1
|
Lamb ER, Criss AK. Terminal complement complexes with or without C9 potentiate antimicrobial activity against Neisseria gonorrhoeae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.16.633325. [PMID: 39868146 PMCID: PMC11760736 DOI: 10.1101/2025.01.16.633325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
The complement cascade is a front-line defense against pathogens. Complement activation generates the membrane attack complex (MAC), a 10-11 nm diameter pore formed by complement proteins C5b through C8 and polymerized C9. The MAC embeds within the outer membrane of Gram-negative bacteria and displays bactericidal activity. In the absence of C9, C5b-C8 complexes can form 2-4 nm pores on membranes, but their relevance to microbial control is poorly understood. Deficiencies in terminal complement components uniquely predispose individuals to infections by pathogenic Neisseria, including N. gonorrhoeae (Gc). Increasing antibiotic resistance in Gc makes new therapeutic strategies a priority. Here, we demonstrate that MAC formed by complement activity in human serum disrupts the Gc outer and inner membranes, potentiating the activity of antimicrobials against Gc and re-sensitizing multidrug resistant Gc to antibiotics. C9-depleted serum also disrupts Gc membranes and exerts antigonococcal activity, effects that are not reported in other Gram-negative bacteria. C5b-C8 complex formation potentiates Gc sensitivity to azithromycin but not lysozyme. These findings expand our mechanistic understanding of complement lytic activity, suggest a size limitation for terminal complement-mediated enhancement of antimicrobials against Gc, and suggest complement manipulation can be used to combat drug-resistant gonorrhea. Importance The complement cascade is a front-line arm of the innate immune system against pathogens. Complement activation results in membrane attack complex (MAC) pores forming on the outer membrane of Gram-negative bacteria, resulting in bacterial death. Individuals who cannot generate MAC are specifically susceptible to infection by pathogenic Neisseria species including N. gonorrhoeae (Gc). High rates of gonorrhea and its complications like infertility, and high-frequency resistance to multiple antibiotics, make it important to identify new approaches to combat Gc. Beyond direct anti-Gc activity, we found the MAC increases the ability of antibiotics and antimicrobial proteins to kill Gc and re-sensitizes multidrug-resistant bacteria to antibiotics. The most terminal component, C9, is needed to potentiate the anti-Gc activity of lysozyme, but azithromycin activity is potentiated regardless of C9. These findings highlight the unique effects of MAC on Gc and suggest novel translational avenues to combat drug-resistant gonorrhea.
Collapse
Affiliation(s)
- Evan R. Lamb
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Alison K. Criss
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
| |
Collapse
|
2
|
López-Argüello S, Alcoceba E, Ordóñez P, Taltavull B, Cabot G, Gomis-Font MA, Oliver A, Moya B. Differential contribution of PBP occupancy and efflux on the effectiveness of β-lactams at their target site in clinical isolates of Neisseria gonorrhoeae. PLoS Pathog 2024; 20:e1012783. [PMID: 39739989 PMCID: PMC11729944 DOI: 10.1371/journal.ppat.1012783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 01/13/2025] [Accepted: 11/26/2024] [Indexed: 01/02/2025] Open
Abstract
Neisseria gonorrhoeae exhibits alarming antibiotic resistance trends and poses a significant challenge in therapeutic management. This study aimed to explore the association of penA alleles with penicillin-binding protein (PBP) occupancy patterns and reduced outer membrane permeability, impacting susceptibility to last-line cephalosporins and potential β-lactam candidates. The whole genome sequence, the MICs and PBP IC50s were determined for 12 β-lactams and β-lactamase inhibitors in 8 clinical isolates with varying β-lactam sensitivity, 2 ATCC, and 3 WHO cephalosporin-resistant reference strains. The genetic analysis identified diverse determinants of β-lactam resistance including penA, ponA, porB, and mtrR alterations. Mosaic penA alleles were confirmed to be key determinants of cephalosporin resistance, with notable impacts on PBP2 IC50 affinities (in the presence of all PBPs). Substitutions in positions V316 and A501 exhibited significant effects on β-lactam PBP2 occupancy and MICs. PBP1 inhibition showed marginal effect on β-lactam sensitivity and PBP3 acted as a sink target. Ertapenem and piperacillin emerged as potential therapies against cephalosporin-resistant N. gonorrhoeae strains, along with combination therapies involving tazobactam and/or efflux inhibitors. The study determined the β-lactam PBP-binding affinities of last-line cephalosporins and alternative β-lactam candidates in strains carrying different penA alleles for the first time. These findings provide insights for developing new antimicrobial agents and enhancers against emerging resistant strains. Further research is warranted to optimize therapeutic interventions for cephalosporin-resistant N. gonorrhoeae infections.
Collapse
Affiliation(s)
- Silvia López-Argüello
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitario Son Espases, Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Eva Alcoceba
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitario Son Espases, Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Paula Ordóñez
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitario Son Espases, Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Biel Taltavull
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitario Son Espases, Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Palma, Balearic Islands, Spain
| | - Gabriel Cabot
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitario Son Espases, Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Palma, Balearic Islands, Spain
| | - Maria Antonia Gomis-Font
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitario Son Espases, Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Palma, Balearic Islands, Spain
| | - Antonio Oliver
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitario Son Espases, Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Palma, Balearic Islands, Spain
| | - Bartolome Moya
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitario Son Espases, Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Palma, Balearic Islands, Spain
| |
Collapse
|
3
|
Waltmann A, Balthazar JT, Begum AA, Hua N, Jerse AE, Shafer WM, Hobbs MM, Duncan JA. Experimental genital tract infection demonstrates Neisseria gonorrhoeae MtrCDE efflux pump is not required for in vivo human infection and identifies gonococcal colonization bottleneck. PLoS Pathog 2024; 20:e1012578. [PMID: 39321205 PMCID: PMC11457995 DOI: 10.1371/journal.ppat.1012578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 10/07/2024] [Accepted: 09/10/2024] [Indexed: 09/27/2024] Open
Abstract
The MtrCDE efflux pump of Neisseria gonorrhoeae exports a wide range of antimicrobial compounds that the gonococcus encounters at mucosal surfaces during colonization and infection and is a known gonococcal virulence factor. Here, we evaluate the role of this efflux pump system in strain FA1090 during in vivo human male urethral infection with N. gonorrhoeae using a controlled human infection model. With the strategy of competitive infections initiated with mixtures of wild-type FA1090 and an isogenic mutant FA1090 strain that does not contain a functional MtrCDE pump, we found that the presence of the efflux pump is not required for an infection to be established in the human male urethra. This finding contrasts with previous studies of in vivo infection in the lower genital tract of female mice, which demonstrated that mutant gonococci of a different strain (FA19) lacking a functional MtrCDE pump had a significantly reduced fitness compared to their wild-type parental FA19 strain. To determine if these conflicting results are due to strain or human vs. mouse differences, we conducted a series of systematic competitive infections in female mice with the same FA1090 strains as in humans, and with FA19 strains, including mutants that do not assemble a functional MtrCDE efflux pump. Our results indicate the fitness advantage provided by the MtrCDE efflux pump during infection of mice is strain dependent. Owing to the equal fitness of the two FA1090 strains in men, our experiments also demonstrated the presence of a colonization bottleneck of N. gonorrhoeae in the human male urethra, which may open a new area of inquiry into N. gonorrhoeae infection dynamics and control. TRIAL REGISTRATION. Clinicaltrials.gov NCT03840811.
Collapse
Affiliation(s)
- Andreea Waltmann
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States
| | - Jacqueline T. Balthazar
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Afrin A. Begum
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, Maryland, United States
| | - Nancy Hua
- The Emmes Company, Rockville, Maryland, United States
| | - Ann E. Jerse
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, Maryland, United States
| | - William M. Shafer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States
- The Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, Georgia, United States
- Laboratories of Bacterial Pathogenesis, Veterans Affairs Medical Center (Atlanta), Decatur, Georgia, United States
| | - Marcia M. Hobbs
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Joseph A. Duncan
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
- Department of Pharmacology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States
| |
Collapse
|
4
|
Unemo M, Sánchez-Busó L, Golparian D, Jacobsson S, Shimuta K, Lan PT, Eyre DW, Cole M, Maatouk I, Wi T, Lahra MM. The novel 2024 WHO Neisseria gonorrhoeae reference strains for global quality assurance of laboratory investigations and superseded WHO N. gonorrhoeae reference strains-phenotypic, genetic and reference genome characterization. J Antimicrob Chemother 2024; 79:1885-1899. [PMID: 38889110 PMCID: PMC11290888 DOI: 10.1093/jac/dkae176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/15/2024] [Indexed: 06/20/2024] Open
Abstract
OBJECTIVES MDR and XDR Neisseria gonorrhoeae strains remain major public health concerns internationally, and quality-assured global gonococcal antimicrobial resistance (AMR) surveillance is imperative. The WHO global Gonococcal Antimicrobial Surveillance Programme (GASP) and WHO Enhanced GASP (EGASP), including metadata and WGS, are expanding internationally. We present the phenotypic, genetic and reference genome characteristics of the 2024 WHO gonococcal reference strains (n = 15) for quality assurance worldwide. All superseded WHO gonococcal reference strains (n = 14) were identically characterized. MATERIAL AND METHODS The 2024 WHO reference strains include 11 of the 2016 WHO reference strains, which were further characterized, and four novel strains. The superseded WHO reference strains include 11 WHO reference strains previously unpublished. All strains were characterized phenotypically and genomically (single-molecule PacBio or Oxford Nanopore and Illumina sequencing). RESULTS The 2024 WHO reference strains represent all available susceptible and resistant phenotypes and genotypes for antimicrobials currently and previously used (n = 22), or considered for future use (n = 3) in gonorrhoea treatment. The novel WHO strains include internationally spreading ceftriaxone resistance, ceftriaxone resistance due to new penA mutations, ceftriaxone plus high-level azithromycin resistance and azithromycin resistance due to mosaic MtrRCDE efflux pump. AMR, serogroup, prolyliminopeptidase, genetic AMR determinants, plasmid types, molecular epidemiological types and reference genome characteristics are presented for all strains. CONCLUSIONS The 2024 WHO gonococcal reference strains are recommended for internal and external quality assurance in laboratory examinations, especially in the WHO GASP, EGASP and other GASPs, but also in phenotypic and molecular diagnostics, AMR prediction, pharmacodynamics, epidemiology, research and as complete reference genomes in WGS analysis.
Collapse
Affiliation(s)
- Magnus Unemo
- Department of Laboratory Medicine, Faculty of Medicine and Health, WHO Collaborating Centre for Gonorrhoea and Other STIs, National Reference Laboratory for STIs, Microbiology, Örebro University, Örebro, Sweden
- Institute for Global Health, University College London (UCL), London, UK
| | - Leonor Sánchez-Busó
- Joint Research Unit ‘Infection and Public Health’, FISABIO-University of Valencia, Institute for Integrative Systems Biology (I2SysBio), Valencia, Spain
- CIBERESP, ISCIII, Madrid, Spain
| | - Daniel Golparian
- Department of Laboratory Medicine, Faculty of Medicine and Health, WHO Collaborating Centre for Gonorrhoea and Other STIs, National Reference Laboratory for STIs, Microbiology, Örebro University, Örebro, Sweden
| | - Susanne Jacobsson
- Department of Laboratory Medicine, Faculty of Medicine and Health, WHO Collaborating Centre for Gonorrhoea and Other STIs, National Reference Laboratory for STIs, Microbiology, Örebro University, Örebro, Sweden
| | - Ken Shimuta
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Pham Thi Lan
- Hanoi Medical University, National Hospital of Dermatology and Venereology, Hanoi, Vietnam
| | - David W Eyre
- Big Data Institute, University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | | | - Ismael Maatouk
- Department of the Global HIV, Hepatitis and STI Programmes, WHO, Geneva, Switzerland
| | - Teodora Wi
- Department of the Global HIV, Hepatitis and STI Programmes, WHO, Geneva, Switzerland
| | - Monica M Lahra
- WHO Collaborating Centre for Sexually Transmitted Infections and Antimicrobial Resistance, New South Wales Health Pathology, Microbiology, Randwick, NSW, Australia
- Faculty of Medicine, The University of New South Wales, Sydney, Australia
| |
Collapse
|
5
|
Mauffrey F, Poncet F, Jacot D, Greub G, Nordmann P, Blanc DS. Impact of mutations in the mtrR, rpdlVD and rrl genes on azithromycin resistance in Neisseria gonorrhoeae. PLoS One 2024; 19:e0306695. [PMID: 39012901 PMCID: PMC11251580 DOI: 10.1371/journal.pone.0306695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 06/23/2024] [Indexed: 07/18/2024] Open
Abstract
INTRODUCTION Bacterial sexually transmitted infections (STIs) pose a major public health problem. The emergence of antibiotic-resistant strains of Neisseria gonorrhoeae represents a serious threat to successful treatment and epidemiological control. The first extensively drug-resistant (XDR) strains (ceftriaxone-resistant and high-level azithromycin-resistant [HLR AZY]) have been reported. AIMS To identify molecular mechanisms implicated in azithromycin resistance in strains isolated from patients over a three-year period in a university hospital in Switzerland. MATERIAL AND METHODS From January 2020 to December 2022, 34 isolates (one per patient) were recovered from samples analyzed at the University Hospital of Lausanne. Eight genes involved in azithromycin resistance were sequenced: mtrR repressor (mtrCDE operon repressor) and his promotor mtrR-pr, rplD gene (L4 ribosomal protein), rplV gene (L22 ribosomal protein) and the four alleles of the rrl gene (23S rRNA). RESULTS With a cutoff value of 1 mg/L, 15 isolates were considered as being resistant to azithromycin, whereas the remaining 19 were susceptible. The C2597T mutation in 3 or 4 of the rrl allele confer a medium-level resistance to azithromycin (MIC = 16 mg/L, N = 2). The following mutations were significantly associated with MIC values ≥1 mg/L: the three mutations V125A, A147G, R157Q in the rplD gene (N = 10) and a substitution A->C in the mtrR promotor (N = 9). Specific mutations in the mtrR repressor and its promotor were observed in both susceptible and resistant isolates. CONCLUSIONS Resistance to azithromycin was explained by the presence of mutations in many different copies of 23S RNA ribosomal genes and their regulatory genes. Other mutations, previously reported to be associated with azithromycin resistance, were documented in both susceptible and resistant isolates, suggesting they play little role, if any, in azithromycin resistance.
