1
|
Rycroft JA, Giorgio RT, Sargen M, Helaine S. Tracking the progeny of bacterial persisters using a CRISPR-based genomic recorder. Proc Natl Acad Sci U S A 2024; 121:e2405983121. [PMID: 39374386 PMCID: PMC11494289 DOI: 10.1073/pnas.2405983121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 08/11/2024] [Indexed: 10/09/2024] Open
Abstract
The rise of antimicrobial failure is a global emergency, and causes beyond typical genetic resistance must be determined. One probable factor is the existence of subpopulations of transiently growth-arrested bacteria, persisters, that endure antibiotic treatment despite genetic susceptibility to the drug. The presence of persisters in infected hosts has been successfully established, notably through the development of fluorescent reporters. It is proposed that infection relapse is caused by persisters resuming growth after cessation of the antibiotic treatment, but to date, there is no direct evidence for this. This is because no tool or reporter currently exists to track the extent to which infection relapse is initiated by regrowth of persisters in the host. Indeed, once they have transitioned out of the persister state, the progeny of persisters are genetically and phenotypically identical to susceptible bacteria in the population, making it virtually impossible to ascertain the source of relapse. We designed pSCRATCH (plasmid for Selective CRISPR Array expansion To Check Heritage), a molecular tool that functions to record the state of antibiotic persistence in the genome of Salmonella persisters. We show that pSCRATCH successfully marks persisters by adding spacers in their CRISPR arrays and the genomic label is stable in persister progeny after exit from persistence. We further show that in a Salmonella infection model the system enables the discrimination of treatment failure originating from persistence versus resistance. Thus, pSCRATCH provides proof of principle for stable marking of persisters and a prototype for applications to more complex infection models and other pathogens.
Collapse
Affiliation(s)
| | | | - Molly Sargen
- Department of Microbiology, Harvard Medical School, Boston, MA02115
| | - Sophie Helaine
- Department of Microbiology, Harvard Medical School, Boston, MA02115
| |
Collapse
|
2
|
Ren Y, You X, Zhu R, Li D, Wang C, He Z, Hu Y, Li Y, Liu X, Li Y. Mutation of Pseudomonas aeruginosa lasI/rhlI diminishes its cytotoxicity, oxidative stress, inflammation, and apoptosis on THP-1 macrophages. Microbiol Spectr 2024; 12:e0414623. [PMID: 39162513 PMCID: PMC11448257 DOI: 10.1128/spectrum.04146-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 06/27/2024] [Indexed: 08/21/2024] Open
Abstract
The management of Pseudomonas aeruginosa (P. aeruginosa) infections presents a substantial challenge to clinics and public health, emphasizing the urgent need for innovative strategies to address this issue. Quorum sensing (QS) is an intercellular communication mechanism that coordinates bacterial activities involved in various virulence mechanisms, such as acquiring host nutrients, facilitating biofilm formation, enhancing motility, secreting virulence factors, and evading host immune responses, all of which play a crucial role in the colonization and infection of P. aeruginosa. The LasI/R and RhlI/R sub-systems dominate in the QS system of P. aeruginosa. Macrophages play a pivotal role in the host's innate immune response to P. aeruginosa invasion, particularly through phagocytosis as the initial host defense mechanism. This study investigated the effects of P. aeruginosa's QS system on THP-1 macrophages. Mutants of PAO1 with lasI/rhlI deletion, as well as their corresponding complemented strains, were obtained, and significant downregulation of QS-related genes was observed in the mutants. Furthermore, the ΔlasI and ΔlasIΔrhlI mutants exhibited significantly attenuated virulence in terms of biofilm formation, extracellular polymeric substances synthesis, bacterial adhesion, motility, and virulence factors production. When infected with ΔlasI and ΔlasIΔrhlI mutants, THP-1 macrophages exhibited enhanced scavenging ability against the mutants and demonstrated resistance to cytotoxicity, oxidative stress, inflammatory response, and apoptosis induced by the culture supernatants of these mutant strains. These findings offer novel insights into the mechanisms underlying how the lasI/rhlI mutation attenuates cytotoxicity, oxidative stress, inflammation, and apoptosis in macrophages induced by P. aeruginosa.IMPORTANCEP. aeruginosa is classified as one of the ESKAPE pathogens and poses a global public health concern. The QS system of this versatile pathogen contributes to a broad spectrum of virulence, thereby constraining therapeutic options for serious infections. This study illustrated that the lasI/rhlI mutation of the QS system plays a prominent role in attenuating the virulence of P. aeruginosa by affecting bacterial adhesion, biofilm formation, extracellular polymeric substances synthesis, bacterial motility, and virulence factors' production. Notably, THP-1 macrophages infected with mutant strains exhibited increased phagocytic activity in eliminating intracellular bacteria and enhanced resistance to cytotoxicity, oxidative stress, inflammation, and apoptosis. These findings suggest that targeted intervention toward the QS system is anticipated to diminish the pathogenicity of P. aeruginosa to THP-1 macrophages.
