the VP39 proteins of the sequenced alphabaculoviruses, betabaculoviruses, and gammabaculoviruses. Although early viral gene expression was not significantly affected, the level of expression of a late gene, vcath, was reduced. In addition, two of the very late genes were markedly downregulated in cells infected with this mutant. Western blot and quantitative PCR analyses revealed that the BVs produced from cells infected with this mutant contained smaller amounts of the VP39 protein and viral genomic DNA than those produced from wild-type virus-infected cells. Combined with the results of transmission electron microscopy, VP39 Gly-276 can be concluded to be essential for correct nucleocapsid assembly, viral DNA packaging, and viral gene expression, especially of very late genes.IMPORTANCE The major nucleocapsid protein gene vp39 is one of the most well-known baculovirus genes. Although several viral and host proteins that interact with the VP39 protein have been identified, the functionally important domains or residues of this protein remain unknown. The present study revealed that the glycine residue at residue 276, which is completely conserved among sequenced alphabaculoviruses, betabaculoviruses, and gammabaculoviruses, is important for the VP39 function, i.e., structural assembly of nucleocapsids and viral DNA packaging. Moreover, our results provide evidence for the link between nucleocapsid formation and the transcription of viral very late genes.
Collapse
|
28
|
The Autographa californica Multiple Nucleopolyhedrovirus ac83 Gene Contains a cis-Acting Element That Is Essential for Nucleocapsid Assembly. J Virol 2017; 91:JVI.02110-16. [PMID: 28031366 DOI: 10.1128/jvi.02110-16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 12/21/2016] [Indexed: 01/08/2023] Open
Abstract
Baculoviridae is a family of insect-specific viruses that have a circular double-stranded DNA genome packaged within a rod-shaped capsid. The mechanism of baculovirus nucleocapsid assembly remains unclear. Previous studies have shown that deletion of the ac83 gene of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) blocks viral nucleocapsid assembly. Interestingly, the ac83-encoded protein Ac83 is not a component of the nucleocapsid, implying a particular role for ac83 in nucleocapsid assembly that may be independent of its protein product. To examine this possibility, Ac83 synthesis was disrupted by insertion of a chloramphenicol resistance gene into its coding sequence or by deleting its promoter and translation start codon. Both mutants produced progeny viruses normally, indicating that the Ac83 protein is not required for nucleocapsid assembly. Subsequently, complementation assays showed that the production of progeny viruses required the presence of ac83 in the AcMNPV genome instead of its presence in trans Therefore, we reasoned that ac83 is involved in nucleocapsid assembly via an internal cis-acting element, which we named the nucleocapsid assembly-essential element (NAE). The NAE was identified to lie within nucleotides 1651 to 1850 of ac83 and had 8 conserved A/T-rich regions. Sequences homologous to the NAE were found only in alphabaculoviruses and have a conserved positional relationship with another essential cis-acting element that was recently identified. The identification of the NAE may help to connect the data of viral cis-acting elements and related proteins in the baculovirus nucleocapsid assembly, which is important for elucidating DNA-protein interaction events during this process.IMPORTANCE Virus nucleocapsid assembly usually requires specific cis-acting elements in the viral genome for various processes, such as the selection of the viral genome from the cellular nucleic acids, the cleavage of concatemeric viral genome replication intermediates, and the encapsidation of the viral genome into procapsids. In linear DNA viruses, such elements generally locate at the ends of the viral genome; however, most of these elements remain unidentified in circular DNA viruses (including baculovirus) due to their circular genomic conformation. Here, we identified a nucleocapsid assembly-essential element in the AcMNPV (the archetype of baculovirus) genome. This finding provides an important reference for studies of nucleocapsid assembly-related elements in baculoviruses and other circular DNA viruses. Moreover, as most of the previous studies of baculovirus nucleocapsid assembly have been focused on viral proteins, our study provides a novel entry point to investigate this mechanism via cis-acting elements in the viral genome.