Collapse
Affiliation(s)
- Florian Mauffrey
- Infection Prevention and Control Unit, Infectious Diseases Service, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Fabrice Poncet
- Infection Prevention and Control Unit, Infectious Diseases Service, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Swiss National Reference Center for Emerging Antibiotic Resistance, Fribourg, Switzerland
| | - Damien Jacot
- Institute for Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Gilbert Greub
- Institute for Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Patrice Nordmann
- Swiss National Reference Center for Emerging Antibiotic Resistance, Fribourg, Switzerland
| | - Dominique S. Blanc
- Infection Prevention and Control Unit, Infectious Diseases Service, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Swiss National Reference Center for Emerging Antibiotic Resistance, Fribourg, Switzerland
| |
Collapse
|
6
|
Wang C, Yang J, Xu Z, Lv L, Chen S, Hong M, Liu JH. Promoter regulatory mode evolution enhances the high multidrug resistance of tmexCD1-toprJ1. mBio 2024; 15:e0021824. [PMID: 38564664 PMCID: PMC11077950 DOI: 10.1128/mbio.00218-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/10/2024] [Indexed: 04/04/2024] Open
Abstract
Antibiotic resistance could rapidly emerge from acquiring the mobile antibiotic resistance genes, which are commonly evolved from an intrinsic gene. The emergence of the plasmid-borne mobilized efflux pump gene cluster tmexCD1-toprJ1 renders the last-resort antibiotic tigecycline ineffective, although its evolutionary mechanism remains unclear. In this study, we investigate the regulatory mechanisms of the progenitor NfxB-MexCD-OprJ, a chromosomally encoded operon that does not mediate antibiotic resistance in the wild-type version, and its homologs, TNfxB1-TMexCD1-TOprJ1 mediating high-level tigecycline resistance, and TNfxB3-TMexCD3-TOprJ1. Mechanistic studies demonstrated that in nfxB-mexCD-oprJ, MexCD expression was under a weaker promoter, PmexC and inhibited by a strong repressor NfxB. For tmexCD1-toprJ1, TMexCD1 was highly expressed owing to the presence of a strong promoter, PtmexC1, and an inactive suppressor, TNfxB1, with a T39R mutation that rendered it unable to bind to promoter DNA. In tnfxB3-tmexCD3-toprJ1b, TMexCD3 expression was intermediate because of the local regulator TNfxB3, which binds to two inverted repeat sequences of PtmexC. Additionally, TNfxB3 exhibited lower protein expression and weaker DNA binding affinity than its ancestor NfxB, together with their promoter activities difference explaining the different expression levels of tmexCD-toprJ homologs. Distinct fitness burdens on these homologs-carrying bacteria were observed due to the corresponding expression level, which might be associated with their global prevalence. In summary, our data depict the mechanisms underlying the evolution and dissemination of an important mobile antibiotic resistance gene from an intrinsic chromosomal gene.IMPORTANCEAs antibiotic resistance seriously challenges global health, tigecycline is one of the few effective drugs in the pipeline against infections caused by multidrug-resistant pathogens. Our previous work identified a novel tigecycline resistance efflux pump gene cluster tmexCD1-toprJ1 in animals and humans, together with its various variants, a rising clinical concern. Herein, this study focused on how the local regulation modes of tmexCD1-toprJ1 evolved to a highly expressed efflux pump. Through comparative analysis between three tnfxB-tmexCD-toprJ homologs and their progenitor nfxB-mexCD-oprJ, modes, we demonstrated the evolutionary dynamics from a chromosomal silent gene to an active state. We found the de-repression of the local regulator and an increase of the promoter activity work together to promote a high production of drug efflux machines and enhance multidrug resistance. Our findings revealed that TMexCD1-TOprJ1 adopts a distinct evolutionary path to achieve higher multidrug resistance, urgently needing tight surveillance.
Collapse
Affiliation(s)
- Chengzhen Wang
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, National Risk Assessment Laboratory for Antimicrobial Resistant of Microorganisms in Animals, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou, Guangdong, China
| | - Jun Yang
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, National Risk Assessment Laboratory for Antimicrobial Resistant of Microorganisms in Animals, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou, Guangdong, China
| | - Zeling Xu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Luchao Lv
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, National Risk Assessment Laboratory for Antimicrobial Resistant of Microorganisms in Animals, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou, Guangdong, China
| | - Sheng Chen
- State Key Lab of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Mei Hong
- College of Life Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, South China Agricultural University, Guangzhou, China
| | - Jian-Hua Liu
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, National Risk Assessment Laboratory for Antimicrobial Resistant of Microorganisms in Animals, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou, Guangdong, China
| |
Collapse
|
7
|
Frost KM, Charron-Smith SL, Cotsonas TC, Dimartino DC, Eisenhart RC, Everingham ET, Holland EC, Imtiaz K, Kornowicz CJ, Lenhard LE, Lynch LH, Moore NP, Phadke K, Reed ML, Smith SR, Ward LL, Wadsworth CB. Rolling the evolutionary dice: Neisseria commensals as proxies for elucidating the underpinnings of antibiotic resistance mechanisms and evolution in human pathogens. Microbiol Spectr 2024; 12:e0350723. [PMID: 38179941 PMCID: PMC10871548 DOI: 10.1128/spectrum.03507-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/01/2023] [Indexed: 01/06/2024] Open
Abstract
Species within the genus Neisseria are adept at sharing adaptive allelic variation, with commensal species repeatedly transferring resistance to their pathogenic relative Neisseria gonorrhoeae. However, resistance in commensals is infrequently characterized, limiting our ability to predict novel and potentially transferable resistance mechanisms that ultimately may become important clinically. Unique evolutionary starting places of each Neisseria species will have distinct genomic backgrounds, which may ultimately control the fate of evolving populations in response to selection as epistatic and additive interactions coerce lineages along divergent evolutionary trajectories. Alternatively, similar genetic content present across species due to shared ancestry may constrain existing adaptive solutions. Thus, identifying the paths to resistance across commensals may aid in characterizing the Neisseria resistome-or the reservoir of alleles within the genus as well as its depth. Here, we use in vitro evolution of four commensal species to investigate the potential and repeatability of resistance evolution to two antimicrobials, the macrolide azithromycin and the β-lactam penicillin. After 20 days of selection, commensals evolved resistance to penicillin and azithromycin in 11/16 and 12/16 cases, respectively. Almost all cases of resistance emergence converged on mutations within ribosomal components or the mtrRCDE efflux pump for azithromycin-based selection and mtrRCDE, penA, and rpoB for penicillin selection, thus supporting constrained adaptive solutions despite divergent evolutionary starting points across the genus for these particular drugs. Though drug-selected loci were limited, we do identify novel resistance-imparting mutations. Continuing to explore paths to resistance across different experimental conditions and genomic backgrounds, which could shunt evolution down alternative evolutionary trajectories, will ultimately flesh out the full Neisseria resistome.IMPORTANCENeisseria gonorrhoeae is a global threat to public health due to its rapid acquisition of antibiotic resistance to all first-line treatments. Recent work has documented that alleles acquired from close commensal relatives have played a large role in the emergence of resistance to macrolides and beta-lactams within gonococcal populations. However, commensals have been relatively underexplored for the resistance genotypes they may harbor. This leaves a gap in our understanding of resistance that could be rapidly acquired by the gonococcus through a known highway of horizontal gene exchange. Here, we characterize resistance mechanisms that can emerge in commensal Neisseria populations via in vitro selection to multiple antimicrobials and begin to define the number of paths to resistance. This study, and other similar works, may ultimately aid both surveillance efforts and clinical diagnostic development by nominating novel and conserved resistance mechanisms that may be at risk of rapid dissemination to pathogen populations.
Collapse
Affiliation(s)
- Kelly M. Frost
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Sierra L. Charron-Smith
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Terence C. Cotsonas
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Daniel C. Dimartino
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Rachel C. Eisenhart
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Eric T. Everingham
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Elle C. Holland
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Kainat Imtiaz
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Cory J. Kornowicz
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Lydia E. Lenhard
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Liz H. Lynch
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Nadia P. Moore
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Kavya Phadke
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Makayla L. Reed
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Samantha R. Smith
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Liza L. Ward
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Crista B. Wadsworth
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| |
Collapse
|
8
|
Frost KM, Charron-Smith SL, Cotsonas TC, Dimartino DC, Eisenhart RC, Everingham ET, Holland EC, Imtiaz K, Kornowicz CJ, Lenhard LE, Lynch LH, Moore NP, Phadke K, Reed ML, Smith SR, Ward LL, Wadsworth CB. Rolling the evolutionary dice: Neisseria commensals as proxies for elucidating the underpinnings of antibiotic resistance mechanisms and evolution in human pathogens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.26.559611. [PMID: 37808746 PMCID: PMC10557713 DOI: 10.1101/2023.09.26.559611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Species within the genus Neisseria are especially adept at sharing adaptive allelic variation across species' boundaries, with commensal species repeatedly transferring resistance to their pathogenic relative N. gonorrhoeae. However, resistance in commensal Neisseria is infrequently characterized at both the phenotypic and genotypic levels, limiting our ability to predict novel and potentially transferable resistance mechanisms that ultimately may become important clinically. Unique evolutionary starting places of each Neisseria species will have distinct genomic backgrounds, which may ultimately control the fate of evolving populations in response to selection, as epistatic and additive interactions may coerce lineages along divergent evolutionary trajectories. However alternatively, similar genetic content present across species due to shared ancestry may constrain the adaptive solutions that exist. Thus, identifying the paths to resistance across commensals may aid in characterizing the Neisseria resistome - or the reservoir of alleles within the genus, as well as its depth. Here, we use in vitro evolution of four commensal species to investigate the potential for and repeatability of resistance evolution to two antimicrobials, the macrolide azithromycin and the β-lactam penicillin. After 20 days of selection, commensals evolved elevated minimum inhibitory concentrations (MICs) to penicillin and azithromycin in 11/16 and 12/16 cases respectively. Almost all cases of resistance emergence converged on mutations within ribosomal components or the mtrRCDE efflux pump for azithromycin-based selection, and mtrRCDE or penA for penicillin selection; thus, supporting constrained adaptive solutions despite divergent evolutionary starting points across the genus for these particular drugs. However, continuing to explore the paths to resistance across different experimental conditions and genomic backgrounds, which could shunt evolution down alternative evolutionary trajectories, will ultimately flesh out the full Neisseria resistome.
Collapse
Affiliation(s)
- Kelly M. Frost
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Sierra L. Charron-Smith
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Terence C. Cotsonas
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Daniel C. Dimartino
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Rachel C. Eisenhart
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Eric T. Everingham
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Elle C. Holland
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Kainat Imtiaz
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Cory J. Kornowicz
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Lydia E. Lenhard
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Liz H. Lynch
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Nadia P. Moore
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Kavya Phadke
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Makayla L. Reed
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Samantha R. Smith
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Liza L. Ward
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Crista B. Wadsworth
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| |
Collapse
|
9
|
John CM, Phillips NJ, Cardenas AJ, Criss AK, Jarvis GA. Comparison of lipooligosaccharides from human challenge strains of Neisseria gonorrhoeae. Front Microbiol 2023; 14:1215946. [PMID: 37779694 PMCID: PMC10540682 DOI: 10.3389/fmicb.2023.1215946] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/23/2023] [Indexed: 10/03/2023] Open
Abstract
The alarming rise of antibiotic resistance and the emergence of new vaccine technologies have increased the focus on vaccination to control gonorrhea. Neisseria gonorrhoeae strains FA1090 and MS11 have been used in challenge studies in human males. We used negative-ion MALDI-TOF MS to profile intact lipooligosaccharide (LOS) from strains MS11mkA, MS11mkC, FA1090 A23a, and FA1090 1-81-S2. The MS11mkC and 1-81-S2 variants were isolated from male volunteers infected with MS11mkA and A23a, respectively. LOS profiles were obtained after purification using the classical phenol water extraction method and by microwave-enhanced enzymatic digestion, which is more amenable for small-scale work. Despite detecting some differences in the LOS profiles, the same major species were observed, indicating that microwave-enhanced enzymatic digestion is appropriate for MS studies. The compositions determined for MS11mkA and mkC LOS were consistent with previous reports. FA1090 is strongly recognized by mAb 2C7, an antibody-binding LOS with both α- and β-chains if the latter is a lactosyl group. The spectra of the A23a and 1-81-S2 FA1090 LOS were similar to each other and consistent with the expression of α-chain lacto-N-neotetraose and β-chain lactosyl moieties that can both be acceptor sites for sialic acid substitution. 1-81-S2 LOS was analyzed after culture with and without media supplemented with cytidine-5'-monophosphate N-acetylneuraminic acid (CMP-Neu5Ac), which N. gonorrhoeae needs to sialylate its LOS. LOS sialylation reduces the infectivity of gonococci in men, although it induces serum resistance in serum-sensitive strains and reduces killing by neutrophils and antimicrobial peptides. The infectivity of FA1090 in men is much lower than that of MS11mkC, but the reason for this difference is unclear. Interestingly, some peaks in the spectra of 1-81-S2 LOS after bacterial culture with CMP-Neu5Ac were consistent with disialylation of the LOS, which could be relevant to the reduced infectivity of FA1090 in men and could have implications regarding the phase variation of the LOS and the natural history of infection.
Collapse
Affiliation(s)
- Constance M. John
- Veterans Affairs Medical Center, San Francisco, CA, United States
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Nancy J. Phillips
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, United States
| | - Amaris J. Cardenas
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, United States
| | - Alison K. Criss
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, United States
| | - Gary A. Jarvis
- Veterans Affairs Medical Center, San Francisco, CA, United States
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
10
|
Waltmann A, Balthazar JT, Begum AA, Hua N, Jerse AE, Shafer WM, Hobbs MM, Duncan JA. Neisseria gonorrhoeae MtrCDE Efflux Pump During In Vivo Experimental Genital Tract Infection in Men and Mice Reveals the Presence of Within-Host Colonization Bottleneck. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.06.23.23291824. [PMID: 37425726 PMCID: PMC10327229 DOI: 10.1101/2023.06.23.23291824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
The MtrCDE efflux pump of Neisseria gonorrhoeae exports a wide range of antimicrobial compounds that the gonococcus encounters at mucosal surfaces during colonization and infection. Here, we evaluate the role of this efflux pump system in strain FA1090 in human male urethral infection with a Controlled Human Infection Model. Using the strategy of competitive multi-strain infection with wild-type FA1090 and an isogenic mutant strain that does not contain a functional MtrCDE pump, we found that the presence of the efflux pump during human experimental infection did not confer a competitive advantage. This finding is in contrast to previous findings in female mice, which demonstrated that gonococci of strain FA19 lacking a functional MtrCDE pump had a significantly reduced fitness compared to the wild type strain in the lower genital tract of female mice. We conducted competitive infections in female mice with FA19 and FA1090 strains, including mutants that do not assemble a functional Mtr efflux pump, demonstrating the fitness advantage provided byt the MtrCDE efflux pump during infection of mice is strain dependent. Our data indicate that new gonorrhea treatment strategies targeting the MtrCDE efflux pump functions may not be universally efficacious in naturally occurring infections. Owing to the equal fitness of FA1090 strains in men, our experiments unexpectedly demonstrated the likely presence of an early colonization bottleneck of N. gonorrhoeae in the human male urethra. TRIAL REGISTRATION Clinicaltrials.gov NCT03840811 .
Collapse
|
11
|
López-Argüello S, Montaner M, Mármol-Salvador A, Velázquez-Escudero A, Docobo-Pérez F, Oliver A, Moya B. Penicillin-Binding Protein Occupancy Dataset for 18 β-Lactams and 4 β-Lactamase Inhibitors in Neisseria gonorrhoeae. Microbiol Spectr 2023; 11:e0069223. [PMID: 37093051 PMCID: PMC10269775 DOI: 10.1128/spectrum.00692-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/05/2023] [Indexed: 04/25/2023] Open
Abstract
The lack of effective first-line antibiotic treatments against Neisseria gonorrhoeae, and the worldwide dissemination of resistant strains, are the main drivers of a worsening global health crisis. β-lactam antibiotics have been the backbone of therapeutic armamentarium against gonococci. However, we are lacking critical insights to design rationally optimized therapies. In the present work, we generated the first PBP-binding data set on 18 currently available and clinically relevant β-lactams and 4 β-lactamase inhibitors in two N. gonorrhoeae ATCC type collection strains, 19424 and 49226 (PBP2 type XXII and A39T change in mtrR). PBP binding (IC50) was determined via the Bocillin FL binding assay in isolated membrane preparations. Three clusters of differential PBP IC50s were identified and were mostly consistent across both strains, but with quantitative differences. Carbapenems were coselective for PBP2 and PBP3 (0.01 to 0.03 mg/L). Third- and fourth-generation cephalosporins cefixime, cefotaxime, ceftazidime, cefepime, and ceftriaxone showed the lowest IC50 values for PBP2 (0.01 mg/L), whereas cefoxitin, ceftaroline, and ceftolozane required higher concentrations (0.04 to >2 mg/L). Aztreonam was selective for PBP2 in both strains (0.03 to 0.07 mg/L); amdinocillin bound this PBP at higher concentrations (1.33 to 2.94 mg/L). Penicillins specifically targeted PBP2 in strain ATCC 19424 (0.02 to 0.19 mg/L) and showed limited inhibition in strain ATCC 49226 (0.01 to >2 mg/L). Preferential PBP2 binding was observed by β-lactam-based β-lactamase inhibitors sulbactam and tazobactam (1.07 to 6.02 mg/L); meanwhile, diazabicyclooctane inhibitors relebactam and avibactam were selective for PBP3 (1.27 to 5.40 mg/L). This data set will set the bar for future studies that will help the rational use and translational development of antibiotics against multidrug-resistant (MDR) N. gonorrhoeae. IMPORTANCE The manuscript represents the first N. gonorrhoeae PBP-binding data set for 22 chemically different drugs in two type strains with different genetic background. We have identified three clusters of drugs according to their PBP binding IC50s and highlighted the binding differences across the two strains studied. With the currently available genomic information and the PBP-binding data, we have been able to correlate the target attainment differences and the mutations that affect the drug uptake with the MIC changes. The results of the current work will allow us to develop molecular tools of great practical use for the study and the design of new rationally designed therapies capable of combating the growing MDR gonococci threat.