Collapse
Affiliation(s)
- Yanying Ren
- Dazhou integrated Traditional Chinese Medicine & Western Medicine Hospital, Dazhou Second People's Hospital, Dazhou, China
- Henan University of Chinese Medicine, Zhengzhou, China
| | - Xiaojuan You
- Henan University of Chinese Medicine, Zhengzhou, China
- Henan Province Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Henan University of Chinese Medicine, Zhenghzhou, China
| | - Rui Zhu
- Henan University of Chinese Medicine, Zhengzhou, China
- Henan Province Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Henan University of Chinese Medicine, Zhenghzhou, China
| | - Dengzhou Li
- Henan University of Chinese Medicine, Zhengzhou, China
- Henan Province Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Henan University of Chinese Medicine, Zhenghzhou, China
| | - Chunxia Wang
- Henan University of Chinese Medicine, Zhengzhou, China
- Henan Province Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Henan University of Chinese Medicine, Zhenghzhou, China
| | - Zhiqiang He
- Henan University of Chinese Medicine, Zhengzhou, China
- Henan Province Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Henan University of Chinese Medicine, Zhenghzhou, China
| | - Yue Hu
- Henan Province Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Henan University of Chinese Medicine, Zhenghzhou, China
| | - Yifan Li
- Henan University of Chinese Medicine, Zhengzhou, China
| | - Xinwei Liu
- Henan University of Chinese Medicine, Zhengzhou, China
- Henan Province Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Henan University of Chinese Medicine, Zhenghzhou, China
| | - Yongwei Li
- Henan University of Chinese Medicine, Zhengzhou, China
- Henan Province Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Henan University of Chinese Medicine, Zhenghzhou, China
- The Key Laboratory of Pathogenic Microbes &Antimicrobial Resistance Surveillance of Zhengzhou, Zhengzhou, China
- Henan Engineering Research Center for Identification of Pathogenic Microbes, Zhengzhou, China
- Henan Provincial Key Laboratory of Antibiotics-Resistant Bacterial Infection Prevention & Therapy with Traditional Chinese Medicine, Zhengzhou, China
| |
Collapse
|
3
|
Dhaouadi Y, Hashemi MJ, Ren D. Persistence and Culturability of Escherichia coli under Induced Toxin Expression. Antibiotics (Basel) 2024; 13:863. [PMID: 39335036 PMCID: PMC11428644 DOI: 10.3390/antibiotics13090863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/05/2024] [Accepted: 09/07/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND/OBJECTIVES Bacteria are well known to enter dormancy under stress conditions. However, the mechanisms of different dormancy-related phenotypes are still under debate and many questions remain unanswered. This study aims to better understand the effects of toxin gene expression on the dormancy of Escherichia coli. METHODS The effects of toxin gene expression on growth, persistence, and culturability were characterized. Specifically, we detailed dose- and time-dependent dormancy of E. coli and its susceptibility to ofloxacin via arabinose-induced hipA toxin gene expression under the PBAD promoter. A new plot was developed to better describe the dynamic changes in culturability and persistence. The expression level of hipA was determined using qPCR and cellular activities were monitored using fluorescence imaging and flow cytometry. RESULTS High-level persister formation and strong tolerance to ofloxacin were observed after high-level hipA induction. The new plot reveals more information than the changes in persistence alone, e.g., reduced culturability of E. coli and thus deeper dormancy under high-level hipA induction. Consistently, controlled hipA induction led to decreased cellular activities at promoter PrrnBP1 and an increase in the non-culturable subpopulation. CONCLUSIONS Overall, this study provides new insights into dormancy induced by toxin gene expression and a more comprehensive view of persistence and culturability. The findings may help develop better control agents against dormant bacterial cells.