Collapse
|
29
|
Bézier A, Harichaux G, Musset K, Labas V, Herniou EA. Qualitative proteomic analysis of Tipula oleracea nudivirus occlusion bodies. J Gen Virol 2017; 98:284-295. [DOI: 10.1099/jgv.0.000661] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Annie Bézier
- Institut de Recherche sur la Biologie de l’Insecte (IRBI), UMR 7261 CNRS Université François-Rabelais, Tours 37200, France
| | - Grégoire Harichaux
- INRA, PRC UMR85-CNRS 7247-UFR-IFCE, Laboratoire de Spectrométrie de masse, Plateforme d’Analyse Intégrative des Biomolécules et de Phénomique des Animaux d’Intérêt Bio-agronomique (PAIB2), Nouzilly 37380, France
| | - Karine Musset
- Institut de Recherche sur la Biologie de l’Insecte (IRBI), UMR 7261 CNRS Université François-Rabelais, Tours 37200, France
| | - Valérie Labas
- INRA, PRC UMR85-CNRS 7247-UFR-IFCE, Laboratoire de Spectrométrie de masse, Plateforme d’Analyse Intégrative des Biomolécules et de Phénomique des Animaux d’Intérêt Bio-agronomique (PAIB2), Nouzilly 37380, France
| | - Elisabeth A Herniou
- Institut de Recherche sur la Biologie de l’Insecte (IRBI), UMR 7261 CNRS Université François-Rabelais, Tours 37200, France
| |
Collapse
|
30
|
The Autographa californica Multiple Nucleopolyhedrovirus ac54 Gene Is Crucial for Localization of the Major Capsid Protein VP39 at the Site of Nucleocapsid Assembly. J Virol 2016; 90:4115-4126. [PMID: 26865720 DOI: 10.1128/jvi.02885-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Accepted: 02/02/2016] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED Baculovirus DNAs are synthesized and inserted into preformed capsids to form nucleocapsids at a site in the infected cell nucleus, termed the virogenic stroma. Nucleocapsid assembly ofAutographa californicamultiple nucleopolyhedrovirus (AcMNPV) requires the major capsid protein VP39 and nine minor capsid proteins, including VP1054. However, how VP1054 participates in nucleocapsid assembly remains elusive. In this study, the VP1054-encoding gene (ac54) was deleted to generate theac54-knockout AcMNPV (vAc54KO). In vAc54KO-transfected cells, nucleocapsid assembly was disrupted, leading to the formation of abnormally elongated capsid structures. Interestingly, unlike cells transfected with AcMNPV mutants lacking other minor capsid proteins, in which capsid structures were distributed within the virogenic stroma,ac54ablation resulted in a distinctive location of capsid structures and VP39 at the periphery of the nucleus. The altered distribution pattern of capsid structures was also observed in cells transfected with AcMNPV lacking BV/ODV-C42 or in cytochalasind-treated AcMNPV-infected cells. BV/ODV-C42, along with PP78/83, has been shown to promote nuclear filamentous actin (F-actin) formation, which is another requisite for nucleocapsid assembly. Immunofluorescence using phalloidin indicated that the formation and distribution of nuclear F-actin were not affected byac54deletion. However, immunoelectron microscopy revealed that BV/ODV-C42, PP78/83, and 38K failed to integrate into capsid structures in the absence of VP1054, and immunoprecipitation further demonstrated that in transient expression assays, VP1054 interacted with BV/ODV-C42 and VP80 but not VP39. Our findings suggest that VP1054 plays an important role in the transport of capsid proteins to the nucleocapsid assembly site prior to the process of nucleocapsid assembly. IMPORTANCE Baculoviruses are large DNA viruses whose replication occurs within the host nucleus. The localization of capsids into the capsid assembly site requires virus-induced nuclear F-actin; the inhibition of nuclear F-actin formation results in the retention of capsid structures at the periphery of the nucleus. In this paper, we note that the minor capsid protein VP1054 is essential for the localization of capsid structures, the major capsid protein VP39, and the minor capsid protein 38K into the capsid assembly site. Moreover, VP1054 is crucial for correct targeting of the nuclear F-actin factors BV/ODV-C42 and PP78/83 for capsid maturation. However, the formation and distribution of nuclear F-actin are not affected by the lack of VP1054. We further reveal that VP1054 interacts with BV/ODV-C42 and a capsid transport-related protein, VP80. Taken together, our findings suggest that VP1054 plays a unique role in the pathway(s) for transport of capsid proteins.
Collapse
|
31
|
Hu X, Shen Y, Zheng Q, Wang G, Wu X, Gong C. Bm59 is an early gene, but is unessential for the propagation and assembly of Bombyx mori nucleopolyhedrovirus. Mol Genet Genomics 2015. [DOI: 10.1007/s00438-015-1094-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
32
|
Chen H, Li M, Mai W, Tang Q, Li G, Chen K, Zhou Y. Analysis of BmNPV orf101 disruption: orf101 is essential for mediating budded virus production. Cytotechnology 2014; 66:1021-9. [PMID: 25300342 DOI: 10.1007/s10616-014-9772-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Accepted: 07/09/2014] [Indexed: 11/28/2022] Open
Abstract
In our previous study, Orf101 (Bm101) of Bombyx mori nucleopolyhedrovirus (BmNPV) was identified as a component of the budded virions important for viral late gene expression. In this study we demonstrate that Bm101 is actually a previously unrecognized core gene and that it is essential for mediating budded virus production. To determine the role of Bm101 in the baculovirus life cycle, a Bm101 knockout bacmid containing the BmNPV genome was generated through homologous recombination in Escherichia coli. Furthermore, a Bm101 repair bacmid was constructed by transposing the Bm101 open reading frame with its native promoter region into the polyhedrin locus of the Bm101 knockout bacmid. Bacmid DNA transfection assay revealed that the Bm101 knockout bacmid was unable to produce the infectious budded virus, while the Bm101 repair bacmid rescued this defect, allowing budded-virus titers to reach wild-type levels. Real time PCR analysis indicated that the viral DNA genome in the absence of Bm101 was unaffected in the first 24 h p.t. Thus, studies of a Bm101-null BACmid indicate that Bm101 is required for viral DNA replication during the infection cycle.