Collapse
Affiliation(s)
- Silvia López-Argüello
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitario Son Espases, Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Maria Montaner
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitario Son Espases, Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Amanda Mármol-Salvador
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitario Son Espases, Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Ana Velázquez-Escudero
- Departamento de Microbiología, Facultad de Medicina, Universidad de Sevilla, Seville, Spain
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, Seville, Spain
| | - Fernando Docobo-Pérez
- Departamento de Microbiología, Facultad de Medicina, Universidad de Sevilla, Seville, Spain
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Antonio Oliver
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitario Son Espases, Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Bartolome Moya
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitario Son Espases, Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| |
Collapse
|
12
|
Ordine JVW, de Souza GM, Tamasco G, Virgilio S, Fernandes AFT, Silva-Rocha R, Guazzaroni ME. Metagenomic Insights for Antimicrobial Resistance Surveillance in Soils with Different Land Uses in Brazil. Antibiotics (Basel) 2023; 12:antibiotics12020334. [PMID: 36830245 PMCID: PMC9952835 DOI: 10.3390/antibiotics12020334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/30/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023] Open
Abstract
Land-use conversion changes soil properties and their microbial communities, which, combined with the overuse of antibiotics in human and animal health, promotes the expansion of the soil resistome. In this context, we aimed to profile the resistome and the microbiota of soils under different land practices. We collected eight soil samples from different locations in the countryside of São Paulo (Brazil), assessed the community profiles based on 16S rRNA sequencing, and analyzed the soil metagenomes based on shotgun sequencing. We found differences in the communities' structures and their dynamics that were correlated with land practices, such as the dominance of Staphylococcus and Bacillus genera in agriculture fields. Additionally, we surveyed the abundance and diversity of antibiotic resistance genes (ARGs) and virulence factors (VFs) across studied soils, observing a higher presence and homogeneity of the vanRO gene in livestock soils. Moreover, three β-lactamases were identified in orchard and urban square soils. Together, our findings reinforce the importance and urgency of AMR surveillance in the environment, especially in soils undergoing deep land-use transformations, providing an initial exploration under the One Health approach of environmental levels of resistance and profiling soil communities.
Collapse
Affiliation(s)
- João Vitor Wagner Ordine
- Department of Biology, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-900, SP, Brazil
| | - Gabrielle Messias de Souza
- Department of Biology, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-900, SP, Brazil
| | - Gustavo Tamasco
- ByMyCell Inova Simples. Avenue Dra. Nadir Águiar, 1805-Supera Parque, Ribeirão Preto 14056-680, SP, Brazil
| | - Stela Virgilio
- ByMyCell Inova Simples. Avenue Dra. Nadir Águiar, 1805-Supera Parque, Ribeirão Preto 14056-680, SP, Brazil
| | - Ana Flávia Tonelli Fernandes
- Department of Biology, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-900, SP, Brazil
| | - Rafael Silva-Rocha
- ByMyCell Inova Simples. Avenue Dra. Nadir Águiar, 1805-Supera Parque, Ribeirão Preto 14056-680, SP, Brazil
| | - María-Eugenia Guazzaroni
- Department of Biology, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-900, SP, Brazil
- Correspondence: ; Tel.: +55-(16)-33153680
| |
Collapse
|
13
|
Shami AY, Abulfaraj AA, Refai MY, Barqawi AA, Binothman N, Tashkandi MA, Baeissa HM, Baz L, Abuauf HW, Ashy RA, Jalal RS. Abundant antibiotic resistance genes in rhizobiome of the human edible Moringa oleifera medicinal plant. Front Microbiol 2022; 13:990169. [PMID: 36187977 PMCID: PMC9524394 DOI: 10.3389/fmicb.2022.990169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/17/2022] [Indexed: 11/30/2022] Open
Abstract
Moringa oleifera (or the miracle tree) is a wild plant species widely grown for its seed pods and leaves, and is used in traditional herbal medicine. The metagenomic whole genome shotgun sequencing (mWGS) approach was used to characterize antibiotic resistance genes (ARGs) of the rhizobiomes of this wild plant and surrounding bulk soil microbiomes and to figure out the chance and consequences for highly abundant ARGs, e.g., mtrA, golS, soxR, oleC, novA, kdpE, vanRO, parY, and rbpA, to horizontally transfer to human gut pathogens via mobile genetic elements (MGEs). The results indicated that abundance of these ARGs, except for golS, was higher in rhizosphere of M. oleifera than that in bulk soil microbiome with no signs of emerging new soil ARGs in either soil type. The most highly abundant metabolic processes of the most abundant ARGs were previously detected in members of phyla Actinobacteria, Proteobacteria, Acidobacteria, Chloroflexi, and Firmicutes. These processes refer to three resistance mechanisms namely antibiotic efflux pump, antibiotic target alteration and antibiotic target protection. Antibiotic efflux mechanism included resistance-nodulation-cell division (RND), ATP-binding cassette (ABC), and major facilitator superfamily (MFS) antibiotics pumps as well as the two-component regulatory kdpDE system. Antibiotic target alteration included glycopeptide resistance gene cluster (vanRO), aminocoumarin resistance parY, and aminocoumarin self-resistance parY. While, antibiotic target protection mechanism included RbpA bacterial RNA polymerase (rpoB)-binding protein. The study supports the claim of the possible horizontal transfer of these ARGs to human gut and emergence of new multidrug resistant clinical isolates. Thus, careful agricultural practices are required especially for plants used in circles of human nutrition industry or in traditional medicine.
Collapse
Affiliation(s)
- Ashwag Y. Shami
- Department of Biology, College of Sciences, Princess Nourah bint Abdulrahman University, Riyadh 11617, Saudi Arabia
| | - Aala A. Abulfaraj
- Biological Sciences Department, College of Science and Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia
| | - Mohammed Y. Refai
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Aminah A. Barqawi
- Department of Chemistry, Al-Leith University College, Umm Al Qura University, Makkah, Saudi Arabia
| | - Najat Binothman
- Department of Chemistry, College of Sciences and Arts, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Manal A. Tashkandi
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Hanadi M. Baeissa
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Lina Baz
- Department of Biochemistry, Faculty of Science—King Abdulaziz University, Jeddah, Saudi Arabia
| | - Haneen W. Abuauf
- Department of Biology, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ruba A. Ashy
- Department of Biology, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Rewaa S. Jalal
- Department of Biology, College of Science, University of Jeddah, Jeddah, Saudi Arabia
- *Correspondence: Rewaa S. Jalal,
| |
Collapse
|
14
|
Molecular Mechanisms of Drug Resistance and Epidemiology of Multidrug-Resistant Variants of Neisseria gonorrhoeae. Int J Mol Sci 2022; 23:ijms231810499. [PMID: 36142410 PMCID: PMC9505821 DOI: 10.3390/ijms231810499] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 01/16/2023] Open
Abstract
The paper presents various issues related to the increasing drug resistance of Neisseria gonorrhoeae and the occurrence and spread of multidrug-resistant clones. One of the most important is the incidence and evolution of resistance mechanisms of N. gonorrhoeae to beta-lactam antibiotics. Chromosomal resistance to penicillins and oxyimino-cephalosporins and plasmid resistance to penicillins are discussed. Chromosomal resistance is associated with the presence of mutations in the PBP2 protein, containing mosaic variants and nonmosaic amino acid substitutions in the transpeptidase domain, and their correlation with mutations in the mtrR gene and its promoter regions (the MtrCDE membrane pump repressor) and in several other genes, which together determine reduced sensitivity or resistance to ceftriaxone and cefixime. Plasmid resistance to penicillins results from the production of beta-lactamases. There are different types of beta-lactamases as well as penicillinase plasmids. In addition to resistance to beta-lactam antibiotics, the paper covers the mechanisms and occurrence of resistance to macrolides (azithromycin), fluoroquinolones and some other antibiotics. Moreover, the most important epidemiological types of multidrug-resistant N. gonorrhoeae, prevalent in specific years and regions, are discussed. Epidemiological types are defined as sequence types, clonal complexes and genogroups obtained by various typing systems such as NG-STAR, NG-MAST and MLST. New perspectives on the treatment of N. gonorrhoeae infections are also presented, including new drugs active against multidrug-resistant strains.
Collapse
|
15
|
Ayala JC, Balthazar JT, Shafer WM. Transcriptional regulation of the mtrCDE efflux pump operon: importance for Neisseria gonorrhoeae antimicrobial resistance. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35916832 DOI: 10.1099/mic.0.001231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This review focuses on the mechanisms of transcriptional control of an important multidrug efflux pump system (MtrCDE) possessed by Neisseria gonorrhoeae, the aetiological agent of the sexually transmitted infection termed gonorrhoea. The mtrCDE operon that encodes this tripartite protein efflux pump is subject to both cis- and trans-acting transcriptional factors that negatively or positively influence expression. Critically, levels of MtrCDE can influence levels of gonococcal susceptibility to classical antibiotics, host-derived antimicrobials and various biocides. The regulatory systems that control mtrCDE can have profound influences on the capacity of gonococci to resist current and past antibiotic therapy regimens as well as virulence. The emergence, mechanisms of action and clinical significance of the transcriptional regulatory systems that impact mtrCDE expression in gonococci are reviewed here with the aim of linking bacterial antimicrobial resistance with multidrug efflux capability.
Collapse
Affiliation(s)
- Julio C Ayala
- Department of Microbiology and Immunology Emory University School of Medicine, Atlanta, Georgia, 30322, USA
| | - Jacqueline T Balthazar
- Department of Microbiology and Immunology Emory University School of Medicine, Atlanta, Georgia, 30322, USA
| | - William M Shafer
- Department of Microbiology and Immunology Emory University School of Medicine, Atlanta, Georgia, 30322, USA.,Laboratories of Bacterial Pathogenesis, VA Medical Center (Atlanta), Decatur, Georgia, 30033, USA.,The Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
16
|
Schörner MA, Mesa D, Barazzetti FH, Martins JM, Machado HDM, Grisard HBDS, Wachter JK, Starick MR, Scheffer MC, Palmeiro JK, Bazzo ML. In vitro selection of Neisseria gonorrhoeae unveils novel mutations associated with extended-spectrum cephalosporin resistance. Front Cell Infect Microbiol 2022; 12:924764. [PMID: 35967879 PMCID: PMC9363574 DOI: 10.3389/fcimb.2022.924764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/30/2022] [Indexed: 11/24/2022] Open
Abstract
The emergence of Neisseria gonorrhoeae strains resistant to extended-spectrum cephalosporins (ESCs) is a worldwide concern because this class of antibiotics represents the last empirical treatment option for gonorrhea. The abusive use of antimicrobials may be an essential factor for the emergence of ESC resistance in N. gonorrhoeae. Cephalosporin resistance mechanisms have not been fully clarified. In this study, we mapped mutations in the genome of N. gonorrhoeae isolates after resistance induction with cefixime and explored related metabolic pathways. Six clinical isolates with different antimicrobial susceptibility profiles and genotypes and two gonococcal reference strains (WHO F and WHO Y) were induced with increasing concentrations of cefixime. Antimicrobial susceptibility testing was performed against six antimicrobial agents before and after induction. Clinical isolates were whole-genome sequenced before and after induction, whereas reference strains were sequenced after induction only. Cefixime resistance induction was completed after 138 subcultures. Several metabolic pathways were affected by resistance induction. Five isolates showed SNPs in PBP2. The isolates M111 and M128 (ST1407 with mosaic penA-34.001) acquired one and four novel missense mutations in PBP2, respectively. These isolates exhibited the highest minimum inhibitory concentration (MIC) for cefixime among all clinical isolates. Mutations in genes contributing to ESC resistance and in other genes were also observed. Interestingly, M107 and M110 (ST338) showed no mutations in key determinants of ESC resistance despite having a 127-fold increase in the MIC of cefixime. These findings point to the existence of different mechanisms of acquisition of ESC resistance induced by cefixime exposure. Furthermore, the results reinforce the importance of the gonococcal antimicrobial resistance surveillance program in Brazil, given the changes in treatment protocols made in 2017 and the nationwide prevalence of sequence types that can develop resistance to ESC.
Collapse
Affiliation(s)
- Marcos André Schörner
- Laboratório de Biologia Molecular, Microbiologia e Sorologia, Departamento de Análises Clínicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
- *Correspondence: Marcos André Schörner,
| | - Dany Mesa
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, PR, Brazil
| | - Fernando Hartmann Barazzetti
- Laboratório de Biologia Molecular, Microbiologia e Sorologia, Departamento de Análises Clínicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
- Laboratório de Bioinformática, Programa de Pós-Graduação em Biotecnologia e Biociências, Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Jéssica Motta Martins
- Laboratório de Biologia Molecular, Microbiologia e Sorologia, Departamento de Análises Clínicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
- Programa de Pós-Graduação em Farmácia, Departamento de Análises Clínicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Hanalydia de Melo Machado
- Laboratório de Biologia Molecular, Microbiologia e Sorologia, Departamento de Análises Clínicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Henrique Borges da Silva Grisard
- Laboratório de Biologia Molecular, Microbiologia e Sorologia, Departamento de Análises Clínicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Julia Kinetz Wachter
- Laboratório de Biologia Molecular, Microbiologia e Sorologia, Departamento de Análises Clínicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Márick Rodrigues Starick
- Programa de Pós-Graduação em Farmacologia, Departamento de Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
- Laboratório de Imunofarmacologia e Doenças Infecciosas, Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Mara Cristina Scheffer
- Laboratório de Microbiologia, Unidade do Laboratório de Análises Clínicas, Hospital Universitário Professor Polydoro Ernani de São Thiago, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Jussara Kasuko Palmeiro
- Centro de Ciências da Saúde, Departamento de Análises Clínicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Maria Luiza Bazzo
- Laboratório de Biologia Molecular, Microbiologia e Sorologia, Departamento de Análises Clínicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
- Programa de Pós-Graduação em Farmácia, Departamento de Análises Clínicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
- Centro de Ciências da Saúde, Departamento de Análises Clínicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| |
Collapse
|
17
|
Ayala JC, Schmerer MW, Kersh EN, Unemo M, Shafer WM. Gonococcal Clinical Strains Bearing a Common gdhR Single Nucleotide Polymorphism That Results in Enhanced Expression of the Virulence Gene lctP Frequently Possess a mtrR Promoter Mutation That Decreases Antibiotic Susceptibility. mBio 2022; 13:e0027622. [PMID: 35258329 PMCID: PMC9040798 DOI: 10.1128/mbio.00276-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 02/08/2022] [Indexed: 12/19/2022] Open
Abstract
GdhR is a transcriptional repressor of the virulence factor gene lctP, which encodes a unique l-lactate permease that has been linked to pathogenesis of Neisseria gonorrhoeae, and loss of gdhR can confer increased fitness of gonococci in a female mouse model of lower genital tract infection. In this work, we identified a single nucleotide polymorphism (SNP) in gdhR, which is often present in both recent and historical gonococcal clinical strains and results in a proline (P)-to-serine (S) change at amino acid position 6 (P6S) of GdhR. This mutation (gdhR6) was found to reduce GdhR transcriptional repression at lctP in gonococcal strains containing the mutant protein compared to wild-type GdhR. By using purified recombinant proteins and in vitro DNA-binding and cross-linking experiments, we found that gdhR6 impairs the DNA-binding activity of GdhR at lctP without an apparent effect on protein oligomerization. By analyzing a panel of U.S. (from 2017 to 2018) and Danish (1928 to 2013) clinical isolates, we observed a statistical association between gdhR6 and the previously described adenine deletion in the promoter of mtrR (mtrR-P A-del), encoding the repressor (MtrR) of the mtrCDE operon that encodes the MtrCDE multidrug efflux pump that can export antibiotics, host antimicrobials, and biocides. The frequent association of gdhR6 with the mtrR promoter mutation in these clinical isolates suggests that it has persisted in this genetic background to enhance lctP expression, thereby promoting virulence. IMPORTANCE We report the frequent appearance of a novel SNP in the gdhR gene (gdhR6) possessed by Neisseria gonorrhoeae. The resulting amino acid change in the GdhR protein resulted in enhanced expression of a virulence gene (lctP) that has been suggested to promote gonococcal survival during infection. The mutant GdhR protein expressed by gdhR6 had a reduced ability to bind to its target DNA sequence upstream of lctP. Interestingly, gdhR6 was found in clinical gonococcal strains isolated in the United States and Denmark at a high frequency and was frequently associated with a mutation in the promoter of the gene encoding a repressor (MtrR) of both the mtrCDE antimicrobial efflux pump operon and gdhR. Given this frequent association and the known impact of these regulatory mutations, we propose that virulence and antibiotic resistance properties are often phenotypically linked in contemporary gonococcal strains.
