1
|
Zhang Y, Nagalo BM. Immunovirotherapy Based on Recombinant Vesicular Stomatitis Virus: Where Are We? Front Immunol 2022; 13:898631. [PMID: 35837384 PMCID: PMC9273848 DOI: 10.3389/fimmu.2022.898631] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/31/2022] [Indexed: 01/05/2023] Open
Abstract
Vesicular stomatitis virus (VSV), a negative-strand RNA virus of the Vesiculovirus genus, has demonstrated encouraging anti-neoplastic activity across multiple human cancer types. VSV is particularly attractive as an oncolytic agent because of its broad tropism, fast replication kinetics, and amenability to genetic manipulations. Furthermore, VSV-induced oncolysis can elicit a potent antitumor cytotoxic T-cell response to viral proteins and tumor-associated antigens, resulting in a long-lasting antitumor effect. Because of this multifaceted immunomodulatory property, VSV was investigated extensively as an immunovirotherapy alone or combined with other anticancer modalities, such as immune checkpoint blockade. Despite these recent opportunities to delineate synergistic and additive antitumor effects with existing anticancer therapies, FDA approval for the use of oncolytic VSV in humans has not yet been granted. This mini-review discusses factors that have prompted the use of VSV as an immunovirotherapy in human cancers and provides insights into future perspectives and research areas to improve VSV-based oncotherapy.
Collapse
Affiliation(s)
- Yuguo Zhang
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Bolni Marius Nagalo
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- *Correspondence: Bolni Marius Nagalo,
| |
Collapse
|
2
|
Recombinant Isfahan Virus and Vesicular Stomatitis Virus Vaccine Vectors Provide Durable, Multivalent, Single-Dose Protection against Lethal Alphavirus Challenge. J Virol 2017; 91:JVI.01729-16. [PMID: 28148802 DOI: 10.1128/jvi.01729-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 01/12/2017] [Indexed: 12/19/2022] Open
Abstract
The demonstrated clinical efficacy of a recombinant vesicular stomatitis virus (rVSV) vaccine vector has stimulated the investigation of additional serologically distinct Vesiculovirus vectors as therapeutic and/or prophylactic vaccine vectors to combat emerging viral diseases. Among these viral threats are the encephalitic alphaviruses Venezuelan equine encephalitis virus (VEEV) and Eastern equine encephalitis virus (EEEV), which have demonstrated potential for natural disease outbreaks, yet no licensed vaccines are available in the event of an epidemic. Here we report the rescue of recombinant Isfahan virus (rISFV) from genomic cDNA as a potential new vaccine vector platform. The rISFV genome was modified to attenuate virulence and express the VEEV and EEEV E2/E1 surface glycoproteins as vaccine antigens. A single dose of the rISFV vaccine vectors elicited neutralizing antibody responses and protected mice from lethal VEEV and EEEV challenges at 1 month postvaccination as well as lethal VEEV challenge at 8 months postvaccination. A mixture of rISFV vectors expressing the VEEV and EEEV E2/E1 glycoproteins also provided durable, single-dose protection from lethal VEEV and EEEV challenges, demonstrating the potential for a multivalent vaccine formulation. These findings were paralleled in studies with an attenuated form of rVSV expressing the VEEV E2/E1 glycoproteins. Both the rVSV and rISFV vectors were attenuated by using an approach that has demonstrated safety in human trials of an rVSV/HIV-1 vaccine. Vaccines based on either of these vaccine vector platforms may present a safe and effective approach to prevent alphavirus-induced disease in humans.IMPORTANCE This work introduces rISFV as a novel vaccine vector platform that is serologically distinct and phylogenetically distant from VSV. The rISFV vector has been attenuated by an approach used for an rVSV vector that has demonstrated safety in clinical studies. The vaccine potential of the rISFV vector was investigated in a well-established alphavirus disease model. The findings indicate the feasibility of producing a safe, efficacious, multivalent vaccine against the encephalitic alphaviruses VEEV and EEEV, both of which can cause fatal disease. This work also demonstrates the efficacy of an attenuated rVSV vector that has already demonstrated safety and immunogenicity in multiple HIV-1 phase I clinical studies. The absence of serological cross-reactivity between rVSV and rISFV and their phylogenetic divergence within the Vesiculovirus genus indicate potential for two stand-alone vaccine vector platforms that could be used to target multiple bacterial and/or viral agents in successive immunization campaigns or as heterologous prime-boost agents.
Collapse
|
3
|
Abstract
The successful human papillomavirus and hepatitis B virus subunit vaccines contain single viral proteins that represent 22 and 12%, respectively, of the antigens encoded by these tiny viruses. The herpes simplex virus 2 (HSV-2) genome is >20 times larger. Thus, a single protein subunit represents 1% of HSV-2's total antigenic breadth. Antigenic breadth may explain why HSV-2 glycoprotein subunit vaccines have failed in clinical trials, and why live HSV-2 vaccines that express 99% of HSV-2's proteome may be more effective. I review the mounting evidence that live HSV-2 vaccines offer a greater opportunity to stop the spread of genital herpes, and I consider the unfounded 'safety concerns' that have kept live HSV-2 vaccines out of U.S. clinical trials for 25 years.
