1
|
Liu M, Jin Z, Xiang Q, He H, Huang Y, Long M, Wu J, Zhi Huang C, Mao C, Zuo H. Rational Design of Untranslated Regions to Enhance Gene Expression. J Mol Biol 2024; 436:168804. [PMID: 39326490 DOI: 10.1016/j.jmb.2024.168804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 09/28/2024]
Abstract
How to improve gene expression by optimizing mRNA structures is a crucial question for various medical and biotechnological applications. Previous efforts focus largely on investigation of the 5' UTR hairpin structures. In this study, we present a rational strategy that enhances mRNA stability and translation by engineering both the 5' and 3' UTR sequences. We have successfully demonstrated this strategy using green fluorescent protein (GFP) as a model in Escherichia coli and across different expression vectors. We further validated it with luciferase and Plasmodium falciparum lactate dehydrogenase (PfLDH). To elucidate the underlying mechanism, we have quantitatively analyzed both protein, mRNA levels and half-life time. We have identified several key aspects of UTRs that significantly influence mRNA stability and protein expression in our system: (1) The optimal length of the single-stranded spacer between the stabilizer hairpin and ribosome binding site (RBS) in the 5' UTR is 25-30 nucleotide (nt) long. An optimal 32% GC content in the spacer yielded the highest levels of GFP protein production. (2) The insertion of a homodimerdizable, G-quadruplex structure containing RNA aptamer, "Corn", in the 3' UTR markedly increased the protein expression. Our findings indicated that the carefully engineered 5' UTRs and 3' UTRs significantly boosted gene expression. Specifically, the inclusion of 5 × Corn in the 3' UTR appeared to facilitate the local aggregation of mRNA, leading to the formation of mRNA condensates. Aside from shedding light on the regulation of mRNA stability and expression, this study is expected to substantially increase biological protein production.
Collapse
Affiliation(s)
- Mingchun Liu
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Zhuoer Jin
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Qing Xiang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Huawei He
- Biological Sciences Research Center, State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Yuhan Huang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Mengfei Long
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Jicheng Wu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Cheng Zhi Huang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Chengde Mao
- Department of Chemistry, Purdue University, West Lafayette 47907, IN, USA
| | - Hua Zuo
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
2
|
Börner J, Grützner J, Gerken F, Klug G. The Impact of the Major Endoribonucleases RNase E and RNase III and of the sRNA StsR on Photosynthesis Gene Expression in Rhodobacter sphaeroides Is Growth-Phase-Dependent. Int J Mol Sci 2024; 25:9123. [PMID: 39201809 PMCID: PMC11354728 DOI: 10.3390/ijms25169123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
Rhodobacter sphaeroides is a facultative phototrophic bacterium that performs aerobic respiration when oxygen is available. Only when oxygen is present at low concentrations or absent are pigment-protein complexes formed, and anoxygenic photosynthesis generates ATP. The regulation of photosynthesis genes in response to oxygen and light has been investigated for decades, with a focus on the regulation of transcription. However, many studies have also revealed the importance of regulated mRNA processing. This study analyzes the phenotypes of wild type and mutant strains and compares global RNA-seq datasets to elucidate the impact of ribonucleases and the small non-coding RNA StsR on photosynthesis gene expression in Rhodobacter. Most importantly, the results demonstrate that, in particular, the role of ribonuclease E in photosynthesis gene expression is strongly dependent on growth phase.
Collapse
Affiliation(s)
- Janek Börner
- Institute of Microbiology and Molecular Biology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany (F.G.)
| | | | | | - Gabriele Klug
- Institute of Microbiology and Molecular Biology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany (F.G.)
| |
Collapse
|
3
|
Meyer I, Volk M, Salto I, Moesser T, Chaoprasid P, Herbrüggen AS, Rohde M, Beckstette M, Heroven AK, Dersch P. RNase-mediated reprogramming of Yersinia virulence. PLoS Pathog 2024; 20:e1011965. [PMID: 39159284 PMCID: PMC11361751 DOI: 10.1371/journal.ppat.1011965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 08/29/2024] [Accepted: 07/15/2024] [Indexed: 08/21/2024] Open
Abstract
RNA degradation is an essential process that allows bacteria to regulate gene expression and has emerged as an important mechanism for controlling virulence. However, the individual contributions of RNases in this process are mostly unknown. Here, we tested the influence of 11 potential RNases in the intestinal pathogen Yersinia pseudotuberculosis on the expression of its type III secretion system (T3SS) and associated effectors (Yops) that are encoded on the Yersinia virulence plasmid. We found that exoribonuclease PNPase and endoribonuclease RNase III inhibit T3SS and yop gene transcription by repressing the synthesis of LcrF, the master activator of Yop-T3SS. Loss of both RNases led to an increase in lcrF mRNA levels. Our work indicates that PNPase exerts its influence via YopD, which accelerates lcrF mRNA degradation. Loss of RNase III, on the other hand, results in the downregulation of the CsrB and CsrC RNAs, thereby increasing the availability of active CsrA, which has been shown previously to enhance lcrF mRNA translation and stability. This CsrA-promoted increase of lcrF mRNA translation could be supported by other factors promoting the protein translation efficiency (e.g. IF-3, RimM, RsmG) that were also found to be repressed by RNase III. Transcriptomic profiling further revealed that Ysc-T3SS-mediated Yop secretion leads to global reprogramming of the Yersinia transcriptome with a massive shift of the expression from chromosomal to virulence plasmid-encoded genes. A similar reprogramming was also observed in the RNase III-deficient mutant under non-secretion conditions. Overall, our work revealed a complex control system where RNases orchestrate the expression of the T3SS/Yop machinery on multiple levels to antagonize phagocytic uptake and elimination by innate immune cells.
Collapse
Affiliation(s)
- Ines Meyer
- Institute for Infectiology, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Münster, Germany
| | - Marcel Volk
- Institute for Infectiology, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Münster, Germany
| | - Ileana Salto
- Institute for Infectiology, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Münster, Germany
| | - Theresa Moesser
- Institute for Infectiology, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Münster, Germany
| | - Paweena Chaoprasid
- Institute for Infectiology, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Münster, Germany
| | - Anne-Sophie Herbrüggen
- Institute for Infectiology, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Münster, Germany
| | - Manfred Rohde
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Michael Beckstette
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Ann Kathrin Heroven
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Petra Dersch
- Institute for Infectiology, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Münster, Germany
- German Center for Infection Research (DZIF), Partner site HZI Braunschweig and associated site University of Münster, Münster, Germany
| |
Collapse
|
4
|
Lejars M, Hajnsdorf E. Bacterial RNase III: Targets and physiology. Biochimie 2024; 217:54-65. [PMID: 37482092 DOI: 10.1016/j.biochi.2023.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/28/2023] [Accepted: 07/13/2023] [Indexed: 07/25/2023]
Abstract
Bacteria can rapidly adapt to changes in their environment thanks to the innate flexibility of their genetic expression. The high turnover rate of RNAs, in particular messenger and regulatory RNAs, provides an important contribution to this dynamic adjustment. Recycling of RNAs is ensured by ribonucleases, among which RNase III is the focus of this review. RNase III enzymes are highly conserved from prokaryotes to eukaryotes and have the specific ability to cleave double-stranded RNAs. The role of RNase III in bacterial physiology has remained poorly explored for a long time. However, transcriptomic approaches recently uncovered a large impact of RNase III in gene expression in a wide range of bacteria, generating renewed interest in the physiological role of RNase III. In this review, we first describe the RNase III targets identified from global approaches in 8 bacterial species within 4 Phyla. We then present the conserved and unique functions of bacterial RNase III focusing on growth, resistance to stress, biofilm formation, motility and virulence. Altogether, this review highlights the underestimated impact of RNase III in bacterial adaptation.
Collapse
Affiliation(s)
- Maxence Lejars
- Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan.
| | - Eliane Hajnsdorf
- UMR8261, CNRS, Université Paris Cité, Institut de Biologie Physico-Chimique, 13 Rue Pierre et Marie Curie, 75005, Paris, France.
| |
Collapse
|
5
|
Han S, Byun JW, Lee M. Comparative Transcriptomic Analysis of Flagellar-Associated Genes in Salmonella Typhimurium and Its rnc Mutant. J Microbiol 2024; 62:33-48. [PMID: 38182942 DOI: 10.1007/s12275-023-00099-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 01/07/2024]
Abstract
Salmonella enterica serovar Typhimurium (S. Typhimurium) is a globally recognized foodborne pathogen that affects both animals and humans. Endoribonucleases mediate RNA processing and degradation in the adaptation of bacteria to environmental changes and have been linked to the pathogenicity of S. Typhimurium. Not much is known about the specific regulatory mechanisms of these enzymes in S. Typhimurium, particularly in the context of environmental adaptation. Thus, this study carried out a comparative transcriptomic analysis of wild-type S. Typhimurium SL1344 and its mutant (∆rnc), which lacks the rnc gene encoding RNase III, thereby elucidating the detailed regulatory characteristics that can be attributed to the rnc gene. Global gene expression analysis revealed that the ∆rnc strain exhibited 410 upregulated and 301 downregulated genes (fold-change > 1.5 and p < 0.05), as compared to the wild-type strain. Subsequent bioinformatics analysis indicated that these differentially expressed genes are involved in various physiological functions, in both the wild-type and ∆rnc strains. This study provides evidence for the critical role of RNase III as a general positive regulator of flagellar-associated genes and its involvement in the pathogenicity of S. Typhimurium.
Collapse
Affiliation(s)
- Seungmok Han
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, 24252, Republic of Korea
| | - Ji-Won Byun
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, 24252, Republic of Korea
| | - Minho Lee
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, 24252, Republic of Korea.