Collapse
Affiliation(s)
- Julio C. Ayala
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Matthew W. Schmerer
- STD Laboratory Reference and Research Branch, Division of STD Prevention, NCHHSTP, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Ellen N. Kersh
- STD Laboratory Reference and Research Branch, Division of STD Prevention, NCHHSTP, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Magnus Unemo
- WHO Collaborating Centre for Gonorrhoea and Other Sexually Transmitted Infections, Department of Laboratory Medicine, Microbiology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - William M. Shafer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, Georgia, USA
- Laboratories of Bacterial Pathogenesis, Veterans Affairs Medical Center, Decatur, Georgia, USA
| |
Collapse
|
18
|
Raisman JC, Fiore MA, Tomin L, Adjei JKO, Aswad VX, Chu J, Domondon CJ, Donahue BA, Masciotti CA, McGrath CG, Melita J, Podbielski PA, Schreiner MR, Trumpore LJ, Wengert PC, Wrightstone EA, Hudson AO, Wadsworth CB. Evolutionary paths to macrolide resistance in a Neisseria commensal converge on ribosomal genes through short sequence duplications. PLoS One 2022; 17:e0262370. [PMID: 35025928 PMCID: PMC8758062 DOI: 10.1371/journal.pone.0262370] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/22/2021] [Indexed: 11/19/2022] Open
Abstract
Neisseria commensals are an indisputable source of resistance for their pathogenic relatives. However, the evolutionary paths commensal species take to reduced susceptibility in this genus have been relatively underexplored. Here, we leverage in vitro selection as a powerful screen to identify the genetic adaptations that produce azithromycin resistance (≥ 2 μg/mL) in the Neisseria commensal, N. elongata. Across multiple lineages (n = 7/16), we find mutations that reduce susceptibility to azithromycin converge on the locus encoding the 50S ribosomal L34 protein (rpmH) and the intergenic region proximal to the 30S ribosomal S3 protein (rpsC) through short tandem duplication events. Interestingly, one of the laboratory evolved mutations in rpmH is identical (7LKRTYQ12), and two nearly identical, to those recently reported to contribute to high-level azithromycin resistance in N. gonorrhoeae. Transformations into the ancestral N. elongata lineage confirmed the causality of both rpmH and rpsC mutations. Though most lineages inheriting duplications suffered in vitro fitness costs, one variant showed no growth defect, suggesting the possibility that it may be sustained in natural populations. Ultimately, studies like this will be critical for predicting commensal alleles that could rapidly disseminate into pathogen populations via allelic exchange across recombinogenic microbial genera.
Collapse
Affiliation(s)
- Jordan C. Raisman
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, NY, United States of America
| | - Michael A. Fiore
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, NY, United States of America
| | - Lucille Tomin
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, NY, United States of America
| | - Joseph K. O. Adjei
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, NY, United States of America
| | - Virginia X. Aswad
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, NY, United States of America
| | - Jonathan Chu
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, NY, United States of America
| | - Christina J. Domondon
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, NY, United States of America
| | - Ben A. Donahue
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, NY, United States of America
| | - Claudia A. Masciotti
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, NY, United States of America
| | - Connor G. McGrath
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, NY, United States of America
| | - Jo Melita
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, NY, United States of America
| | - Paul A. Podbielski
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, NY, United States of America
| | - Madelyn R. Schreiner
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, NY, United States of America
| | - Lauren J. Trumpore
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, NY, United States of America
| | - Peter C. Wengert
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, NY, United States of America
| | - Emalee A. Wrightstone
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, NY, United States of America
| | - André O. Hudson
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, NY, United States of America
| | - Crista B. Wadsworth
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, NY, United States of America
- * E-mail:
| |
Collapse
|
19
|
Lin X, Chen W, Xie Q, Yu Y, Liao Y, Feng Z, Qin X, Wu X, Tang S, Zheng H. Dissemination and genome analysis of high-level ceftriaxone-resistant penA 60.001 Neisseria gonorrhoeae strains from the Guangdong Gonococcal Antibiotics Susceptibility Programme (GD-GASP), 2016-2019. Emerg Microbes Infect 2022; 11:344-350. [PMID: 34994305 PMCID: PMC8794061 DOI: 10.1080/22221751.2021.2011618] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Background: After Neisseria gonorrhoeae FC428 was first found in Japan, ceftriaxone-resistant strains disseminated globally, and the gonococcal resistance rate increased remarkably. Epidemiological investigations are greatly significant for the analysis of antimicrobial resistance (AMR) trends, molecular features and evolution. Objectives: To clarify the AMR trend from 2016–2019 and reveal the molecular characteristics and evolution of ceftriaxone-resistant penA 60.001 isolates. Methods: The minimum inhibitory concentrations (MICs) of antibiotics against 4113 isolates were detected by the agar dilution method. N. gonorrhoeae multiantigen sequence typing (NG-MAST), multilocus sequence typing (MLST) and N.gonorrhoeae sequence typing for antimicrobial resistance (NG-STAR) were used to identify the sequence types. Genome analysis was conducted to analyze resistance genes, virulence factors, and evolutionary sources. Results: Isolates with decreased ceftriaxone susceptibility have increased from 2.05% (2016) to 16.18% (2019). Six ceftriaxone-resistant isolates possessing penA 60.001 appeared in Guangdong Province, and were resistant to ceftriaxone, penicillin, tetracycline, ciprofloxacin and cefixime, but susceptible to azithromycin and spectinomycin. Single-nucleotide polymorphisms (SNPs) in the porB gene were the major cause of different NG-MAST types. ST1903 was the main NG-STAR genotype and only strain-ZH545 was ST7365, with molecular features consistent with the MICs. Furthermore, different MLSTs suggested diverse evolutionary sources. Genome analysis revealed a set of virulence factors along with the resistance genes “penA” and “blaTEM-1B”. Half of penA 60.001 strains were fully mixed with global FC428-related strains. Conclusions: Global FC428-related clones have disseminated across Guangdong, possibly causing decreased ceftriaxone susceptibility. Enhanced gonococcal surveillance will help elucidate the trajectory of transmission and curb further dissemination.
Collapse
Affiliation(s)
- Xiaomian Lin
- Dermatology Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Wentao Chen
- Dermatology Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Qinghui Xie
- Dermatology Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yuqi Yu
- Dermatology Hospital, Southern Medical University, Guangzhou, Guangdong, China.,School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Yiwen Liao
- Dermatology Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhanjin Feng
- Dermatology Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaolin Qin
- Dermatology Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xingzhong Wu
- Dermatology Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Sanmei Tang
- Dermatology Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Heping Zheng
- Dermatology Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
20
|
Laumen JGE, Van Dijck C, Manoharan-Basil SS, Abdellati S, De Baetselier I, Cuylaerts V, De Block T, Van den Bossche D, Xavier BB, Malhotra-Kumar S, Kenyon C. Sub-Inhibitory Concentrations of Chlorhexidine Induce Resistance to Chlorhexidine and Decrease Antibiotic Susceptibility in Neisseria gonorrhoeae. Front Microbiol 2021; 12:776909. [PMID: 34899659 PMCID: PMC8660576 DOI: 10.3389/fmicb.2021.776909] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/25/2021] [Indexed: 11/21/2022] Open
Abstract
Objectives: Chlorhexidine digluconate (chlorhexidine) and Listerine® mouthwashes are being promoted as alternative treatment options to prevent the emergence of antimicrobial resistance in Neisseria gonorrhoeae. We performed in vitro challenge experiments to assess induction and evolution of resistance to these two mouthwashes and potential cross-resistance to other antimicrobials. Methods: A customized morbidostat was used to subject N. gonorrhoeae reference strain WHO-F to dynamically sustained Listerine® or chlorhexidine pressure for 18 days and 40 days, respectively. Cultures were sampled twice a week and minimal inhibitory concentrations (MICs) of Listerine®, chlorhexidine, ceftriaxone, ciprofloxacin, cefixime and azithromycin were determined using the agar dilution method. Isolates with an increased MIC for Listerine® or chlorhexidine were subjected to whole genome sequencing to track the evolution of resistance. Results: We were unable to increase MICs for Listerine®. Three out of five cultures developed a 10-fold increase in chlorhexidine MIC within 40 days compared to baseline (from 2 to 20 mg/L). Increases in chlorhexidine MIC were positively associated with increases in the MICs of azithromycin and ciprofloxacin. Low-to-higher-level chlorhexidine resistance (2–20 mg/L) was associated with mutations in NorM. Higher-level resistance (20 mg/L) was temporally associated with mutations upstream of the MtrCDE efflux pump repressor (mtrR) and the mlaA gene, part of the maintenance of lipid asymmetry (Mla) system. Conclusion: Exposure to sub-lethal chlorhexidine concentrations may not only enhance resistance to chlorhexidine itself but also cross-resistance to other antibiotics in N. gonorrhoeae. This raises concern regarding the widespread use of chlorhexidine as an oral antiseptic, for example in the field of dentistry.
Collapse
Affiliation(s)
- Jolein G E Laumen
- STI Unit, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium.,Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Christophe Van Dijck
- STI Unit, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium.,Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | | | - Saïd Abdellati
- Clinical Reference Laboratory, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Irith De Baetselier
- Clinical Reference Laboratory, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Vicky Cuylaerts
- Clinical Reference Laboratory, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Tessa De Block
- Clinical Reference Laboratory, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Dorien Van den Bossche
- Clinical Reference Laboratory, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Basil B Xavier
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Surbhi Malhotra-Kumar
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Chris Kenyon
- STI Unit, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium.,Department of Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
21
|
Golparian D, Unemo M. Antimicrobial resistance prediction in Neisseria gonorrhoeae: Current status and future prospects. Expert Rev Mol Diagn 2021; 22:29-48. [PMID: 34872437 DOI: 10.1080/14737159.2022.2015329] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Several nucleic acid amplification tests (NAATs), mostly real-time PCRs, to detect antimicrobial resistance (AMR) determinants and predict AMR in Neisseria gonorrhoeae are promising, and some may be ready to apply at the point-of-care (POC), but important limitations remain with most NAATs. Next-generation sequencing (NGS) can overcome many of these limitations.Areas covered: Recent advances, with main focus on publications since 2017, in the development and use of NAATs and NGS to predict gonococcal AMR for surveillance and clinical use, and pros and cons of these tests as well as future perspectives for appropriate use of molecular AMR prediction for N. gonorrhoeae.Expert Commentary: NAATs and/or NGS for AMR prediction should supplement culture-based AMR surveillance, which will remain because it detects also AMR due to unknown AMR determinants, and translation into POC tests is imperative for the end-goal of individualized treatment, sparing ceftriaxone±azithromycin. Several challenges for direct testing of clinical, especially pharyngeal, specimens and for accurate prediction of cephalosporins and azithromycin resistance, especially using NAATs, remain. The choice of AMR prediction assay needs to carefully consider the intended use of the assay; limitations intrinsic to the AMR prediction technology, algorithms and specific to chosen methodology; specimen types analyzed; and cost-effectiveness.
Collapse
Affiliation(s)
- Daniel Golparian
- WHO Collaborating Centre for Gonorrhoea and other STIs, National Reference Laboratory for STIs, Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Magnus Unemo
- WHO Collaborating Centre for Gonorrhoea and other STIs, National Reference Laboratory for STIs, Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| |
Collapse
|
22
|
Molecular Epidemiology, Antimicrobial Surveillance, and PK/PD Analysis to Guide the Treatment of Neisseria gonorrhoeae Infections. Pharmaceutics 2021; 13:pharmaceutics13101699. [PMID: 34683991 PMCID: PMC8541456 DOI: 10.3390/pharmaceutics13101699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 11/17/2022] Open
Abstract
The aim of this study was to apply molecular epidemiology, antimicrobial surveillance, and PK/PD analysis to guide the antimicrobial treatment of gonococci infections in a region of the north of Spain. Antibiotic susceptibility testing was performed on all isolates (2017 to 2019, n = 202). A subset of 35 isolates intermediate or resistant to at least two antimicrobials were selected to search for resistance genes and genotyping through WGS. By Monte Carlo simulation, we estimated the probability of target attainment (PTA) and the cumulative fraction of response (CFR) of the antimicrobials used to treat gonorrhea, both indicative of the probability of treatment success. In total, 2.0%, 6.4%, 5.4%, and 48.2% of the isolates were resistant to ceftriaxone, cefixime, azithromycin, and ciprofloxacin, respectively. Twenty sequence types were identified. Detected mutations were related to antibiotic resistance. PK/PD analysis showed high probability of treatment success of the cephalosporins. In conclusion, multiple populations of N. gonorrhoeae were identified. We can confirm that ceftriaxone (even at the lowest dose: 250 mg) and oral cefixime are good candidates to treat gonorrhea. For patients allergic to cephalosporins, ciprofloxacin should be only used if the MIC is known and ≤0.125 mg/L; this antimicrobial is not recommended for empirical treatment.
Collapse
|
23
|
Harrison OB, Maiden MCJ. Recent advances in understanding and combatting Neisseria gonorrhoeae: a genomic perspective. Fac Rev 2021; 10:65. [PMID: 34557869 PMCID: PMC8442004 DOI: 10.12703/r/10-65] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The sexually transmitted infection (STI) gonorrhoea remains a major global public health concern. The World Health Organization (WHO) estimates that 87 million new cases in individuals who were 15 to 49 years of age occurred in 2016. The growing number of gonorrhoea cases is concerning given the rise in gonococci developing antimicrobial resistance (AMR). Therefore, a global action plan is needed to facilitate surveillance. Indeed, the WHO has made surveillance leading to the elimination of STIs (including gonorrhoea) a global health priority. The availability of whole genome sequence data offers new opportunities to combat gonorrhoea. This can be through (i) enhanced surveillance of the global prevalence of AMR, (ii) improved understanding of the population biology of the gonococcus, and (iii) opportunities to mine sequence data in the search for vaccine candidates. Here, we review the current status in Neisseria gonorrhoeae genomics. In particular, we explore how genomics continues to advance our understanding of this complex pathogen.