Collapse
Affiliation(s)
- Huiqing Chen
- Institute of Life Sciences, Jiangsu University, 301# Xuefu Road, Zhenjiang, 212013, China
| | | | | | | | | | | | | |
Collapse
|
33
|
Yang YT, Lee DY, Wang Y, Hu JM, Li WH, Leu JH, Chang GD, Ke HM, Kang ST, Lin SS, Kou GH, Lo CF. The genome and occlusion bodies of marine Penaeus monodon nudivirus (PmNV, also known as MBV and PemoNPV) suggest that it should be assigned to a new nudivirus genus that is distinct from the terrestrial nudiviruses. BMC Genomics 2014; 15:628. [PMID: 25063321 PMCID: PMC4132918 DOI: 10.1186/1471-2164-15-628] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 07/03/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Penaeus monodon nudivirus (PmNV) is the causative agent of spherical baculovirosis in shrimp (Penaeus monodon). This disease causes significant mortalities at the larval stage and early postlarval (PL) stage and may suppress growth and reduce survival and production in aquaculture. The nomenclature and classification status of PmNV has been changed several times due to morphological observation and phylogenetic analysis of its partial genome sequence. In this study, we therefore completed the genome sequence and constructed phylogenetic trees to clarify PmNV's taxonomic position. To better understand the characteristics of the occlusion bodies formed by this marine occluded virus, we also compared the chemical properties of the polyhedrin produced by PmNV and the baculovirus AcMNPV (Autographa californica nucleopolyhedrovirus). RESULTS We used next generation sequencing and traditional PCR methods to obtain the complete PmNV genome sequence of 119,638 bp encoding 115 putative ORFs. Phylogenetic tree analysis showed that several PmNV genes and sequences clustered with the non-occluded nudiviruses and not with the baculoviruses. We also investigated the characteristics of PmNV polyhedrin, which is a functionally important protein and the major component of the viral OBs (occlusion bodies). We found that both recombinant PmNV polyhedrin and wild-type PmNV OBs were sensitive to acid conditions, but unlike the baculoviral OBs, they were not susceptible to alkali treatment. CONCLUSIONS From the viral genome features and phylogenetic analysis we conclude that PmNV is not a baculovirus, and that it should be assigned to the proposed Nudiviridae family with the other nudiviruses, but into a distinct new genus (Gammanudivirus).
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Guang-Hsiung Kou
- Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan.
| | | |
Collapse
|
34
|
Zhu Z, Yin F, Liu X, Hou D, Wang J, Zhang L, Arif B, Wang H, Deng F, Hu Z. Genome sequence and analysis of Buzura suppressaria nucleopolyhedrovirus: a group II Alphabaculovirus. PLoS One 2014; 9:e86450. [PMID: 24475121 PMCID: PMC3901692 DOI: 10.1371/journal.pone.0086450] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 12/10/2013] [Indexed: 12/15/2022] Open
Abstract
The genome of Buzura suppressaria nucleopolyhedrovirus (BusuNPV) was sequenced by 454 pyrosequencing technology. The size of the genome is 120,420 bp with 36.8% G+C content. It contains 127 hypothetical open reading frames (ORFs) covering 90.7% of the genome and includes the 37 conserved baculovirus core genes, 84 genes found in other baculoviruses, and 6 unique ORFs. No typical baculoviral homologous repeats (hrs) were present but the genome contained a region of repeated sequences. Gene Parity Plots revealed a 28.8 kb region conserved among the alpha- and beta-baculoviruses. Overall comparisons of BusuNPV to other baculoviruses point to a distinct species in group II Alphabaculovirus.
Collapse
Affiliation(s)
- Zheng Zhu
- State Key Laboratory of Virology and China Center for Virus Culture Collection, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Feifei Yin
- State Key Laboratory of Virology and China Center for Virus Culture Collection, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Xiaoping Liu
- State Key Laboratory of Virology and China Center for Virus Culture Collection, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Dianhai Hou
- State Key Laboratory of Virology and China Center for Virus Culture Collection, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Jun Wang
- State Key Laboratory of Virology and China Center for Virus Culture Collection, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Lei Zhang
- State Key Laboratory of Virology and China Center for Virus Culture Collection, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Basil Arif
- Canadian Forest Service, Great Lakes Forestry Centre, Sault Ste Marie, Ontario, Canada
| | - Hualin Wang
- State Key Laboratory of Virology and China Center for Virus Culture Collection, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Fei Deng
- State Key Laboratory of Virology and China Center for Virus Culture Collection, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Zhihong Hu
- State Key Laboratory of Virology and China Center for Virus Culture Collection, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
35
|
Bézier A, Louis F, Jancek S, Periquet G, Thézé J, Gyapay G, Musset K, Lesobre J, Lenoble P, Dupuy C, Gundersen-Rindal D, Herniou EA, Drezen JM. Functional endogenous viral elements in the genome of the parasitoid wasp Cotesia congregata: insights into the evolutionary dynamics of bracoviruses. Philos Trans R Soc Lond B Biol Sci 2013; 368:20130047. [PMID: 23938757 PMCID: PMC3758192 DOI: 10.1098/rstb.2013.0047] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Bracoviruses represent the most complex endogenous viral elements (EVEs) described to date. Nudiviral genes have been hosted within parasitoid wasp genomes since approximately 100 Ma. They play a crucial role in the wasp life cycle as they produce bracovirus particles, which are injected into parasitized lepidopteran hosts during wasp oviposition. Bracovirus particles encapsidate multiple dsDNA circles encoding virulence genes. Their expression in parasitized caterpillars is essential for wasp parasitism success. Here, we report on the genomic organization of the proviral segments (i.e. master sequences used to produce the encapsidated dsDNA circles) present in the Cotesia congregata parasitoid wasp genome. The provirus is composed of a macrolocus, comprising two-thirds of the proviral segments and of seven dispersed loci, each containing one to three segments. Comparative genomic analyses with closely related species gave insights into the evolutionary dynamics of bracovirus genomes. Conserved synteny in the different wasp genomes showed the orthology of the proviral macrolocus across different species. The nudiviral gene odv-e66-like1 is conserved within the macrolocus, suggesting an ancient co-localization of the nudiviral genome and bracovirus proviral segments. By contrast, the evolution of proviral segments within the macrolocus has involved a series of lineage-specific duplications.
