1
|
Opperman TJ, Dhingra S, Gutierrez-Perez C, Kwasny SM, Cramer RA. Luciferase-Based High-Throughput Screen with Aspergillus fumigatus to Identify Antifungal Small Molecules. Methods Mol Biol 2023; 2658:17-34. [PMID: 37024692 DOI: 10.1007/978-1-0716-3155-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
Only three classes of contemporary antifungal drugs are routinely utilized in the clinic against filamentous fungal pathogens such as Aspergillus fumigatus. High-throughput phenotypic screens to identify small molecules with activity against filamentous fungi remain challenging due to the hyphal, biofilm-like growth morphology of these important organisms. In this chapter, we describe a protocol for utilizing a bioluminescent A. fumigatus strain for identifying small molecules that potentiate the activity of the triazole antifungal drug fluconazole. The assay holds great promise for identifying small molecules with activity against filamentous fungal pathogens.
Collapse
Affiliation(s)
| | - Sourabh Dhingra
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
- Clemson University, Biological Sciences, Clemson, SC, USA
| | - Cecilia Gutierrez-Perez
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | | | - Robert A Cramer
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA.
| |
Collapse
|
2
|
Duran C, Zhang S, Yang C, Falco ML, Cravo-Laureau C, Suzuki-Minakuchi C, Nojiri H, Duran R, Sassa F. Low-cost gel-filled microwell array device for screening marine microbial consortium. Front Microbiol 2022; 13:1031439. [PMID: 36590440 PMCID: PMC9800614 DOI: 10.3389/fmicb.2022.1031439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
In order to exploit the microbes present in the environment for their beneficial resources, effective selection and isolation of microbes from environmental samples is essential. In this study, we fabricated a gel-filled microwell array device using resin for microbial culture. The device has an integrated sealing mechanism that enables high-density isolation based on the culture of microorganisms; the device is easily manageable, facilitating observation using bright-field microscopy. This low-cost device made from polymethyl methacrylate (PMMA)/polyethylene terephthalate (PET) has 900 microwells (600 μm × 600 μm × 700 μm) filled with a microbial culture gel medium in glass slide-sized plates. It also has grooves for maintaining the moisture content in the micro-gel. The partition wall between the wells has a highly hydrophobic coating to inhibit microbial migration to neighboring wells and to prevent exchange of liquid substances. After being hermetically sealed, the device can maintain moisture in the agarose gels for 7 days. In the bacterial culture experiment using this device, environmental bacteria were isolated and cultured in individual wells after 3 days. Moreover, the isolated bacteria were then picked up from wells and re-cultured. This device is effective for the first screening of microorganisms from marine environmental samples.
Collapse
Affiliation(s)
- Clelia Duran
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France
| | - Shiyi Zhang
- Graduate School of Information Science and Electrical Engineering, Kyushu University, Fukuoka, Japan
| | - Chongyang Yang
- Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Maria Lorena Falco
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France
| | | | - Chiho Suzuki-Minakuchi
- Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| | - Hideaki Nojiri
- Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| | - Robert Duran
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France,*Correspondence: Robert Duran, ; Fumihiro Sassa,
| | - Fumihiro Sassa
- Graduate School of Information Science and Electrical Engineering, Kyushu University, Fukuoka, Japan,*Correspondence: Robert Duran, ; Fumihiro Sassa,
| |
Collapse
|
3
|
Davidson SL, Niepa THR. Micro-Technologies for Assessing Microbial Dynamics in Controlled Environments. Front Microbiol 2022; 12:745835. [PMID: 35154021 PMCID: PMC8831547 DOI: 10.3389/fmicb.2021.745835] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
With recent advances in microfabrication technologies, the miniaturization of traditional culturing techniques has provided ideal methods for interrogating microbial communities in a confined and finely controlled environment. Micro-technologies offer high-throughput screening and analysis, reduced experimental time and resources, and have low footprint. More importantly, they provide access to culturing microbes in situ in their natural environments and similarly, offer optical access to real-time dynamics under a microscope. Utilizing micro-technologies for the discovery, isolation and cultivation of "unculturable" species will propel many fields forward; drug discovery, point-of-care diagnostics, and fundamental studies in microbial community behaviors rely on the exploration of novel metabolic pathways. However, micro-technologies are still largely proof-of-concept, and scalability and commercialization of micro-technologies will require increased accessibility to expensive equipment and resources, as well as simpler designs for usability. Here, we discuss three different miniaturized culturing practices; including microarrays, micromachined devices, and microfluidics; advancements to the field, and perceived challenges.
Collapse
Affiliation(s)
- Shanna-Leigh Davidson
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Tagbo H. R. Niepa
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA, United States
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA, United States
- The McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
4
|
Rodríguez-Cerdeira C, Martínez-Herrera E, Carnero-Gregorio M, López-Barcenas A, Fabbrocini G, Fida M, El-Samahy M, González-Cespón JL. Pathogenesis and Clinical Relevance of Candida Biofilms in Vulvovaginal Candidiasis. Front Microbiol 2020; 11:544480. [PMID: 33262741 PMCID: PMC7686049 DOI: 10.3389/fmicb.2020.544480] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 10/23/2020] [Indexed: 12/30/2022] Open
Abstract
The ability of Candida spp. to form biofilms is crucial for its pathogenicity, and thus, it should be considered an important virulence factor in vulvovaginal candidiasis (VVC) and recurrent VVC (RVVC). Its ability to generate biofilms is multifactorial and is generally believed to depend on the site of infection, species and strain involved, and the microenvironment in which the infection develops. Therefore, both cell surface proteins, such as Hwp1, Als1, and Als2, and the cell wall-related protein, Sun41, play a critical role in the adhesion and virulence of the biofilm. Immunological and pharmacological approaches have identified the NLRP3 inflammasome as a crucial molecular factor contributing to host immunopathology. In this context, we have earlier shown that Candida albicans associated with hyphae-secreted aspartyl proteinases (specifically SAP4-6) contribute to the immunopathology of the disease. Transcriptome profiling has revealed that non-coding transcripts regulate protein synthesis post-transcriptionally, which is important for the growth of Candida spp. Other studies have employed RNA sequencing to identify differences in the 1,245 Candida genes involved in surface and invasive cellular metabolism regulation. In vitro systems allow the simultaneous processing of a large number of samples, making them an ideal screening technique for estimating various physicochemical parameters, testing the activity of antimicrobial agents, and analyzing genes involved in biofilm formation and regulation (in situ) in specific strains. Murine VVC models are used to study C. albicans infection, especially in trials of novel treatments and to understand the cause(s) for resistance to conventional therapeutics. This review on the clinical relevance of Candida biofilms in VVC focuses on important advances in its genomics, transcriptomics, and proteomics. Moreover, recent experiments on the influence of biofilm formation on VVC or RVVC pathogenesis in laboratory animals have been discussed. A clear elucidation of one of the pathogenesis mechanisms employed by Candida biofilms in vulvovaginal candidiasis and its applications in clinical practice represents the most significant contribution of this manuscript.