- Institute of Medical Science, College of Medicine, Hallym University, Chuncheon, 24252, Republic of Korea.
| |
Collapse
|
6
|
Broglia L, Le Rhun A, Charpentier E. Methodologies for bacterial ribonuclease characterization using RNA-seq. FEMS Microbiol Rev 2023; 47:fuad049. [PMID: 37656885 PMCID: PMC10503654 DOI: 10.1093/femsre/fuad049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/06/2023] [Accepted: 08/23/2023] [Indexed: 09/03/2023] Open
Abstract
Bacteria adjust gene expression at the post-transcriptional level through an intricate network of small regulatory RNAs and RNA-binding proteins, including ribonucleases (RNases). RNases play an essential role in RNA metabolism, regulating RNA stability, decay, and activation. These enzymes exhibit species-specific effects on gene expression, bacterial physiology, and different strategies of target recognition. Recent advances in high-throughput RNA sequencing (RNA-seq) approaches have provided a better understanding of the roles and modes of action of bacterial RNases. Global studies aiming to identify direct targets of RNases have highlighted the diversity of RNase activity and RNA-based mechanisms of gene expression regulation. Here, we review recent RNA-seq approaches used to study bacterial RNases, with a focus on the methods for identifying direct RNase targets.
Collapse
Affiliation(s)
- Laura Broglia
- Max Planck Unit for the Science of Pathogens, D-10117 Berlin, Germany
- Center for Human Technologies, Istituto Italiano di Tecnologia, 16152 Genova, Italy
| | - Anaïs Le Rhun
- Max Planck Unit for the Science of Pathogens, D-10117 Berlin, Germany
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, F-33000 Bordeaux, France
| | - Emmanuelle Charpentier
- Max Planck Unit for the Science of Pathogens, D-10117 Berlin, Germany
- Institute for Biology, Humboldt University, D-10115 Berlin, Germany
| |
Collapse
|
7
|
Warner BR, Bundschuh R, Fredrick K. Roles of the leader-trailer helix and antitermination complex in biogenesis of the 30S ribosomal subunit. Nucleic Acids Res 2023; 51:5242-5254. [PMID: 37102690 PMCID: PMC10250234 DOI: 10.1093/nar/gkad316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 04/07/2023] [Accepted: 04/13/2023] [Indexed: 04/28/2023] Open
Abstract
Ribosome biogenesis occurs co-transcriptionally and entails rRNA folding, ribosomal protein binding, rRNA processing, and rRNA modification. In most bacteria, the 16S, 23S and 5S rRNAs are co-transcribed, often with one or more tRNAs. Transcription involves a modified RNA polymerase, called the antitermination complex, which forms in response to cis-acting elements (boxB, boxA and boxC) in the nascent pre-rRNA. Sequences flanking the rRNAs are complementary and form long helices known as leader-trailer helices. Here, we employed an orthogonal translation system to interrogate the functional roles of these RNA elements in 30S subunit biogenesis in Escherichia coli. Mutations that disrupt the leader-trailer helix caused complete loss of translation activity, indicating that this helix is absolutely essential for active subunit formation in the cell. Mutations of boxA also reduced translation activity, but by only 2- to 3-fold, suggesting a smaller role for the antitermination complex. Similarly modest drops in activity were seen upon deletion of either or both of two leader helices, termed here hA and hB. Interestingly, subunits formed in the absence of these leader features exhibited defects in translational fidelity. These data suggest that the antitermination complex and precursor RNA elements help to ensure quality control during ribosome biogenesis.
Collapse
Affiliation(s)
- Benjamin R Warner
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Ralf Bundschuh
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
- Department of Physics, The Ohio State University, Columbus, OH 43210, USA
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus,OH 43210, USA
| | - Kurt Fredrick
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
8
|
Hauk P, Weeks R, Ostermeier M. A CRISPR-dCas9 System for Assaying and Selecting for RNase III Activity In Vivo in Escherichia coli. CRISPR J 2023; 6:43-51. [PMID: 36493370 DOI: 10.1089/crispr.2022.0041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Ribonuclease III (RNase III) and RNase III-like ribonucleases have a wide range of important functions and are found in all organisms, yet a simple and high-throughput in vivo method for measuring RNase III activity does not exist. Typical methods for measuring RNase III activity rely on in vitro RNA analysis or in vivo methods that are not suitable for high-throughput analysis. In this study, we describe our development of a deactivated Cas9 (dCas9)-based in vivo assay for RNase III activity that utilizes RNase III's cleavage of the 5'-untranslated region (UTR) of its own messenger RNA. The key molecule in the system is a hybrid guide RNA (gRNA) between the 5'-UTR of RNase III and gGFP, a gRNA that works with dCas9 to repress GFP expression. This fusion must be cleaved by RNase III for full GFP repression. Our system uses GFP fluorescence to report on Escherichia coli RNase III activity in culture and on an individual cell basis, making it effective for selecting individual cells through fluorescence-activated cell sorting. Homology between enzymes within the RNase III family suggests this assay might be adapted to measure the activity of other enzymes in the RNase III family such as human Dicer or Drosha.
Collapse
Affiliation(s)
- Pricila Hauk
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Ryan Weeks
- Chemistry-Biology Interface Graduate Program, Johns Hopkins University, Baltimore, Maryland, USA
| | - Marc Ostermeier
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
9
|
Sun Y, Chen H, Xu M, He L, Mao H, Yang S, Qiao X, Yang D. Exopolysaccharides metabolism and cariogenesis of Streptococcus mutans biofilm regulated by antisense vicK RNA. J Oral Microbiol 2023; 15:2204250. [PMID: 37138664 PMCID: PMC10150615 DOI: 10.1080/20002297.2023.2204250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023] Open
Abstract
Background Streptococcus mutans (S. mutans) is a pivotal cariogenic pathogen contributing to its multiple virulence factors, one of which is synthesizing exopolysaccharides (EPS). VicK, a sensor histidine kinase, plays a major role in regulating genes associated with EPS synthesis and adhesion. Here we first identified an antisense vicK RNA (ASvicK) bound with vicK into double-stranded RNA (dsRNA). Objective This study aims to investigate the effect and mechanism of ASvicK in the EPS metabolism and cariogenesis of S. mutans. Methods The phenotypes of biofilm were detected by scanning electron microscopy (SEM), gas chromatography-mass spectrometery (GC-MS) , gel permeation chromatography (GPC) , transcriptome analysis and Western blot. Co-immunoprecipitation (Co-ip) assay and enzyme activity experiment were adopted to investigate the mechanism of ASvicK regulation. Caries animal models were developed to study the relationship between ASvicK and cariogenicity of S. mutans. Results Overexpression of ASvicK can inhibit the growth of biofilm, reduce the production of EPS and alter genes and protein related to EPS metabolism. ASvicK can adsorb RNase III to regulate vicK and affect the cariogenicity of S. mutans. Conclusions ASvicK regulates vicK at the transcriptional and post-transcriptional levels, effectively inhibits EPS synthesis and biofilm formation and reduces its cariogenicity in vivo.
Collapse
Affiliation(s)
- Yuting Sun
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Hong Chen
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Mengmeng Xu
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Liwen He
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Hongchen Mao
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Shiyao Yang
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Xin Qiao
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Deqin Yang
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
- CONTACT Deqin Yang Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing4404100, China
| |
Collapse
|
10
|
Walling LR, Kouse AB, Shabalina SA, Zhang H, Storz G. A 3' UTR-derived small RNA connecting nitrogen and carbon metabolism in enteric bacteria. Nucleic Acids Res 2022; 50:10093-10109. [PMID: 36062564 PMCID: PMC9508815 DOI: 10.1093/nar/gkac748] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 08/11/2022] [Accepted: 08/26/2022] [Indexed: 11/13/2022] Open
Abstract
Increasing numbers of small, regulatory RNAs (sRNAs) corresponding to 3' untranslated regions (UTR) are being discovered in bacteria. One such sRNA, denoted GlnZ, corresponds to the 3' UTR of the Escherichia coli glnA mRNA encoding glutamine synthetase. Several forms of GlnZ, processed from the glnA mRNA, are detected in cells growing with limiting ammonium. GlnZ levels are regulated transcriptionally by the NtrC transcription factor and post-transcriptionally by RNase III. Consistent with the expression, E. coli cells lacking glnZ show delayed outgrowth from nitrogen starvation compared to wild type cells. Transcriptome-wide RNA-RNA interactome datasets indicated that GlnZ binds to multiple target RNAs. Immunoblots and assays of fusions confirmed GlnZ-mediated repression of glnP and sucA, encoding proteins that contribute to glutamine transport and the citric acid cycle, respectively. Although the overall sequences of GlnZ from E. coli K-12, Enterohemorrhagic E. coli and Salmonella enterica have significant differences due to various sequence insertions, all forms of the sRNA were able to regulate the two targets characterized. Together our data show that GlnZ impacts growth of E. coli under low nitrogen conditions by modulating genes that affect carbon and nitrogen flux.
Collapse
Affiliation(s)
- Lauren R Walling
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892-4417, USA
| | - Andrew B Kouse
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892-4417, USA
| | - Svetlana A Shabalina
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Hongen Zhang
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892-4417, USA
| | - Gisela Storz
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892-4417, USA
| |
Collapse
|
11
|
Dawson CC, Cummings JE, Starkey JM, Slayden RA. Discovery of a novel type IIb RelBE toxin-antitoxin system in Mycobacterium tuberculosis defined by co-regulation with an antisense RNA. Mol Microbiol 2022; 117:1419-1433. [PMID: 35526138 PMCID: PMC9325379 DOI: 10.1111/mmi.14917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 04/30/2022] [Accepted: 05/05/2022] [Indexed: 11/29/2022]
Abstract
Toxin‐antitoxin loci regulate adaptive responses to stresses associated with the host environment and drug exposure. Phylogenomic studies have shown that Mycobacterium tuberculosis encodes a naturally expanded type II toxin‐antitoxin system, including ParDE/RelBE superfamily members. Type II toxins are presumably regulated exclusively through protein–protein interactions with type II antitoxins. However, experimental observations in M. tuberculosis indicated that additional control mechanisms regulate RelBE2 type II loci under host‐associated stress conditions. Herein, we describe for the first time a novel antisense RNA, termed asRelE2, that co‐regulates RelE2 production via targeted processing by the Mtb RNase III, Rnc. We find that convergent expression of this coding‐antisense hybrid TA locus, relBE2‐asrelE2, is controlled in a cAMP‐dependent manner by the essential cAMP receptor protein transcription factor, Crp, in response to the host‐associated stresses of low pH and nutrient limitation. Ex vivo survival studies with relE2 and asrelE2 knockout strains showed that RelE2 contributes to Mtb survival in activated macrophages and low pH to nutrient limitation. To our knowledge, this is the first report of a novel tripartite type IIb TA loci and antisense post‐transcriptional regulation of a type II TA loci.