Collapse
Affiliation(s)
- Annie Bézier
- Institut de Recherche sur la Biologie de l'Insecte, CNRS UMR 7261, Université François Rabelais, Parc de Grandmont, 37200 Tours, France
| | - Faustine Louis
- Institut de Recherche sur la Biologie de l'Insecte, CNRS UMR 7261, Université François Rabelais, Parc de Grandmont, 37200 Tours, France
| | - Séverine Jancek
- Institut de Recherche sur la Biologie de l'Insecte, CNRS UMR 7261, Université François Rabelais, Parc de Grandmont, 37200 Tours, France
| | - Georges Periquet
- Institut de Recherche sur la Biologie de l'Insecte, CNRS UMR 7261, Université François Rabelais, Parc de Grandmont, 37200 Tours, France
| | - Julien Thézé
- Institut de Recherche sur la Biologie de l'Insecte, CNRS UMR 7261, Université François Rabelais, Parc de Grandmont, 37200 Tours, France
| | - Gabor Gyapay
- Commissariat à l'Energie Atomique, Génoscope (Centre National de Séquençage), 2 rue Gaston Crémieux, CP 5706, 91057 Evry Cedex, France
| | - Karine Musset
- Institut de Recherche sur la Biologie de l'Insecte, CNRS UMR 7261, Université François Rabelais, Parc de Grandmont, 37200 Tours, France
| | - Jérome Lesobre
- Institut de Recherche sur la Biologie de l'Insecte, CNRS UMR 7261, Université François Rabelais, Parc de Grandmont, 37200 Tours, France
| | - Patricia Lenoble
- Commissariat à l'Energie Atomique, Génoscope (Centre National de Séquençage), 2 rue Gaston Crémieux, CP 5706, 91057 Evry Cedex, France
| | - Catherine Dupuy
- Institut de Recherche sur la Biologie de l'Insecte, CNRS UMR 7261, Université François Rabelais, Parc de Grandmont, 37200 Tours, France
| | - Dawn Gundersen-Rindal
- US Department of Agriculture, Agricultural Research Service, Invasive Insect Biocontrol and Behavior Laboratory, 10300 Baltimore Avenue, Building 011A BARC-WEST, Beltsville, MD 20705, USA
| | - Elisabeth A. Herniou
- Institut de Recherche sur la Biologie de l'Insecte, CNRS UMR 7261, Université François Rabelais, Parc de Grandmont, 37200 Tours, France
| | - Jean-Michel Drezen
- Institut de Recherche sur la Biologie de l'Insecte, CNRS UMR 7261, Université François Rabelais, Parc de Grandmont, 37200 Tours, France
| |
Collapse
|
36
|
Liang C, Li M, Dai X, Zhao S, Hou Y, Zhang Y, Lan D, Wang Y, Chen X. Autographa californica multiple nucleopolyhedrovirus PK-1 is essential for nucleocapsid assembly. Virology 2013; 443:349-57. [PMID: 23768784 DOI: 10.1016/j.virol.2013.05.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 04/08/2013] [Accepted: 05/16/2013] [Indexed: 11/18/2022]
Abstract
PK-1 (Ac10) is a baculovirus-encoded serine/threonine kinase and its function is unclear. Our results showed that a pk-1 knockout AcMNPV failed to produce infectious progeny, while the pk-1 repair virus could rescue this defect. qPCR analysis demonstrated that pk-1 deletion did not affect viral DNA replication. Analysis of the repaired recombinants with truncated pk-1 mutants demonstrated that the catalytic domain of protein kinases of PK-1 was essential to viral infectivity. Moreover, those PK-1 mutants that could rescue the infectious BV production defect exhibited kinase activity in vitro. Therefore, it is suggested that the kinase activity of PK-1 is essential in regulating viral propagation. Electron microscopy revealed that pk-1 deletion affected the formation of normal nucleocapsids. Masses of electron-lucent tubular structures were present in cell transfected with pk-1 knockout bacmid. Therefore, PK-1 appears to phosphorylate some viral or cellular proteins that are essential for DNA packaging to regulate nucleocapsid assembly.
Collapse
Affiliation(s)
- Changyong Liang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, People's Republic of China.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Baculovirus VP1054 is an acquired cellular PURα, a nucleic acid-binding protein specific for GGN repeats. J Virol 2013; 87:8465-80. [PMID: 23720732 DOI: 10.1128/jvi.00068-13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Baculovirus VP1054 protein is a structural component of both of the virion types budded virus (BV) and occlusion-derived virus (ODV), but its exact role in virion morphogenesis is poorly defined. In this paper, we reveal sequence and functional similarity between the baculovirus protein VP1054 and the cellular purine-rich element binding protein PUR-alpha (PURα). The data strongly suggest that gene transfer has occurred from a host to an ancestral baculovirus. Deletion of the Autographa californica multiple nucleopolyhedrovirus (AcMNPV) vp1054 gene completely prevented viral cell-to-cell spread. Electron microscopy data showed that assembly of progeny nucleocapsids is dramatically reduced in the absence of VP1054. More precisely, VP1054 is required for proper viral DNA encapsidation, as deduced from the formation of numerous electron-lucent capsid-like tubules. Complementary searching identified the presence of genetic elements composed of repeated GGN trinucleotide motifs in baculovirus genomes, the target sequence for PURα proteins. Interestingly, these GGN-rich sequences are disproportionally distributed in baculoviral genomes and mostly occurred in proximity to the gene for the major occlusion body protein polyhedrin. We further demonstrate that the VP1054 protein specifically recognizes these GGN-rich islands, which at the same time encode crucial proline-rich domains in p78/83, an essential gene adjacent to the polyhedrin gene in the AcMNPV genome. While some viruses, like human immunodeficiency virus type 1 (HIV-1) and human JC virus (JCV), utilize host PURα protein, baculoviruses encode the PURα-like protein VP1054, which is crucial for viral progeny production.