Collapse
Affiliation(s)
- Odile B Harrison
- Department of Zoology, University of Oxford, The Peter Medawar Building, Oxford, UK
| | - Martin CJ Maiden
- Department of Zoology, University of Oxford, The Peter Medawar Building, Oxford, UK
| |
Collapse
|
24
|
Zwama M, Nishino K. Ever-Adapting RND Efflux Pumps in Gram-Negative Multidrug-Resistant Pathogens: A Race against Time. Antibiotics (Basel) 2021; 10:774. [PMID: 34201908 PMCID: PMC8300642 DOI: 10.3390/antibiotics10070774] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 01/13/2023] Open
Abstract
The rise in multidrug resistance (MDR) is one of the greatest threats to human health worldwide. MDR in bacterial pathogens is a major challenge in healthcare, as bacterial infections are becoming untreatable by commercially available antibiotics. One of the main causes of MDR is the over-expression of intrinsic and acquired multidrug efflux pumps, belonging to the resistance-nodulation-division (RND) superfamily, which can efflux a wide range of structurally different antibiotics. Besides over-expression, however, recent amino acid substitutions within the pumps themselves-causing an increased drug efflux efficiency-are causing additional worry. In this review, we take a closer look at clinically, environmentally and laboratory-evolved Gram-negative bacterial strains and their decreased drug sensitivity as a result of mutations directly in the RND-type pumps themselves (from Escherichia coli, Salmonella enterica, Neisseria gonorrhoeae, Pseudomonas aeruginosa, Acinetobacter baumannii and Legionella pneumophila). We also focus on the evolution of the efflux pumps by comparing hundreds of efflux pumps to determine where conservation is concentrated and where differences in amino acids can shed light on the broad and even broadening drug recognition. Knowledge of conservation, as well as of novel gain-of-function efflux pump mutations, is essential for the development of novel antibiotics and efflux pump inhibitors.
Collapse
Affiliation(s)
- Martijn Zwama
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Ibaraki, Osaka 567-0047, Japan
| | - Kunihiko Nishino
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Ibaraki, Osaka 567-0047, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
25
|
Holderman JL, Thomas JC, Schlanger K, Black JM, Town K, St. Cyr SB, Pham CD, Kirkcaldy RD. Sustained Transmission of Neisseria gonorrhoeae with High-Level Resistance to Azithromycin, in Indianapolis, Indiana, 2017–2018. Clin Infect Dis 2021; 73:808-815. [PMID: 34492693 PMCID: PMC10183473 DOI: 10.1093/cid/ciab132] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 02/11/2021] [Indexed: 11/12/2022] Open
Abstract
Abstract
Background
Since 2014, Neisseria gonorrhoeae azithromycin (AZM) susceptibility has declined in the United States, but high-level AZM resistance (HL-AZMR) has been infrequent and sporadic. We describe a cluster of 14 N. gonorrhoeae isolates with HL-AZMR identified in Indianapolis over 13 months.
Methods
N. gonorrhoeae culture specimens (genital and extragenital) were collected from attendees of the Bell Flower Clinic. Isolates underwent antimicrobial susceptibility testing (AST) using Etest. AZM minimum inhibitory concentrations ≥256 µg/mL were classified as HL-AZMR. Local disease intervention specialists interviewed patients whose isolates demonstrated HL-AZMR and conducted partner services. Relatedness of isolates was investigated by genomic analyses.
Results
During 2017–2018, AST was performed in 1016 N. gonorrhoeae isolates collected at the Bell Flower Clinic. Fourteen isolates (1.4%) from 12 men collected over 13 months demonstrated HL-AZMR; all were cephalosporin susceptible. Of the 12 men, 9 were white and reported male sex partners. Nine of the men were able to be retested; all were cured with 250-mg ceftriaxone plus 1-g AZM. Two men named each other as partners; no other partners in common were reported. Genomic analysis demonstrated close relatedness of the HL-AZMR isolates and a novel combination of a mosaic-mtrR promoter along with 23S ribosomal RNA mutations that appear to have emerged from circulating strains.
Conclusions
The close genetic relatedness with limited epidemiologic linkages between patients highlights the challenges of gonorrhea partner investigations and suggests undetected local transmission. Local AST, rapid public health action, and epidemiologic investigations combined with genomic analysis provides a multipronged approach to understanding an outbreak of sexually transmitted disease.
Collapse
Affiliation(s)
- Justin L Holderman
- Division of STD Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- Division of HIV, STD, and Viral Hepatitis Prevention, Indiana Department of Health, Indianapolis, Indiana, USA
| | - Jesse C Thomas
- Division of STD Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Karen Schlanger
- Division of STD Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Jamie M Black
- Division of HIV, STD, and Viral Hepatitis Prevention, Indiana Department of Health, Indianapolis, Indiana, USA
| | - Katy Town
- Division of STD Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Sancta B St. Cyr
- Division of STD Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Cau D Pham
- Division of STD Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Robert D Kirkcaldy
- Division of STD Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
26
|
Atypical Mutation in Neisseria gonorrhoeae 23S rRNA Associated with High-Level Azithromycin Resistance. Antimicrob Agents Chemother 2021; 65:AAC.00885-20. [PMID: 33139288 DOI: 10.1128/aac.00885-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 10/20/2020] [Indexed: 01/23/2023] Open
Abstract
A2059G mutation in the 23S rRNA gene is the only reported mechanism conferring high-level azithromycin resistance (HL-AZMR) in Neisseria gonorrhoeae Through U.S. gonococcal antimicrobial resistance surveillance projects, we identified four HL-AZMR gonococcal isolates lacking this mutational genotype. Genetic analysis revealed an A2058G mutation of 23S rRNA alleles in all four isolates. In vitro selected gonococcal strains with homozygous A2058G recapitulated the HL-AZMR phenotype. Taken together, we postulate that the A2058G mutation confers HL-AZMR in N. gonorrhoeae.
Collapse
|
27
|
Exploration of the Neisseria Resistome Reveals Resistance Mechanisms in Commensals That May Be Acquired by N. gonorrhoeae through Horizontal Gene Transfer. Antibiotics (Basel) 2020; 9:antibiotics9100656. [PMID: 33007823 PMCID: PMC7650674 DOI: 10.3390/antibiotics9100656] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 11/20/2022] Open
Abstract
Nonpathogenic Neisseria transfer mutations encoding antibiotic resistance to their pathogenic relative Neisseria gonorrhoeae. However, the resistance genotypes and subsequent phenotypes of nonpathogens within the genus have been described infrequently. Here, we characterize the minimum inhibitory concentrations (MICs) of a panel of Neisseria (n = 26)—including several commensal species—to a suite of diverse antibiotics. We furthermore use whole genome sequencing and the Comprehensive Antibiotic Resistance Database Resistance Gene Identifier (RGI) platform to predict putative resistance-encoding mutations. Resistant isolates to all tested antimicrobials including penicillin (n = 5/26), ceftriaxone (n = 2/26), cefixime (n = 3/26), tetracycline (n = 10/26), azithromycin (n = 11/26), and ciprofloxacin (n = 4/26) were found. In total, 63 distinct mutations were predicted by RGI to be involved in resistance. The presence of several mutations had clear associations with increased MIC such as DNA gyrase subunit A (gyrA) (S91F) and ciprofloxacin, tetracycline resistance protein (tetM) and 30S ribosomal protein S10 (rpsJ) (V57M) and tetracycline, and TEM-type β-lactamases and penicillin. However, mutations with strong associations to macrolide and cephalosporin resistance were not conclusive. This work serves as an initial exploration into the resistance-encoding mutations harbored by nonpathogenic Neisseria, which will ultimately aid in prospective surveillance for novel resistance mechanisms that may be rapidly acquired by N. gonorrhoeae.
Collapse
|
28
|
Gianecini RA, Golparian D, Zittermann S, Litvik A, Gonzalez S, Oviedo C, Melano RG, Unemo M, Galarza P. Genome-based epidemiology and antimicrobial resistance determinants of Neisseria gonorrhoeae isolates with decreased susceptibility and resistance to extended-spectrum cephalosporins in Argentina in 2011-16. J Antimicrob Chemother 2020; 74:1551-1559. [PMID: 30820563 DOI: 10.1093/jac/dkz054] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/20/2018] [Accepted: 01/16/2019] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES Our aim was to describe the molecular epidemiology and antimicrobial resistance determinants of isolates of Neisseria gonorrhoeae with decreased susceptibility and resistance to extended-spectrum cephalosporins (ESCs) in Argentina in 2011-16. METHODS Gonococcal isolates (n=158) with decreased susceptibility and resistance to ESCs collected in 2011-16 across Argentina were subjected to WGS and antimicrobial susceptibility testing for six antimicrobials. RESULTS In total, 50% of the isolates were resistant to cefixime, 1.9% were resistant to ceftriaxone, 37.3% were resistant to azithromycin and 63.9% of the isolates showed an MDR phenotype. Resistance and decreased susceptibility to ESCs was mainly associated with isolates possessing the mosaic penA-34.001, in combination with an mtrR promoter A deletion, and PorB1b amino acid substitutions G120K/A121N. Phylogenetic analysis revealed two main clades of circulating strains, which were associated with the N. gonorrhoeae multiantigen sequence typing (NG-MAST) ST1407 and closely related STs, and characterized by a high prevalence rate, wide geographical distribution and temporal persistence. CONCLUSIONS N. gonorrhoeae isolates with decreased susceptibility and resistance to ESCs in Argentina have emerged and rapidly spread mainly due to two clonal expansions after importation of one or two strains, which are associated with the international MDR NG-MAST ST1407 clone. The identification of the geographical dissemination and characteristics of these predominant clones may help to focus action plans and public health policies to control the spread of ESC resistance in Argentina. Dual antimicrobial therapy (ceftriaxone plus azithromycin) for gonorrhoea needs to be considered in Argentina.
Collapse
Affiliation(s)
- Ricardo A Gianecini
- National Reference Laboratory of Sexually Transmitted Diseases, National Institute of Infectious Diseases - ANLIS 'Dr Carlos G. Malbrán', Ciudad Autónoma de Buenos Aires, Argentina
| | - Daniel Golparian
- WHO Collaborating Centre for Gonorrhoea and Other STIs, Department of Laboratory Medicine, Microbiology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | | | - Ana Litvik
- Rawson Infectious Diseases Hospital, Córdoba, Argentina
| | | | - Claudia Oviedo
- National Reference Laboratory of Sexually Transmitted Diseases, National Institute of Infectious Diseases - ANLIS 'Dr Carlos G. Malbrán', Ciudad Autónoma de Buenos Aires, Argentina
| | | | - Magnus Unemo
- WHO Collaborating Centre for Gonorrhoea and Other STIs, Department of Laboratory Medicine, Microbiology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Patricia Galarza
- National Reference Laboratory of Sexually Transmitted Diseases, National Institute of Infectious Diseases - ANLIS 'Dr Carlos G. Malbrán', Ciudad Autónoma de Buenos Aires, Argentina
| | | |
Collapse
|
29
|
Determining antimicrobial resistance profiles and identifying novel mutations of Neisseria gonorrhoeae genomes obtained by multiplexed MinION sequencing. SCIENCE CHINA. LIFE SCIENCES 2020; 63:1063-1070. [PMID: 31784935 DOI: 10.1007/s11427-019-1558-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 09/25/2019] [Indexed: 01/19/2023]
Abstract
Gonorrhea is one of the most common sexually transmitted diseases worldwide. To cure infection and prevent transmission, timely and appropriate antimicrobial therapy is necessary. Unfortunately, Neisseria gonorrhoeae, the etiological agent of gonorrhea, has acquired nearly all known mechanisms of antimicrobial resistance (AMR), thereby compromising the efficacy of antimicrobial therapy. Treatment failure resulting from AMR has become a global public health concern. Whole-genome sequencing is an effective method to determine the AMR characteristics of N. gonorrhoeae. Compared with next-generation sequencing, the MinION sequencer (Oxford Nanopore Technologies (ONT)) has the advantages of long read length and portability. Based on a pilot study using MinION to sequence the genome of N. gonorrhoeae, we optimized the workflow of sequencing and data analysis in the current study. Here we sequenced nine isolates within one flow cell using a multiplexed sequencing strategy. After hybrid assembly with Illumina reads, nine integral circular chromosomes were obtained. By using the online tool Pathogenwatch and a BLAST-based workflow, we acquired complete AMR profiles related to seven classes of antibiotics. We also evaluated the performance of ONT-only assemblies. Most AMR determinants identified by ONT-only assemblies were the same as those identified by hybrid assemblies. Moreover, one of the nine assemblies indicated a potentially novel antimicrobial-related mutation located in mtrR which results in a frame-shift, premature stop codon, and truncated peptide. In addition, this is the first study using the MinION sequencer to obtain complete genome sequences of N. gonorrhoeae strains which are epidemic in China. This study shows that complete genome sequences and antimicrobial characteristics of N. gonorrhoeae can be obtained using the MinION sequencer in a simple and cost-effective manner, with hardly any knowledge of bioinformatics required. More importantly, this strategy provides us with a potential approach to discover new AMR determinants.
Collapse
|
30
|
Rosini R, Nicchi S, Pizza M, Rappuoli R. Vaccines Against Antimicrobial Resistance. Front Immunol 2020; 11:1048. [PMID: 32582169 PMCID: PMC7283535 DOI: 10.3389/fimmu.2020.01048] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/30/2020] [Indexed: 12/29/2022] Open
Abstract
In the last century, life expectancy has increased considerably, thanks to the introduction of antibiotics, hygiene and vaccines that have contributed to the cure and prevention of many infectious diseases. The era of antimicrobial therapy started in the nineteenth century with the identification of chemical compounds with antimicrobial properties. However, immediately after the introduction of these novel drugs, microorganisms started to become resistant through different strategies. Although resistance mechanisms were already present before antibiotic introduction, their large-scale use and mis-use have increased the number of resistant microorganisms. Rapid spreading of mobile elements by horizontal gene transfer such as plasmids and integrative conjugative elements (ICE) carrying multiple resistance genes has dramatically increased the worldwide prevalence of relevant multi drug-resistant human pathogens such as Staphylococcus aureus, Neisseria gonorrhoeae, and Enterobacteriaceae. Today, antimicrobial resistance (AMR) remains one of the major global concerns to be addressed and only global efforts could help in finding a solution. In terms of magnitude the economic impact of AMR is estimated to be comparable to that of climate global change in 2030. Although antibiotics continue to be essential to treat such infections, non-antibiotic therapies will play an important role in limiting the increase of antibiotic resistant microorganisms. Among non-antibiotic strategies, vaccines and therapeutic monoclonal antibodies (mAbs) play a strategic role. In this review, we will summarize the evolution and the mechanisms of antibiotic resistance, and the impact of AMR on life expectancy and economics.