Collapse
Affiliation(s)
- Carmen Rodríguez-Cerdeira
- Efficiency, Quality, and Costs in Health Services Research Group (EFISALUD), Health Research Institute, SERGAS-UVIGO, Vigo, Spain.,Department of Dermatology, Hospital do Meixoeiro and University of Vigo, Vigo, Spain.,European Women's Dermatologic and Venereologic Society, Tui, Spain.,Psychodermatology Task Force of the Ibero-Latin American College of Dermatology (CILAD), Buenos Aires, Argentina
| | - Erick Martínez-Herrera
- Psychodermatology Task Force of the Ibero-Latin American College of Dermatology (CILAD), Buenos Aires, Argentina.,Unidad de Investigación, Hospital Regional de Alta Especialidad de Ixtapaluca, Ixtapaluca, Mexico
| | - Miguel Carnero-Gregorio
- Efficiency, Quality, and Costs in Health Services Research Group (EFISALUD), Health Research Institute, SERGAS-UVIGO, Vigo, Spain.,Department of Molecular Diagnosis (Array & NGS Division), Institute of Cellular and Molecular Studies, Lugo, Spain
| | - Adriana López-Barcenas
- European Women's Dermatologic and Venereologic Society, Tui, Spain.,Psychodermatology Task Force of the Ibero-Latin American College of Dermatology (CILAD), Buenos Aires, Argentina.,Section of Mycology, Department of Dermatology, Manuel Gea González hospital, Mexico City, Mexico
| | - Gabriella Fabbrocini
- European Women's Dermatologic and Venereologic Society, Tui, Spain.,Department of Dermatology, University of Naples Federico II, Naples, Italy
| | - Monika Fida
- European Women's Dermatologic and Venereologic Society, Tui, Spain.,Department of Dermatology, University of Medicine, Tirana, Tirana, Albania
| | - May El-Samahy
- European Women's Dermatologic and Venereologic Society, Tui, Spain.,Department of Dermatology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - José Luís González-Cespón
- Efficiency, Quality, and Costs in Health Services Research Group (EFISALUD), Health Research Institute, SERGAS-UVIGO, Vigo, Spain
| |
Collapse
|
5
|
Morales Navarrete P, Yuan J. A Single-Layer PDMS Chamber for On-Chip Bacteria Culture. MICROMACHINES 2020; 11:E395. [PMID: 32290319 PMCID: PMC7231344 DOI: 10.3390/mi11040395] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/04/2020] [Accepted: 04/09/2020] [Indexed: 11/25/2022]
Abstract
On-chip cell culture devices have been actively developed for both mammalian cells and bacteria. Most designs are based on PDMS multi-layer microfluidic valves, which require complicated fabrication and operation. In this work, single-layer PDMS microfluidic valves are introduced in the design of an on-chip culture chamber for E. coli bacteria. To enable the constant flow of culturing medium, we have developed a (semi-)always-closed single-layer microfluidic valve. As a result, the growth chamber can culture bacteria over long duration. The device is applied for the whole-cell detection of heavy metal ions with genetically modified E. coli. The platform is tested with culturing period of 3 h. It is found to achieve a limit-of-detection (LoD) of 44.8 ppb for Cadmium ions.
Collapse
Affiliation(s)
- Pablo Morales Navarrete
- Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Jie Yuan
- Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Kowloon, Hong Kong
| |
Collapse
|
6
|
Srinivasan A, Ramasubramanian AK, Lopez-Ribot JL. Nano-biofilm Arrays as a Novel Universal Platform for Microscale Microbial Culture and High-Throughput Downstream Applications. Curr Med Chem 2019; 26:2529-2535. [PMID: 30621556 DOI: 10.2174/0929867326666190107155953] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 10/05/2018] [Accepted: 10/05/2018] [Indexed: 01/06/2023]
Abstract
Biofilms are the predominant mode of microbial growth and it is now fully accepted that a majority of infections in humans are associated with a biofilm etiology. Biofilms are defined as attached and structured microbial communities surrounded by a protective exopolymeric matrix. Importantly, sessile microorganisms growing within a biofilm are highly resistant to antimicrobial agents. Thus, there is an urgent need to develop new and improved anti-biofilm therapies. Unfortunately, most of the current techniques for in-vitro biofilm formation are not compatible with high throughput screening techniques that can speed up discovery of new drugs with anti-biofilm activity. To try to overcome this major impediment, our group has developed a novel technique consisting of micro-scale culture of microbial biofilms on a microarray platform. Using this technique, hundreds to thousands of microbial biofilms, each with a volume of approximately 30-50 nanolitres, can be simultaneously formed on a standard microscope slide. Despite more than three orders of magnitude of miniaturization over conventional biofilms, these nanobiofilms display similar growth, structural and phenotypic properties, including antibiotic drug resistance. These nanobiofilm chips are amenable to automation, drastically reducing assay volume and costs. This technique platform allows for true high-throughput screening in search for new anti-biofilm drugs.
Collapse
Affiliation(s)
| | - Anand K Ramasubramanian
- Department of Biomedical, Chemical and Materials Engineering, San José State University, San José, CA, 95192, United States
| | - José L Lopez-Ribot
- Department of Biology and South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, 78249, United States
| |
Collapse
|
7
|
Wall G, Montelongo-Jauregui D, Vidal Bonifacio B, Lopez-Ribot JL, Uppuluri P. Candida albicans biofilm growth and dispersal: contributions to pathogenesis. Curr Opin Microbiol 2019; 52:1-6. [PMID: 31085405 DOI: 10.1016/j.mib.2019.04.001] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 04/02/2019] [Indexed: 12/20/2022]
Abstract
The fungal species Candida albicans is most frequently associated with biofilm formation in immune-compromised and medically compromised patients, and it is now firmly established that biofilm formation represents a major virulence factor during candidiasis. A growing body of evidence has demonstrated that C. albicans biofilm development is a highly regulated and coordinated process, where adhesive interactions, morphogenetic conversions, and consortial behavior play significant roles. Cells within the biofilms are protected from environmental stresses including host immune defenses and antifungal treatment, which carries important clinical consequences for the treatment of biofilm-associated infections. Dispersal of cells from biofilms represents one of the hallmarks of the biofilm life-style, and in the case of C. albicans dispersed cells are responsible for candidemia and dissemination leading to the establishment of invasive disease.