Collapse
Affiliation(s)
- Yousr Dhaouadi
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA
- BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA
| | - Mohamad Javad Hashemi
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA
- BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA
| | - Dacheng Ren
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA
- BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA
- Department of Civil and Environmental Engineering, Syracuse University, Syracuse, NY 13244, USA
- Department of Biology, Syracuse University, Syracuse, NY 13244, USA
| |
Collapse
|
4
|
Nickerson R, Thornton CS, Johnston B, Lee AHY, Cheng Z. Pseudomonas aeruginosa in chronic lung disease: untangling the dysregulated host immune response. Front Immunol 2024; 15:1405376. [PMID: 39015565 PMCID: PMC11250099 DOI: 10.3389/fimmu.2024.1405376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/14/2024] [Indexed: 07/18/2024] Open
Abstract
Pseudomonas aeruginosa is a highly adaptable opportunistic pathogen capable of exploiting barriers and immune defects to cause chronic lung infections in conditions such as cystic fibrosis. In these contexts, host immune responses are ineffective at clearing persistent bacterial infection, instead driving a cycle of inflammatory lung damage. This review outlines key components of the host immune response to chronic P. aeruginosa infection within the lung, beginning with initial pathogen recognition, followed by a robust yet maladaptive innate immune response, and an ineffective adaptive immune response that propagates lung damage while permitting bacterial persistence. Untangling the interplay between host immunity and chronic P. aeruginosa infection will allow for the development and refinement of strategies to modulate immune-associated lung damage and potentiate the immune system to combat chronic infection more effectively.
Collapse
Affiliation(s)
- Rhea Nickerson
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Christina S. Thornton
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Brent Johnston
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Amy H. Y. Lee
- Department of Molecular Biology and Biochemistry, Faculty of Science, Simon Fraser University, Burnaby, BC, Canada
| | - Zhenyu Cheng
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
5
|
Maltz-Matyschsyk M, Melchiorre CK, Knecht DA, Lynes MA. Bacterial metallothionein, PmtA, a novel stress protein found on the bacterial surface of Pseudomonas aeruginosa and involved in management of oxidative stress and phagocytosis. mSphere 2024; 9:e0021024. [PMID: 38712943 PMCID: PMC11237414 DOI: 10.1128/msphere.00210-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 04/08/2024] [Indexed: 05/08/2024] Open
Abstract
Metallothioneins (MTs) are small cysteine-rich proteins that play important roles in homeostasis and protection against heavy metal toxicity and oxidative stress. The opportunistic pathogen, Pseudomonas aeruginosa, expresses a bacterial MT known as PmtA. Utilizing genetically modified P. aeruginosa PAO1 strains (a human clinical wound isolate), we show that inducing pmtA increases levels of pyocyanin and biofilm compared to other PAO1 isogenic strains, supporting previous results that pmtA is important for pyocyanin and biofilm production. We also show that overexpression of pmtA in vitro provides protection for cells exposed to oxidants, which is a characteristic of inflammation, indicating a role for PmtA as an antioxidant in inflammation. We found that a pmtA clean deletion mutant is phagocytized faster than other PAO1 isogenic strains in THP-1 human macrophage cells, indicating that PmtA provides protection from the phagocytic attack. Interestingly, we observed that monoclonal anti-PmtA antibody binds to PmtA, which is accessible on the surface of PAO1 strains using both flow cytometry and enzyme-linked immunosorbent assay techniques. Finally, we investigated intracellular persistence of these PAO1 strains within THP-1 macrophages cells and found that the phagocytic endurance of PAO1 strains is affected by pmtA expression. These data show for the first time that a bacterial MT (pmtA) can play a role in the phagocytic process and can be found on the outer surface of PAO1. Our results suggest that PmtA plays a role both in protection from oxidative stress and in the resistance to the host's innate immune response, identifying PmtA as a potential therapeutic target in P. aeruginosa infection. IMPORTANCE The pathogen Pseudomonas aeruginosa is a highly problematic multidrug-resistant (MDR) pathogen with complex virulence networks. MDR P. aeruginosa infections have been associated with increased clinical visits, very poor healthcare outcomes, and these infections are ranked as critical on priority lists of both the Centers for Disease Control and Prevention and the World Health Organization. Known P. aeruginosa virulence factors have been extensively studied and are implicated in counteracting host defenses, causing direct damage to the host tissues, and increased microbial competitiveness. Targeting virulence factors has emerged as a new line of defense in the battle against MDR P. aeruginosa strains. Bacterial metallothionein is a newly recognized virulence factor that enables evasion of the host immune response. The studies described here identify mechanisms in which bacterial metallothionein (PmtA) plays a part in P. aeruginosa pathogenicity and identifies PmtA as a potential therapeutic target.