Collapse
Affiliation(s)
| | - Sonia Nicchi
- GSK, Siena, Italy
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Bologna, Italy
| | | | - Rino Rappuoli
- GSK, Siena, Italy
- vAMRes Lab, Toscana Life Sciences, Siena, Italy
- Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
31
|
Zhang J, van der Veen S. Neisseria gonorrhoeae 23S rRNA A2059G mutation is the only determinant necessary for high-level azithromycin resistance and improves in vivo biological fitness. J Antimicrob Chemother 2020; 74:407-415. [PMID: 30376120 DOI: 10.1093/jac/dky438] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 09/28/2018] [Indexed: 12/13/2022] Open
Abstract
Objectives The global emergence of Neisseria gonorrhoeae isolates displaying high-level azithromycin resistance is a major concern for the currently recommended azithromycin/ceftriaxone dual therapy. N. gonorrhoeae high-level azithromycin resistance has been associated with an A2059G mutation in 23S rRNA. Here we investigated the specific contribution of this 23S rRNA A2059G mutation to high-level azithromycin resistance and its impact on biological fitness. Methods A2059G/G2059A alleles were specifically cloned into all four genomic copies of 23S rDNA of an azithromycin-susceptible isolate and a high-level azithromycin-resistant isolate. WT and mutant strains were subsequently investigated for azithromycin susceptibility using the agar dilution method. In addition, their biological fitness was studied by comparative liquid growth in the presence of hydrophobic and amphipathic compounds, by competition assays in a mouse vaginal tract infection model and by competition assays for invasion and intracellular survival. Results Azithromycin susceptibility analyses showed that the 23S rRNA A2059G mutation is the only genetic determinant required for N. gonorrhoeae to display the high-level azithromycin resistance phenotype. Further analysis of biological fitness showed that strains containing 2059G outcompeted isogenic strains containing 2059A for colonization in the mouse vaginal tract infection model and for invasion of HeLa cervical epithelial cells. Furthermore, the A2059G mutation enhanced growth in the presence of lithocholic acid or Triton X-100. Conclusions Our findings that the 23S rRNA A2059G mutation is sufficient for high-level azithromycin resistance and that this mutation generally enhanced the biological fitness of N. gonorrhoeae have important implications for the currently recommended treatment policies and antimicrobial stewardship programmes.
Collapse
Affiliation(s)
- Jianglin Zhang
- Department of Microbiology and Parasitology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Stijn van der Veen
- Department of Microbiology and Parasitology, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Dermatology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
32
|
Thomas JC, Seby S, Abrams AJ, Cartee J, Lucking S, Vidyaprakash E, Schmerer M, Pham CD, Hong J, Torrone E, Cyr SS, Shafer WM, Bernstein K, Kersh EN, Gernert KM. Evidence of Recent Genomic Evolution in Gonococcal Strains With Decreased Susceptibility to Cephalosporins or Azithromycin in the United States, 2014-2016. J Infect Dis 2020; 220:294-305. [PMID: 30788502 DOI: 10.1093/infdis/jiz079] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 02/14/2019] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Given the lack of new antimicrobials or a vaccine, understanding the evolutionary dynamics of Neisseria gonorrhoeae is a significant public and global health priority. We investigated the emergence and spread of gonococcal strains with decreased susceptibility to cephalosporins and azithromycin using detailed genomic analyses of gonococcal isolates collected in the United States, 2014-2016. METHODS We sequenced genomes of 649 isolates collected through the Gonococcal Isolate Surveillance Project. We examined the genetic relatedness of isolates and assessed associations between clades and various genotypic and phenotypic combinations. RESULTS We identified a large and clonal lineage of strains (MLST ST9363) associated with elevated azithromycin minimum inhibitory concentration (AZIem), characterized by a mosaic mtr locus (C substitution in the mtrR promoter, mosaic mtrR and mtrD). Mutations in 23S rRNA were sporadically distributed among AZIem strains. Another clonal group (MLST ST1901) possessed 7 unique PBP2 patterns, and it shared common mutations in other genes associated with cephalosporin resistance. CONCLUSIONS Whole-genome sequencing methods can enhance monitoring of antimicrobial resistant gonococcal strains by identifying gonococcal populations containing mutations of concern. These methods could inform the development of point-of-care diagnostic tests designed to determine the specific antibiotic susceptibility profile of a gonococcal infection in a patient.
Collapse
Affiliation(s)
- Jesse C Thomas
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Sandra Seby
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - A Jeanine Abrams
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Jack Cartee
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Sean Lucking
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Eshaw Vidyaprakash
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Matthew Schmerer
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Cau D Pham
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Jaeyoung Hong
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Elizabeth Torrone
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Sancta St Cyr
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - William M Shafer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia.,Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, Georgia.,Laboratories of Bacterial Pathogenesis, Veterans Affairs Medical Center, Decatur, Georgia
| | - Kyle Bernstein
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Ellen N Kersh
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Kim M Gernert
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia
| | | |
Collapse
|
33
|
Yan J, Xue J, Chen Y, Chen S, Wang Q, Zhang C, Wu S, Lv H, Yu Y, van der Veen S. Increasing prevalence of Neisseria gonorrhoeae with decreased susceptibility to ceftriaxone and resistance to azithromycin in Hangzhou, China (2015-17). J Antimicrob Chemother 2020; 74:29-37. [PMID: 30329062 DOI: 10.1093/jac/dky412] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/13/2018] [Indexed: 12/31/2022] Open
Abstract
Objectives Development of resistance in Neisseria gonorrhoeae to ceftriaxone monotherapy or ceftriaxone plus azithromycin dual therapy is a global public health concern. The aim of this study was to analyse the trend in antimicrobial resistance in Hangzhou, China, over the period 2015-17. Methods In total, 379 clinical isolates were collected from seven hospitals and antimicrobial susceptibility was determined using the agar dilution method. Isolates showing resistance to ceftriaxone, azithromycin or cefixime were analysed for the presence of resistance determinants. STs were determined with the N. gonorrhoeae multiantigen sequence typing (NG-MAST) method and phylogenetic analysis and strain clustering was determined using porB and tbpB sequences. Results Ceftriaxone resistance, decreased susceptibility to ceftriaxone and azithromycin resistance were observed in 3%, 17% and 21% of the isolates, respectively. This resulted in 5% of the isolates showing both decreased susceptibility to ceftriaxone and azithromycin resistance. Importantly, resistance levels to ceftriaxone and azithromycin increased over the study period, resulting in 5% ceftriaxone resistance, 27% decreased susceptibility to ceftriaxone and 35% azithromycin resistance in 2017 and 11% of the isolates showing both decreased susceptibility to ceftriaxone and azithromycin resistance. Phylogenetic and cluster analysis showed the emergence and expansion in 2017 of a clonally related cluster containing strains with high abundance of decreased susceptibility to ceftriaxone and/or cefixime, which was related to the presence of the mosaic penA allele X. Co-resistance to azithromycin was also observed in this cluster. Conclusions Our findings have major implications for the future reliability of ceftriaxone monotherapy and ceftriaxone plus azithromycin dual therapy in China.
Collapse
Affiliation(s)
- Jing Yan
- Department of Microbiology and Parasitology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Juan Xue
- Department of Microbiology and Parasitology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yan Chen
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shi Chen
- Clinical Laboratory Department, Hangzhou Third Hospital, Hangzhou, China
| | - Qiang Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Chuanling Zhang
- Clinical Laboratory, Zhejiang Xiaoshan Hospital, Hangzhou, China
| | - Shenghai Wu
- Department of Laboratory, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huoyang Lv
- Centre of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Stijn van der Veen
- Department of Microbiology and Parasitology, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Dermatology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
34
|
Młynarczyk-Bonikowska B, Majewska A, Malejczyk M, Młynarczyk G, Majewski S. Multiresistant Neisseria gonorrhoeae: a new threat in second decade of the XXI century. Med Microbiol Immunol 2019; 209:95-108. [PMID: 31802195 PMCID: PMC7125254 DOI: 10.1007/s00430-019-00651-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 11/26/2019] [Indexed: 12/13/2022]
Abstract
Neisseria gonorrhoeae is an etiologic agent of gonorrhoea, one of the most common sexually transmitted diseases caused by bacteria. For many years, infections caused by N. gonorrhoeae were considered to be relatively easy to treat; however, resistance has emerged successively to all therapeutic agents used in treatment of the disease, e.g., penicillin, ciprofloxacin or azithromycin. Currently, the global problem is the emergence and a threat of spread of N. gonorrhoeae strains resistant to extended-spectrum cephalosporins (ESC), such as injectable ceftriaxone and oral-used cefixime. Especially, dangerous are multi-resistant strains resistant simultaneously to ESC and azithromycin. Three strains with high-level resistance to azithromycin and resistant to ESC were first time isolated in 2018. Moreover, in 2018, the first ESBL was described in N. gonorrhoeae and that makes the threat of appearing the ESBL mechanism of resistance in N. gonorrhoeae more real, even though the strain was sensitive to ceftriaxone. Molecular typing revealed that variants resistant to ESC occurred also among strains belonging to epidemic clonal complex CC1 (genogroup G1407) distinguished in NG-MAST typing system. The G1407 genogroup, in particular the ST1407 sequence type, is currently dominant in most European countries. The presence of different mechanisms of drug resistance significantly affects clinical practice and force changes in treatment regimens and introduction of new drugs.
Collapse
Affiliation(s)
- Beata Młynarczyk-Bonikowska
- Department of Diagnostics of Sexually Transmitted Diseases, Medical University of Warsaw, 82a Koszykowa Str, 02-008, Warsaw, Poland
| | - Anna Majewska
- Department of Medical Microbiology, Medical University of Warsaw, 5 Chalubinskiego Str, 02-004, Warsaw, Poland.
| | - Magdalena Malejczyk
- Department of Diagnostics of Sexually Transmitted Diseases, Medical University of Warsaw, 82a Koszykowa Str, 02-008, Warsaw, Poland
| | - Grażyna Młynarczyk
- Department of Medical Microbiology, Medical University of Warsaw, 5 Chalubinskiego Str, 02-004, Warsaw, Poland
| | - Sławomir Majewski
- Department of Dermatology and Venereology, Medical University of Warsaw, 82a Koszykowa Str, 02-008, Warsaw, Poland
| |
Collapse
|
35
|
John CM, Feng D, Jarvis GA. Treatment of human challenge and MDR strains of Neisseria gonorrhoeae with LpxC inhibitors. J Antimicrob Chemother 2019; 73:2064-2071. [PMID: 29726994 DOI: 10.1093/jac/dky151] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 03/29/2018] [Indexed: 11/15/2022] Open
Abstract
Objectives Inhibitors of UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase (LpxC), which catalyses the second step in the biosynthesis of lipid A, have been developed as potential antibiotics for Gram-negative infections. Our objectives were to determine the effect of LpxC inhibition on the in vitro survival and inflammatory potential of Neisseria gonorrhoeae. Methods Survival of four human challenge strains was determined after treatment with two LpxC inhibitors for 2 and 4 h. To confirm results from treatment and assess their anti-inflammatory effect, the expression of TNF-α by human THP-1 monocytic cells infected with bacteria in the presence of the LpxC inhibitors was quantified. Cytotoxicity of inhibitors for THP-1 cells was evaluated by release of lactate dehydrogenase. Survival of five MDR strains was determined after 2 h of treatment with an LpxC inhibitor and the effect of co-treatment on MICs of ceftriaxone and azithromycin was examined. Results The inhibitors had bactericidal activity against the four human challenge and five MDR strains with one compound exhibiting complete killing at ≥5 mg/L after either 2 or 4 h of treatment. Treatment of gonococci infecting THP-1 monocytic cells reduced the levels of TNF-α probably owing to reduced numbers of bacteria and a lower level of expression of lipooligosaccharide. Neither inhibitor exhibited cytotoxicity for THP-1 cells. The MIC of azithromycin was slightly lowered by sublethal treatment of two MDR strains with an LpxC inhibitor. Conclusions Our in vitro results demonstrated promising efficacy of LpxC inhibition of N. gonorrhoeae that warrants further investigation particularly owing to the rise in MDR gonorrhoea.
Collapse
Affiliation(s)
- Constance M John
- Center for Immunochemistry, Veterans Affairs Medical Center, 4150 Clement Street, San Francisco, CA, USA.,Department of Laboratory Medicine, University of California, San Francisco, CA, USA
| | - Dongxiao Feng
- Center for Immunochemistry, Veterans Affairs Medical Center, 4150 Clement Street, San Francisco, CA, USA
| | - Gary A Jarvis
- Center for Immunochemistry, Veterans Affairs Medical Center, 4150 Clement Street, San Francisco, CA, USA.,Department of Laboratory Medicine, University of California, San Francisco, CA, USA
| |
Collapse
|
36
|
Chen S, Connolly KL, Rouquette-Loughlin C, D'Andrea A, Jerse AE, Shafer WM. Could Dampening Expression of the Neisseria gonorrhoeae mtrCDE-Encoded Efflux Pump Be a Strategy To Preserve Currently or Resurrect Formerly Used Antibiotics To Treat Gonorrhea? mBio 2019; 10:e01576-19. [PMID: 31409679 PMCID: PMC6692510 DOI: 10.1128/mbio.01576-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 07/15/2019] [Indexed: 12/29/2022] Open
Abstract
Neisseria gonorrhoeae has developed resistance to every antibiotic introduced for treatment of gonorrhea since 1938, and concern now exists that gonorrheal infections may become refractory to all available antibiotics approved for therapy. The current recommended dual antibiotic treatment regimen of ceftriaxone (CRO) and azithromycin (AZM) is threatened with the emergence of gonococcal strains displaying resistance to one or both of these antibiotics. Non-beta-lactamase resistance to penicillin and third-generation cephalosporins, as well as low-level AZM resistance expressed by gonococci, requires overexpression of the mtrCDE-encoded efflux pump, which in wild-type (WT) strains is subject to transcriptional repression by MtrR. Since earlier studies showed that loss of MtrCDE renders gonococci hypersusceptible to beta-lactams and macrolides, we hypothesized that transcriptional dampening of mtrCDE would render an otherwise resistant strain susceptible to these antibiotics as assessed by antibiotic susceptibility testing and during experimental infection. In order to test this hypothesis, we ectopically expressed a WT copy of the mtrR gene, which encodes the repressor of the mtrCDE efflux pump operon, in N. gonorrhoeae strain H041, the first reported gonococcal strain to cause a third-generation-cephalosporin-resistant infection. We now report that MtrR production can repress the expression of mtrCDE, increase antimicrobial susceptibility in vitro, and enhance beta-lactam efficacy in eliminating gonococci as assessed in a female mouse model of lower genital tract infection. We propose that strategies that target the MtrCDE efflux pump should be considered to counteract the increasing problem of antibiotic-resistant gonococci.IMPORTANCE The emergence of gonococcal strains resistant to past or currently used antibiotics is a global public health concern, given the estimated 78 million infections that occur annually. The dearth of new antibiotics to treat gonorrhea demands that alternative curative strategies be considered to counteract antibiotic resistance expressed by gonococci. Herein, we show that decreased expression of a drug efflux pump that participates in gonococcal resistance to antibiotics can increase gonococcal susceptibility to beta-lactams and macrolides under laboratory conditions, as well as improve antibiotic-mediated clearance of gonococci from the genital tract of experimentally infected female mice.