Collapse
Affiliation(s)
- Gina Wall
- Department of Biology and South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Daniel Montelongo-Jauregui
- Department of Biology and South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Bruna Vidal Bonifacio
- Department of Biology and South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Jose L Lopez-Ribot
- Department of Biology and South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX 78249, USA.
| | - Priya Uppuluri
- Division of Infectious Diseases, Los Angeles Biomedical Research Institute, Harbor-UCLA Medical Center, Torrance, CA, 90509, USA.
| |
Collapse
|
8
|
Tahir T, Ashfaq M, Asghar H, Shahzad MI, Tabassum R, Ashfaq A. Medicinal Importance of Azo and Hippuric Acid Derivatives. Mini Rev Med Chem 2019; 19:708-719. [DOI: 10.2174/1389557518666180727162018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 04/11/2018] [Accepted: 06/21/2018] [Indexed: 11/22/2022]
Abstract
In this review, specific therapeutic and medicinal advantages including antiviral, antibacterial,
antifungal and antitumor, strategies for drug designing, structure-activity relationship, advances in
the syntheses of azo and hippuric acid derivatives of more than 50 compounds have been discussed
since 2009-2018. It is found that phenyl-diazenyl azo derivatives and pyridinyl substituted hippuric acid
derivatives showed promising antiretroviral potential. The incorporation of azo functionality to the
respective quinolones and coumarin moieties and the insertion of thiocarbazone to hippuric acid displayed
immense antibacterial activities. While, azo and hippuric acid derivatives of triazole and phenyl
species gave maximum fungicidal as well as cytotoxic activities.
Collapse
Affiliation(s)
- Tehreem Tahir
- Department of Biochemistry and Biotechnology, Faculty of Science, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Ashfaq
- Department of Biochemistry and Biotechnology, Faculty of Science, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Humna Asghar
- Department of Biochemistry and Biotechnology, Faculty of Science, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Mirza I. Shahzad
- University College of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Rukhsana Tabassum
- Department of Chemistry, Faculty of Science, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Areeba Ashfaq
- Bahawal Victoria Hospital, Bahawalpur 63100, Pakistan
| |
Collapse
|
9
|
Rodríguez-Cerdeira C, Gregorio MC, Molares-Vila A, López-Barcenas A, Fabbrocini G, Bardhi B, Sinani A, Sánchez-Blanco E, Arenas-Guzmán R, Hernandez-Castro R. Biofilms and vulvovaginal candidiasis. Colloids Surf B Biointerfaces 2018; 174:110-125. [PMID: 30447520 DOI: 10.1016/j.colsurfb.2018.11.011] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 11/04/2018] [Accepted: 11/05/2018] [Indexed: 01/18/2023]
Abstract
Candida species, including C. albicans, are part of the mucosal flora of most healthy women, and inhabit the gastrointestinal and genitourinary tracts. Under favourable conditions, they can colonize the vulvovaginal mucosa, giving rise to symptomatic vulvovaginal candidiasis (VVC). The mechanism by which Candida spp. produces inflammation is unknown. Both, the blastoconidia and the pseudohyphae are capable of destroying the vaginal epithelium by direct invasion. Although the symptoms are not always related to the fungal burden, in general, VVC is associated with a greater number of yeasts and pseudohyphae. Some years ago, C. albicans was the species most frequently involved in the different forms of VVC. However, infections by different species have emerged during the last two decades producing an increase in causative species of VVC such as C. glabrata, C. parapsilosis, C. krusei and C. tropicalis. Candida species are pathogenic organisms that have two forms of development: planktonic and biofilm. A biofilm is defined as a community of microorganisms attached to a surface and encompassed by an extracellular matrix. This form of presentation gives microorganisms greater resistance to antifungal agents. This review, about Candia spp. with a special emphasis on Candida albicans discusses specific areas such as biofilm structure and development, cell morphology and biofilm formation, biofilm-associated gene expression, the cell surface and adherence, the extracellular matrix, biofilm metabolism, and biofilm drug resistance in vulvovaginitis biofilms as an important virulence factor in fungi.
Collapse
Affiliation(s)
- Carmen Rodríguez-Cerdeira
- Efficiency, Quality and Costs in Health Services Research Group (EFISALUD), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Spain; Dermatology Department, Hospital do Meixoeiro and University of Vigo, Vigo, Spain; European Women's Dermatologic and Venereologic Society (EWDVS), Vigo, Spain.
| | - Miguel Carnero Gregorio
- Efficiency, Quality and Costs in Health Services Research Group (EFISALUD), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Spain; Department of Biochemistry, Genetics and Immunology, University of Vigo, Vigo, Spain
| | - Alberto Molares-Vila
- Efficiency, Quality and Costs in Health Services Research Group (EFISALUD), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Spain; Department of Department of Analytical & Food Chemistry, Universidade de Vigo (UVIGO), Spain
| | - Adriana López-Barcenas
- Efficiency, Quality and Costs in Health Services Research Group (EFISALUD), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Spain; Mycology Service, Hospital Manuel Gea González, Mexico City, Mexico
| | | | | | - Ardiana Sinani
- Dermatology Service, Military Medical Unit, University Trauma Hospital, Tirana, Albania
| | | | | | | |
Collapse
|
10
|
|
11
|
Kim JJ, Reátegui E, Hopke A, Jalali F, Roushan M, Doyle PS, Irimia D. Large-scale patterning of living colloids for dynamic studies of neutrophil-microbe interactions. LAB ON A CHIP 2018; 18:1514-1520. [PMID: 29770423 PMCID: PMC5995581 DOI: 10.1039/c8lc00228b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Neutrophils are the first white blood cells to respond to microbes and to limit their invasion of the body. However, the growth of the microbes into colonies often challenges the neutrophils ability to contain them. To study the interactions between neutrophils and microbial colonies, we designed an assay for arranging microbes in clusters of controlled size (i.e. living colloids). The patterned microbes in the living colloid are mechanically trapped inside the wells and fully accessible to neutrophils. Using the assay, we studied the interactions between human neutrophils and Candida albicans and Staphylococcus aureus, two common human pathogens. We also probed the susceptibility of C. albicans colloids to caspofungin, a common antifungal drug.