Collapse
Affiliation(s)
- Clinton C Dawson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins.,Endolytix Technology, Inc. Beverly, 01915
| | - Jason E Cummings
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins
| | - Julie M Starkey
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins
| | - Richard A Slayden
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins
| |
Collapse
|
12
|
Choe D, Kim K, Kang M, Lee SG, Cho S, Palsson B, Cho BK. Synthetic 3'-UTR valves for optimal metabolic flux control in Escherichia coli. Nucleic Acids Res 2022; 50:4171-4186. [PMID: 35357499 PMCID: PMC9023263 DOI: 10.1093/nar/gkac206] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 03/12/2022] [Accepted: 03/29/2022] [Indexed: 11/15/2022] Open
Abstract
As the design of genetic circuitry for synthetic biology becomes more sophisticated, diverse regulatory bioparts are required. Despite their importance, well-characterized 3′-untranslated region (3′-UTR) bioparts are limited. Thus, transcript 3′-ends require further investigation to understand the underlying regulatory role and applications of the 3′-UTR. Here, we revisited the use of Term-Seq in the Escherichia coli strain K-12 MG1655 to enhance our understanding of 3′-UTR regulatory functions and to provide a diverse collection of tunable 3′-UTR bioparts with a wide termination strength range. Comprehensive analysis of 1,629 transcript 3′-end positions revealed multiple 3′-termini classes generated through transcription termination and RNA processing. The examination of individual Rho-independent terminators revealed a reduction in downstream gene expression over a wide range, which led to the design of novel synthetic metabolic valves that control metabolic fluxes in branched pathways. These synthetic metabolic valves determine the optimal balance of heterologous pathways for maximum target biochemical productivity. The regulatory strategy using 3′-UTR bioparts is advantageous over promoter- or 5′-UTR-based transcriptional control as it modulates gene expression at transcription levels without trans-acting element requirements (e.g. transcription factors). Our results provide a foundational platform for 3′-UTR engineering in synthetic biology applications.
Collapse
Affiliation(s)
- Donghui Choe
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Kangsan Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Minjeong Kang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Seung-Goo Lee
- Synthetic Biology & Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Suhyung Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea.,KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Bernhard Palsson
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA.,Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Byung-Kwan Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea.,KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| |
Collapse
|
13
|
RNase III Participates in the Adaptation to Temperature Shock and Oxidative Stress in Escherichia coli. Microorganisms 2022; 10:microorganisms10040699. [PMID: 35456749 PMCID: PMC9032294 DOI: 10.3390/microorganisms10040699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 02/05/2023] Open
Abstract
Bacteria thrive in ever-changing environments by quickly remodeling their transcriptome and proteome via complex regulatory circuits. Regulation occurs at multiple steps, from the transcription of genes to the post-translational modification of proteins, via both protein and RNA regulators. At the post-transcriptional level, the RNA fate is balanced through the binding of ribosomes, chaperones and ribonucleases. We aim to decipher the role of the double-stranded-RNA-specific endoribonuclease RNase III and to evaluate its biological importance in the adaptation to modifications of the environment. The inactivation of RNase III affects a large number of genes and leads to several phenotypical defects, such as reduced thermotolerance in Escherichia coli. In this study, we reveal that RNase III inactivation leads to an increased sensitivity to temperature shock and oxidative stress. We further show that RNase III is important for the induction of the heat shock sigma factor RpoH and for the expression of the superoxide dismutase SodA.
Collapse
|
14
|
Abstract
Despite their ubiquitous nature, few antisense RNAs have been functionally characterized, and this class of RNAs is considered by some to be transcriptional noise. Here, we report that an antisense RNA (asRNA), aMEF (antisense mazEF), functions as a dual regulator for the type II toxin-antitoxin (TA) system mazEF. Unlike type I TA systems and many other regulatory asRNAs, aMEF stimulates the synthesis and translation of mazEF rather than inhibition and degradation. Our data indicate that a double-stranded RNA intermediate and RNase III are not necessary for aMEF-dependent regulation of mazEF expression. The lack of conservation of asRNA promoters has been used to support the hypothesis that asRNAs are spurious transcriptional noise and nonfunctional. We demonstrate that the aMEF promoter is active and functional in Escherichia coli despite poor sequence conservation, indicating that the lack of promoter sequence conservation should not be correlated with functionality. IMPORTANCE Next-generation RNA sequencing of numerous organisms has revealed that transcription is widespread across the genome, termed pervasive transcription, and does not adhere to annotated gene boundaries. The function of pervasive transcription is enigmatic and has generated considerable controversy as to whether it is transcriptional noise or biologically relevant. Antisense transcription is one class of pervasive transcription that occurs from the DNA strand opposite an annotated gene. Relatively few pervasively transcribed asRNAs have been functionally characterized, and their regulatory roles or lack thereof remains unknown. It is important to study examples of these asRNAs and determine if they are functional regulators. In this study, we elucidate the function of an asRNA (aMEF) demonstrating that pervasive transcripts can be functional.
Collapse
|
15
|
Mohanty BK, Kushner SR. Regulation of mRNA decay in E. coli. Crit Rev Biochem Mol Biol 2022; 57:48-72. [PMID: 34547957 PMCID: PMC9973670 DOI: 10.1080/10409238.2021.1968784] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/03/2021] [Accepted: 08/12/2021] [Indexed: 10/20/2022]
Abstract
Detailed studies of the Gram-negative model bacterium, Escherichia coli, have demonstrated that post-transcriptional events exert important and possibly greater control over gene regulation than transcription initiation or effective translation. Thus, over the past 30 years, considerable effort has been invested in understanding the pathways of mRNA turnover in E. coli. Although it is assumed that most of the ribonucleases and accessory proteins involved in mRNA decay have been identified, our understanding of the regulation of mRNA decay is still incomplete. Furthermore, the vast majority of the studies on mRNA decay have been conducted on exponentially growing cells. Thus, the mechanism of mRNA decay as currently outlined may not accurately reflect what happens when cells find themselves under a variety of stress conditions, such as, nutrient starvation, changes in pH and temperature, as well as a host of others. While the cellular machinery for degradation is relatively constant over a wide range of conditions, intracellular levels of specific ribonucleases can vary depending on the growth conditions. Substrate competition will also modulate ribonucleolytic activity. Post-transcriptional modifications of transcripts by polyadenylating enzymes may favor a specific ribonuclease activity. Interactions with small regulatory RNAs and RNA binding proteins add additional complexities to mRNA functionality and stability. Since many of the ribonucleases are found at the inner membrane, the physical location of a transcript may help determine its half-life. Here we discuss the properties and role of the enzymes involved in mRNA decay as well as the multiple factors that may affect mRNA decay under various in vivo conditions.
Collapse
Affiliation(s)
| | - Sidney R. Kushner
- Department of Genetics, University of Georgia, Athens GA 30602
- Department of Microbiology, University of Georgia, Athens GA 30602
| |
Collapse
|
16
|
Lee J, Shin E, Yeom JH, Park J, Kim S, Lee M, Lee K. Regulator of RNase E activity modulates the pathogenicity of Salmonella Typhimurium. Microb Pathog 2022; 165:105460. [DOI: 10.1016/j.micpath.2022.105460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 11/28/2022]
|
17
|
Miyakoshi M, Morita T, Kobayashi A, Berger A, Takahashi H, Gotoh Y, Hayashi T, Tanaka K. Glutamine synthetase mRNA releases sRNA from its 3'UTR to regulate carbon/nitrogen metabolic balance in Enterobacteriaceae. eLife 2022; 11:82411. [PMID: 36440827 PMCID: PMC9731577 DOI: 10.7554/elife.82411] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/27/2022] [Indexed: 11/29/2022] Open
Abstract
Glutamine synthetase (GS) is the key enzyme of nitrogen assimilation induced under nitrogen limiting conditions. The carbon skeleton of glutamate and glutamine, 2-oxoglutarate, is supplied from the TCA cycle, but how this metabolic flow is controlled in response to nitrogen availability remains unknown. We show that the expression of the E1o component of 2-oxoglutarate dehydrogenase, SucA, is repressed under nitrogen limitation in Salmonella enterica and Escherichia coli. The repression is exerted at the post-transcriptional level by an Hfq-dependent sRNA GlnZ generated from the 3'UTR of the GS-encoding glnA mRNA. Enterobacterial GlnZ variants contain a conserved seed sequence and primarily regulate sucA through base-pairing far upstream of the translation initiation region. During growth on glutamine as the nitrogen source, the glnA 3'UTR deletion mutants expressed SucA at higher levels than the S. enterica and E. coli wild-type strains, respectively. In E. coli, the transcriptional regulator Nac also participates in the repression of sucA. Lastly, this study clarifies that the release of GlnZ from the glnA mRNA by RNase E is essential for the post-transcriptional regulation of sucA. Thus, the mRNA coordinates the two independent functions to balance the supply and demand of the fundamental metabolites.
Collapse
Affiliation(s)
- Masatoshi Miyakoshi
- Department of Infection Biology, Faculty of Medicine, University of TsukubaTsukubaJapan,Transborder Medical Research Center, University of TsukubaTsukubaJapan,International Joint Degree Master’s Program in Agro-Biomedical Science in Food and Health (GIP-TRIAD), University of TsukubaTsukubaJapan
| | - Teppei Morita
- Institute for Advanced Biosciences, Keio UniversityTsuruokaJapan,Graduate School of Media and Governance, Keio UniversityFujisawaJapan
| | - Asaki Kobayashi
- Transborder Medical Research Center, University of TsukubaTsukubaJapan
| | - Anna Berger
- International Joint Degree Master’s Program in Agro-Biomedical Science in Food and Health (GIP-TRIAD), University of TsukubaTsukubaJapan
| | | | - Yasuhiro Gotoh
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu UniversityFukuokaJapan
| | - Tetsuya Hayashi
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu UniversityFukuokaJapan
| | - Kan Tanaka
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of TechnologyYokohamaJapan
| |
Collapse
|
18
|
RNase III, Ribosome Biogenesis and Beyond. Microorganisms 2021; 9:microorganisms9122608. [PMID: 34946208 PMCID: PMC8708148 DOI: 10.3390/microorganisms9122608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/12/2021] [Accepted: 12/15/2021] [Indexed: 12/17/2022] Open
Abstract
The ribosome is the universal catalyst for protein synthesis. Despite extensive studies, the diversity of structures and functions of this ribonucleoprotein is yet to be fully understood. Deciphering the biogenesis of the ribosome in a step-by-step manner revealed that this complexity is achieved through a plethora of effectors involved in the maturation and assembly of ribosomal RNAs and proteins. Conserved from bacteria to eukaryotes, double-stranded specific RNase III enzymes play a large role in the regulation of gene expression and the processing of ribosomal RNAs. In this review, we describe the canonical role of RNase III in the biogenesis of the ribosome comparing conserved and unique features from bacteria to eukaryotes. Furthermore, we report additional roles in ribosome biogenesis re-enforcing the importance of RNase III.