Collapse
Affiliation(s)
- William P Halford
- Department of Microbiology and Immunology, Southern Illinois University School of Medicine, Springfield, IL 62702, USA
| |
Collapse
|
4
|
Rabinovich S, Powell RLR, Lindsay RWB, Yuan M, Carpov A, Wilson A, Lopez M, Coleman JW, Wagner D, Sharma P, Kemelman M, Wright KJ, Seabrook JP, Arendt H, Martinez J, DeStefano J, Chiuchiolo MJ, Parks CL. A novel, live-attenuated vesicular stomatitis virus vector displaying conformationally intact, functional HIV-1 envelope trimers that elicits potent cellular and humoral responses in mice. PLoS One 2014; 9:e106597. [PMID: 25215861 PMCID: PMC4162551 DOI: 10.1371/journal.pone.0106597] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 08/03/2014] [Indexed: 01/09/2023] Open
Abstract
Though vaccination with live-attenuated SIV provides the greatest protection from progressive disease caused by SIV challenge in rhesus macaques, attenuated HIV presents safety concerns as a vaccine; therefore, live viral vectors carrying HIV immunogens must be considered. We have designed a replication-competent vesicular stomatitis virus (VSV) displaying immunogenic HIV-1 Env trimers and attenuating quantities of the native surface glycoprotein (G). The clade B Env immunogen is an Env-VSV G hybrid (EnvG) in which the transmembrane and cytoplasmic tail regions are derived from G. Relocation of the G gene to the 5'terminus of the genome and insertion of EnvG into the natural G position induced a ∼1 log reduction in surface G, significant growth attenuation compared to wild-type, and incorporation of abundant EnvG. Western blot analysis indicated that ∼75% of incorporated EnvG was a mature proteolytically processed form. Flow cytometry showed that surface EnvG bound various conformationally- and trimer-specific antibodies (Abs), and in-vitro growth assays on CD4+CCR5+ cells demonstrated EnvG functionality. Neither intranasal (IN) or intramuscular (IM) administration in mice induced any observable pathology and all regimens tested generated potent Env-specific ELISA titers of 10(4)-10(5), with an IM VSV prime/IN VSV boost regimen eliciting the highest binding and neutralizing Ab titers. Significant quantities of Env-specific CD4+ T cells were also detected, which were augmented as much as 70-fold by priming with IM electroporated plasmids encoding EnvG and IL-12. These data suggest that our novel vector can achieve balanced safety and immunogenicity and should be considered as an HIV vaccine platform.
Collapse
Affiliation(s)
- Svetlana Rabinovich
- International AIDS Vaccine Initiative, Design and Development Laboratory, Brooklyn, New York, United States of America
- Molecular and Cellular Biology Program, The School of Graduate Studies, State University of New York Downstate Medical Center, Brooklyn, New York, United States of America
| | - Rebecca L. R. Powell
- International AIDS Vaccine Initiative, Design and Development Laboratory, Brooklyn, New York, United States of America
| | - Ross W. B. Lindsay
- International AIDS Vaccine Initiative, Design and Development Laboratory, Brooklyn, New York, United States of America
| | - Maoli Yuan
- International AIDS Vaccine Initiative, Design and Development Laboratory, Brooklyn, New York, United States of America
| | - Alexei Carpov
- International AIDS Vaccine Initiative, Design and Development Laboratory, Brooklyn, New York, United States of America
| | - Aaron Wilson
- International AIDS Vaccine Initiative, Design and Development Laboratory, Brooklyn, New York, United States of America
| | - Mary Lopez
- International AIDS Vaccine Initiative, Design and Development Laboratory, Brooklyn, New York, United States of America
| | - John W. Coleman
- International AIDS Vaccine Initiative, Design and Development Laboratory, Brooklyn, New York, United States of America
| | - Denise Wagner
- International AIDS Vaccine Initiative, Design and Development Laboratory, Brooklyn, New York, United States of America
| | - Palka Sharma
- International AIDS Vaccine Initiative, Design and Development Laboratory, Brooklyn, New York, United States of America
| | - Marina Kemelman
- International AIDS Vaccine Initiative, Design and Development Laboratory, Brooklyn, New York, United States of America
| | - Kevin J. Wright
- International AIDS Vaccine Initiative, Design and Development Laboratory, Brooklyn, New York, United States of America
| | - John P. Seabrook
- International AIDS Vaccine Initiative, Design and Development Laboratory, Brooklyn, New York, United States of America
| | - Heather Arendt
- International AIDS Vaccine Initiative, Design and Development Laboratory, Brooklyn, New York, United States of America
| | - Jennifer Martinez
- International AIDS Vaccine Initiative, Design and Development Laboratory, Brooklyn, New York, United States of America
| | - Joanne DeStefano
- International AIDS Vaccine Initiative, Design and Development Laboratory, Brooklyn, New York, United States of America
| | - Maria J. Chiuchiolo
- International AIDS Vaccine Initiative, Design and Development Laboratory, Brooklyn, New York, United States of America
- Molecular and Cellular Biology Program, The School of Graduate Studies, State University of New York Downstate Medical Center, Brooklyn, New York, United States of America
| | - Christopher L. Parks
- International AIDS Vaccine Initiative, Design and Development Laboratory, Brooklyn, New York, United States of America
- Molecular and Cellular Biology Program, The School of Graduate Studies, State University of New York Downstate Medical Center, Brooklyn, New York, United States of America
| |
Collapse
|
5
|
Vaccination with a HSV-2 UL24 mutant induces a protective immune response in murine and guinea pig vaginal infection models. Vaccine 2014; 32:1398-406. [PMID: 24462481 DOI: 10.1016/j.vaccine.2013.10.079] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 09/25/2013] [Accepted: 10/24/2013] [Indexed: 11/21/2022]
Abstract
The rational design and development of genetically attenuated HSV-2 mutant viruses represent an attractive approach for developing both prophylactic and therapeutic vaccines for genital herpes. Previously, HSV-2 UL24 was shown to be a virulence determinant in both murine and guinea pig vaginal infection models. An UL24-βgluc insertion mutant produced syncytial plaques and replicated to nearly wild type levels in tissue culture, but induced little or no pathological effects in recipient mice or guinea pigs following vaginal infection. Here we report that immunization of mice or guinea pigs with high or low doses of UL24-βgluc elicited a highly protective immune response. UL24-βgluc immunization via the vaginal or intramuscular routes was demonstrated to protect mice from a lethal vaginal challenge with wild type HSV-2. Moreover, antigen re-stimulated splenic lymphocytes harvested from immunized mice exhibited both HSV-2 specific CTL activity and IFN-γ expression. Humoral anti-HSV-2 responses in serum were Th1-polarized (IgG2a>IgG1) and contained high-titer anti-HSV-2 neutralizing activity. Guinea pigs vaccinated subcutaneously with UL24-βgluc or the more virulent parental strain (186) were challenged with a heterologous HSV-2 strain (MS). Acute disease scores were nearly indistinguishable in guinea pigs immunized with either virus. Recurrent disease scores were reduced in UL24-βgluc immunized animals but not to the same extent as those immunized with strain 186. In addition, challenge virus was not detected in 75% of guinea pigs subcutaneously immunized with UL24-βgluc. In conclusion, disruption of the UL24 gene is a prime target for the development of a genetically attenuated live HSV-2 vaccine.