Collapse
|
38
|
The Autographa californica multiple nucleopolyhedrovirus ORF78 is essential for budded virus production and general occlusion body formation. J Virol 2013; 87:8441-50. [PMID: 23698311 DOI: 10.1128/jvi.01290-13] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ORF78 (ac78) of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) is a baculovirus core gene of unknown function. To determine the role of ac78 in the baculovirus life cycle, an AcMNPV mutant with ac78 deleted, Ac78KO, was constructed. Quantitative PCR analysis revealed that ac78 is a late gene in the viral life cycle. After transfection into Spodoptera frugiperda cells, Ac78KO produced a single-cell infection phenotype, indicating that no infectious budded viruses (BVs) were produced. The defect in BV production was also confirmed by both viral titration and Western blotting. However, viral DNA replication was unaffected, and occlusion bodies were formed. An analysis of BVs and occlusion-derived viruses (ODVs) revealed that AC78 is associated with both forms of the virions and is an envelope structural protein. Electron microscopy revealed that AC78 also plays an important role in the embedding of ODV into the occlusion body. The results of this study demonstrate that AC78 is a late virion-associated protein and is essential for the viral life cycle.
Collapse
|
39
|
Burke GR, Thomas SA, Eum JH, Strand MR. Mutualistic polydnaviruses share essential replication gene functions with pathogenic ancestors. PLoS Pathog 2013; 9:e1003348. [PMID: 23671417 PMCID: PMC3649998 DOI: 10.1371/journal.ppat.1003348] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 03/23/2013] [Indexed: 11/24/2022] Open
Abstract
Viruses are usually thought to form parasitic associations with hosts, but all members of the family Polydnaviridae are obligate mutualists of insects called parasitoid wasps. Phylogenetic data founded on sequence comparisons of viral genes indicate that polydnaviruses in the genus Bracovirus (BV) are closely related to pathogenic nudiviruses and baculoviruses. However, pronounced differences in the biology of BVs and baculoviruses together with high divergence of many shared genes make it unclear whether BV homologs still retain baculovirus-like functions. Here we report that virions from Microplitis demolitor bracovirus (MdBV) contain multiple baculovirus-like and nudivirus-like conserved gene products. We further show that RNA interference effectively and specifically knocks down MdBV gene expression. Coupling RNAi knockdown methods with functional assays, we examined the activity of six genes in the MdBV conserved gene set that are known to have essential roles in transcription (lef-4, lef-9), capsid assembly (vp39, vlf-1), and envelope formation (p74, pif-1) during baculovirus replication. Our results indicated that MdBV produces a baculovirus-like RNA polymerase that transcribes virus structural genes. Our results also supported a conserved role for vp39, vlf-1, p74, and pif-1 as structural components of MdBV virions. Additional experiments suggested that vlf-1 together with the nudivirus-like gene int-1 also have novel functions in regulating excision of MdBV proviral DNAs for packaging into virions. Overall, these data provide the first experimental insights into the function of BV genes in virion formation. Microorganisms form symbiotic associations with animals and plants that range from parasitic (pathogens) to beneficial (mutualists). Although numerous examples of obligate, mutualistic bacteria, fungi, and protozoans exist, viruses are almost always considered to be pathogens. An exception is the family Polydnaviridae, which consists of large DNA viruses that are obligate mutualists of insects called parasitoid wasps. Prior studies show that polydnaviruses in the genus Bracovirus evolved approximately 100 million years ago from a group of viruses called nudiviruses, which are themselves closely related to a large family of insect pathogens called baculoviruses. Polydnaviruses are thus of fundamental interest for understanding the processes by which viruses can evolve into mutualists. In this study we characterized the composition of virus particles from Microplitis demolitor bracovirus (MdBV) and conducted functional experiments to assess whether BV genes share similar functions with related essential baculovirus replication genes. Our results indicate that several genes in MdBV retain ancestral functions, but select other genes have novel functions unknown from baculoviruses. Our results also provide the first experimental data on the function of polydnavirus replication genes and enhance understanding of the similarities between these viruses and their pathogenic ancestors.