Collapse
Affiliation(s)
- Jae Jung Kim
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | | | | | | | | | | | | |
Collapse
|
12
|
Srinivasan A, Lee GC, Torres NS, Hernandez K, Dallas SD, Lopez-Ribot J, Frei CR, Ramasubramanian AK. High-throughput microarray for antimicrobial susceptibility testing. ACTA ACUST UNITED AC 2017; 16:44-47. [PMID: 29167758 PMCID: PMC5686425 DOI: 10.1016/j.btre.2017.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 10/20/2017] [Accepted: 10/30/2017] [Indexed: 12/03/2022]
Abstract
Developed a high-throughput microarray for anti-microbial susceptibility testing (AST). Demonstrated that the feasibility of the AST against clinical isolates of MRSA. Platform is a low sample volume, rapid, high-throughput alternative to traditional assays.
We describe the development of a novel, high-throughput, nano-scale microarray platform for antimicrobial susceptibility testing (AST). The platform allows to process 480 samples at 50 nL volume on a single chip, analyze by fluorescence read-out with an easy dunk-and-rinse step, and the ability to process multiple samples and chips simultaneously. We demonstrate the applicability of this chip for culturing community acquired methicillin resistant Staphylococcus aureus (CA-MRSA), and perform AST against clinical isolates of CA-MRSA. The chip platform holds promise for an impact in microbial biotechnology as an attractive high-throughput, lower sample volume and quicker alternative to conventional AST such as the traditional broth microdilution or the newer automated systems.
Collapse
Affiliation(s)
- Anand Srinivasan
- Department of Biomedical Engineering, The University of Texas at San Antonio, San Antonio, TX, 78249, United States
- BioBridge Global LLC, San Antonio, TX, 78201, United States
| | - Grace C. Lee
- College of Pharmacy, The University of Texas at Austin, Austin, TX, 78712, United States
- Department of Pathology, School of Medicine, The University of Texas Health Science Center, San Antonio, TX, 78229, United States
| | - Nelson S. Torres
- Department of Biomedical Engineering, The University of Texas at San Antonio, San Antonio, TX, 78249, United States
| | - Kevin Hernandez
- Department of Biomedical, Chemical and Materials Engineering, San José State University, San José, CA, 95192, United States
| | - Steven D. Dallas
- Department of Pathology, School of Medicine, The University of Texas Health Science Center, San Antonio, TX, 78229, United States
| | - Jose Lopez-Ribot
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, 78249, United States
| | - Christopher R. Frei
- College of Pharmacy, The University of Texas at Austin, Austin, TX, 78712, United States
- Department of Pathology, School of Medicine, The University of Texas Health Science Center, San Antonio, TX, 78229, United States
| | - Anand K. Ramasubramanian
- Department of Biomedical, Chemical and Materials Engineering, San José State University, San José, CA, 95192, United States
- Corresponding author at: Department of Biomedical, Chemical & Materials Engineering, San José State University, San José, United States.Department of BiomedicalChemical and Materials EngineeringSan José State UniversitySan JoséCA95192United States
| |
Collapse
|
13
|
Protocol for Identifying Natural Agents That Selectively Affect Adhesion, Thickness, Architecture, Cellular Phenotypes, Extracellular Matrix, and Human White Blood Cell Impenetrability of Candida albicans Biofilms. Antimicrob Agents Chemother 2017; 61:AAC.01319-17. [PMID: 28893778 DOI: 10.1128/aac.01319-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 09/04/2017] [Indexed: 11/20/2022] Open
Abstract
In the screening of natural plant extracts for antifungal activity, assessment of their effects on the growth of cells in suspension or in the wells of microtiter plates is expedient. However, microorganisms, including Candida albicans, grow in nature as biofilms, which are organized cellular communities with a complex architecture capable of conditioning their microenvironment, communicating, and excluding low- and high-molecular-weight molecules and white blood cells. Here, a confocal laser scanning microscopy (CLSM) protocol for testing the effects of large numbers of agents on biofilm development is described. The protocol assessed nine parameters from a single z-stack series of CLSM scans for each individual biofilm analyzed. The parameters included adhesion, thickness, formation of a basal yeast cell polylayer, hypha formation, the vertical orientation of hyphae, the hyphal bend point, pseudohypha formation, calcofluor white staining of the extracellular matrix (ECM), and human white blood cell impenetrability. The protocol was applied first to five plant extracts and derivative compounds and then to a collection of 88 previously untested plant extracts. They were found to cause a variety of phenotypic profiles, as was the case for 64 of the 88 extracts (73%). Half of the 46 extracts that did not affect biofilm thickness affected other biofilm parameters. Correlations between specific effects were revealed. The protocol will be useful not only in the screening of chemical libraries but also in the analysis of compounds with known effects and mutations.