Collapse
|
6
|
Pan-HSV-2 IgG antibody in vaccinated mice and guinea pigs correlates with protection against herpes simplex virus 2. PLoS One 2013; 8:e65523. [PMID: 23755244 PMCID: PMC3675040 DOI: 10.1371/journal.pone.0065523] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 04/29/2013] [Indexed: 12/27/2022] Open
Abstract
We lack a correlate of immunity to herpes simplex virus 2 (HSV-2) that may be used to differentiate whether a HSV-2 vaccine elicits robust or anemic protection against genital herpes. This gap in knowledge is often attributed to a failure to measure the correct component of the adaptive immune response to HSV-2. However, efforts to identify a correlate of immunity have focused on subunit vaccines that contain less than 3% of HSV-2's 40,000-amino-acid proteome. We were interested to determine if a correlate of immunity might be more readily identified if 1. animals were immunized with a polyvalent immunogen such as a live virus and/or 2. the magnitude of the vaccine-induced immune response was gauged in terms of the IgG antibody response to all of HSV-2's antigens (pan-HSV-2 IgG). Pre-challenge pan-HSV-2 IgG levels and protection against HSV-2 were compared in mice and/or guinea pigs immunized with a gD-2 subunit vaccine, wild-type HSV-2, or one of several attenuated HSV-2 ICP0− viruses (0Δ254, 0Δ810, 0ΔRING, or 0ΔNLS). These six HSV-2 immunogens elicited a wide range of pan-HSV-2 IgG levels spanning an ∼500-fold range. For 5 of the 6 immunogens tested, pre-challenge levels of pan-HSV-2 IgG quantitatively correlated with reductions in HSV-2 challenge virus shedding and increased survival frequency following HSV-2 challenge. Collectively, the results suggest that pan-HSV-2 IgG levels may provide a simple and useful screening tool for evaluating the potential of a HSV-2 vaccine candidate to elicit protection against HSV-2 genital herpes.
Collapse
|
7
|
Stanberry LR. Genital and Perinatal Herpes Simplex Virus Infections. Sex Transm Dis 2013. [DOI: 10.1016/b978-0-12-391059-2.00012-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
8
|
Non-propagating, recombinant vesicular stomatitis virus vectors encoding respiratory syncytial virus proteins generate potent humoral and cellular immunity against RSV and are protective in mice. Immunol Lett 2012; 150:134-44. [PMID: 23261719 DOI: 10.1016/j.imlet.2012.12.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 12/07/2012] [Accepted: 12/10/2012] [Indexed: 11/21/2022]
Abstract
Respiratory syncytial virus (RSV) is a major cause of severe lower respiratory tract illness in infants, the elderly, and other high-risk individuals. Despite years of research in this field, there is no effective licensed vaccine to prevent RSV infection. We have generated candidate RSV vaccines using a recombinant vesicular stomatitis virus (rVSV) replicon in which the attachment and fusion domains of the VSV glycoprotein (G) have been deleted (rVSV-Gstem), rendering the virus propagation-defective except in the presence of complementing VSV G provided in trans. A form of this vector encoding the RSV fusion protein (F) gene expressed high levels of F in vitro and elicited durable neutralizing antibody responses as well as complete protection against RSV challenge in vivo. Mice vaccinated with rVSV-Gstem-RSV-F replicons also developed robust cellular responses characterized by both primary and memory Th1-biased CD8+ and CD4+ T cells. Furthermore, a single high dose of the Gstem-RSV-F replicon was effective against challenge with both RSV A and B subgroup viruses. Finally, addition of an RSV glycoprotein (G)-expressing Gstem vector significantly improved the incomplete protection achieved with a single low dose of Gstem-RSV-F vector alone.
Collapse
|
9
|
Roth K, Ferreira VH, Kaushic C. HSV-2 vaccine: current state and insights into development of a vaccine that targets genital mucosal protection. Microb Pathog 2012; 58:45-54. [PMID: 23159485 DOI: 10.1016/j.micpath.2012.11.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 11/05/2012] [Accepted: 11/06/2012] [Indexed: 11/19/2022]
Abstract
HSV-2 is one of the most prevalent sexually transmitted infections that result in significant morbidity and financial burden on health systems around the world. Recurrent and asymptomatic re-activation accompanied by viral shedding is common among sero-positive individuals, leading to relatively high efficiency of transmission. Prophylactic HSV-2 vaccines are the best and cheapest option to address the problems associated with HSV-2 infections globally. However, despite persistent efforts, the search for an efficacious vaccine for HSV-2 remains elusive. In this review, the current state of HSV-2 vaccines and the outcome of past human trials are examined. Furthermore, we discuss the evidence and strategies from experimental mouse models that have been successful in inducing protective immunity in the genital tract against HSV-2, following immunization. Future vaccination strategies that focus on induction of robust mucosal immunity in the genital tract may hold the key for a successful vaccine against HSV-2.
Collapse
Affiliation(s)
- Kristy Roth
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine, McMaster University, Michael G. DeGroote Center for Learning and Discovery, Hamilton, Ontario, Canada
| | | | | |
Collapse
|
10
|
Lee AJ, Ashkar AA. Herpes simplex virus-2 in the genital mucosa: insights into the mucosal host response and vaccine development. Curr Opin Infect Dis 2012; 25:92-9. [PMID: 22143115 DOI: 10.1097/qco.0b013e32834e9a56] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
PURPOSE OF REVIEW Herpes simplex virus (HSV)-2 is the predominant cause of genital herpes and has been implicated in HIV infection and transmission. Thus far, vaccines developed against HSV-2 have been clinically ineffective in preventing infection. This review aims to summarize the innate and adaptive immune responses against HSV-2 and examines the current status of vaccine development. RECENT FINDINGS Both innate and adaptive immune responses are essential for an effective primary immune response and the generation of immunity. The innate response involves Toll-like receptors, natural killer cells, plasmacytoid dendritic cells, and type I, II, and III interferons. The adaptive response requires a balance between CD4+ and CD8+ T-cells for optimal viral clearance. T-regulatory cells may be involved, although their exact function has yet to be determined. Current vaccine development involves the use of HSV-2 peptides or attenuated/replication-defective HSV-2 to generate adaptive anti-HSV-2 immune responses, however the generation of innate responses may also be an important consideration. SUMMARY Although vaccine development has primarily focused on the adaptive response, arguments for innate involvement are emerging. A greater understanding of the innate and adaptive processes underlying the response to HSV-2 infection will provide the foundation for the development of an effective vaccine.