Collapse
Affiliation(s)
| | - Clare K Melchiorre
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
| | - David A Knecht
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Michael A Lynes
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
6
|
Yang J, Hediyal TA, Chidambaram SB, Kaul-Ghanekar R, Sakharkar MK. Benzyl isothiocyanate as an alternative to antibiotics? a comparative in vivo study using Pseudomonas aeruginosa infection as a model. PLoS One 2024; 19:e0303490. [PMID: 38753636 PMCID: PMC11098397 DOI: 10.1371/journal.pone.0303490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 04/14/2024] [Indexed: 05/18/2024] Open
Abstract
Due to over-prescription of antibiotics, antimicrobial resistance has emerged to be a critical concern globally. Many countries have tightened the control of antibiotic usage, which, in turn, promotes the search for alternatives to antibiotics. Quite a few phytochemicals have been investigated. Benzyl isothiocyanate (BITC) is an important secondary metabolite in cruciferous species and exhibited potent antimicrobial activity under in vitro conditions. In this research, we undertook a comparative mouse model study of BITC with gentamycin sulfate (positive antibiotic control) and ceftiofur hydrochloride (negative antibiotic control) against Pseudomonas aeruginosa infection. Our results showed that BITC exhibited comparable or better antimicrobial activity and lower infiltration of mouse immune cells upon comparing to gentamycin sulfate. Furthermore, BITC did not impose any toxicity to the air pouch skin tissues. In summary, our current study suggests that BITC could be an alternative to antibiotics and deserves further in vivo and clinical trial studies.
Collapse
Affiliation(s)
- Jian Yang
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Tousif Ahmed Hediyal
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, Karnataka, India
- Center for Experimental Pharmacology and Toxicology, JSS Academy of Higher Education & Research, Mysuru, Karnataka, India
| | - Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, Karnataka, India
- Center for Experimental Pharmacology and Toxicology, JSS Academy of Higher Education & Research, Mysuru, Karnataka, India
| | - Ruchika Kaul-Ghanekar
- Cancer Research Lab, Symbiosis School of Biological Sciences (SSBS), Symbiosis Centre for Research and Innovation (SCRI), Symbiosis International (Deemed University), Pune, Maharashtra, India
| | | |
Collapse
|
7
|
Chen L, Shao Z, Zhang Z, Teng W, Mou H, Jin X, Wei S, Wang Z, Eloy Y, Zhang W, Zhou H, Yao M, Zhao S, Chai X, Wang F, Xu K, Xu J, Ye Z. An On-Demand Collaborative Innate-Adaptive Immune Response to Infection Treatment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304774. [PMID: 37523329 DOI: 10.1002/adma.202304774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/24/2023] [Indexed: 08/02/2023]
Abstract
Deep tissue infection is a common clinical issue and therapeutic difficulty caused by the disruption of the host antibacterial immune function, resulting in treatment failure and infection relapse. Intracellular pathogens are refractory to elimination and can manipulate host cell biology even after appropriate treatment, resulting in a locoregional immunosuppressive state that leads to an inadequate response to conventional anti-infective therapies. Here, a novel antibacterial strategy involving autogenous immunity using a biomimetic nanoparticle (NP)-based regulating system is reported to induce in situ collaborative innate-adaptive immune responses. It is observed that a macrophage membrane coating facilitates NP enrichment at the infection site, followed by active NP accumulation in macrophages in a mannose-dependent manner. These NP-armed macrophages exhibit considerably improved innate capabilities, including more efficient intracellular ROS generation and pro-inflammatory factor secretion, M1 phenotype promotion, and effective eradication of invasive bacteria. Furthermore, the reprogrammed macrophages direct T cell activation at infectious sites, resulting in a robust adaptive antimicrobial immune response to ultimately achieve bacterial clearance and prevent infection relapse. Overall, these results provide a conceptual framework for a novel macrophage-based strategy for infection treatment via the regulation of autogenous immunity.