Collapse
|
14
|
nBioChip, a Lab-on-a-Chip Platform of Mono- and Polymicrobial Biofilms for High-Throughput Downstream Applications. mSphere 2017; 2:mSphere00247-17. [PMID: 28680970 PMCID: PMC5489659 DOI: 10.1128/msphere.00247-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 06/08/2017] [Indexed: 12/13/2022] Open
Abstract
With an estimated 80% of infections being associated with a biofilm mode of growth and the ensuing recalcitrance of these biofilms with respect to conventional antibiotic treatment leading to high mortality rates, there is a dire and unmet need for the development of novel approaches to prevent, treat, and control these infections. Both bacteria and fungi are capable of forming biofilms that are inherently fragile and often polymicrobial in nature, which further complicates treatment. In this work, we showcase a nanobiofilm chip as a convenient platform for culturing several hundreds of mono- or polymicrobial biofilms and for susceptibility testing. This platform enables true ultra-high-throughput screening for antimicrobial drug discovery or diagnostics or for addressing fundamental issues in microbiology. Current in vitro techniques for the culture of microorganisms, and particularly of delicate microbial biofilms, are still mostly limited to low-density plates and manual labor and are not amenable to automation and true high-throughput (HT) applications. We have developed a novel fully automated platform for the formation of mono- and polymicrobial biofilms of Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans at the nanoscale level. The nBioChip is robotically printed, robustly handled, and scanned using a standard microarray reader. Using this technique, hundreds to thousands of identical nanobiofilms encapsulated in hydrogel spots were cultured on microscope slides. The spots can withstand the washing steps involved in screening assays. The miniaturized biofilms demonstrated characteristics similar to those displayed by conventionally formed macroscopic biofilms, including (i) three-dimensional architectural features, (ii) synthesis of exopolymeric matrix material, and (iii) elevated resistance to antibiotic treatment. On the basis of our results, the nBioChip can generate reliable high-throughput antimicrobial susceptibility testing (HT-AST) in 12 to 18 h. The chip serves as a proof-of-concept universal platform for high-throughput drug screening and other downstream applications and furthers understanding of microbial interactions in mixed-species communities at the nanoscale level. IMPORTANCE With an estimated 80% of infections being associated with a biofilm mode of growth and the ensuing recalcitrance of these biofilms with respect to conventional antibiotic treatment leading to high mortality rates, there is a dire and unmet need for the development of novel approaches to prevent, treat, and control these infections. Both bacteria and fungi are capable of forming biofilms that are inherently fragile and often polymicrobial in nature, which further complicates treatment. In this work, we showcase a nanobiofilm chip as a convenient platform for culturing several hundreds of mono- or polymicrobial biofilms and for susceptibility testing. This platform enables true ultra-high-throughput screening for antimicrobial drug discovery or diagnostics or for addressing fundamental issues in microbiology.
Collapse
|
15
|
Abstract
The high incidence and mortality of invasive fungal infections and serious drug resistance have become a global public health issue. The ability of fungal cells to form biofilms is an important reason for the emergence of severe resistance to most clinically available antifungal agents. Targeting fungal biofilm formation by small molecules represents a promising new strategy for the development of novel antifungal agents. This perspective will provide a comprehensive review of fungal biofilm inhibitors. In particular, discovery strategies, chemical structures, antibiofilm/antifungal activities, and structure-activity relationship studies will be discussed. Development of inhibitors to treat biofilm-related resistant fungal infections is a new yet clinically unexploited paradigm, and there is still a long way to go to clinical application. Better understanding of fungal biofilms in combination with systematic drug discovery efforts will pave the way for potential clinical applications.
Collapse
Affiliation(s)
- Shanchao Wu
- School of Pharmacy, Second Military Medical University , 325 Guohe Road, Shanghai 200433, People's Republic of China
| | - Yan Wang
- School of Pharmacy, Second Military Medical University , 325 Guohe Road, Shanghai 200433, People's Republic of China
| | - Na Liu
- School of Pharmacy, Second Military Medical University , 325 Guohe Road, Shanghai 200433, People's Republic of China
| | - Guoqiang Dong
- School of Pharmacy, Second Military Medical University , 325 Guohe Road, Shanghai 200433, People's Republic of China
| | - Chunquan Sheng
- School of Pharmacy, Second Military Medical University , 325 Guohe Road, Shanghai 200433, People's Republic of China
| |
Collapse
|
16
|
Hu Y, Xiong LL, Zhang P, Wang TH. Microarray expression profiles of genes in lung tissues of rats subjected to focal cerebral ischemia-induced lung injury following bone marrow-derived mesenchymal stem cell transplantation. Int J Mol Med 2016; 39:57-70. [PMID: 27922691 PMCID: PMC5179184 DOI: 10.3892/ijmm.2016.2819] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 11/21/2016] [Indexed: 02/05/2023] Open
Abstract
Ischemia-induced stroke is the most common disease of the nervous system and is associated with a high mortality rate worldwide. Cerebral ischemia may lead to remote organ dysfunction, particular in the lungs, resulting in lung injury. Nowadays, bone marrow-derived mesenchymal stem cells (BMSCs) are widely studied in clinical trials as they may provide an effective solution to the treatment of neurological and cardiac diseases; however, the underlying molecular mechanisms remain unknown. In this study, a model of permanent focal cerebral ischemia-induced lung injury was successfully established and confirmed by neurological evaluation and lung injury scores. We demonstrated that the transplantation of BMSCs (passage 3) via the tail vein into the lung tissues attenuated lung injury. In order to elucidate the underlying molecular mechanisms, we analyzed the gene expression profiles in lung tissues from the rats with focal cerebral ischemia and transplanted with BMSCs using a Gene microarray. Moreover, the Gene Ontology database was employed to determine gene function. We found that the phosphoinositide 3-kinase (PI3K)-AKT signaling pathway, transforming growth factor-β (TGF-β) and platelet-derived growth factor (PDGF) were downregulated in the BMSC transplantation groups, compared with the control group. These results suggested that BMSC transplantation may attenuate lung injury following focal cerebral ischemia and that this effect is associated with the downregulation of TGF-β, PDGF and the PI3K-AKT pathway.
Collapse
Affiliation(s)
- Yue Hu
- Department of Anesthesiology, Institute of Neurological Disease, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Liu-Lin Xiong
- Department of Anesthesiology, Institute of Neurological Disease, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Piao Zhang
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan 650031, P.R. China
| | - Ting-Hua Wang
- Department of Anesthesiology, Institute of Neurological Disease, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
17
|
Abstract
Candida albicans, the most pervasive fungal pathogen that colonizes humans, forms biofilms that are architecturally complex. They consist of a basal yeast cell polylayer and an upper region of hyphae encapsulated in extracellular matrix. However, biofilms formed in vitro vary as a result of the different conditions employed in models, the methods used to assess biofilm formation, strain differences, and, in a most dramatic fashion, the configuration of the mating type locus (MTL). Therefore, integrating data from different studies can lead to problems of interpretation if such variability is not taken into account. Here we review the conditions and factors that cause biofilm variation, with the goal of engendering awareness that more attention must be paid to the strains employed, the methods used to assess biofilm development, every aspect of the model employed, and the configuration of the MTL locus. We end by posing a set of questions that may be asked in comparing the results of different studies and developing protocols for new ones. This review should engender the notion that not all biofilms are created equal.