Collapse
Affiliation(s)
- Amanda J Lee
- Department of Pathology and Molecular Medicine, Centre for Gene Therapeutics and Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | | |
Collapse
|
11
|
Abstract
Herpes simplex virus type 2 (HSV-2) is one of the most prevalent sexually transmitted infections worldwide. In addition to recurrent genital ulcers, HSV-2 causes neonatal herpes, and it is associated with a 3-fold increased risk for HIV acquisition. Although many HSV-2 vaccines have been studied in animal models, few have reached clinical trials, and those that have been tested in humans were not consistently effective. Here, we review HSV-2 pathogenesis, with a focus on novel understanding of mucosal immunobiology of HSV-2, and vaccine efforts to date, in an attempt to stimulate thinking about future directions for development of effective prophylactic and therapeutic HSV-2 vaccines.
Collapse
Affiliation(s)
- Christine Johnston
- Department of Medicine, University of Washington, Seattle, Washington, USA.
| | | | | |
Collapse
|
12
|
Sato H, Yoneda M, Honda T, Kai C. Recombinant vaccines against the mononegaviruses--what we have learned from animal disease controls. Virus Res 2011; 162:63-71. [PMID: 21982973 PMCID: PMC7114506 DOI: 10.1016/j.virusres.2011.09.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 09/28/2011] [Indexed: 11/30/2022]
Abstract
The mononegaviruses include a number of highly contagious and severe disease-causing viruses of both animals and humans. For the control of these viral diseases, development of vaccines, either with classical methods or with recombinant DNA virus vectors, has been attempted over the years. Recently reverse genetics of mononegaviruses has been developed and used to generate infectious viruses possessing genomes derived from cloned cDNA in order to study the consequent effects of viral gene manipulations on phenotype. This technology allows us to develop novel candidate vaccines. In particular, a variety of different attenuation strategies to produce a range of attenuated mononegavirus vaccines have been studied. In addition, because of their ideal nature as live vaccines, recombinant mononegaviruses expressing foreign proteins have also been produced with the aim of developing multivalent vaccines against more than one pathogen. These recombinant mononegaviruses are currently under evaluation as new viral vectors for vaccination. Reverse genetics could have great potential for the preparation of vaccines against many mononegaviruses.
Collapse
Affiliation(s)
- Hiroki Sato
- Laboratory Animal Research Center/International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
| | | | | | | |
Collapse
|
13
|
Tirabassi RS, Ace CI, Levchenko T, Torchilin VP, Selin LK, Nie S, Guberski DL, Yang K. A mucosal vaccination approach for herpes simplex virus type 2. Vaccine 2010; 29:1090-8. [PMID: 21134447 DOI: 10.1016/j.vaccine.2010.11.076] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 11/09/2010] [Accepted: 11/20/2010] [Indexed: 11/15/2022]
Abstract
An estimated 1 out of every 5 Americans is infected with herpes simplex virus type 2 (HSV-2). Efforts in developing a potent vaccine for HSV-2 have shown limited success. Here we describe a heterologous vaccination strategy for HSV-2 based on an intramuscular DNA prime followed by a liposome-encapsulated antigen boost delivered intranasally. Both portions of the vaccine express the immunogenic HSV-2 glycoprotein D. In female Balb/c mice, this heterologous immunisation regimen stimulated high titers of serum neutralising antibodies, a DNA priming dose dependent T helper type response, enhanced mucosal immune responses and potent protective immunity at the portal of entry for the virus: the vaginal cavity. A clear synergistic effect on immune responses and protection from infection was seen using this heterologous immunisation approach. Suboptimal DNA prime (0.5 μg) followed by the liposome boost resulted in an 80% survival rate when mice were infected 2 weeks after immunisation. A higher dose of DNA priming (5 μg) followed by the liposome boost resulted in sterilising immunity in 80% of mice. The vaccine induced durable protection in mice, demonstrated by a 60% survival rate when lethal infections were performed 20 weeks after the immunisation primed with 0.5 μg of DNA vaccine.
Collapse
Affiliation(s)
- Rebecca S Tirabassi
- Biomedical Research Models, Inc., 67 Millbrook Street, Suite 422, Worcester, MA 01606, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Barefoot BE, Athearn K, Sample CJ, Ramsburg EA. Intramuscular immunization with a vesicular stomatitis virus recombinant expressing the influenza hemagglutinin provides post-exposure protection against lethal influenza challenge. Vaccine 2009; 28:79-89. [PMID: 19819211 PMCID: PMC2787752 DOI: 10.1016/j.vaccine.2009.09.112] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Revised: 09/20/2009] [Accepted: 09/25/2009] [Indexed: 12/01/2022]
Abstract
Vaccines currently licensed for the prevention of seasonal influenza induce antibodies against the influenza hemagglutinin (HA) and neuraminidase (NA) contained in the vaccine preparation but require at least 2 weeks after immunization for the development of protective immunity. These vaccines do not induce protective responses quickly enough to blunt the effects of infection when administered after exposure. We have developed a novel vaccine based on recombinant vesicular stomatitis virus which expresses the influenza hemagglutinin (rVSV HA) and protects mice from lethal influenza challenge when the vaccine is administered intramuscularly at least 24h after delivery of the influenza challenge virus. To our knowledge this is the first vaccine that effectively protects animals from lethal influenza challenge when delivered by a systemic route after influenza exposure has occurred. The induction of HA-specific immune responses by the vaccine is necessary for full protection from challenge, because animals immunized with an empty rVSV vector were not protected equally. Our results are consistent with a model in which vaccination induces an immediate antiviral cytokine response, followed by development of humoral and cellular immune responses which act to reduce pulmonary viral loads and accelerate recovery. Consistent with this model, mice vaccinated with the specific vaccine rVSV HA had high levels of IFN-alpha in the serum by 24h after challenge/vaccination, developed serum neutralizing Ab to influenza 2 days prior to control animals, and had detectable anti-HA CD8 T cells present in the peripheral blood 3 days prior to control mice.