Collapse
|
19
|
Svensson SL, Sharma CM. RNase III-mediated processing of a trans-acting bacterial sRNA and its cis-encoded antagonist. eLife 2021; 10:69064. [PMID: 34843430 PMCID: PMC8687705 DOI: 10.7554/elife.69064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 11/28/2021] [Indexed: 12/27/2022] Open
Abstract
Bacterial small RNAs (sRNAs) are important post-transcriptional regulators in stress responses and virulence. They can be derived from an expanding list of genomic contexts, such as processing from parental transcripts by RNase E. The role of RNase III in sRNA biogenesis is less well understood despite its well-known roles in rRNA processing, RNA decay, and cleavage of sRNA-mRNA duplexes. Here, we show that RNase III processes a pair of cis-encoded sRNAs (CJnc190 and CJnc180) of the food-borne pathogen Campylobacter jejuni. While CJnc180 processing by RNase III requires CJnc190, RNase III processes CJnc190 independent of CJnc180 via cleavage of an intramolecular duplex. We also show that CJnc190 directly represses translation of the colonization factor PtmG by targeting a G-rich ribosome-binding site, and uncover that CJnc180 is a cis-acting antagonist of CJnc190, indirectly affecting ptmG regulation. Our study highlights a role for RNase III in sRNA biogenesis and adds cis-encoded RNAs to the expanding diversity of transcripts that can antagonize bacterial sRNAs.
Collapse
Affiliation(s)
- Sarah Lauren Svensson
- Department of Molecular Infection Biology II, Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Cynthia Mira Sharma
- Department of Molecular Infection Biology II, Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
20
|
Spanka DT, Klug G. Maturation of UTR-Derived sRNAs Is Modulated during Adaptation to Different Growth Conditions. Int J Mol Sci 2021; 22:ijms222212260. [PMID: 34830143 PMCID: PMC8625941 DOI: 10.3390/ijms222212260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/02/2021] [Accepted: 11/08/2021] [Indexed: 12/02/2022] Open
Abstract
Small regulatory RNAs play a major role in bacterial gene regulation by binding their target mRNAs, which mostly influences the stability or translation of the target. Expression levels of sRNAs are often regulated by their own promoters, but recent reports have highlighted the presence and importance of sRNAs that are derived from mRNA 3′ untranslated regions (UTRs). In this study, we investigated the maturation of 5′ and 3′ UTR-derived sRNAs on a global scale in the facultative phototrophic alphaproteobacterium Rhodobacter sphaeroides. Including some already known UTR-derived sRNAs like UpsM or CcsR1-4, 14 sRNAs are predicted to be located in 5 UTRs and 16 in 3′ UTRs. The involvement of different ribonucleases during maturation was predicted by a differential RNA 5′/3′ end analysis based on RNA next generation sequencing (NGS) data from the respective deletion strains. The results were validated in vivo and underline the importance of polynucleotide phosphorylase (PNPase) and ribonuclease E (RNase E) during processing and maturation. The abundances of some UTR-derived sRNAs changed when cultures were exposed to external stress conditions, such as oxidative stress and also during different growth phases. Promoter fusions revealed that this effect cannot be solely attributed to an altered transcription rate. Moreover, the RNase E dependent cleavage of several UTR-derived sRNAs varied significantly during the early stationary phase and under iron depletion conditions. We conclude that an alteration of ribonucleolytic processing influences the levels of UTR-derived sRNAs, and may thus indirectly affect their mRNA targets.
Collapse
|
21
|
Wang Z, Liu J, Yang Y, Xing C, Jing J, Yuan Y. Expression and prognostic potential of ribosome 18S RNA m 6A methyltransferase METTL5 in gastric cancer. Cancer Cell Int 2021; 21:569. [PMID: 34702266 PMCID: PMC8549223 DOI: 10.1186/s12935-021-02274-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/17/2021] [Indexed: 11/23/2022] Open
Abstract
Background Ribosomal RNA N6-methyltransferase METTL5 was reported to catalyze m6A in 18S rRNA. We aimed to investigate the expression and prognostic features of METTL5 in gastric cancer (GC). Methods In this study, 168 GC patients and their corresponding adjacent tissues were collected. Immunohistochemical staining was used to detect the expression of METTL5 protein. Univariate and multivariate Cox analysis were used to dertermine the prognostic role of METTL5 protein in GC, and a nomogram was constructed to evaluate GC patients’ prognosis based on METTL5 expression. Data from TCGA and GEO database were also used to validate the prognostic value of METTL5 in GC patients on mRNA level. We further performed GSEA enrichment analysis to explore the possible function and related pathways related to METTL5. Results METTL5 protein in gastric cancer tissues (GCTs) was significantly decreased compared with adjacent normal tissues (ANTs) and adjacent intestinal metaplasia tissues (AIMTs) (P < 0.001, respectively). Meanwhile, METTL5 expression was negatively correlated with clinicopathologic stage. According to multivariate Cox proportional hazards model analysis, METTL5 protein expression was a good independent predictor of GC prognosis (p < 0.05). Patients with high METTL5 expression had better prognosis. The nomogram constructed based on METTL5 expression could predict the prognosis of GC patients well. GSEA analysis showed that genes of METTL5 low expression group were enriched in some oncogenic signaling pathways such as ERBB, MAPK, JAK-STAT, Wnt, and mTOR, as well as some immune pathways, including Fc-gamma R mediated phagocytosis, Fc-epsilon Ri, chemokine, T cell receptor and B cell receptor signaling pathway. While the high expression group of METTL5 was mainly related to oxidative phosphorylation, nucleotide excision repair and mismatch repair. Conclusions METTL5 protein was decreased in GCTs compared with AIMTs and ANTs, and it may be a potential prognostic biomarker in GC. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02274-3.
Collapse
Affiliation(s)
- Zhenshuang Wang
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Jingwei Liu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, 110001, China.,Key Laboratory of Gastrointestinal Cancer Etiology and Prevention in Liaoning Province, the First Hospital of China Medical University, Shenyang, 110001, Liaoning Province, China
| | - Yi Yang
- Department of Neurosurgery of the First Hospital of China Medical University, Shenyang, 110001, China
| | - Chenzhong Xing
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, 110001, China.,Key Laboratory of Gastrointestinal Cancer Etiology and Prevention in Liaoning Province, the First Hospital of China Medical University, Shenyang, 110001, Liaoning Province, China
| | - Jingjing Jing
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, 110001, China. .,Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, the First hospital of China Medical University, Shenyang, 110001, China. .,Key Laboratory of Gastrointestinal Cancer Etiology and Prevention in Liaoning Province, the First Hospital of China Medical University, Shenyang, 110001, Liaoning Province, China.
| | - Yuan Yuan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, 110001, China. .,Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, the First hospital of China Medical University, Shenyang, 110001, China. .,Key Laboratory of Gastrointestinal Cancer Etiology and Prevention in Liaoning Province, the First Hospital of China Medical University, Shenyang, 110001, Liaoning Province, China.
| |
Collapse
|
22
|
RNase III and RNase E Influence Posttranscriptional Regulatory Networks Involved in Virulence Factor Production, Metabolism, and Regulatory RNA Processing in Bordetella pertussis. mSphere 2021; 6:e0065021. [PMID: 34406853 PMCID: PMC8386462 DOI: 10.1128/msphere.00650-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bordetella pertussis has been shown to encode regulatory RNAs, yet the posttranscriptional regulatory circuits on which they act remain to be fully elucidated. We generated mutants lacking the endonucleases RNase III and RNase E and assessed their individual impact on the B. pertussis transcriptome. Transcriptome sequencing (RNA-Seq) analysis showed differential expression of ∼25% of the B. pertussis transcriptome in each mutant, with only 28% overlap between data sets. Both endonucleases exhibited substantial impact on genes involved in amino acid uptake (e.g., ABC transporters) and in virulence (e.g., the type III secretion system and the autotransporters vag8, tcfA, and brkA). Interestingly, mutations in RNase III and RNase E drove the stability of many transcripts, including those involved in virulence, in opposite directions, a result that was validated by qPCR and immunoblotting for tcfA and brkA. Of note, whereas similar mutations to RNase E in Escherichia coli have subtle effects on transcript stability, a striking >20-fold reduction in four gene transcripts, including tcfA and vag8, was observed in B. pertussis. We further compared our data set to the regulon controlled by the RNA chaperone Hfq to identify B. pertussis loci influenced by regulatory RNAs. This analysis identified ∼120 genes and 19 operons potentially regulated at the posttranscriptional level. Thus, our findings revealed how changes in RNase III- and RNase E-mediated RNA turnover influence pathways associated with virulence and cellular homeostasis. Moreover, we highlighted loci potentially influenced by regulatory RNAs, providing insights into the posttranscriptional regulatory networks involved in fine-tuning B. pertussis gene expression. IMPORTANCE Noncoding, regulatory RNAs in bacterial pathogens are critical components required for rapid changes in gene expression profiles. However, little is known about the role of regulatory RNAs in the growth and pathogenesis of Bordetella pertussis. To address this, mutants separately lacking ribonucleases central to regulatory RNA processing, RNase III and RNase E, were analyzed by RNA-Seq. Here, we detail the first transcriptomic analysis of the impact of altered RNA degradation in B. pertussis. Each mutant showed approximately 1,000 differentially expressed genes, with significant changes in the expression of pathways associated with metabolism, bacterial secretion, and virulence factor production. Our analysis suggests an important role for these ribonucleases during host colonization and provides insights into the breadth of posttranscriptional regulation in B. pertussis, further informing our understanding of B. pertussis pathogenesis.