Collapse
Affiliation(s)
- Gaelen R. Burke
- Department of Entomology, University of Georgia, Athens, Georgia, United States of America
- * E-mail: (GRB); (MRS)
| | - Sarah A. Thomas
- Department of Entomology, University of Georgia, Athens, Georgia, United States of America
| | - Jai H. Eum
- Department of Entomology, University of Georgia, Athens, Georgia, United States of America
| | - Michael R. Strand
- Department of Entomology, University of Georgia, Athens, Georgia, United States of America
- * E-mail: (GRB); (MRS)
| |
Collapse
|
40
|
Xiang X, Shen Y, Yang R, Chen L, Hu X, Wu X. Bombyx mori nucleopolyhedrovirus BmP95 plays an essential role in budded virus production and nucleocapsid assembly. J Gen Virol 2013; 94:1669-1679. [PMID: 23535571 DOI: 10.1099/vir.0.050583-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bombyx mori nucleopolyhedrovirus (BmNPV) BmP95 is a highly conserved gene that is found in all of the baculovirus genomes sequenced to date and is also found in nudiviruses. To investigate the role of BmP95 in virus infection in vitro, a BmP95 deletion virus (vBmP95-De) was generated by homologous recombination in Escherichia coli. Fluorescence and light microscopy and titration analysis indicated that the BmP95 deletion bacmid led to a defect in production of infectious budded virus (BV). However, deletion of BmP95 did not affect viral DNA replication. Electron microscopy showed that masses of aberrant tubular structures were present in cells transfected with the BmP95 deletion bacmid, indicating that deletion of BmP95 affected assembly of the nucleocapsid. This defect could be rescued by insertion of full-length BmP95 into the polyhedrin locus of the BmP95-knockout bacmid but not the N-terminal domain of BmP95. Together, these results showed that full-length BmP95 is essential for BV production and is required for nucleocapsid assembly.
Collapse
Affiliation(s)
- Xingwei Xiang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yunwang Shen
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Rui Yang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Lin Chen
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Xiaolong Hu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Xiaofeng Wu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| |
Collapse
|
41
|
Chen L, Yang R, Hu X, Xiang X, Yu S, Wu X. The formation of occlusion-derived virus is affected by the expression level of ODV-E25. Virus Res 2013; 173:404-14. [PMID: 23298549 DOI: 10.1016/j.virusres.2012.12.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 12/26/2012] [Accepted: 12/27/2012] [Indexed: 11/18/2022]
Abstract
Odv-e25 is a core gene of baculoviruses and encodes a 25.5 kDa protein located on both budded virus (BV) and occlusion-derived virus (ODV). Our previous study demonstrated that ODV-E25 was required for the formation of intranuclear microvesicles and ODV, and an odv-e25 deletion mutant could be rescued by re-expression of odv-e25 under its native promoter. To investigate the functions of ODV-E25 expression level on ODV formation, the promoter of ie-1 (pIE1), the odv-e25 native promoter, and the polyhedrin promoter (pPH) were used to direct odv-e25 expression. Our results showed that the production of ODV-E25 under its native promoter was higher than that under pIE1 but lower than that under pPH. Viral DNA replication and budded viruses (BVs) production showed that expression of odv-e25 under pIE1 and pPH could not completely repair the defects caused by the deletion of ODV-E25, while expression under its native promoter did. Electron microscopy showed that intranuclear microvesicles were found in all the constructs transfected cells except the odv-e25-null virus. However, mature ODVs only were detected in cells transfected with virus in which odv-e25 was expressed under its native or polyhedrin promoter. These results indicated that the formation occlusion-derived virus was affected by the expression level of ODV-E25.
Collapse
Affiliation(s)
- Lin Chen
- College of Animal Sciences, Zhejiang University, Hangzhou 310029, China
| | | | | | | | | | | |
Collapse
|
42
|
Salem TZ, Zhang F, Thiem SM. Reduced expression of Autographa californica nucleopolyhedrovirus ORF34, an essential gene, enhances heterologous gene expression. Virology 2012; 435:225-38. [PMID: 23131351 DOI: 10.1016/j.virol.2012.10.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 08/15/2012] [Accepted: 10/15/2012] [Indexed: 12/22/2022]
Abstract
Autographa californica multiple nucleopolyhedrovirus ORF34 is part of a transcriptional unit that includes ORF32, encoding a viral fibroblast growth factor (FGF) and ORF33. We identified ORF34 as a candidate for deletion to improve protein expression in the baculovirus expression system based on enhanced reporter gene expression in an RNAi screen of virus genes. However, ORF34 was shown to be an essential gene. To explore ORF34 function, deletion (KO34) and rescue bacmids were constructed and characterized. Infection did not spread from primary KO34 transfected cells and supernatants from KO34 transfected cells could not infect fresh Sf21 cells whereas the supernatant from the rescue bacmids transfection could recover the infection. In addition, budded viruses were not observed in KO34 transfected cells by electron microscopy, nor were viral proteins detected from the transfection supernatants by western blots. These demonstrate that ORF34 is an essential gene with a possible role in infectious virus production.
Collapse
Affiliation(s)
- Tamer Z Salem
- Department of Entomology, Michigan State University, East Lansing, MI 48824, USA
| | | | | |
Collapse
|
43
|
Comparative proteomics reveal fundamental structural and functional differences between the two progeny phenotypes of a baculovirus. J Virol 2012; 87:829-39. [PMID: 23115289 DOI: 10.1128/jvi.02329-12] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The replication of lepidopteran baculoviruses is characterized by the production of two progeny phenotypes: the occlusion-derived virus (ODV), which establishes infection in midgut cells, and the budded virus (BV), which disseminates infection to different tissues within a susceptible host. To understand the structural, and hence functional, differences between BV and ODV, we employed multiple proteomic methods to reveal the protein compositions and posttranslational modifications of the two phenotypes of Helicoverpa armigera nucleopolyhedrovirus. In addition, Western blotting and quantitative mass spectrometry were used to identify the localization of proteins in the envelope or nucleocapsid fractions. Comparative protein portfolios of BV and ODV showing the distribution of 54 proteins, encompassing the 21 proteins shared by BV and ODV, the 12 BV-specific proteins, and the 21 ODV-specific proteins, were obtained. Among the 11 ODV-specific envelope proteins, 8 either are essential for or contribute to oral infection. Twenty-three phosphorylated and 6 N-glycosylated viral proteins were also identified. While the proteins that are shared by the two phenotypes appear to be important for nucleocapsid assembly and trafficking, the structural and functional differences between the two phenotypes are evidently characterized by the envelope proteins and posttranslational modifications. This comparative proteomics study provides new insight into how BV and ODV are formed and why they function differently.