Collapse
Affiliation(s)
- Brice E. Barefoot
- Duke University Human Vaccine Institute, Department of Medicine, Duke University School of Medicine
| | - Kathleen Athearn
- Duke University Department of Pathology, Duke University, Durham, North Carolina 27710
| | - Christopher J. Sample
- Duke University Human Vaccine Institute, Department of Medicine, Duke University School of Medicine
| | - Elizabeth A. Ramsburg
- Duke University Human Vaccine Institute, Department of Medicine, Duke University School of Medicine
- Duke University Department of Pathology, Duke University, Durham, North Carolina 27710
| |
Collapse
|
15
|
Huilan Y, Cui Z, Jianyong F, Lei G, Wei Q. Construction of, and T-helper (Th)1/Th2 immune responses to, a herpes simplex virus type 2 glycoprotein D-cytotoxic T-lymphocyte epitope DNA vaccine. Clin Exp Dermatol 2009; 35:537-42. [DOI: 10.1111/j.1365-2230.2009.03673.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
16
|
Dasgupta G, Chentoufi AA, Nesburn AB, Wechsler SL, BenMohamed L. New concepts in herpes simplex virus vaccine development: notes from the battlefield. Expert Rev Vaccines 2009; 8:1023-35. [PMID: 19627185 DOI: 10.1586/erv.09.60] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The recent discovery that T cells recognize different sets of herpes simplex virus type 1 and type 2 epitopes from seropositive symptomatic and asymptomatic individuals might lead to a fundamental immunologic advance in vaccine development against herpes infection and diseases. The newly introduced needle-free mucosal (i.e., topical ocular and intravaginal) lipopeptide vaccines provide a novel strategy that might target ocular and genital herpes and possibly provide 'heterologous protection' from HIV-1. Indeed, mucosal self-adjuvanting lipopeptide vaccines are easy to manufacture, simple to characterize, extremely pure, cost-effective, highly immunogenic and safe. In this review, we bring together recent published and unpublished data that illuminates the status of epitope-based herpes vaccine development and present an overview of our recent approach to an 'asymptomatic epitope'-based lipopeptide vaccine.
Collapse
Affiliation(s)
- Gargi Dasgupta
- The Gavin S Herbert Eye Institute, Cellular and Molecular Immunology Laboratory, Department of Ophthalmology, University of California, Irvine, College of Medicine, Irvine, CA 92697-4375, USA.
| | | | | | | | | |
Collapse
|
17
|
Abstract
The antiquated system used to manufacture the currently licensed inactivated influenza virus vaccines would not be adequate during an influenza virus pandemic. There is currently a search for vaccines that can be developed faster and provide superior, long-lasting immunity to influenza virus as well as other highly pathogenic viruses and bacteria. Recombinant vectors provide a safe and effective method to elicit a strong immune response to a foreign protein or epitope. This review explores the advantages and limitations of several different vectors that are currently being tested, and highlights some of the newer viruses being used as recombinant vectors.
Collapse
|
18
|
Recombinant vesicular stomatitis virus-based west Nile vaccine elicits strong humoral and cellular immune responses and protects mice against lethal challenge with the virulent west Nile virus strain LSU-AR01. Vaccine 2008; 27:893-903. [PMID: 19070640 PMCID: PMC7115407 DOI: 10.1016/j.vaccine.2008.11.087] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Revised: 11/11/2008] [Accepted: 11/20/2008] [Indexed: 11/24/2022]
Abstract
Vesicular stomatitis virus (VSV) has been extensively utilized as a viral vector system for the induction of protective immune responses against a variety of pathogens. We constructed recombinant VSVs specifying either the Indiana or Chandipura virus G glycoprotein and expressing the West Nile virus (WNV) envelope (E) glycoprotein. Mice were intranasally vaccinated using a prime (Indiana)-boost (Chandipura) immunization approach and challenged with the virulent WNV-LSU-AR01. Ninety-percent (9 of 10) of the vaccinated mice survived as compared to 10% of the mock-vaccinated mice after WNV lethal challenge. Histopathological examination of brain tissues revealed neuronal necrosis in mock-vaccinated mice but not in vaccinated mice, and vaccinated, but not mock-vaccinated mice developed a strong neutralizing antibody response against WNV. Extensive immunological analysis using polychromatic flow cytometry staining revealed that vaccinated, but not mock-vaccinated mice developed robust cellular immune responses as evidenced by up-regulation of CD4+ CD154+ IFNγ+ T cells in vaccinated, but not mock-vaccinated mice. Similarly, vaccinated mice developed robust E-glycoprotein-specific CD8+ T cell immune responses as evidenced by the presence of a high percentage of CD8+ CD62Llow IFNγ+ cells. In addition, a sizeable population of CD8+ CD69+ cells was detected indicating E-specific activation of mature T cells and CD4+ CD25+ CD127low T regulatory (T reg) cells were down-regulated. These results suggest that VSV-vectored vaccines administered intranasally can efficiently induce protective humoral and cellular immune responses against WNV infections.
Collapse
|
19
|
Geisbert TW, Daddario-Dicaprio KM, Lewis MG, Geisbert JB, Grolla A, Leung A, Paragas J, Matthias L, Smith MA, Jones SM, Hensley LE, Feldmann H, Jahrling PB. Vesicular stomatitis virus-based ebola vaccine is well-tolerated and protects immunocompromised nonhuman primates. PLoS Pathog 2008; 4:e1000225. [PMID: 19043556 PMCID: PMC2582959 DOI: 10.1371/journal.ppat.1000225] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Accepted: 10/31/2008] [Indexed: 12/21/2022] Open
Abstract
Ebola virus (EBOV) is a significant human pathogen that presents a public health concern as an emerging/re-emerging virus and as a potential biological weapon. Substantial progress has been made over the last decade in developing candidate preventive vaccines that can protect nonhuman primates against EBOV. Among these prospects, a vaccine based on recombinant vesicular stomatitis virus (VSV) is particularly robust, as it can also confer protection when administered as a postexposure treatment. A concern that has been raised regarding the replication-competent VSV vectors that express EBOV glycoproteins is how these vectors would be tolerated by individuals with altered or compromised immune systems such as patients infected with HIV. This is especially important as all EBOV outbreaks to date have occurred in areas of Central and Western Africa with high HIV incidence rates in the population. In order to address this concern, we evaluated the safety of the recombinant VSV vector expressing the Zaire ebolavirus glycoprotein (VSVΔG/ZEBOVGP) in six rhesus macaques infected with simian-human immunodeficiency virus (SHIV). All six animals showed no evidence of illness associated with the VSVΔG/ZEBOVGP vaccine, suggesting that this vaccine may be safe in immunocompromised populations. While one goal of the study was to evaluate the safety of the candidate vaccine platform, it was also of interest to determine if altered immune status would affect vaccine efficacy. The vaccine protected 4 of 6 SHIV-infected macaques from death following ZEBOV challenge. Evaluation of CD4+ T cells in all animals showed that the animals that succumbed to lethal ZEBOV challenge had the lowest CD4+ counts, suggesting that CD4+ T cells may play a role in mediating protection against ZEBOV. Ebola virus is among the most lethal microbes known to man, with case fatality rates often exceeding 80%. Since its discovery in 1976, outbreaks have been sporadic and geographically restricted, primarily to areas of Central Africa. However, concern about the natural or unnatural introduction of Ebola outside of the endemic areas has dramatically increased both research interest and public awareness. A number of candidate vaccines have been developed to combat Ebola virus, and these vaccines have shown varying degrees of success in nonhuman primate models. Safety is a significant concern for any vaccine and in particular for vaccines that replicate in the host. Here, we evaluated the safety of our replication-competent vesicular stomatitus virus (VSV)-based Ebola vaccine in SHIV-infected rhesus monkeys. We found that the vaccine caused no evidence of overt illness in any of these immunocompromised animals. We also demonstrated that this vaccine partially protected the SHIV-infected monkeys against a lethal Ebola challenge and that there appears to be an association with levels of CD4+ lymphocytes and survival. Our study suggests that the VSV-based Ebola vaccine will be safe in immunocompromised populations and supports further study and development of this promising vaccine platform for its use in humans.