Collapse
|
23
|
Roux C, Etienne TA, Hajnsdorf E, Ropers D, Carpousis AJ, Cocaign-Bousquet M, Girbal L. The essential role of mRNA degradation in understanding and engineering E. coli metabolism. Biotechnol Adv 2021; 54:107805. [PMID: 34302931 DOI: 10.1016/j.biotechadv.2021.107805] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/28/2021] [Accepted: 07/14/2021] [Indexed: 11/17/2022]
Abstract
Metabolic engineering strategies are crucial for the development of bacterial cell factories with improved performance. Until now, optimal metabolic networks have been designed based on systems biology approaches integrating large-scale data on the steady-state concentrations of mRNA, protein and metabolites, sometimes with dynamic data on fluxes, but rarely with any information on mRNA degradation. In this review, we compile growing evidence that mRNA degradation is a key regulatory level in E. coli that metabolic engineering strategies should take into account. We first discuss how mRNA degradation interacts with transcription and translation, two other gene expression processes, to balance transcription regulation and remove poorly translated mRNAs. The many reciprocal interactions between mRNA degradation and metabolism are also highlighted: metabolic activity can be controlled by changes in mRNA degradation and in return, the activity of the mRNA degradation machinery is controlled by metabolic factors. The mathematical models of the crosstalk between mRNA degradation dynamics and other cellular processes are presented and discussed with a view towards novel mRNA degradation-based metabolic engineering strategies. We show finally that mRNA degradation-based strategies have already successfully been applied to improve heterologous protein synthesis. Overall, this review underlines how important mRNA degradation is in regulating E. coli metabolism and identifies mRNA degradation as a key target for innovative metabolic engineering strategies in biotechnology.
Collapse
Affiliation(s)
- Charlotte Roux
- TBI, Université de Toulouse, CNRS, INRAE, INSA, 31077 Toulouse, France; UMR8261, CNRS, Université de Paris, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France.
| | - Thibault A Etienne
- TBI, Université de Toulouse, CNRS, INRAE, INSA, 31077 Toulouse, France; Univ. Grenoble Alpes, Inria, 38000 Grenoble, France.
| | - Eliane Hajnsdorf
- UMR8261, CNRS, Université de Paris, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France.
| | | | - A J Carpousis
- TBI, Université de Toulouse, CNRS, INRAE, INSA, 31077 Toulouse, France; LMGM, Université de Toulouse, CNRS, UPS, CBI, 31062 Toulouse, France.
| | | | - Laurence Girbal
- TBI, Université de Toulouse, CNRS, INRAE, INSA, 31077 Toulouse, France.
| |
Collapse
|
24
|
van Kooten MJFM, Scheidegger CA, Christen M, Christen B. The transcriptional landscape of a rewritten bacterial genome reveals control elements and genome design principles. Nat Commun 2021; 12:3053. [PMID: 34031412 PMCID: PMC8144410 DOI: 10.1038/s41467-021-23362-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 04/20/2021] [Indexed: 02/04/2023] Open
Abstract
Sequence rewriting enables low-cost genome synthesis and the design of biological systems with orthogonal genetic codes. The error-free, robust rewriting of nucleotide sequences can be achieved with a complete annotation of gene regulatory elements. Here, we compare transcription in Caulobacter crescentus to transcription from plasmid-borne segments of the synthesized genome of C. ethensis 2.0. This rewritten derivative contains an extensive amount of supposedly neutral mutations, including 123'562 synonymous codon changes. The transcriptional landscape refines 60 promoter annotations, exposes 18 termination elements and links extensive transcription throughout the synthesized genome to the unintentional introduction of sigma factor binding motifs. We reveal translational regulation for 20 CDS and uncover an essential translational regulatory element for the expression of ribosomal protein RplS. The annotation of gene regulatory elements allowed us to formulate design principles that improve design schemes for synthesized DNA, en route to a bright future of iteration-free programming of biological systems.
Collapse
Affiliation(s)
- Mariëlle J F M van Kooten
- Institute of Molecular Systems Biology, Department of Biology, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland.
| | - Clio A Scheidegger
- Institute of Molecular Systems Biology, Department of Biology, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland
| | - Matthias Christen
- Institute of Molecular Systems Biology, Department of Biology, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland
| | - Beat Christen
- Institute of Molecular Systems Biology, Department of Biology, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland.
| |
Collapse
|
25
|
Cetnar DP, Salis HM. Systematic Quantification of Sequence and Structural Determinants Controlling mRNA stability in Bacterial Operons. ACS Synth Biol 2021; 10:318-332. [PMID: 33464822 DOI: 10.1021/acssynbio.0c00471] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
mRNA degradation is a central process that affects all gene expression levels, and yet, the determinants that control mRNA decay rates remain poorly characterized. Here, we applied a synthetic biology, learn-by-design approach to elucidate the sequence and structural determinants that control mRNA stability in bacterial operons. We designed, constructed, and characterized 82 operons in Escherichia coli, systematically varying RNase binding site characteristics, translation initiation rates, and transcriptional terminator efficiencies in the 5' untranslated region (UTR), intergenic, and 3' UTR regions, followed by measuring their mRNA levels using reverse transcription quantitative polymerase chain reaction (RT-qPCR) assays during exponential growth. We show that introducing long single-stranded RNA into 5' UTRs reduced mRNA levels by up to 9.4-fold and that lowering translation rates reduced mRNA levels by up to 11.8-fold. We also found that RNase binding sites in intergenic regions had much lower effects on mRNA levels. Surprisingly, changing the transcriptional termination efficiency or introducing long single-stranded RNA into 3' UTRs had no effect on upstream mRNA levels. From these measurements, we developed and validated biophysical models of ribosome protection and RNase activity with excellent quantitative agreement. We also formulated design rules to rationally control a mRNA's stability, facilitating the automated design of engineered genetic systems with desired functionalities.
Collapse
|
26
|
Bathke J, Gauernack AS, Rupp O, Weber L, Preusser C, Lechner M, Rossbach O, Goesmann A, Evguenieva-Hackenberg E, Klug G. iCLIP analysis of RNA substrates of the archaeal exosome. BMC Genomics 2020; 21:797. [PMID: 33198623 PMCID: PMC7667871 DOI: 10.1186/s12864-020-07200-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 10/27/2020] [Indexed: 12/25/2022] Open
Abstract
Background The archaeal exosome is an exoribonucleolytic multiprotein complex, which degrades single-stranded RNA in 3′ to 5′ direction phosphorolytically. In a reverse reaction, it can add A-rich tails to the 3′-end of RNA. The catalytic center of the exosome is in the aRrp41 subunit of its hexameric core. Its RNA-binding subunits aRrp4 and aDnaG confer poly(A) preference to the complex. The archaeal exosome was intensely characterized in vitro, but still little is known about its interaction with natural substrates in the cell, particularly because analysis of the transcriptome-wide interaction of an exoribonuclease with RNA is challenging. Results To determine binding sites of the exosome to RNA on a global scale, we performed individual-nucleotide resolution UV crosslinking and immunoprecipitation (iCLIP) analysis with antibodies directed against aRrp4 and aRrp41 of the chrenarchaeon Sulfolobus solfataricus. A relatively high proportion (17–19%) of the obtained cDNA reads could not be mapped to the genome. Instead, they corresponded to adenine-rich RNA tails, which are post-transcriptionally synthesized by the exosome, and to circular RNAs (circRNAs). We identified novel circRNAs corresponding to 5′ parts of two homologous, transposase-related mRNAs. To detect preferred substrates of the exosome, the iCLIP reads were compared to the transcript abundance using RNA-Seq data. Among the strongly enriched exosome substrates were RNAs antisense to tRNAs, overlapping 3′-UTRs and RNAs containing poly(A) stretches. The majority of the read counts and crosslink sites mapped in mRNAs. Furthermore, unexpected crosslink sites clustering at 5′-ends of RNAs was detected. Conclusions In this study, RNA targets of an exoribonuclease were analyzed by iCLIP. The data documents the role of the archaeal exosome as an exoribonuclease and RNA-tailing enzyme interacting with all RNA classes, and underlines its role in mRNA turnover, which is important for adaptation of prokaryotic cells to changing environmental conditions. The clustering of crosslink sites near 5′-ends of genes suggests simultaneous binding of both RNA ends by the S. solfataricus exosome. This may serve to prevent translation of mRNAs dedicated to degradation in 3′-5′ direction. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-020-07200-x.