Collapse
Affiliation(s)
- Shaochun Chen
- Department of Microbiology and Immunology and the Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, Georgia, USA
- Laboratories of Bacterial Pathogenesis, VA Medical Center, Decatur, Georgia, USA
- National Center for STD Control, Chinese Center for Disease Control and Prevention, Nanjing, China
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Kristie L Connolly
- Department of Microbiology and Immunology, F. Edward Hebert School of Medicine, Uniformed Services University, Bethesda, Maryland, USA
| | - Corinne Rouquette-Loughlin
- Department of Microbiology and Immunology and the Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, Georgia, USA
- Laboratories of Bacterial Pathogenesis, VA Medical Center, Decatur, Georgia, USA
| | - Alexander D'Andrea
- Department of Microbiology and Immunology and the Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, Georgia, USA
- Laboratories of Bacterial Pathogenesis, VA Medical Center, Decatur, Georgia, USA
| | - Ann E Jerse
- Department of Microbiology and Immunology, F. Edward Hebert School of Medicine, Uniformed Services University, Bethesda, Maryland, USA
| | - William M Shafer
- Department of Microbiology and Immunology and the Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, Georgia, USA
- Laboratories of Bacterial Pathogenesis, VA Medical Center, Decatur, Georgia, USA
| |
Collapse
|
37
|
Impact of Species Diversity on the Design of RNA-Based Diagnostics for Antibiotic Resistance in Neisseria gonorrhoeae. Antimicrob Agents Chemother 2019; 63:AAC.00549-19. [PMID: 31138575 DOI: 10.1128/aac.00549-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/23/2019] [Indexed: 12/17/2022] Open
Abstract
Quantitative assessment of antibiotic-responsive RNA transcripts holds promise for a rapid point-of-care (POC) diagnostic tool for antimicrobial susceptibility testing. These assays aim to distinguish susceptible and resistant isolates by transcriptional differences upon drug exposure. However, an often-overlooked dimension of designing these tests is that the genetic diversity within a species may yield differential transcriptional regulation independent of resistance phenotype. Here, we use a phylogenetically diverse panel of Neisseria gonorrhoeae and transcriptome profiling coupled with reverse transcription-quantitative PCR to test this hypothesis, to identify azithromycin responsive transcripts and evaluate their potential diagnostic value, and to evaluate previously reported diagnostic markers for ciprofloxacin resistance (porB and rpmB). Transcriptome profiling confirmed evidence of genetic distance and population structure impacting transcriptional response to azithromycin. Taking this into account, we found azithromycin-responsive transcripts overrepresented in susceptible strains compared to resistant strains and selected four candidate diagnostic transcripts (rpsO, rplN, omp3, and NGO1079) that were the most significantly differentially regulated between phenotypes across drug exposure. RNA signatures for these markers categorically predicted resistance in 19/20 cases, with the one incorrect categorical assignment for an isolate at the threshold of reduced susceptibility. Finally, we found that porB and rpmB expression were not uniformly diagnostic of ciprofloxacin resistance in a panel of isolates with unbiased phylogenetic sampling. Overall, our results suggest that RNA signatures as a diagnostic tool are promising for future POC diagnostics; however, development and testing should consider representative genetic diversity of the target pathogen.
Collapse
|
38
|
Emergence of Neisseria gonorrhoeae Strains Harboring a Novel Combination of Azithromycin-Attenuating Mutations. Antimicrob Agents Chemother 2019; 63:AAC.02313-18. [PMID: 30917979 DOI: 10.1128/aac.02313-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/03/2019] [Indexed: 12/30/2022] Open
Abstract
The nimbleness of Neisseria gonorrhoeae to evade the effect of antibiotics has perpetuated the fight against antibiotic-resistant gonorrhea for more than 80 years. The ability to develop resistance to antibiotics is attributable to its indiscriminate nature in accepting and integrating exogenous DNA into its genome. Here, we provide data demonstrating a novel combination of the 23S rRNA A2059G mutation with a mosaic-multiple transferable resistance (mosaic-mtr) locus haplotype in 14 N. gonorrhoeae isolates with high-level azithromycin MICs (≥256 μg/ml), a combination that may confer more fitness than in previously identified isolates with high-level azithromycin resistance. To our knowledge, this is the first description of N. gonorrhoeae strains harboring this novel combination of resistance determinants. These strains were isolated at two independent jurisdictions participating in the Gonococcal Isolate Surveillance Project (GISP) and in the Strengthening the U.S. Response to Resistant Gonorrhea (SURRG) project. The data suggest that the genome of N. gonorrhoeae continues to shuffle its genetic material. These findings further illuminate the genomic plasticity of N. gonorrhoeae, which allows this pathogen to develop mutations to escape the inhibitory effects of antibiotics.
Collapse
|
39
|
El-Rami FE, Zielke RA, Wi T, Sikora AE, Unemo M. Quantitative Proteomics of the 2016 WHO Neisseria gonorrhoeae Reference Strains Surveys Vaccine Candidates and Antimicrobial Resistance Determinants. Mol Cell Proteomics 2019; 18:127-150. [PMID: 30352803 PMCID: PMC6317477 DOI: 10.1074/mcp.ra118.001125] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 10/23/2018] [Indexed: 12/27/2022] Open
Abstract
The sexually transmitted disease gonorrhea (causative agent: Neisseria gonorrhoeae) remains an urgent public health threat globally because of its reproductive health repercussions, high incidence, widespread antimicrobial resistance (AMR), and absence of a vaccine. To mine gonorrhea antigens and enhance our understanding of gonococcal AMR at the proteome level, we performed the first large-scale proteomic profiling of a diverse panel (n = 15) of gonococcal strains, including the 2016 World Health Organization (WHO) reference strains. These strains show all existing AMR profiles - established through phenotypic characterization and reference genome publication - and are intended for quality assurance in laboratory investigations. Herein, these isolates were subjected to subcellular fractionation and labeling with tandem mass tags coupled to mass spectrometry and multi-combinatorial bioinformatics. Our analyses detected 904 and 723 common proteins in cell envelope and cytoplasmic subproteomes, respectively. We identified nine novel gonorrhea vaccine candidates. Expression and conservation of new and previously selected antigens were investigated. In addition, established gonococcal AMR determinants were evaluated for the first time using quantitative proteomics. Six new proteins, WHO_F_00238, WHO_F_00635c, WHO_F_00745, WHO_F_01139, WHO_F_01144c, and WHO_F_01126, were differentially expressed in all strains, suggesting that they represent global proteomic AMR markers, indicate a predisposition toward developing or compensating gonococcal AMR, and/or act as new antimicrobial targets. Finally, phenotypic clustering based on the isolates' defined antibiograms and common differentially expressed proteins yielded seven matching clusters between established and proteome-derived AMR signatures. Together, our investigations provide a reference proteomics data bank for gonococcal vaccine and AMR research endeavors, which enables microbiological, clinical, or epidemiological projects and enhances the utility of the WHO reference strains.
Collapse
Affiliation(s)
- Fadi E El-Rami
- From the ‡Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon
| | - Ryszard A Zielke
- From the ‡Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon
| | - Teodora Wi
- §Department of Reproductive Health and Research, World Health Organization, Geneva, Switzerland
| | - Aleksandra E Sikora
- From the ‡Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon;; ¶Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon;.
| | - Magnus Unemo
- ‖World Health Organization Collaborating Centre for Gonorrhoea and other Sexually Transmitted Infections, Department of Laboratory Medicine, Clinical Microbiology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.
| |
Collapse
|
40
|
Wang F, Liu J, Liu H, Huang J, Chen S, Chen X, Yin Y. Evaluation of the accuracy of molecular assays targeting the mutation A2059G for detecting high-level azithromycin resistance in Neisseria gonorrhoeae: a systematic review and meta-analysis. Infect Drug Resist 2018; 12:95-104. [PMID: 30643437 PMCID: PMC6312691 DOI: 10.2147/idr.s183754] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Neisseria gonorrhoeae resistance to azithromycin has become a significant public health concern globally, and high-level azithromycin-resistant (HL-AzmR) isolates have emerged frequently. However, high-level azithromycin resistance is considered to be caused by mutated alleles of 23S rRNA gene at position 2059, and identification of HL-AzmR isolates mainly relies on agar dilution method or E-test method. This study aimed to assess the accuracy of the molecular assays targeting the mutation A2059G for identifying HL-AzmR isolates and thereby determine the association between the mutation and high-level azithromycin resistance. METHODS Two researchers independently searched six databases to identify studies published from the launch of each database to October 15, 2017. The fixed effects model was used to estimate the pooled sensitivity rate, specificity rate, positive predictive value (PPV), and negative predictive value (NPV). Summary receiver operating characteristic curves were generated, and the area under the curve (AUC) was determined to estimate the overall performance of the assays. The Deeks' test was conducted to evaluate potential publication bias. RESULTS Ten relevant studies were included in the meta-analysis to assess the synthetic accuracy of the molecular assays. The molecular assays had the synthetic sensitivity rate of 97.8% and the synthetic specificity rate of 99.1%. And the aggregated PPV and NPV were 96.4% and 99.5%, respectively. AUC was 0.99, suggesting a close relation existing between the mutation A2059G and high-level azithromycin resistance. This indicated that the molecular assays targeting the mutation A2059G have relatively high overall accuracy for identifying HL-AzmR N. gonor-rhoeae isolates. Publication bias was statistically significant. CONCLUSION The mutation A2059G is the critical factor causing high-level azithromycin resistance. Hence, molecular methods are recommended to be put into clinical practice by commercialization, which will assist clinicians to prescribe more precisely.
Collapse
Affiliation(s)
- Feng Wang
- Department of STD Control Laboratory, Shenzhen Center for Chronic Disease Control, Shenzhen, China
| | - Jingwei Liu
- Department of Reference STD Lab, National Center for STD Control, Chinese Center for Disease Control and Prevention, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China,
| | - Hongye Liu
- Department of Reference STD Lab, National Center for STD Control, Chinese Center for Disease Control and Prevention, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China,
| | - Jing Huang
- Department of STD Control Laboratory, Shenzhen Center for Chronic Disease Control, Shenzhen, China
| | - Shaochun Chen
- Department of Reference STD Lab, National Center for STD Control, Chinese Center for Disease Control and Prevention, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China,
| | - Xiangsheng Chen
- Department of Reference STD Lab, National Center for STD Control, Chinese Center for Disease Control and Prevention, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China,
| | - Yueping Yin
- Department of Reference STD Lab, National Center for STD Control, Chinese Center for Disease Control and Prevention, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China,
| |
Collapse
|
41
|
Mechanistic Basis for Decreased Antimicrobial Susceptibility in a Clinical Isolate of Neisseria gonorrhoeae Possessing a Mosaic-Like mtr Efflux Pump Locus. mBio 2018; 9:mBio.02281-18. [PMID: 30482834 PMCID: PMC6282211 DOI: 10.1128/mbio.02281-18] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Historically, after introduction of an antibiotic for treatment of gonorrhea, strains of N. gonorrhoeae emerge that display clinical resistance due to spontaneous mutation or acquisition of resistance genes. Genetic exchange between members of the Neisseria genus occurring by transformation can cause significant changes in gonococci that impact the structure of an antibiotic target or expression of genes involved in resistance. The results presented here provide a framework for understanding how mosaic-like DNA sequences from commensal Neisseria that recombine within the gonococcal mtr efflux pump locus function to decrease bacterial susceptibility to antimicrobials, including antibiotics used in therapy of gonorrhea. Recent reports suggest that mosaic-like sequences within the mtr (multiple transferable resistance) efflux pump locus of Neisseria gonorrhoeae, likely originating from commensal Neisseria sp. by transformation, can increase the ability of gonococci to resist structurally diverse antimicrobials. Thus, acquisition of numerous nucleotide changes within the mtrR gene encoding the transcriptional repressor (MtrR) of the mtrCDE efflux pump-encoding operon or overlapping promoter region for both along with those that cause amino acid changes in the MtrD transporter protein were recently reported to decrease gonococcal susceptibility to numerous antimicrobials, including azithromycin (Azi) (C. B. Wadsworth, B. J. Arnold, M. R. A. Satar, and Y. H. Grad, mBio 9:e01419-18, 2018, https://doi.org/10.1128/mBio.01419-18). We performed detailed genetic and molecular studies to define the mechanistic basis for why such strains can exhibit decreased susceptibility to MtrCDE antimicrobial substrates, including Azi. We report that a strong cis-acting transcriptional impact of a single nucleotide change within the −35 hexamer of the mtrCDE promoter as well gain-of-function amino acid changes at the C-terminal region of MtrD can mechanistically account for the decreased antimicrobial susceptibility of gonococci with a mosaic-like mtr locus.
Collapse
|
42
|
Handing JW, Ragland SA, Bharathan UV, Criss AK. The MtrCDE Efflux Pump Contributes to Survival of Neisseria gonorrhoeae From Human Neutrophils and Their Antimicrobial Components. Front Microbiol 2018; 9:2688. [PMID: 30515136 PMCID: PMC6256084 DOI: 10.3389/fmicb.2018.02688] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 10/22/2018] [Indexed: 12/24/2022] Open
Abstract
The mucosal inflammatory response to Neisseria gonorrhoeae (Gc) is characterized by recruitment of neutrophils to the site of infection. Gc survives exposure to neutrophils by limiting the ability of neutrophils to make antimicrobial products and by expressing factors that defend against these products. The multiple transferable resistance (Mtr) system is a tripartite efflux pump, comprised of the inner membrane MtrD, the periplasmic attachment protein MtrC, and the outer membrane channel MtrE. Gc MtrCDE exports a diverse array of substrates, including certain detergents, dyes, antibiotics, and host-derived antimicrobial peptides. Here we report that MtrCDE contributes to the survival of Gc after exposure to adherent, chemokine-treated primary human neutrophils, specifically in the extracellular milieu. MtrCDE enhanced survival of Gc in neutrophil extracellular traps and in the supernatant from neutrophils that had undergone degranulation (granule exocytosis), a process that releases antimicrobial proteins into the extracellular milieu. The extent of degranulation was unaltered in neutrophils exposed to parental or mtr mutant Gc. MtrCDE expression contributed to Gc defense against some neutrophil-derived antimicrobial peptides but not others. These findings demonstrate that the Mtr system contributes to Gc survival after neutrophil challenge, a key feature of the host immune response to acute gonorrhea.
Collapse
Affiliation(s)
- Jonathan W Handing
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, United States
| | - Stephanie A Ragland
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, United States
| | - Urmila V Bharathan
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, United States
| | - Alison K Criss
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
43
|
Tzeng YL, Berman Z, Toh E, Bazan JA, Turner AN, Retchless AC, Wang X, Nelson DE, Stephens DS. Heteroresistance to the model antimicrobial peptide polymyxin B in the emerging Neisseria meningitidis lineage 11.2 urethritis clade: mutations in the pilMNOPQ operon. Mol Microbiol 2018; 111:254-268. [PMID: 30338585 DOI: 10.1111/mmi.14153] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2018] [Indexed: 02/02/2023]
Abstract
Clusters of Neisseria meningitidis (Nm) urethritis among primarily heterosexual males in multiple US cities have been attributed to a unique non-encapsulated meningococcal clade (the US Nm urethritis clade, US_NmUC) within the hypervirulent clonal complex 11. Resistance to antimicrobial peptides (AMPs) is a key feature of urogenital pathogenesis of the closely related species, Neisseria gonorrhoeae. The US_NmUC isolates were found to be highly resistant to the model AMP, polymyxin B (PmB, MICs 64-256 µg ml-1 ). The isolates also demonstrated stable subpopulations of heteroresistant colonies that showed near total resistant to PmB (MICs 384-1024 µg ml-1 ) and colistin (MIC 256 µg ml-1 ) as well as enhanced LL-37 resistance. This is the first observation of heteroresistance in N. meningitidis. Consistent with previous findings, overall PmB resistance in US_NmUC isolates was due to active Mtr efflux and LptA-mediated lipid A modification. However, whole genome sequencing, variant analyses and directed mutagenesis revealed that the heteroresistance phenotypes and very high-level AMP resistance were the result of point mutations and IS1655 element movement in the pilMNOPQ operon, encoding the type IV pilin biogenesis apparatus. Cross-resistance to other classes of antibiotics was also observed in the heteroresistant colonies. High-level resistance to AMPs may contribute to the pathogenesis of US_NmUC.