Collapse
Affiliation(s)
- Thomas W Geisbert
- National Emerging Infectious Diseases Laboratories Institute, Boston, Massachusetts, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Single-dose, virus-vectored vaccine protection against Yersinia pestis challenge: CD4+ cells are required at the time of challenge for optimal protection. Vaccine 2008; 26:6329-37. [PMID: 18832004 DOI: 10.1016/j.vaccine.2008.09.031] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Revised: 08/27/2008] [Accepted: 09/03/2008] [Indexed: 10/21/2022]
Abstract
We have developed an experimental recombinant vesicular stomatitis virus (VSV) vectored plague vaccine expressing a secreted form of Yersinia pestis low calcium response protein V (LcrV) from the first position of the VSV genome. This vector, given intramuscularly in a single dose, induced high-level antibody titers to LcrV and gave 90-100% protection against pneumonic plague challenge in mice. This single-dose protection was significantly better than that generated by VSV expressing the non-secreted LcrV protein. Increased protection correlated with increased anti-LcrV antibody and a bias toward IgG2a and away from IgG1 isotypes. We also found that the depletion of CD4+ cells, but not CD8+ cells, at the time of challenge resulted in reduced vaccine protection, indicating a role for cellular immunity in protection.
Collapse
|
21
|
Kapadia SU, Simon ID, Rose JK. SARS vaccine based on a replication-defective recombinant vesicular stomatitis virus is more potent than one based on a replication-competent vector. Virology 2008; 376:165-72. [PMID: 18396306 PMCID: PMC7103385 DOI: 10.1016/j.virol.2008.03.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Revised: 02/22/2008] [Accepted: 03/04/2008] [Indexed: 12/28/2022]
Abstract
A SARS vaccine based on a live-attenuated vesicular stomatitis virus (VSV) recombinant expressing the SARS-CoV S protein provides long-term protection of immunized mice from SARS-CoV infection (Kapadia, S.U., Rose, J. K., Lamirande, E., Vogel, L., Subbarao, K., Roberts, A., 2005. Long-term protection from SARS coronavirus infection conferred by a single immunization with an attenuated VSV-based vaccine. Virology 340(2), 174-82.). Because it is difficult to obtain regulatory approval of vaccine based on live viruses, we constructed a replication-defective single-cycle VSV vector in which we replaced the VSV glycoprotein (G) gene with the SARS-CoV S gene. The virus was only able to infect cells when pseudotyped with the VSV G protein. We measured the effectiveness of immunization with the single-cycle vaccine in mice. We found that the vaccine given intramuscularly induced a neutralizing antibody response to SARS-CoV that was approximately ten-fold greater than that required for the protection from SARS-CoV infection, and significantly greater than that generated by the replication-competent vector expressing SARS-CoV S protein given by the same route. Our results, along with earlier studies showing potent induction of T-cell responses by single-cycle vectors, indicate that these vectors are excellent alternatives to live-attenuated VSV.
Collapse
Affiliation(s)
- Sagar U. Kapadia
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA
| | - Ian D. Simon
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
- Section of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - John K. Rose
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
- Corresponding author. Department of Pathology, Yale University School of Medicine, 310 Cedar Street (LH 315), New Haven, CT 06510, USA.
| |
Collapse
|
22
|
Wilson SR, Wilson JH, Buonocore L, Palin A, Rose JK, Reuter JD. Intranasal immunization with recombinant vesicular stomatitis virus expressing murine cytomegalovirus glycoprotein B induces humoral and cellular immunity. Comp Med 2008; 58:129-139. [PMID: 18524170 PMCID: PMC2703170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Revised: 11/10/2007] [Accepted: 11/29/2007] [Indexed: 05/26/2023]
Abstract
Cytomegalovirus is a leading cause of morbidity and mortality among neonatal and immunocompromised patients. The use of vaccine prophylaxis continues to be an effective approach to reducing viral infections and their associated diseases. Murine cytomegalovirus (mCMV) has proven to be a valuable animal model in determining the efficacy of newly developed vaccine strategies in vivo. Live recombinant vesicular stomatitis viruses (rVSV) have successfully been used as vaccine vectors for several viruses to induce strong humoral and cellular immunity. We tested the ability of intranasal immunization with an rVSV expressing the major envelope protein of mCMV, glycoprotein B (gB), to protect against challenge with mCMV in a mouse model. rVSV-gB-infected cells showed strong cytoplasmic and cell surface expression of gB, and neutralizing antibodies to gB were present in mice after a single intranasal vaccination of VSV-gB. After challenge with mCMV, recovery of live virus and viral DNA was significantly reduced in immunized mice. In addition, primed splenocytes produced a CD8+ IFNgamma response to gB. The ability to induce an immune response to a gene product through mucosal vaccination with rVSV-gB represents a potentially effective approach to limiting CMV-induced disease.