Collapse
|
44
|
Roy P, Noad R. Use of bacterial artificial chromosomes in baculovirus research and recombinant protein expression: current trends and future perspectives. ISRN MICROBIOLOGY 2012; 2012:628797. [PMID: 23762754 PMCID: PMC3671692 DOI: 10.5402/2012/628797] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 08/16/2012] [Indexed: 11/23/2022]
Abstract
The baculovirus expression system is one of the most successful and widely used eukaryotic protein expression methods. This short review will summarise the role of bacterial artificial chromosomes (BACS) as an enabling technology for the modification of the virus genome. For many years baculovirus genomes have been maintained in E. coli as bacterial artificial chromosomes, and foreign genes have been inserted using a transposition-based system. However, with recent advances in molecular biology techniques, particularly targeting reverse engineering of the baculovirus genome by recombineering, new frontiers in protein expression are being addressed. In particular, BACs have facilitated the propagation of disabled virus genomes that allow high throughput protein expression. Furthermore, improvement in the selection of recombinant viral genomes inserted into BACS has enabled the expression of multiprotein complexes by iterative recombineering of the baculovirus genome.
Collapse
Affiliation(s)
- Polly Roy
- Department of Pathogen Molecular Biology, Faculty of Infectious Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | | |
Collapse
|
45
|
Phylogeny and evolution of Hytrosaviridae. J Invertebr Pathol 2012; 112 Suppl:S62-7. [PMID: 22841640 DOI: 10.1016/j.jip.2012.07.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 05/21/2012] [Accepted: 05/22/2012] [Indexed: 11/21/2022]
Abstract
The Hytrosaviridae comprises a family of dsDNA viruses with a circular genome of 120-190 kb p. They are exclusively associated with Diptera, such as the tsetse fly, the house fly and the Narcissus bulb fly. Hytrosaviruses cause a very unique pathology including hypertrophy of salivary glands as well as testicular and ovarian malformation. On the other hand these viruses share a significant number of gene homologues with other dsDNA viruses, esp. baculoviruses and nudiviruses. These gene homologues include twelve so-called baculovirus core genes involved in transcription, DNA replication and the infection process. Most strikingly, the Musca domestica salivary gland hypertrophy virus (MdSGHV) encodes a homologue of a polyhedrin/granulin gene of Alpha-, Beta-, Gammabaculoviruses. Hence, it is proposed that hytrosaviruses are phylogenetically related to baculoviruses but evolved in a very close association with their dipteran hosts.
Collapse
|
46
|
Shen H, Zhou Y, Zhang W, Nin B, Wang H, Wang X, Shao S, Chen H, Guo Z, Liu X, Yao Q, Chen K. Characterization of Bombyx mori nucleopolyhedrovirus with a knockout of Bm17. Cytotechnology 2012; 64:711-8. [PMID: 22476564 DOI: 10.1007/s10616-012-9451-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 01/03/2012] [Indexed: 11/28/2022] Open
Abstract
Open reading frame 17 (Bm17) gene of Bombyx mori nucleopolyhedrovirus is a highly conserved gene in lepidopteran nucleopolyhedroviruses, but its function remains unknown. In this report, transient-expression and superinfection assays indicated that BM17 localized in the nucleus and cytoplasm of infected BmN cells. To determine the role of Bm17 in baculovirus life cycle, we constructed a Bm17 knockout virus and characterized its properties in cells. Analysis of the production and infection of budded virions, the level of viral DNA replication revealed showed that there was no significant difference among the mutant, the control, and the Bm17 repaired virus strains. These results suggest that BM17 is not essential for virus replication in cultured cells.
Collapse
Affiliation(s)
- Hongxing Shen
- School of Medical Science and Laborarory Medicine, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
The Autographa californica M nucleopolyhedrovirus ac79 gene encodes an early gene product with structural similarities to UvrC and intron-encoded endonucleases that is required for efficient budded virus production. J Virol 2012; 86:5614-25. [PMID: 22419804 DOI: 10.1128/jvi.06252-11] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The Autographa californica M nucleopolyhedrovirus (AcMNPV) orf79 (ac79) gene is a conserved gene in baculoviruses and shares homology with genes in ascoviruses, iridoviruses, and several bacteria. Ac79 has a conserved motif and structural similarities to UvrC and intron-encoded endonucleases. Ac79 is produced at early times during infection and concentrates in the nucleus of infected cells at late times, suggesting a cellular compartment-specific function. To investigate its function, an ac79-knockout bacmid was generated through homologous recombination in Escherichia coli. Titration assays showed that budded virus (BV) production was reduced in the ac79-knockout virus compared to control viruses, following either virus infection or the transfection of bacmid DNA. The ac79-knockout virus-infected cells produced plaques smaller than those infected with control ac79-carrying viruses. No obvious differences were observed in viral DNA synthesis, viral protein accumulation, or the formation of occlusion bodies in ac79-knockout and control viral DNA-transfected cells, indicating progression into the late and very late phases of viral infection. However, comparative analyses of the amounts of BV genomic DNA and structural proteins in a given quantity of infectious virions suggested that the ac79-knockout virus produced more noninfectious BV in infected cells than the control virus. The structure of the ac79-knockout BV determined by transmission electron microscopy appeared to be similar to that of the control virus, although aberrant capsid protein-containing tubular structures were observed in the nuclei of ac79-knockout virus-infected cells. Tubular structures were not observed for ac79 viruses with mutations in conserved endonuclease residues. These results indicate that Ac79 is required for efficient BV production.