Collapse
Affiliation(s)
- David R Soll
- Developmental Studies Hybridoma Bank, Department of Biology, The University of Iowa, Iowa City, Iowa, USA
| | - Karla J Daniels
- Developmental Studies Hybridoma Bank, Department of Biology, The University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
18
|
Abstract
Fungal infections constitute a major threat to an escalating number of critically ill patients. Fungi are eukaryotic organisms and, as such, there is a limited armamentarium of antifungal drugs, which leads to high mortality rates. Moreover, fungal infections are often associated with the formation of biofilms, which contribute to virulence and further complicate treatment due to the high level of antifungal drug resistance displayed by sessile cells within these microbial communities. Thus, the treatment of fungal infections associated with a biofilm etiology represents a formidable and unmet clinical challenge. The increasing importance and awareness of fungal biofilms is reflected by the fact that this is now an area of very active research. Studies in the last decade have provided important insights into fungal biofilm biology, physiology, and pathology, as well as into the molecular basis of biofilm resistance. Here we discuss how this accumulated knowledge may inform the development of new antibiofilm strategies and therapeutics that are urgently needed.
Collapse
|
19
|
Stipetic LH, Dalby MJ, Davies RL, Morton FR, Ramage G, Burgess KEV. A novel metabolomic approach used for the comparison of Staphylococcus aureus planktonic cells and biofilm samples. Metabolomics 2016; 12:75. [PMID: 27013931 PMCID: PMC4783440 DOI: 10.1007/s11306-016-1002-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 01/16/2016] [Indexed: 10/25/2022]
Abstract
INTRODUCTION Bacterial cell characteristics change significantly during differentiation between planktonic and biofilm states. While established methods exist to detect and identify transcriptional and proteomic changes, metabolic fluctuations that distinguish these developmental stages have been less amenable to investigation. OBJECTIVES The objectives of the study were to develop a robust reproducible sample preparation methodology for high throughput biofilm analysis and to determine differences between Staphylococcus aureus in planktonic and biofilm states. METHODS The method uses bead beating in a chloroform/methanol/water extraction solvent to both disrupt cells and quench metabolism. Verification of the method was performed using liquid-chromatography-mass spectrometry. Raw mass-spectrometry data was analysed using an in-house bioinformatics pipe-line incorporating XCMS, MzMatch and in-house R-scripts, with identifications matched to internal standards and metabolite data-base entries. RESULTS We have demonstrated a novel mechanical bead beating method that has been optimised for the extraction of the metabolome from cells of a clinical Staphylococcus aureus strain existing in a planktonic or biofilm state. This high-throughput method is fast and reproducible, allowing for direct comparison between different bacterial growth states. Significant changes in arginine biosynthesis were identified between the two cell populations. CONCLUSIONS The method described herein represents a valuable tool in studying microbial biochemistry at a molecular level. While the methodology is generally applicable to the lysis and extraction of metabolites from Gram positive bacteria, it is particularly applicable to biofilms. Bacteria that exist as a biofilm are shown to be highly distinct metabolically from their 'free living' counterparts, thus highlighting the need to study microbes in different growth states. Metabolomics can successfully distinguish between a planktonic and biofilm growth state. Importantly, this study design, incorporating metabolomics, could be optimised for studying the effects of antimicrobials and drug modes of action, potentially providing explanations and mechanisms of antibiotic resistance and to help devise new antimicrobials.
Collapse
Affiliation(s)
- Laurence H. Stipetic
- />Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, The University of Glasgow, Glasgow, UK
- />Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, The University of Glasgow, Garscube Estate, Bearsden, Scotland G61 1QH UK
| | - Matthew J. Dalby
- />Institute of Molecular Cell and Systems Biology, The University of Glasgow, Glasgow, UK
| | - Robert L. Davies
- />Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, The University of Glasgow, Glasgow, UK
| | - Fraser R. Morton
- />Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, The University of Glasgow, Garscube Estate, Bearsden, Scotland G61 1QH UK
| | - Gordon Ramage
- />Infection and Immunity Research Group, Glasgow Dental School, School of Medicine, College of Medical, Veterinary and Life Sciences, The University of Glasgow, Glasgow, UK
| | - Karl E. V. Burgess
- />Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, The University of Glasgow, Glasgow, UK
- />Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, The University of Glasgow, Garscube Estate, Bearsden, Scotland G61 1QH UK
| |
Collapse
|
20
|
Cairns TC, Studholme DJ, Talbot NJ, Haynes K. New and Improved Techniques for the Study of Pathogenic Fungi. Trends Microbiol 2015; 24:35-50. [PMID: 26549580 DOI: 10.1016/j.tim.2015.09.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 09/29/2015] [Accepted: 09/30/2015] [Indexed: 02/05/2023]
Abstract
Fungal pathogens pose serious threats to human, plant, and ecosystem health. Improved diagnostics and antifungal strategies are therefore urgently required. Here, we review recent developments in online bioinformatic tools and associated interactive data archives, which enable sophisticated comparative genomics and functional analysis of fungal pathogens in silico. Additionally, we highlight cutting-edge experimental techniques, including conditional expression systems, recyclable markers, RNA interference, genome editing, compound screens, infection models, and robotic automation, which are promising to revolutionize the study of both human and plant pathogenic fungi. These novel techniques will allow vital knowledge gaps to be addressed with regard to the evolution of virulence, host-pathogen interactions and antifungal drug therapies in both the clinic and agriculture. This, in turn, will enable delivery of improved diagnosis and durable disease-control strategies.