Collapse
Affiliation(s)
- Steven R Wilson
- Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA.
| | | | | | | | | | | |
Collapse
|
23
|
Heterologous boosting of recombinant adenoviral prime immunization with a novel vesicular stomatitis virus-vectored tuberculosis vaccine. Mol Ther 2008; 16:1161-9. [PMID: 18388911 PMCID: PMC7185538 DOI: 10.1038/mt.2008.59] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Pulmonary tuberculosis (TB) remains a serious health problem worldwide. Effective vaccination strategies are needed. We report the development of a novel TB vaccine using vesicular stomatitis virus (VSV) as a viral vector system to express Ag85A. VSVAg85A was shown to be immunogenic when given to mice by either an intranasal or an intramuscular (i.m.) route. Although distinct T-cell profiles resulted from both routes of immunization, only intranasal delivery generated a mucosal T-cell response that was protective upon pulmonary Mycobacterium tuberculosis (M.tb) challenge. While this protection manifested at an early time-point after immunization, it was not sustained. The potential of VSVAg85A to be used as a mucosal booster for parenteral priming by an adenoviral TB vaccine expressing Ag85A (AdAg85A) was investigated. VSVAg85A immunization markedly boosted antigen-specific T-cell responses in the airway lumen while also augmenting immune activation in the systemic compartment, after AdAg85A priming. This translated into significantly better protective efficacy against pulmonary challenge with M.tb than either vaccine used alone. Our study therefore suggests that VSV as a vector system is a promising candidate to be used in a heterologous viral prime-boost immunization regimen against intracellular bacterial infection.
Collapse
|
24
|
Stanberry LR. Herpes simplex virus vaccines. Vaccines (Basel) 2008. [DOI: 10.1016/b978-1-4160-3611-1.50053-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
25
|
Attenuation of recombinant vesicular stomatitis virus-human immunodeficiency virus type 1 vaccine vectors by gene translocations and g gene truncation reduces neurovirulence and enhances immunogenicity in mice. J Virol 2007; 82:207-19. [PMID: 17942549 DOI: 10.1128/jvi.01515-07] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recombinant vesicular stomatitis virus (rVSV) has shown great potential as a new viral vector for vaccination. However, the prototypic rVSV vector described previously was found to be insufficiently attenuated for clinical evaluation when assessed for neurovirulence in nonhuman primates. Here, we describe the attenuation, neurovirulence, and immunogenicity of rVSV vectors expressing human immunodeficiency virus type 1 Gag. These rVSV vectors were attenuated by combinations of the following manipulations: N gene translocations (N4), G gene truncations (CT1 or CT9), noncytopathic M gene mutations (Mncp), and positioning of the gag gene into the first position of the viral genome (gag1). The resulting N4CT1-gag1, N4CT9-gag1, and MncpCT1-gag1 vectors demonstrated dramatically reduced neurovirulence in mice following direct intracranial inoculation. Surprisingly, in spite of a very high level of attenuation, the N4CT1-gag1 and N4CT9-gag1 vectors generated robust Gag-specific immune responses following intramuscular immunization that were equivalent to or greater than immune responses generated by the more virulent prototypic vectors. MncpCT1-gag1 also induced Gag-specific immune responses following intramuscular immunization that were equivalent to immune responses generated by the prototypic rVSV vector. Placement of the gag gene in the first position of the VSV genome was associated with increased in vitro expression of Gag protein, in vivo expression of Gag mRNA, and enhanced immunogenicity of the vector. These findings demonstrate that through directed manipulation of the rVSV genome, vectors that have reduced neurovirulence and enhanced immunogenicity can be made.
Collapse
|
26
|
Ramsburg EA, Publicover JM, Coppock D, Rose JK. Requirement for CD4 T Cell Help in Maintenance of Memory CD8 T Cell Responses Is Epitope Dependent. THE JOURNAL OF IMMUNOLOGY 2007; 178:6350-8. [PMID: 17475864 DOI: 10.4049/jimmunol.178.10.6350] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CD4 Th cells play critical roles in stimulating Ab production and in generating primary or maintaining memory CTL. The requirement for CD4 help in generating and maintaining CTL responses has been reported to vary depending on the vector or method used for immunization. In this study, we examined the requirement for CD4 T cell help in generating and maintaining CTL responses to an experimental AIDS vaccine vector based on live recombinant vesicular stomatitis virus (VSV) expressing HIV Env protein. We found that primary CD8 T cell responses and short-term memory to HIV Env and VSV nucleocapsid (VSV N) proteins were largely intact in CD4 T cell-deficient mice. These responses were efficiently recalled at 30 days postinfection by boosting with vaccinia recombinants expressing HIV Env or VSV N. However, by 60 days postinfection, the memory/recall response to VSV N was lost in CD4-deficient mice, while the recall response HIV Env was partially maintained in the same animals for at least 90 days. This result indicates that there are epitope-specific requirements for CD4 help in the maintenance of memory CD8 T cell responses. Our results also suggest that choice of epitopes might be critical in an AIDS vaccine designed to protect against disease in the context of reduced or declining CD4 T cell help.
Collapse
MESH Headings
- Animals
- CD4 Antigens/administration & dosage
- CD4 Antigens/immunology
- CD4 Antigens/physiology
- CD8-Positive T-Lymphocytes/cytology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cell Differentiation/immunology
- Cytotoxicity Tests, Immunologic
- Epitopes, T-Lymphocyte/administration & dosage
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/physiology
- Female
- Gene Products, env/administration & dosage
- Gene Products, env/immunology
- HIV-1/immunology
- Immunization, Secondary
- Immunologic Memory/genetics
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- T-Lymphocytes, Helper-Inducer/immunology
- T-Lymphocytes, Helper-Inducer/metabolism
- Vesicular stomatitis Indiana virus/immunology
Collapse
Affiliation(s)
- Elizabeth A Ramsburg
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | | | |
Collapse
|
27
|
Macmillan L, Ifere GO, He Q, Igietseme JU, Kellar KL, Okenu DM, Eko FO. A recombinant multivalent combination vaccine protects against Chlamydia and genital herpes. ACTA ACUST UNITED AC 2006; 49:46-55. [PMID: 17094789 DOI: 10.1111/j.1574-695x.2006.00165.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chlamydia trachomatis and Herpes simplex virus type 2 (HSV-2) genital infections pose a considerable public health challenge worldwide. Considering the high incidence of coinfections by the two pathogens, a combination vaccine that can be administered as a single regimen would be highly desirable. Recombinant Vibrio cholerae ghosts (rVCG) offer an attractive approach for the induction of humoral and cellular immune responses against human and animal pathogens. In this study, we evaluated a bivalent combination vaccine formulation comprising rVCG expressing chlamydial MOMP and HSV-2 glycoprotein D in mice for immunogenicity and protective efficacy against genital challenge with either pathogen. Mice immunized with the combination vaccine elicited secretory IgA and IgG2a antibodies to both chlamydial and HSV-2 antigens in serum and vaginal secretions. Robust antigen-specific mucosal and systemic T helper type 1 responses were induced in mice as measured by increased interferon-gamma levels produced by immune T cells in response to restimulation with target antigen in vitro. In addition, mice immunized with the combination vaccine were prophylactically protected from genital challenge with high doses of live Chlamydia and HSV-2. Thus, the combination vaccine regimen delivered by rVCG elicited adequate immune effectors that simultaneously protected against the individual pathogens.