Collapse
|
48
|
Ono C, Kamagata T, Taka H, Sahara K, Asano SI, Bando H. Phenotypic grouping of 141 BmNPVs lacking viral gene sequences. Virus Res 2012; 165:197-206. [PMID: 22421381 DOI: 10.1016/j.virusres.2012.02.016] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 02/07/2012] [Accepted: 02/16/2012] [Indexed: 11/15/2022]
Abstract
We constructed a series of gene knockout BmNPVs (KOVs) for each of 141 genes (Gomi et al., 1999; Katsuma et al., 2011) using the BmNPV T3 bacmid system (Ono et al., 2007) and lambda red recombination system (Datsenko and Wanner, 2000). In a subsequent analysis of the properties needed for infection using a marker gene, egfp (enhanced green fluorescent protein gene), inserted into the polyhedrin locus, the knockout viruses (KOVs) were subdivided into four phenotypic types, A to D. Type-A (86 KOVs) showed the ability to expand infections equivalent to the control while type-B (8 KOVs) spread infections more slowly. Type-C (37 KOVs) expressed egfp in transfected-BmN cells but the production of infectious viruses was not observed. Type-D (10 KOVs) showed no ability to express egfp even in the transfection experiments. KOVs lacking genes (pkip (Bm15), gp41 (Bm66), bro-d (Bm131), Bm20, 48, 65, 91, 93, or 101) previously identified as being essential, were placed in the viable type-A and B categories.
Collapse
Affiliation(s)
- Chikako Ono
- Laboratory of Applied Molecular Entomology, Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | | | | | | | | | | |
Collapse
|
49
|
Peng Y, Li K, Pei RJ, Wu CC, Liang CY, Wang Y, Chen XW. The protamine-like DNA-binding protein P6.9 epigenetically up-regulates Autographa californica multiple nucleopolyhedrovirus gene transcription in the late infection phase. Virol Sin 2012; 27:57-68. [PMID: 22270807 DOI: 10.1007/s12250-012-3229-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 12/15/2011] [Indexed: 11/30/2022] Open
Abstract
Protamines are a group of highly basic proteins first discovered in spermatozoon that allow for denser packaging of DNA than histones and will result in down-regulation of gene transcription[1]. It is well recognized that the Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) encodes P6.9, a protamine-like protein that forms the viral subnucleosome through binding to the viral genome[29]. Previous research demonstrates that P6.9 is essential for viral nucleocapsid assembly, while it has no influence on viral genome replication[31]. In the present study, the role of P6.9 in viral gene transcription regulation is characterized. In contrast to protamines or other protamine-like proteins that usually down-regulate gene transcription, P6.9 appears to up-regulate viral gene transcription at 12-24 hours post infection (hpi), whereas it is non-essential for the basal level of viral gene transcription. Fluorescence microscopy reveals the P6.9's co-localization with DNA is temporally and spatially synchronized with P6.9's impact on viral gene transcription, indicating the P6.9-DNA association contributes to transcription regulation. Chromatin fractionation assay further reveals an unexpected co-existence of P6.9 and host RNA polymerase II in the same transcriptionally active chromatin fraction at 24 hpi, which may probably contribute to viral gene transcription up-regulation in the late infection phase.
Collapse
Affiliation(s)
- Ying Peng
- Key Laboratory of Agricultural & Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | | | | | | | | | | | | |
Collapse
|
50
|
Autographa californica multiple nucleopolyhedrovirus odv-e25 (Ac94) is required for budded virus infectivity and occlusion-derived virus formation. Arch Virol 2012; 157:617-25. [PMID: 22218963 DOI: 10.1007/s00705-011-1211-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 11/24/2011] [Indexed: 10/14/2022]
Abstract
Autographa californica multiple nucleopolyhedrovirus (AcMNPV) odv-e25 is a core gene found in all lepidopteran baculoviruses, but its function is unknown. In this study, we generated an odv-e25-knockout AcMNPV and investigated the roles of ODV-E25 in the baculovirus life cycle. The odv-e25 knockout was subsequently rescued by reinserting the odv-e25 gene into the same virus genome. Fluorescence microscopy showed that transfection with the odv-e25-null bacmid vAcBac(KO) was insufficient for propagation in cell culture, whereas the 'repair' virus vAcBac(RE) was able to function in a manner similar to that of the control vAcBac. We found that odv-e25 was not essential for the release of budded viruses (BVs) into culture medium, although the absence of odv-e25 resulted in a 100-fold lower viral titer at 24 h post-transfection (p.t.). Analysis of viral DNA replication in the absence of odv-e25 showed that viral DNA replication was unaffected in the first 24 h p.t. Furthermore, electron microscopy revealed that polyhedra were found in the nucleus, while mature occlusion-derived viruses (ODVs) were not found in the nucleus or polyhedra in odv-e25 null transfected cells, which indicated that ODV-E25 was required for the formation of ODV.
Collapse
|