Collapse
Affiliation(s)
- Jochen Bathke
- Institute of Microbiology and Molecular Biology, Justus-Liebig-University, 35392, Giessen, Germany.,Institute of Bioinformatics and Systems Biology, Justus-Liebig-University, 35392, Giessen, Germany
| | - A Susann Gauernack
- Institute of Microbiology and Molecular Biology, Justus-Liebig-University, 35392, Giessen, Germany
| | - Oliver Rupp
- Institute of Bioinformatics and Systems Biology, Justus-Liebig-University, 35392, Giessen, Germany
| | - Lennart Weber
- Institute of Microbiology and Molecular Biology, Justus-Liebig-University, 35392, Giessen, Germany
| | - Christian Preusser
- Institute of Biochemistry, Justus-Liebig-University, 35392, Giessen, Germany
| | - Marcus Lechner
- Center for Synthetic Microbiology & Department of Pharmaceutical Chemistry, Philipps-University Marburg, 35032, Marburg, Germany
| | - Oliver Rossbach
- Institute of Biochemistry, Justus-Liebig-University, 35392, Giessen, Germany
| | - Alexander Goesmann
- Institute of Bioinformatics and Systems Biology, Justus-Liebig-University, 35392, Giessen, Germany
| | | | - Gabriele Klug
- Institute of Microbiology and Molecular Biology, Justus-Liebig-University, 35392, Giessen, Germany
| |
Collapse
|
27
|
Tombusvirus p19 Captures RNase III-Cleaved Double-Stranded RNAs Formed by Overlapping Sense and Antisense Transcripts in Escherichia coli. mBio 2020; 11:mBio.00485-20. [PMID: 32518184 PMCID: PMC7373196 DOI: 10.1128/mbio.00485-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Antisense transcription is widespread in bacteria. By base pairing with overlapping sense RNAs, antisense RNAs (asRNA) can form double-stranded RNAs (dsRNA), which are cleaved by RNase III, a dsRNA endoribonuclease. The ectopic expression of plant Tombusvirus p19 in Escherichia coli stabilizes ∼21-nucleotide (nt) dsRNA RNase III decay intermediates, which enabled us to characterize otherwise highly unstable asRNA by deep sequencing of p19-captured dsRNA. RNase III-produced small dsRNA were formed at most bacterial genes in the bacterial genome and in a plasmid. Antisense transcription is widespread in bacteria. By base pairing with overlapping sense RNAs, antisense RNAs (asRNA) can form double-stranded RNAs (dsRNA), which are cleaved by RNase III, a dsRNA endoribonuclease. The ectopic expression of plant Tombusvirus p19 in Escherichia coli stabilizes ∼21-nucleotide (nt) dsRNA RNase III decay intermediates, which enabled us to characterize otherwise highly unstable asRNA by deep sequencing of p19-captured dsRNA. RNase III-produced small dsRNA were formed at most bacterial genes in the bacterial genome and in a plasmid. We classified the types of asRNA in genomic clusters producing the most abundant p19-captured dsRNA and confirmed RNase III regulation of asRNA and sense RNA decay at three type I toxin-antitoxin loci and at a coding gene, rsd. Furthermore, we provide potential evidence for the RNase III-dependent regulation of CspD protein by asRNA. The analysis of p19-captured dsRNA revealed an RNase III sequence preference for AU-rich sequences 3 nucleotides on either side of the cleavage sites and for GC-rich sequences in the 2-nt overhangs. Unexpectedly, GC-rich sequences were enriched in the middle section of p19-captured dsRNA, suggesting some unexpected sequence bias in p19 protein binding. Nonetheless, the ectopic expression of p19 is a sensitive method for identifying antisense transcripts and RNase III cleavage sites in dsRNA formed by overlapping sense and antisense transcripts in bacteria.
Collapse
|
28
|
Adams PP, Storz G. Prevalence of small base-pairing RNAs derived from diverse genomic loci. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194524. [PMID: 32147527 DOI: 10.1016/j.bbagrm.2020.194524] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/03/2020] [Accepted: 03/03/2020] [Indexed: 12/21/2022]
Abstract
Small RNAs (sRNAs) that act by base-pairing have been shown to play important roles in fine-tuning the levels and translation of their target transcripts across a variety of model and pathogenic organisms. Work from many different groups in a wide range of bacterial species has provided evidence for the importance and complexity of sRNA regulatory networks, which allow bacteria to quickly respond to changes in their environment. However, despite the expansive literature, much remains to be learned about all aspects of sRNA-mediated regulation, particularly in bacteria beyond the well-characterized Escherichia coli and Salmonella enterica species. Here we discuss what is known, and what remains to be learned, about the identification of regulatory base-pairing RNAs produced from diverse genomic loci including how their expression is regulated. This article is part of a Special Issue entitled: RNA and gene control in bacteria edited by Dr. M. Guillier and F. Repoila.
Collapse
Affiliation(s)
- Philip P Adams
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892-5430, USA; Postdoctoral Research Associate Program, National Institute of General Medical Sciences, National Institutes of Health, Bethesda, MD 20892-6200, USA.
| | - Gisela Storz
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892-5430, USA
| |
Collapse
|
29
|
Hör J, Matera G, Vogel J, Gottesman S, Storz G. Trans-Acting Small RNAs and Their Effects on Gene Expression in Escherichia coli and Salmonella enterica. EcoSal Plus 2020; 9:10.1128/ecosalplus.ESP-0030-2019. [PMID: 32213244 PMCID: PMC7112153 DOI: 10.1128/ecosalplus.esp-0030-2019] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Indexed: 12/20/2022]
Abstract
The last few decades have led to an explosion in our understanding of the major roles that small regulatory RNAs (sRNAs) play in regulatory circuits and the responses to stress in many bacterial species. Much of the foundational work was carried out with Escherichia coli and Salmonella enterica serovar Typhimurium. The studies of these organisms provided an overview of how the sRNAs function and their impact on bacterial physiology, serving as a blueprint for sRNA biology in many other prokaryotes. They also led to the development of new technologies. In this chapter, we first summarize how these sRNAs were identified, defining them in the process. We discuss how they are regulated and how they act and provide selected examples of their roles in regulatory circuits and the consequences of this regulation. Throughout, we summarize the methodologies that were developed to identify and study the regulatory RNAs, most of which are applicable to other bacteria. Newly updated databases of the known sRNAs in E. coli K-12 and S. enterica Typhimurium SL1344 serve as a reference point for much of the discussion and, hopefully, as a resource for readers and for future experiments to address open questions raised in this review.
Collapse
Affiliation(s)
- Jens Hör
- Institute of Molecular Infection Biology, University of Würzburg, 97080 Würzburg, Germany
| | - Gianluca Matera
- Institute of Molecular Infection Biology, University of Würzburg, 97080 Würzburg, Germany
| | - Jörg Vogel
- Helmholtz Institute for RNA-based Infection Research (HIRI), 97080 Würzburg, Germany
- Institute of Molecular Infection Biology, University of Würzburg, 97080 Würzburg, Germany
| | - Susan Gottesman
- Laboratory of Molecular Biology, National Cancer Institute, Bethesda, MD 20892
| | - Gisela Storz
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892
| |
Collapse
|
30
|
A competence-regulated toxin-antitoxin system in Haemophilus influenzae. PLoS One 2020; 15:e0217255. [PMID: 31931516 PMCID: PMC6957337 DOI: 10.1371/journal.pone.0217255] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 12/16/2019] [Indexed: 12/28/2022] Open
Abstract
Natural competence allows bacteria to respond to environmental and nutritional cues by taking up free DNA from their surroundings, thus gaining both nutrients and genetic information. In the Gram-negative bacterium Haemophilus influenzae, the genes needed for DNA uptake are induced by the CRP and Sxy transcription factors in response to lack of preferred carbon sources and nucleotide precursors. Here we show that one of these genes, HI0659, encodes the antitoxin of a competence-regulated toxin-antitoxin operon (‘toxTA’), likely acquired by horizontal gene transfer from a Streptococcus species. Deletion of the putative toxin (HI0660) restores uptake to the antitoxin mutant. The full toxTA operon was present in only 17 of the 181 strains we examined; complete deletion was seen in 22 strains and deletions removing parts of the toxin gene in 142 others. In addition to the expected Sxy- and CRP-dependent-competence promoter, HI0659/660 transcript analysis using RNA-seq identified an internal antitoxin-repressed promoter whose transcription starts within toxT and will yield nonfunctional protein. We propose that the most likely effect of unopposed toxin expression is non-specific cleavage of mRNAs and arrest or death of competent cells in the culture. Although the high frequency of toxT and toxTA deletions suggests that this competence-regulated toxin-antitoxin system may be mildly deleterious, it could also facilitate downregulation of protein synthesis and recycling of nucleotides under starvation conditions. Although our analyses were focused on the effects of toxTA, the RNA-seq dataset will be a useful resource for further investigations into competence regulation.
Collapse
|
31
|
Jack BR, Boutz DR, Paff ML, Smith BL, Wilke CO. Transcript degradation and codon usage regulate gene expression in a lytic phage. Virus Evol 2019; 5:vez055. [PMID: 31908847 PMCID: PMC6938266 DOI: 10.1093/ve/vez055] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Many viral genomes are small, containing only single- or double-digit numbers of genes and relatively few regulatory elements. Yet viruses successfully execute complex regulatory programs as they take over their host cells. Here, we propose that some viruses regulate gene expression via a carefully balanced interplay between transcription, translation, and transcript degradation. As our model system, we employ bacteriophage T7, whose genome of approximately sixty genes is well annotated and for which there is a long history of computational models of gene regulation. We expand upon prior modeling work by implementing a stochastic gene expression simulator that tracks individual transcripts, polymerases, ribosomes, and ribonucleases participating in the transcription, translation, and transcript-degradation processes occurring during a T7 infection. By combining this detailed mechanistic modeling of a phage infection with high-throughput gene expression measurements of several strains of bacteriophage T7, evolved and engineered, we can show that both the dynamic interplay between transcription and transcript degradation, and between these two processes and translation, appear to be critical components of T7 gene regulation. Our results point to targeted degradation as a generic gene regulation strategy that may have evolved in many other viruses. Further, our results suggest that detailed mechanistic modeling may uncover the biological mechanisms at work in both evolved and engineered virus variants.
Collapse
Affiliation(s)
- Benjamin R Jack
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
| | - Daniel R Boutz
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Matthew L Paff
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
| | - Bartram L Smith
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
| | - Claus O Wilke
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
- Corresponding author: E-mail:
| |
Collapse
|
32
|
The coordinated action of RNase III and RNase G controls enolase expression in response to oxygen availability in Escherichia coli. Sci Rep 2019; 9:17257. [PMID: 31754158 PMCID: PMC6872547 DOI: 10.1038/s41598-019-53883-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 10/09/2019] [Indexed: 01/25/2023] Open
Abstract
Rapid modulation of RNA function by endoribonucleases during physiological responses to environmental changes is known to be an effective bacterial biochemical adaptation. We report a molecular mechanism underlying the regulation of enolase (eno) expression by two endoribonucleases, RNase G and RNase III, the expression levels of which are modulated by oxygen availability in Escherichia coli. Analyses of transcriptional eno-cat fusion constructs strongly suggested the existence of cis-acting elements in the eno 5' untranslated region that respond to RNase III and RNase G cellular concentrations. Primer extension and S1 nuclease mapping analyses of eno mRNA in vivo identified three eno mRNA transcripts that are generated in a manner dependent on RNase III expression, one of which was found to accumulate in rng-deleted cells. Moreover, our data suggested that RNase III-mediated cleavage of primary eno mRNA transcripts enhanced Eno protein production, a process that involved putative cis-antisense RNA. We found that decreased RNase G protein abundance coincided with enhanced RNase III expression in E. coli grown anaerobically, leading to enhanced eno expression. Thereby, this posttranscriptional up-regulation of eno expression helps E. coli cells adjust their physiological reactions to oxygen-deficient metabolic modes. Our results revealed a molecular network of coordinated endoribonuclease activity that post-transcriptionally modulates the expression of Eno, a key enzyme in glycolysis.