Collapse
Affiliation(s)
- Lucinda Macmillan
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, Georgia 30310, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Clarke DK, Cooper D, Egan MA, Hendry RM, Parks CL, Udem SA. Recombinant vesicular stomatitis virus as an HIV-1 vaccine vector. ACTA ACUST UNITED AC 2006; 28:239-53. [PMID: 16977404 PMCID: PMC7079905 DOI: 10.1007/s00281-006-0042-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2006] [Accepted: 06/16/2006] [Indexed: 11/27/2022]
Abstract
Recombinant vesicular stomatitis virus (rVSV) is currently under evaluation as a human immunodeficiency virus (HIV)-1 vaccine vector. The most compelling reasons to develop rVSV as a vaccine vector include a very low seroprevalence in humans, the ability to infect and robustly express foreign antigens in a broad range of cells, and vigorous growth in continuous cell lines used for vaccine manufacture. Numerous preclinical studies with rVSV vectors expressing antigens from a variety of human pathogens have demonstrated the versatility, flexibility, and potential efficacy of the rVSV vaccine platform. When administered to nonhuman primates (NHPs), rVSV vectors expressing HIV-1 Gag and Env elicited robust HIV-1-specific cellular and humoral immune responses, and animals immunized with rVSV vectors expressing simian immunodeficiency virus (SIV) Gag and HIV Env were protected from AIDS after challenge with a pathogenic SIV/HIV recombinant. However, results from an exploratory neurovirulence study in NHPs indicated that these prototypic rVSV vectors might not be adequately attenuated for widespread use in human populations. To address this safety concern, a variety of different attenuation strategies, designed to produce a range of further attenuated rVSV vectors, are currently under investigation. Additional modifications of further attenuated rVSV vectors to upregulate expression of HIV-1 antigens and coexpress molecular adjuvants are also being developed in an effort to balance immunogenicity and attenuation.
Collapse
Affiliation(s)
- David K. Clarke
- Department of Vaccines Discovery Research, Wyeth Research, Wyeth, 401 North Middletown Road, Pearl River, NY 10965 USA
| | - David Cooper
- Department of Vaccines Discovery Research, Wyeth Research, Wyeth, 401 North Middletown Road, Pearl River, NY 10965 USA
| | - Michael A. Egan
- Department of Vaccines Discovery Research, Wyeth Research, Wyeth, 401 North Middletown Road, Pearl River, NY 10965 USA
| | - R. Michael Hendry
- Department of Vaccines Discovery Research, Wyeth Research, Wyeth, 401 North Middletown Road, Pearl River, NY 10965 USA
| | - Christopher L. Parks
- Department of Vaccines Discovery Research, Wyeth Research, Wyeth, 401 North Middletown Road, Pearl River, NY 10965 USA
| | - Stephen A. Udem
- Department of Vaccines Discovery Research, Wyeth Research, Wyeth, 401 North Middletown Road, Pearl River, NY 10965 USA
- Present Address: International AIDS Vaccine Initiative, 110 William Street, 27th Floor, New York, NY 10038-3901 USA
| |
Collapse
|
29
|
Publicover J, Ramsburg E, Robek M, Rose JK. Rapid pathogenesis induced by a vesicular stomatitis virus matrix protein mutant: viral pathogenesis is linked to induction of tumor necrosis factor alpha. J Virol 2006; 80:7028-36. [PMID: 16809308 PMCID: PMC1489072 DOI: 10.1128/jvi.00478-06] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vesicular stomatitis virus (VSV) matrix (M) protein blocks host mRNA export from the nucleus and thereby inhibits interferon induction in infected cells. M mutants with mutations of methionine 51 (M51) lack this shutoff function. We examined pathogenesis of a VSV M mutant with a deletion of M51 (VSVDeltaM51) after intranasal infection of BALB/c mice and found an unexpected phenotype. Mice that received VSVDeltaM51 experienced a more rapid but overall less severe weight loss than mice that received the recombinant wild-type VSV (rwtVSV). Rapid weight loss was not explained by faster initial replication because VSVDeltaM51 replication was controlled faster than rwtVSV replication in the lungs and did not spread systemically like rwtVSV. This faster control of VSVDeltaM51 correlated with a more rapid induction of interferon in the lung. Because tumor necrosis factor alpha (TNF-alpha) is associated with weight loss, we examined TNF-alpha induction in mice infected with rwtVSV or VSVDeltaM51. We found more-rapid induction of TNF-alpha by the mutant at early times after infection, while rwtVSV induced more TNF-alpha later in infection. This result suggested that TNF-alpha induction might explain both the rapid weight loss caused by the mutant and the overall greater weight loss caused by the rwtVSV. Using TNF-alpha knockout mice (C57BL/6 background), we showed that weight loss following rwtVSV infection was greatly reduced in the absence of TNF-alpha. Although the rapid weight loss caused by VSVDeltaM51 was less pronounced in C57BL/6 mice, it was eliminated in the absence of TNF-alpha. These results indicate a role for TNF-alpha in the pathogenesis of VSV.
Collapse
Affiliation(s)
- Jean Publicover
- Section of Microbial Pathogenesis, Yale University School of Medicine, 310 Cedar St., New Haven, CT 06510, USA
| | | | | | | |
Collapse
|