Collapse
Affiliation(s)
- Liang Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou City, 310000, P. R. China
| | - Zhenxuan Shao
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou City, 310000, P. R. China
| | - Zengjie Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou City, 310000, P. R. China
| | - Wangsiyuan Teng
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou City, 310000, P. R. China
| | - Haochen Mou
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou City, 310000, P. R. China
| | - Xiaoqiang Jin
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou City, 310000, P. R. China
| | - Shenyu Wei
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310000, P. R. China
| | - Zenan Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou City, 310000, P. R. China
| | - Yinwang Eloy
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou City, 310000, P. R. China
| | - Wenkan Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou City, 310000, P. R. China
| | - Hao Zhou
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou City, 310000, P. R. China
| | - Minjun Yao
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou City, 310000, P. R. China
| | - Shenzhi Zhao
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou City, 310000, P. R. China
| | - Xupeng Chai
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou City, 310000, P. R. China
| | - Fangqian Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou City, 310000, P. R. China
| | - Kaiwang Xu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou City, 310000, P. R. China
| | - Jianbin Xu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou City, 310000, P. R. China
| | - Zhaoming Ye
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou City, 310000, P. R. China
| |
Collapse
|
8
|
Pai L, Patil S, Liu S, Wen F. A growing battlefield in the war against biofilm-induced antimicrobial resistance: insights from reviews on antibiotic resistance. Front Cell Infect Microbiol 2023; 13:1327069. [PMID: 38188636 PMCID: PMC10770264 DOI: 10.3389/fcimb.2023.1327069] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 11/20/2023] [Indexed: 01/09/2024] Open
Abstract
Biofilms are a common survival strategy employed by bacteria in healthcare settings, which enhances their resistance to antimicrobial and biocidal agents making infections difficult to treat. Mechanisms of biofilm-induced antimicrobial resistance involve reduced penetration of antimicrobial agents, increased expression of efflux pumps, altered microbial physiology, and genetic changes in the bacterial population. Factors contributing to the formation of biofilms include nutrient availability, temperature, pH, surface properties, and microbial interactions. Biofilm-associated infections can have serious consequences for patient outcomes, and standard antimicrobial therapies are often ineffective against biofilm-associated bacteria, making diagnosis and treatment challenging. Novel strategies, including antibiotics combination therapies (such as daptomycin and vancomycin, colistin and azithromycin), biofilm-targeted agents (such as small molecules (LP3134, LP3145, LP4010, LP1062) target c-di-GMP), and immunomodulatory therapies (such as the anti-PcrV IgY antibodies which target Type IIIsecretion system), are being developed to combat biofilm-induced antimicrobial resistance. A multifaceted approach to diagnosis, treatment, and prevention is necessary to address this emerging problem in healthcare settings.
Collapse
Affiliation(s)
- Liu Pai
- Department of Hematology and Oncology, Shenzhen Children’s Hospital, Shenzhen, China
- Pediatric Research Institute, Shenzhen Children’s Hospital, Shenzhen, China
| | - Sandip Patil
- Department of Hematology and Oncology, Shenzhen Children’s Hospital, Shenzhen, China
- Pediatric Research Institute, Shenzhen Children’s Hospital, Shenzhen, China
| | - Sixi Liu
- Department of Hematology and Oncology, Shenzhen Children’s Hospital, Shenzhen, China
| | - Feiqiu Wen
- Department of Hematology and Oncology, Shenzhen Children’s Hospital, Shenzhen, China
- Pediatric Research Institute, Shenzhen Children’s Hospital, Shenzhen, China
| |
Collapse
|
9
|
Yeoh WJ, Krebs P. SHIP1 and its role for innate immune regulation-Novel targets for immunotherapy. Eur J Immunol 2023; 53:e2350446. [PMID: 37742135 DOI: 10.1002/eji.202350446] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/03/2023] [Accepted: 09/21/2023] [Indexed: 09/25/2023]
Abstract
Phosphoinositide-3-kinase/AKT (PI3K/AKT) signaling plays key roles in the regulation of cellular activity in both health and disease. In immune cells, this PI3K/AKT pathway is critically regulated by the phosphoinositide phosphatase SHIP1, which has been reported to modulate the function of most immune subsets. In this review, we summarize our current knowledge of SHIP1 with a focus on innate immune cells, where we reflect on the most pertinent aspects described in the current literature. We also present several small-molecule agonists and antagonists of SHIP1 developed over the last two decades, which have led to improved outcomes in several preclinical models of disease. We outline these promising findings and put them in relation to human diseases with unmet medical needs, where we discuss the most attractive targets for immune therapies based on SHIP1 modulation.