Collapse
|
33
|
Novel 5-Nitrofuran-Activating Reductase in Escherichia coli. Antimicrob Agents Chemother 2019; 63:AAC.00868-19. [PMID: 31481448 DOI: 10.1128/aac.00868-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 08/28/2019] [Indexed: 02/07/2023] Open
Abstract
The global spread of multidrug-resistant enterobacteria warrants new strategies to combat these pathogens. One possible approach is the reconsideration of "old" antimicrobials, which remain effective after decades of use. Synthetic 5-nitrofurans such as furazolidone, nitrofurantoin, and nitrofurazone are such a class of antimicrobial drugs. Recent epidemiological data showed a very low prevalence of resistance to this antimicrobial class among clinical Escherichia coli isolates in various parts of the world, forecasting the increasing importance of its uses to battle antibiotic-resistant enterobacteria. However, although they have had a long history of clinical use, a detailed understanding of the 5-nitrofurans' mechanisms of action remains limited. Nitrofurans are known as prodrugs that are activated in E. coli by reduction catalyzed by two redundant nitroreductases, NfsA and NfsB. Furazolidone, nevertheless, retains relatively significant antibacterial activity in the nitroreductase-deficient ΔnfsA ΔnfsB E. coli strain, indicating the presence of additional activating enzymes and/or antibacterial activity of the unreduced form. Using genome sequencing, genetic, biochemical, and bioinformatic approaches, we discovered a novel 5-nitrofuran-activating enzyme, AhpF, in E. coli The discovery of a new nitrofuran-reducing enzyme opens new avenues for overcoming 5-nitrofuran resistance, such as designing nitrofuran analogues with higher affinity for AhpF or screening for adjuvants that enhance AhpF expression.
Collapse
|
34
|
Chien CW, Chan YF, Shih PS, Kuan JE, Wu KF, Wu C, Wu WF. Regulation of metE + mRNA expression by FnrS small RNA in Salmonella enterica serovar Typhimurium. Microbiol Res 2019; 229:126319. [PMID: 31479952 DOI: 10.1016/j.micres.2019.126319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/08/2019] [Accepted: 08/12/2019] [Indexed: 11/18/2022]
Abstract
Methionine is critical for variety of metabolic processes in biological organisms, acting as a precursor or intermediate for many final products. The last step for the synthesis of methionine is the methylation of homocysteine, which is catalyzed by MetE. Here, we use Salmonella enterica serovar Typhimurium LT2 to study the regulation of the metE+ gene by an anaerobically induced small non-coding RNA-FnrS, the expression of which is strictly dependent on the anaerobic regulator-FNR. The MetE-HA protein was expressed at an increased level in the fnrS- and hfq- deficient strains under anaerobic conditions. The Hfq protein is predicted to stabilize the binding between small RNA(s) and their target mRNA(s). A transcriptional (op) and translational (pr) metE::lacZ fusion gene were separately constructed, with the metE+-promoter fused to a lacZ reporter gene. In an anaerobic environment, the metE::lacZ (pr) fusion gene and reverse transcription-PCR identified that FnrS and/or FNR negatively regulate metE+ mRNA levels in the rich media. Analysis of FnrS revealed a sequence complementary to the 5' mRNA translational initiation region (TIR) of the metE+ gene. Mutation(s) predicted to disrupt base pairing between FnrS and metE+ TIR were constructed in fnrS, and most of those resulted in the loss of repressive activity. When compensatory mutation(s) were made in metE+ 5' TIR to restore base pairing with FnrS, the repressive regulation was completely restored. Therefore, in this study, we identified that in anaerobic phase, there is a repression of metE+ gene expression by FnrS and that base-paring, between both expressive transcripts, plays an important role for this negative regulation.
Collapse
MESH Headings
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Base Pairing
- Base Sequence
- Gene Expression Regulation, Bacterial
- Gene Expression Regulation, Enzymologic
- Methyltransferases/chemistry
- Methyltransferases/genetics
- Methyltransferases/metabolism
- Nucleic Acid Conformation
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Untranslated/chemistry
- RNA, Small Untranslated/genetics
- RNA, Small Untranslated/metabolism
- Salmonella typhimurium/enzymology
- Salmonella typhimurium/genetics
- Salmonella typhimurium/metabolism
Collapse
Affiliation(s)
- Chia-Wei Chien
- Department of Agricultural Chemistry, College of Bio-Resource and Agriculture, National Taiwan University, Taipei, Taiwan, ROC
| | - Yu-Feng Chan
- Department of Agricultural Chemistry, College of Bio-Resource and Agriculture, National Taiwan University, Taipei, Taiwan, ROC
| | - Po-Shu Shih
- Department of Agricultural Chemistry, College of Bio-Resource and Agriculture, National Taiwan University, Taipei, Taiwan, ROC
| | - Jung-En Kuan
- Department of Agricultural Chemistry, College of Bio-Resource and Agriculture, National Taiwan University, Taipei, Taiwan, ROC
| | - Ke-Feng Wu
- Department of Agricultural Chemistry, College of Bio-Resource and Agriculture, National Taiwan University, Taipei, Taiwan, ROC
| | - Cindy Wu
- Department of Agricultural Chemistry, College of Bio-Resource and Agriculture, National Taiwan University, Taipei, Taiwan, ROC
| | - Whei-Fen Wu
- Department of Agricultural Chemistry, College of Bio-Resource and Agriculture, National Taiwan University, Taipei, Taiwan, ROC.
| |
Collapse
|
35
|
Miyakoshi M, Matera G, Maki K, Sone Y, Vogel J. Functional expansion of a TCA cycle operon mRNA by a 3' end-derived small RNA. Nucleic Acids Res 2019; 47:2075-2088. [PMID: 30541135 PMCID: PMC6393394 DOI: 10.1093/nar/gky1243] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/13/2018] [Accepted: 12/01/2018] [Indexed: 01/24/2023] Open
Abstract
Global RNA profiling studies in bacteria have predicted the existence of many of small noncoding RNAs (sRNAs) that are processed off mRNA 3′ ends to regulate other mRNAs via the RNA chaperones Hfq and ProQ. Here, we present targets of SdhX (RybD), an Hfq-dependent sRNA that is generated by RNase E mediated 3′ processing of the ∼10 000-nt mRNA of the TCA cycle operon sdhCDAB-sucABCD in enteric bacteria. An in silico search predicted ackA mRNA, which encodes acetate kinase, as a conserved primary target of SdhX. Through base pairing, SdhX represses AckA synthesis during growth of Salmonella on acetate. Repression can be achieved by a naturally occurring 38-nucleotide SdhX variant, revealing the shortest functional Hfq-associated sRNA yet. Salmonella SdhX also targets the mRNAs of fumB (anaerobic fumarase) and yfbV, a gene of unknown function adjacent to ackA. Instead, through a slightly different seed sequence, SdhX can repress other targets in Escherichia coli, namely katG (catalase) and fdoG (aerobic formate dehydrogenase). This study illustrates how a key operon from central metabolism is functionally connected to other metabolic pathways through a 3′ appended sRNA, and supports the notion that mRNA 3′UTRs are a playground for the evolution of regulatory RNA networks in bacteria.
Collapse
Affiliation(s)
- Masatoshi Miyakoshi
- Department of Infection Biology, Faculty of Medicine, University of Tsukuba, 305-8575 Tsukuba, Japan.,Department of Biotechnology, Akita Prefectural University, 010-0195 Akita, Japan.,Center for Food Science and Wellness, Gunma University, 371-8510 Maebashi, Japan.,RNA Biology Group, Institute for Molecular Infection Biology, University of Würzburg, D-97080 Würzburg, Germany
| | - Gianluca Matera
- RNA Biology Group, Institute for Molecular Infection Biology, University of Würzburg, D-97080 Würzburg, Germany
| | - Kanako Maki
- Department of Biotechnology, Akita Prefectural University, 010-0195 Akita, Japan
| | - Yasuhiro Sone
- Department of Biotechnology, Akita Prefectural University, 010-0195 Akita, Japan
| | - Jörg Vogel
- RNA Biology Group, Institute for Molecular Infection Biology, University of Würzburg, D-97080 Würzburg, Germany.,Helmholtz Institute for RNA-based Infection Research, D-97080 Würzburg, Germany
| |
Collapse
|
36
|
Altuvia Y, Bar A, Reiss N, Karavani E, Argaman L, Margalit H. In vivo cleavage rules and target repertoire of RNase III in Escherichia coli. Nucleic Acids Res 2019; 46:10380-10394. [PMID: 30113670 PMCID: PMC6212723 DOI: 10.1093/nar/gky684] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 07/18/2018] [Indexed: 12/02/2022] Open
Abstract
Bacterial RNase III plays important roles in the processing and degradation of RNA transcripts. A major goal is to identify the cleavage targets of this endoribonuclease at a transcriptome-wide scale and delineate its in vivo cleavage rules. Here we applied to Escherichia coli grown to either exponential or stationary phase a tailored RNA-seq-based technology, which allows transcriptome-wide mapping of RNase III cleavage sites at a nucleotide resolution. Our analysis of the large-scale in vivo cleavage data substantiated the established cleavage pattern of a double cleavage in an intra-molecular stem structure, leaving 2-nt-long 3′ overhangs, and refined the base-pairing preferences in the cleavage site vicinity. Intriguingly, we observed that the two stem positions between the cleavage sites are highly base-paired, usually involving at least one G-C or C-G base pair. We present a clear distinction between intra-molecular stem structures that are RNase III substrates and intra-molecular stem structures randomly selected across the transcriptome, emphasizing the in vivo specificity of RNase III. Our study provides a comprehensive map of the cleavage sites in both intra-molecular and inter-molecular duplex substrates, providing novel insights into the involvement of RNase III in post-transcriptional regulation in the bacterial cell.