Collapse
Affiliation(s)
- Yih-Ling Tzeng
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Zachary Berman
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Evelyn Toh
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Jose A Bazan
- Division of Infectious Diseases, Department of Internal Medicine, Ohio State University College of Medicine, Columbus, OH, 43210, USA.,Sexual Health Clinic, Columbus Public Health, Columbus, OH, 43210, USA
| | - Abigail Norris Turner
- Division of Infectious Diseases, Department of Internal Medicine, Ohio State University College of Medicine, Columbus, OH, 43210, USA
| | - Adam C Retchless
- Meningitis and Vaccine Preventable Diseases Branch, Centers for Disease Control and Prevention, Atlanta, GA, 30333, USA
| | - Xin Wang
- Meningitis and Vaccine Preventable Diseases Branch, Centers for Disease Control and Prevention, Atlanta, GA, 30333, USA
| | - David E Nelson
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - David S Stephens
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA.,Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| |
Collapse
|
44
|
Francis IP, Islam EA, Gower AC, Shaik-Dasthagirisaheb YB, Gray-Owen SD, Wetzler LM. Murine host response to Neisseria gonorrhoeae upper genital tract infection reveals a common transcriptional signature, plus distinct inflammatory responses that vary between reproductive cycle phases. BMC Genomics 2018; 19:627. [PMID: 30134832 PMCID: PMC6106831 DOI: 10.1186/s12864-018-5000-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 08/08/2018] [Indexed: 01/13/2023] Open
Abstract
Background The emergence of fully antimicrobial resistant Neisseria gonorrhoeae has led global public health agencies to identify a critical need for next generation anti-gonococcal pharmaceuticals. The development and success of these compounds will rely upon valid pre-clinical models of gonorrhoeae infection. We recently developed and reported the first model of upper genital tract gonococcal infection. During initial characterization, we observed significant reproductive cycle-based variation in infection outcome. When uterine infection occurred in the diestrus phase, there was significantly greater pathology than during estrus phase. The aim of this study was to evaluate transcriptional profiles of infected uterine tissue from mice in either estrus or diestrus phase in order to elucidate possible mechanisms for these differences. Results Genes and biological pathways with phase-independent induction during infection showed a chemokine dominant cytokine response to Neisseria gonorrhoeae. Despite general induction being phase-independent, this common anti-gonococcal response demonstrated greater induction during diestrus phase infection. Greater activity of granulocyte adhesion and diapedesis regulators during diestrus infection, particularly in chemokines and diapedesis regulators, was also shown. In addition to a greater induction of the common anti-gonococcal response, Gene Set Enrichment Analysis identified a diestrus-specific induction of type-1 interferon signaling pathways. Conclusions This transcriptional analysis of murine uterine gonococcal infection during distinct points in the natural reproductive cycle provided evidence for a common anti-gonococcal response characterized by significant induction of granulocyte chemokine expression and high proinflammatory mediators. The basic biology of this host response to N. gonorrhoeae in estrus and diestrus is similar at the pathway level but varies drastically in magnitude. Overlaying this, we observed type-1 interferon induction specifically in diestrus infection where greater pathology is observed. This supports recent work suggesting this pathway has a significant, possibly host-detrimental, function in gonococcal infection. Together these findings lay the groundwork for further examination of the role of interferons in gonococcal infection. Additionally, this work enables the implementation of the diestrus uterine infection model using the newly characterized host response as a marker of pathology and its prevention as a correlate of candidate vaccine efficacy and ability to protect against the devastating consequences of N. gonorrhoeae-associated sequelae. Electronic supplementary material The online version of this article (10.1186/s12864-018-5000-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ian P Francis
- Department of Microbiology, Boston University School of Medicine, 72 E. Concord St., Room L504, Boston, MA, 02118, USA
| | - Epshita A Islam
- Department of Molecular Genetics, University of Toronto, Room 4383, Medical Sciences Building, 1 King's College Circle, Toronto, ON, M5S1A8, Canada
| | - Adam C Gower
- Clinical and Translational Science Institute, Boston University School of Medicine, 715 Albany St. E-727, Boston, MA, 02118, USA
| | | | - Scott D Gray-Owen
- Department of Molecular Genetics, University of Toronto, Room 4383, Medical Sciences Building, 1 King's College Circle, Toronto, ON, M5S1A8, Canada
| | - Lee M Wetzler
- Department of Medicine, Boston University School of Medicine, 715 Albany St. E-113, Boston, MA, 02118, USA. .,Department of Microbiology, Boston University School of Medicine, 72 E. Concord St., Room L504, Boston, MA, 02118, USA.
| |
Collapse
|
45
|
Azithromycin Resistance through Interspecific Acquisition of an Epistasis-Dependent Efflux Pump Component and Transcriptional Regulator in Neisseria gonorrhoeae. mBio 2018; 9:mBio.01419-18. [PMID: 30087172 PMCID: PMC6083905 DOI: 10.1128/mbio.01419-18] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Mosaic interspecifically acquired alleles of the multiple transferable resistance (mtr) efflux pump operon correlate with increased resistance to azithromycin in Neisseria gonorrhoeae in epidemiological studies. However, whether and how these alleles cause resistance is unclear. Here, we use population genomics, transformations, and transcriptional analyses to dissect the relationship between variant mtr alleles and azithromycin resistance. We find that the locus encompassing the mtrR transcriptional repressor and the mtrCDE pump is a hot spot of interspecific recombination introducing alleles from Neisseria meningitidis and Neisseria lactamica into N. gonorrhoeae, with multiple rare haplotypes in linkage disequilibrium at mtrD and the mtr promoter region. Transformations demonstrate that resistance to azithromycin, as well as to other antimicrobial compounds such as polymyxin B and crystal violet, is mediated through epistasis between these two loci and that the full-length mosaic mtrD allele is required. Gene expression profiling reveals the mechanism of resistance in mosaics couples novel mtrD alleles with promoter mutations that increase expression of the pump. Overall, our results demonstrate that epistatic interactions at mtr gained from multiple neisserial species has contributed to increased gonococcal resistance to diverse antimicrobial agents.IMPORTANCENeisseria gonorrhoeae is the sexually transmitted bacterial pathogen responsible for more than 100 million cases of gonorrhea worldwide each year. The incidence of resistance to the macrolide azithromycin has increased in the past decade; however, a large proportion of the genetic basis of resistance remains unexplained. This study is the first to conclusively demonstrate the acquisition of macrolide resistance through mtr alleles from other Neisseria species, demonstrating that commensal Neisseria bacteria are a reservoir for antibiotic resistance to macrolides, extending the role of interspecies mosaicism in resistance beyond what has been previously described for cephalosporins. Ultimately, our results emphasize that future fine-mapping of genome-wide interspecies mosaicism may be valuable in understanding the pathways to antimicrobial resistance. Our results also have implications for diagnostics and public health surveillance and control, as they can be used to inform the development of sequence-based tools to monitor and control the spread of antibiotic-resistant gonorrhea.
Collapse
|
46
|
Harrison OB, Schoen C, Retchless AC, Wang X, Jolley KA, Bray JE, Maiden MCJ. Neisseria genomics: current status and future perspectives. Pathog Dis 2018; 75:3861976. [PMID: 28591853 PMCID: PMC5827584 DOI: 10.1093/femspd/ftx060] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 06/05/2017] [Indexed: 12/17/2022] Open
Abstract
High-throughput whole genome sequencing has unlocked a multitude of possibilities enabling members of the Neisseria genus to be examined with unprecedented detail, including the human pathogens Neisseria meningitidis and Neisseria gonorrhoeae. To maximise the potential benefit of this for public health, it is becoming increasingly important to ensure that this plethora of data are adequately stored, disseminated and made readily accessible. Investigations facilitating cross-species comparisons as well as the analysis of global datasets will allow differences among and within species and across geographic locations and different times to be identified, improving our understanding of the distinct phenotypes observed. Recent advances in high-throughput platforms that measure the transcriptome, proteome and/or epigenome are also becoming increasingly employed to explore the complexities of Neisseria biology. An integrated approach to the analysis of these is essential to fully understand the impact these may have in the Neisseria genus. This article reviews the current status of some of the tools available for next generation sequence analysis at the dawn of the ‘post-genomic’ era.
Collapse
Affiliation(s)
| | - Christoph Schoen
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg 97080, Germany
| | - Adam C Retchless
- Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Xin Wang
- Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Keith A Jolley
- Department of Zoology, University of Oxford, Oxford OX1 3SY, UK
| | - James E Bray
- Department of Zoology, University of Oxford, Oxford OX1 3SY, UK
| | | |
Collapse
|
47
|
Rice PA, Shafer WM, Ram S, Jerse AE. Neisseria gonorrhoeae: Drug Resistance, Mouse Models, and Vaccine Development. Annu Rev Microbiol 2018; 71:665-686. [PMID: 28886683 DOI: 10.1146/annurev-micro-090816-093530] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Gonorrhea, an obligate human infection, is on the rise worldwide and gonococcal strains resistant to many antibiotics are emerging. Appropriate antimicrobial treatment and prevention, including effective vaccines, are urgently needed. To guide investigation, an experimental model of genital tract infection has been developed in female mice to study mechanisms by which Neisseria gonorrhoeae evades host-derived antimicrobial factors and to identify protective and immunosuppressive pathways. Refinements of the animal model have also improved its use as a surrogate host of human infection and accelerated the testing of novel therapeutic and prophylactic compounds against gonococcal infection. Reviewed herein are the (a) history of antibiotic usage and resistance against gonorrhea and the consequences of resistance mechanisms that may increase gonococcal fitness and therefore the potential for spread, (b) use of gonococcal infection in the animal model system to study mechanisms of pathogenesis and host defenses, and
Collapse
Affiliation(s)
- Peter A Rice
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605-4321; ,
| | - William M Shafer
- Department of Microbiology and Immunology and Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, Georgia 30322.,Laboratories of Bacterial Pathogenesis, Veterans Affairs Medical Center, Decatur, Georgia 30033;
| | - Sanjay Ram
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605-4321; ,
| | - Ann E Jerse
- Department of Microbiology and Immunology, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, Maryland 20814-4799;
| |
Collapse
|
48
|
Mutations in Neisseria gonorrhoeae grown in sub-lethal concentrations of monocaprin do not confer resistance. PLoS One 2018; 13:e0195453. [PMID: 29621310 PMCID: PMC5886539 DOI: 10.1371/journal.pone.0195453] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 03/22/2018] [Indexed: 11/19/2022] Open
Abstract
Neisseria gonorrhoeae, due to its short lipooligosaccharide structure, is generally more sensitive to the antimicrobial effects of some fatty acids than most other Gram negative bacteria. This supports recent development of a fatty acid-based potential treatment for gonococcal infections, particularly ophthalmia neonatorum. The N. gonorrhoeae genome contains genes for fatty acid resistance. In this study, the potential for genomic mutations that could lead to resistance to this potential new treatment were investigated. N. gonorrhoeae strain NCCP11945 was repeatedly passaged on growth media containing a sub-lethal concentration of fatty acid myristic acid and monoglyceride monocaprin. Cultures were re-sequenced and assessed for changes in minimum inhibitory concentration. Of note, monocaprin grown cultures developed a mutation in transcription factor gene dksA, which suppresses molecular chaperone DnaK and may be involved in the stress response. The minimum inhibitory concentration after exposure to monocaprin showed a modest two-fold change. The results of this study suggest that N. gonorrhoeae cannot readily evolve resistance that will impact treatment of ophthalmia neonatorum with monocaprin.
Collapse
|
49
|
Costa-Lourenço APRD, Barros Dos Santos KT, Moreira BM, Fracalanzza SEL, Bonelli RR. Antimicrobial resistance in Neisseria gonorrhoeae: history, molecular mechanisms and epidemiological aspects of an emerging global threat. Braz J Microbiol 2017; 48:617-628. [PMID: 28754299 PMCID: PMC5628311 DOI: 10.1016/j.bjm.2017.06.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 06/03/2017] [Accepted: 06/05/2017] [Indexed: 12/31/2022] Open
Abstract
Neisseria gonorrhoeae is the agent of gonorrhea, a sexually transmitted infection with an estimate from The World Health Organization of 78 million new cases in people aged 15-49 worldwide during 2012. If left untreated, complications may include pelvic inflammatory disease and infertility. Antimicrobial treatment is usually effective; however, resistance has emerged successively through various molecular mechanisms for all the regularly used therapeutic agents throughout decades. Detection of antimicrobial susceptibility is currently the most critical aspect for N. gonorrhoeae surveillance, however poorly structured health systems pose difficulties. In this review, we compiled data from worldwide reports regarding epidemiology and antimicrobial resistance in N. gonorrhoeae, and highlight the relevance of the implementation of surveillance networks to establish policies for gonorrhea treatment.
Collapse
Affiliation(s)
| | | | - Beatriz Meurer Moreira
- Institute of Microbiology, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | - Raquel Regina Bonelli
- Institute of Microbiology, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
50
|
Eyre DW, De Silva D, Cole K, Peters J, Cole MJ, Grad YH, Demczuk W, Martin I, Mulvey MR, Crook DW, Walker AS, Peto TEA, Paul J. WGS to predict antibiotic MICs for Neisseria gonorrhoeae. J Antimicrob Chemother 2017; 72:1937-1947. [PMID: 28333355 PMCID: PMC5890716 DOI: 10.1093/jac/dkx067] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 02/06/2017] [Accepted: 02/08/2017] [Indexed: 11/26/2022] Open
Abstract
Background Tracking the spread of antimicrobial-resistant Neisseria gonorrhoeae is a major priority for national surveillance programmes. Objectives We investigate whether WGS and simultaneous analysis of multiple resistance determinants can be used to predict antimicrobial susceptibilities to the level of MICs in N. gonorrhoeae. Methods WGS was used to identify previously reported potential resistance determinants in 681 N. gonorrhoeae isolates, from England, the USA and Canada, with phenotypes for cefixime, penicillin, azithromycin, ciprofloxacin and tetracycline determined as part of national surveillance programmes. Multivariate linear regression models were used to identify genetic predictors of MIC. Model performance was assessed using leave-one-out cross-validation. Results Overall 1785/3380 (53%) MIC values were predicted to the nearest doubling dilution and 3147 (93%) within ±1 doubling dilution and 3314 (98%) within ±2 doubling dilutions. MIC prediction performance was similar across the five antimicrobials tested. Prediction models included the majority of previously reported resistance determinants. Applying EUCAST breakpoints to MIC predictions, the overall very major error (VME; phenotypically resistant, WGS-prediction susceptible) rate was 21/1577 (1.3%, 95% CI 0.8%-2.0%) and the major error (ME; phenotypically susceptible, WGS-prediction resistant) rate was 20/1186 (1.7%, 1.0%-2.6%). VME rates met regulatory thresholds for all antimicrobials except cefixime and ME rates for all antimicrobials except tetracycline. Country of testing was a strongly significant predictor of MIC for all five antimicrobials. Conclusions We demonstrate a WGS-based MIC prediction approach that allows reliable MIC prediction for five gonorrhoea antimicrobials. Our approach should allow reasonably precise prediction of MICs for a range of bacterial species.
Collapse
Affiliation(s)
- David W. Eyre
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Oxford National Institute for Health Research Health Protection Research Unit, Oxford, UK
| | - Dilrini De Silva
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Oxford National Institute for Health Research Health Protection Research Unit, Oxford, UK
| | - Kevin Cole
- Brighton and Sussex University Hospitals NHS Trust, Brighton, UK
- National Infection Service, Public Health England, UK
| | - Joanna Peters
- Brighton and Sussex University Hospitals NHS Trust, Brighton, UK
- National Infection Service, Public Health England, UK
| | - Michelle J. Cole
- Antimicrobial Resistance and Healthcare Associated Infections (AMRHAI) Reference Unit, National Infection Service, London, UK
| | - Yonatan H. Grad
- Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, MA, USA
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, MA, USA
| | - Walter Demczuk
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Irene Martin
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Michael R. Mulvey
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Derrick W. Crook
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Oxford National Institute for Health Research Health Protection Research Unit, Oxford, UK
- National Infection Service, Public Health England, UK
| | - A. Sarah Walker
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Oxford National Institute for Health Research Health Protection Research Unit, Oxford, UK
| | - Tim E. A. Peto
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Oxford National Institute for Health Research Health Protection Research Unit, Oxford, UK
| | - John Paul
- National Institute for Health Research Biomedical Research Centre, Oxford, UK
- Brighton and Sussex University Hospitals NHS Trust, Brighton, UK
- National Infection Service, Public Health England, UK
| |
Collapse
|