Collapse
Affiliation(s)
- Timothy C Cairns
- Institut für Biotechnologie, Technische Universität Berlin, Gustav-Meyer Allee 22, Berlin, Germany.
| | | | | | - Ken Haynes
- Biosciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| |
Collapse
|
21
|
Srinivasan A, Lopez-Ribot JL, Ramasubramanian AK. Microscale microbial culture. Future Microbiol 2015; 10:143-6. [PMID: 25689525 DOI: 10.2217/fmb.14.129] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Anand Srinivasan
- Department of Biomedical Engineering, The University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX 78249, USA
| | | | | |
Collapse
|
22
|
Pierce CG, Chaturvedi AK, Lazzell AL, Powell AT, Saville SP, McHardy SF, Lopez-Ribot JL. A Novel Small Molecule Inhibitor of Candida albicans Biofilm Formation, Filamentation and Virulence with Low Potential for the Development of Resistance. NPJ Biofilms Microbiomes 2015; 1. [PMID: 26691764 PMCID: PMC4681527 DOI: 10.1038/npjbiofilms.2015.12] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND/OBJECTIVES Candida albicans is the principal causative agent of candidiasis, the most common fungal infection in humans. Candidiasis represents the third-to-fourth most frequent nosocomial infection worldwide, as this normal commensal of humans causes opportunistic infections in an expanding population of immune- and medically-compromised patients. These infections are frequently associated with biofilm formation, which complicates treatment and contributes to unacceptably high mortality rates. METHODS To address the pressing need for new antifungals we have performed a high content screen of 20,000 small molecules in a chemical library (NOVACore™) to identify compounds that inhibit C. albicans biofilm formation, and conducted a series of follow-up studies to examine the in vitro and in vivo activity of the identified compounds. RESULTS The screen identified a novel series of diazaspiro-decane structural analogs which were largely represented among the bioactive compounds. Characterization of the leading compound from this series indicated that it inhibits processes associated with C. albicans virulence, most notably biofilm formation and filamentation, without having an effect on overall growth or eliciting resistance. This compound demonstrated in vivo activity in clinically-relevant murine models of both invasive and oral candidiasis and as such represents a promising lead for antifungal drug development. Furthermore, these results provide proof of concept for the implementation of anti-virulence approaches against C. albicans and other fungal infections that would be less likely to foster the emergence of resistance.
Collapse
Affiliation(s)
- Christopher G Pierce
- Department of Biology and South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX 78249, United States of America
| | - Ashok K Chaturvedi
- Department of Biology and South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX 78249, United States of America
| | - Anna L Lazzell
- Department of Biology and South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX 78249, United States of America
| | - Alexander T Powell
- Department of Biology and South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX 78249, United States of America
| | - Stephen P Saville
- Department of Biology and South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX 78249, United States of America
| | - Stanton F McHardy
- Department of Chemistry and Center for Innovation in Drug Discovery, The University of Texas at San Antonio, San Antonio, TX 78249, United States of America
| | - Jose L Lopez-Ribot
- Department of Biology and South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX 78249, United States of America
| |
Collapse
|
23
|
De Cremer K, Staes I, Delattin N, Cammue BPA, Thevissen K, De Brucker K. Combinatorial drug approaches to tackleCandida albicansbiofilms. Expert Rev Anti Infect Ther 2015; 13:973-84. [DOI: 10.1586/14787210.2015.1056162] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
24
|
Abstract
Fungal infections have become one of the major causes of morbidity and mortality in immunocompromised patients. Despite increased awareness and improved treatment strategies, the frequent development of resistance to the antifungal drugs used in clinical settings contributes to the increasing toll of mycoses. Although a natural phenomenon, antifungal drug resistance can compromise advances in the development of effective diagnostic techniques and novel antifungals. In this review, we will discuss the advent of cellular-micro- arrays, microfluidics, genomics, proteomics and other state-of-the art technologies in conquering antifungal drug resistance.
Collapse
|
25
|
Desai JV, Mitchell AP, Andes DR. Fungal biofilms, drug resistance, and recurrent infection. Cold Spring Harb Perspect Med 2014; 4:4/10/a019729. [PMID: 25274758 DOI: 10.1101/cshperspect.a019729] [Citation(s) in RCA: 165] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
A biofilm is a surface-associated microbial community. Diverse fungi are capable of biofilm growth. The significance of this growth form for infection biology is that biofilm formation on implanted devices is a major cause of recurrent infection. Biofilms also have limited drug susceptibility, making device-associated infection extremely difficult to treat. Biofilm-like growth can occur during many kinds of infection, even when an implanted device is not present. Here we summarize the current understanding of fungal biofilm formation, its genetic control, and the basis for biofilm drug resistance.
Collapse
Affiliation(s)
- Jigar V Desai
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| | - Aaron P Mitchell
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| | - David R Andes
- Department of Medicine, University of Wisconsin, Madison, Wisconsin 53705
| |
Collapse
|
26
|
Favre-Godal Q, Dorsaz S, Queiroz EF, Conan C, Marcourt L, Wardojo BPE, Voinesco F, Buchwalder A, Gindro K, Sanglard D, Wolfender JL. Comprehensive approach for the detection of antifungal compounds using a susceptible strain of Candida albicans and confirmation of in vivo activity with the Galleria mellonella model. PHYTOCHEMISTRY 2014; 105:68-78. [PMID: 24984572 DOI: 10.1016/j.phytochem.2014.06.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 05/14/2014] [Accepted: 06/06/2014] [Indexed: 06/03/2023]
Abstract
An efficient screening strategy for the identification of potentially interesting low-abundance antifungal natural products in crude extracts that combines both a sensitive bioautography assay and high performance liquid chromatography (HPLC) microfractionation was developed. This method relies on high performance thin layer chromatography (HPTLC) bioautography with a hypersusceptible engineered strain of Candida albicans (DSY2621) for bioactivity detection, followed by the evaluation of wild type strains in standard microdilution antifungal assays. Active extracts were microfractionated by HPLC in 96-well plates, and the fractions were subsequently submitted to the bioassay. This procedure enabled precise localisation of the antifungal compounds directly in the HPLC chromatograms of the crude extracts. HPLC-PDA-mass spectrometry (MS) data obtained in parallel to the HPLC antifungal profiles provided a first chemical screening about the bioactive constituents. Transposition of the HPLC analytical conditions to medium-pressure liquid chromatography (MPLC) allowed the efficient isolation of the active constituents in mg amounts for structure confirmation and more extensive characterisation of their biological activities. The antifungal properties of the isolated natural products were evaluated by their minimum inhibitory concentration (MIC) in a dilution assay against both wild type and engineered strains of C. albicans. The biological activity of the most promising agents was further evaluated in vitro by electron microscopy and in vivo in a Galleria mellonella model of C. albicans infection. The overall procedure represents a rational and comprehensive means of evaluating antifungal activity from various perspectives for the selection of initial hits that can be explored in more in-depth mode-of-action studies. This strategy is illustrated by the identification and bioactivity evaluation of a series of antifungal compounds from the methanolic extract of a Rubiaceae plant, Morinda tomentosa, which was used as a model in these studies.