Collapse
Affiliation(s)
- Wen Jie Yeoh
- Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Philippe Krebs
- Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
| |
Collapse
|
10
|
Acosta IC, Alonzo F. The Intersection between Bacterial Metabolism and Innate Immunity. J Innate Immun 2023; 15:782-803. [PMID: 37899025 PMCID: PMC10663042 DOI: 10.1159/000534872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/25/2023] [Indexed: 10/31/2023] Open
Abstract
BACKGROUND The innate immune system is the first line of defense against microbial pathogens and is essential for maintaining good health. If pathogens breach innate barriers, the likelihood of infection is significantly increased. Many bacterial pathogens pose a threat to human health on account of their ability to evade innate immunity and survive in growth-restricted environments. These pathogens have evolved sophisticated strategies to obtain nutrients as well as manipulate innate immune responses, resulting in disease or chronic infection. SUMMARY The relationship between bacterial metabolism and innate immunity is complex. Although aspects of bacterial metabolism can be beneficial to the host, particularly those related to the microbiota and barrier integrity, others can be harmful. Several bacterial pathogens harness metabolism to evade immune responses and persist during infection. The study of these adaptive traits provides insight into the roles of microbial metabolism in pathogenesis that extend beyond energy balance. This review considers recent studies on bacterial metabolic pathways that promote infection by circumventing several facets of the innate immune system. We also discuss relationships between innate immunity and antibiotics and highlight future directions for research in this field. KEY MESSAGES Pathogenic bacteria have a remarkable capacity to harness metabolism to manipulate immune responses and promote pathogenesis. While we are beginning to understand the multifaceted and complex metabolic adaptations that occur during infection, there is still much to uncover with future research.
Collapse
Affiliation(s)
- Ivan C Acosta
- Department of Microbiology and Immunology, University of Illinois at Chicago - College of Medicine, Chicago, Illinois, USA
| | - Francis Alonzo
- Department of Microbiology and Immunology, University of Illinois at Chicago - College of Medicine, Chicago, Illinois, USA
| |
Collapse
|
11
|
Hastings CJ, Keledjian MV, Musselman LP, Marques CNH. Delayed host mortality and immune response upon infection with P. aeruginosa persister cells. Infect Immun 2023; 91:e0024623. [PMID: 37732789 PMCID: PMC10580972 DOI: 10.1128/iai.00246-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 09/22/2023] Open
Abstract
Chronic infections are a heavy burden on healthcare systems worldwide. Persister cells are thought to be largely responsible for chronic infection due to their tolerance to antimicrobials and recalcitrance to innate immunity factors. Pseudomonas aeruginosa is a common and clinically relevant pathogen that contains stereotypical persister cells. Despite their importance in chronic infection, there have been limited efforts to study persister cell infections in vivo. Drosophila melanogaster has a well-described innate immune response similar to that of vertebrates and is a good candidate for the development of an in vivo model of infection for persister cells. Similar to what is observed in other bacterial strains, in this work we found that infection with P. aeruginosa persister cells resulted in a delayed mortality phenotype in Caenorhabditis elegans, Arabidopsis thaliana, and D. melanogaster compared to infection with regular cells. An in-depth characterization of infected D. melanogaster found that bacterial loads differed between persister and regular cells' infections during the early stages. Furthermore, hemocyte activation and antimicrobial peptide expression were delayed/reduced in persister infections over the same time course, indicating an initial suppression of, or inability to elicit, the fly immune response. Overall, our findings support the use of D. melanogaster as a model in which to study persister cells in vivo, where this bacterial subpopulation exhibits delayed virulence and an attenuated immune response.
Collapse
Affiliation(s)
- Cody J. Hastings
- Department of Biological Sciences, Binghamton University, Binghamton, New York, USA
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, New York, USA
| | - Maya V. Keledjian
- Department of Biological Sciences, Binghamton University, Binghamton, New York, USA
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, New York, USA
| | | | - Cláudia N. H. Marques
- Department of Biological Sciences, Binghamton University, Binghamton, New York, USA
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, New York, USA
| |
Collapse
|