Collapse
Affiliation(s)
- Yael Altuvia
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Amir Bar
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Niv Reiss
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Ehud Karavani
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Liron Argaman
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Hanah Margalit
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| |
Collapse
|
37
|
Lejars M, Kobayashi A, Hajnsdorf E. Physiological roles of antisense RNAs in prokaryotes. Biochimie 2019; 164:3-16. [PMID: 30995539 DOI: 10.1016/j.biochi.2019.04.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/12/2019] [Indexed: 12/16/2022]
Abstract
Prokaryotes encounter constant and often brutal modifications to their environment. In order to survive, they need to maintain fitness, which includes adapting their protein expression patterns. Many factors control gene expression but this review focuses on just one, namely antisense RNAs (asRNAs), a class of non-coding RNAs (ncRNAs) characterized by their location in cis and their perfect complementarity with their targets. asRNAs were considered for a long time to be trivial and only to be found on mobile genetic elements. However, recent advances in methodology have revealed that their abundance and potential activities have been underestimated. This review aims to illustrate the role of asRNA in various physiologically crucial functions in both archaea and bacteria, which can be regrouped in three categories: cell maintenance, horizontal gene transfer and virulence. A literature survey of asRNAs demonstrates the difficulties to characterize and assign a role to asRNAs. With the aim of facilitating this task, we describe recent technological advances that could be of interest to identify new asRNAs and to discover their function.
Collapse
Affiliation(s)
- Maxence Lejars
- CNRS UMR8261, IBPC, 13 rue Pierre et Marie Curie, 75005, Paris, France.
| | - Asaki Kobayashi
- SABNP, INSERM U1204, Université d'Evry Val-d'Essonne, Bâtiment Maupertuis, Rue du Père Jarlan, 91000, Évry Cedex, France.
| | - Eliane Hajnsdorf
- CNRS UMR8261, IBPC, 13 rue Pierre et Marie Curie, 75005, Paris, France.
| |
Collapse
|
38
|
Yan B, Boitano M, Clark TA, Ettwiller L. SMRT-Cappable-seq reveals complex operon variants in bacteria. Nat Commun 2018; 9:3676. [PMID: 30201986 PMCID: PMC6131387 DOI: 10.1038/s41467-018-05997-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 08/07/2018] [Indexed: 11/22/2022] Open
Abstract
Current methods for genome-wide analysis of gene expression require fragmentation of original transcripts into small fragments for short-read sequencing. In bacteria, the resulting fragmented information hides operon complexity. Additionally, in vivo processing of transcripts confounds the accurate identification of the 5' and 3' ends of operons. Here we develop a methodology called SMRT-Cappable-seq that combines the isolation of un-fragmented primary transcripts with single-molecule long read sequencing. Applied to E. coli, this technology results in an accurate definition of the transcriptome with 34% of known operons from RegulonDB being extended by at least one gene. Furthermore, 40% of transcription termination sites have read-through that alters the gene content of the operons. As a result, most of the bacterial genes are present in multiple operon variants reminiscent of eukaryotic splicing. By providing such granularity in the operon structure, this study represents an important resource for the study of prokaryotic gene network and regulation.
Collapse
Affiliation(s)
- Bo Yan
- New England Biolabs Inc., 240 County Road, Ipswich, MA, 01938, USA
| | | | - Tyson A Clark
- PacBio, 1305 O'Brien Drive, Menlo Park, CA, 94025, USA
| | | |
Collapse
|
39
|
Drecktrah D, Hall LS, Rescheneder P, Lybecker M, Samuels DS. The Stringent Response-Regulated sRNA Transcriptome of Borrelia burgdorferi. Front Cell Infect Microbiol 2018; 8:231. [PMID: 30027068 PMCID: PMC6041397 DOI: 10.3389/fcimb.2018.00231] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 06/19/2018] [Indexed: 12/12/2022] Open
Abstract
The Lyme disease spirochete Borrelia (Borreliella) burgdorferi must tolerate nutrient stress to persist in the tick phase of its enzootic life cycle. We previously found that the stringent response mediated by RelBbu globally regulates gene expression to facilitate persistence in the tick vector. Here, we show that RelBbu regulates the expression of a swath of small RNAs (sRNA), affecting 36% of previously identified sRNAs in B. burgdorferi. This is the first sRNA regulatory mechanism identified in any spirochete. Threefold more sRNAs were RelBbu-upregulated than downregulated during nutrient stress and included antisense, intergenic and 5′ untranslated region sRNAs. RelBbu-regulated sRNAs associated with genes known to be important for host infection (bosR and dhhp) as well as persistence in the tick (glpF and hk1) were identified, suggesting potential mechanisms for post-transcriptional regulation of gene expression.
Collapse
Affiliation(s)
- Dan Drecktrah
- Division of Biological Sciences, University of Montana, Missoula, MT, United States
| | - Laura S Hall
- Division of Biological Sciences, University of Montana, Missoula, MT, United States
| | - Philipp Rescheneder
- Center for Integrative Bioinformatics Vienna, Max F. Perutz Laboratories, Medical University of Vienna, Vienna, Austria
| | - Meghan Lybecker
- Department of Biology, University of Colorado, Colorado Springs, CO, United States
| | - D Scott Samuels
- Division of Biological Sciences, University of Montana, Missoula, MT, United States.,Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT, United States
| |
Collapse
|
40
|
Mohanty BK, Kushner SR. Enzymes Involved in Posttranscriptional RNA Metabolism in Gram-Negative Bacteria. Microbiol Spectr 2018; 6:10.1128/microbiolspec.RWR-0011-2017. [PMID: 29676246 PMCID: PMC5912700 DOI: 10.1128/microbiolspec.rwr-0011-2017] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Indexed: 02/08/2023] Open
Abstract
Gene expression in Gram-negative bacteria is regulated at many levels, including transcription initiation, RNA processing, RNA/RNA interactions, mRNA decay, and translational controls involving enzymes that alter translational efficiency. In this review, we discuss the various enzymes that control transcription, translation, and RNA stability through RNA processing and degradation. RNA processing is essential to generate functional RNAs, while degradation helps control the steady-state level of each individual transcript. For example, all the pre-tRNAs are transcribed with extra nucleotides at both their 5' and 3' termini, which are subsequently processed to produce mature tRNAs that can be aminoacylated. Similarly, rRNAs that are transcribed as part of a 30S polycistronic transcript are matured to individual 16S, 23S, and 5S rRNAs. Decay of mRNAs plays a key role in gene regulation through controlling the steady-state level of each transcript, which is essential for maintaining appropriate protein levels. In addition, degradation of both translated and nontranslated RNAs recycles nucleotides to facilitate new RNA synthesis. To carry out all these reactions, Gram-negative bacteria employ a large number of endonucleases, exonucleases, RNA helicases, and poly(A) polymerase, as well as proteins that regulate the catalytic activity of particular RNases. Under certain stress conditions, an additional group of specialized endonucleases facilitate the cell's ability to adapt and survive. Many of the enzymes, such as RNase E, RNase III, polynucleotide phosphorylase, RNase R, and poly(A) polymerase I, participate in multiple RNA processing and decay pathways.
Collapse
Affiliation(s)
| | - Sidney R Kushner
- Department of Genetics
- Department of Microbiology, University of Georgia, Athens, GA 30602
| |
Collapse
|
41
|
Gordon GC, Cameron JC, Pfleger BF. Distinct and redundant functions of three homologs of RNase III in the cyanobacterium Synechococcus sp. strain PCC 7002. Nucleic Acids Res 2018; 46:1984-1997. [PMID: 29373746 PMCID: PMC5829567 DOI: 10.1093/nar/gky041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 01/11/2018] [Accepted: 01/16/2018] [Indexed: 12/19/2022] Open
Abstract
RNase III is a ribonuclease that recognizes and cleaves double-stranded RNA. Across bacteria, RNase III is involved in rRNA maturation, CRISPR RNA maturation, controlling gene expression, and turnover of messenger RNAs. Many organisms have only one RNase III while others have both a full-length RNase III and another version that lacks a double-stranded RNA binding domain (mini-III). The genome of the cyanobacterium Synechococcus sp. strain PCC 7002 (PCC 7002) encodes three homologs of RNase III, two full-length and one mini-III, that are not essential even when deleted in combination. To discern if each enzyme had distinct responsibilities, we collected and sequenced global RNA samples from the wild type strain, the single, double, and triple RNase III mutants. Approximately 20% of genes were differentially expressed in various mutants with some operons and regulons showing complex changes in expression levels between mutants. Two RNase III's had a role in 23S rRNA maturation and the third was involved in copy number regulation one of six native plasmids. In vitro, purified RNase III enzymes were capable of cleaving some of the known Escherichia coli RNase III target sequences, highlighting the remarkably conserved substrate specificity between organisms yet complex regulation of gene expression.
Collapse
Affiliation(s)
- Gina C Gordon
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jeffrey C Cameron
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Brian F Pfleger
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
42
|
Abstract
Viruses with double-stranded RNA genomes form isometric particles or are capsidless. Here we report a double-stranded RNA virus, Colletotrichum camelliae filamentous virus 1 (CcFV-1) isolated from a fungal pathogen, that forms filamentous particles. CcFV-1 has eight genomic double-stranded RNAs, ranging from 990 to 2444 bp, encoding 10 putative open reading frames, of which open reading frame 1 encodes an RNA-dependent RNA polymerase and open reading frame 4 a capsid protein. When inoculated, the naked CcFV-1 double-stranded RNAs are infectious and induce the accumulation of the filamentous particles in vivo. CcFV-1 is phylogenetically related to Aspergillus fumigatus tetramycovirus-1 and Beauveria bassiana polymycovirus-1, but differs in morphology and in the number of genomic components. CcFV-1 might be an intermediate virus related to truly capsidated viruses, or might represent a distinct encapsidating strategy. In terms of genome and particle architecture, our findings are a significant addition to the knowledge of the virosphere diversity. Viruses with double-stranded RNA (dsRNA) genomes form typically isometric particles or are capsid-less. Here, the authors identify a mycovirus with an eight-segmented dsRNA genome that forms exceptionally long filamentous particles and could represent an evolutionary link between ssRNA and dsRNA viruses.
Collapse
|