Collapse
Affiliation(s)
- Quentin Favre-Godal
- School of Pharmaceutical Sciences, EPGL, University of Geneva, University of Lausanne, 30 quai Ernest-Ansermet, CH-1211 Geneva 4, Switzerland
| | - Stéphane Dorsaz
- Institute of Microbiology, University of Lausanne and University Hospital Center, Lausanne, Switzerland
| | - Emerson Ferreira Queiroz
- School of Pharmaceutical Sciences, EPGL, University of Geneva, University of Lausanne, 30 quai Ernest-Ansermet, CH-1211 Geneva 4, Switzerland.
| | - Céline Conan
- School of Pharmaceutical Sciences, EPGL, University of Geneva, University of Lausanne, 30 quai Ernest-Ansermet, CH-1211 Geneva 4, Switzerland
| | - Laurence Marcourt
- School of Pharmaceutical Sciences, EPGL, University of Geneva, University of Lausanne, 30 quai Ernest-Ansermet, CH-1211 Geneva 4, Switzerland
| | | | - Francine Voinesco
- Swiss Federal Research Station Agroscope Changins Wädenswil ACW, Route de Duiller 50, P.O. Box 1012, 1260 Nyon, Switzerland
| | - Aurélie Buchwalder
- Swiss Federal Research Station Agroscope Changins Wädenswil ACW, Route de Duiller 50, P.O. Box 1012, 1260 Nyon, Switzerland
| | - Katia Gindro
- Swiss Federal Research Station Agroscope Changins Wädenswil ACW, Route de Duiller 50, P.O. Box 1012, 1260 Nyon, Switzerland
| | - Dominique Sanglard
- Institute of Microbiology, University of Lausanne and University Hospital Center, Lausanne, Switzerland
| | - Jean-Luc Wolfender
- School of Pharmaceutical Sciences, EPGL, University of Geneva, University of Lausanne, 30 quai Ernest-Ansermet, CH-1211 Geneva 4, Switzerland
| |
Collapse
|
27
|
Roemer T, Krysan DJ. Antifungal drug development: challenges, unmet clinical needs, and new approaches. Cold Spring Harb Perspect Med 2014; 4:a019703. [PMID: 24789878 PMCID: PMC3996373 DOI: 10.1101/cshperspect.a019703] [Citation(s) in RCA: 348] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Invasive, life-threatening fungal infections are an important cause of morbidity and mortality, particularly for patients with compromised immune function. The number of therapeutic options for the treatment of invasive fungal infections is quite limited when compared with those available to treat bacterial infections. Indeed, only three classes of molecules are currently used in clinical practice and only one new class of antifungal drugs has been developed in the last 30 years. Here we summarize the unmet clinical needs of current antifungal therapy, discuss challenges inherent to antifungal drug discovery and development, and review recent developments aimed at addressing some of these challenges.
Collapse
Affiliation(s)
- Terry Roemer
- Infectious Disease Research, Merck Research Laboratories, Kenilworth, New Jersey 07033
| | | |
Collapse
|
28
|
Transparency microplates under impact. J Colloid Interface Sci 2014; 426:56-63. [PMID: 24863765 DOI: 10.1016/j.jcis.2014.03.048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 03/17/2014] [Indexed: 10/25/2022]
Abstract
Transparency microplates enable biochemical analysis in resource-limited laboratories. During the process of transfer, the analytes tittered into the wells may undergo spillage from one well to another due to lateral impact. Sidelong impact tests conducted found the absence of non-linear effects (e.g., viscoelastic behavior) but high energy loss. Finite element simulations conducted showed that the rectangular plate holding the transparencies could undergo z-axis deflections when a normal component of the force was present despite constraints being used. High speed camera sequences confirmed this and also showed the asymmetrical z-axis deflection to cause the contact line closer to impact to displace first when the advancing condition was exceeded. Capillary waves were found to travel toward the contact line at the opposite end, where if the advancing contact angle condition was exceeded, also resulted in spreading. The presence of surface scribing was found to limit contact line movement better. With water drops dispensed on scribed transparencies, immunity from momentum change of up to 9.07 kgm/s on impact was possible for volumes of 40 μL. In the case of glycerol drops immunity from momentum change of up to 9.07 kgm/s on impact extended to volumes of 90 μL. The improved immunity of glycerol was attributed to its heightened dampening characteristics and its higher attenuation of capillary waves. Overall, scribed transparency microplates were able to better withstand spillage from accidental impact. Accidental impact was also found not to cause any detrimental effects on the fluorescence properties of enhanced green fluorescent protein samples tested.
Collapse
|
29
|
Srinivasan A, Gupta CM, Agrawal CM, Leung KP, Lopez-Ribot JL, Ramasubramanian AK. Drug susceptibility of matrix-encapsulated Candida albicans nano-biofilms. Biotechnol Bioeng 2013; 111:418-24. [PMID: 24114441 DOI: 10.1002/bit.25120] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 09/09/2013] [Accepted: 09/20/2013] [Indexed: 01/31/2023]
Abstract
The rise in the use of biomedical devices and implants has seen a concomitant surge in the advent of device-related nosocomial (hospital-acquired) infections of bacterial and fungal origins. The most common nosocomial fungal infection is candidiasis caused mainly by Candida albicans biofilms. Candidiasis is associated with an unacceptably high mortality rate, and there is an urgent need for the discovery of new antifungal drugs that prevent or control biofilm formation. To this end, we recently developed an ultra-high-throughput microarray platform consisting of nano-scale biofilms of C. albicans encapsulated in collagen or alginate hydrogel matrices for antifungal drug screening. Here, we report that the choice of matrix influences the apparent susceptibility of C. albicans to the common antifungal drugs, amphotericin B, and caspofungin. While amphotericin B is equally effective against biofilms grown in collagen and alginate matrices, caspofungin is effective only against biofilms grown only in alginate, but not in collagen. We demonstrate differences in the distribution of the drugs in the two matrices may contribute to the susceptibility of C. albicans nano-biofilms. In a larger context, our results highlight the importance of the choice of matrix as a parameter in 3D cell encapsulation, and suggest a screening strategy to predict drug performance in vivo.
Collapse
Affiliation(s)
- Anand Srinivasan
- Department of Biomedical Engineering, The University of Texas at San Antonio, San Antonio, Texas, 78249
| | | | | | | | | | | |
Collapse
|
30
|
Miniaturizing antifungal drug discovery. Nat Rev Microbiol 2013. [DOI: 10.1038/nrmicro3080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|