1
|
Ana Y, Gerngross D, Serrano L. Heterologous protein exposure and secretion optimization in Mycoplasma pneumoniae. Microb Cell Fact 2024; 23:306. [PMID: 39533283 PMCID: PMC11558893 DOI: 10.1186/s12934-024-02574-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
The non-pathogenic Mycoplasma pneumoniae engineered chassis (Mycochassis) has demonstrated the ability to express therapeutic molecules in vitro and to be effective for treatment of lung infectious diseases in in vivo mouse models. However, the expression of heterologous molecules, whether secreted or exposed on the bacterial membrane has not been optimized to ensure sufficient secretion and/or exposure levels to exert a maximum in vivo biological effect. Here, we have improved the currently used secretion signal from MPN142 protein. We found that mutations at P1' position of the signal peptide cleavage site do not abrogate secretion but affect it. Increasing hydrophobicity and mutations at the C-terminal of the signal peptide increases secretion. We tested different lipoprotein signal peptides as possible N-terminal protein anchoring motifs on the Mpn cell surface. Unexpectedly we found that these peptides exhibit variable retention and secretion rates of the protein, with some sequences behaving as full secretion motifs. This raises the question of the biological role of the lipobox motif traditionally thought to anchor membrane proteins without a helical transmembrane domain. These results altogether represent a step forward in chassis optimization, offering different sequences for secretion or membrane retention, which could be used to improve Mycochassis as a delivery vector, and broadening its therapeutic possibilities.
Collapse
Affiliation(s)
- Yamile Ana
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain
| | - Daniel Gerngross
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain
- Lab Automation Facility, Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Luis Serrano
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain.
- Universitat Pompeu Fabra (UPF), Barcelona, Spain.
- ICREA, Pg. Lluís Companys 23, Barcelona, 08010, Spain.
| |
Collapse
|
2
|
Gonzalez-de-Miguel J, Montero-Blay A, Ciampi L, Rodriguez-Arce I, Serrano L. Developing a platform for secretion of biomolecules in Mycoplasma feriruminatoris. Microb Cell Fact 2024; 23:124. [PMID: 38689251 PMCID: PMC11059754 DOI: 10.1186/s12934-024-02392-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Having a simple and fast dividing organism capable of producing and exposing at its surface or secreting functional complex biomolecules with disulphide bridges is of great interest. The mycoplasma bacterial genus offers a set of relevant properties that make it an interesting chassis for such purposes, the main one being the absence of a cell wall. However, due to their slow growth, they have rarely been considered as a potential platform in this respect. This notion may be challenged with the recent discovery of Mycoplasma feriruminatoris, a species with a dividing time close to that of common microbial workhorses. So far, no tools for heterologous protein expression nor secretion have been described for it. RESULTS The work presented here develops the fast-dividing M. feriruminatoris as a tool for secreting functional biomolecules of therapeutic interest that could be used for screening functional mutants as well as potentially for protein-protein interactions. Based on RNAseq, quantitative proteomics and promoter sequence comparison we have rationally designed optimal promoter sequences. Then, using in silico analysis, we have identified putative secretion signals that we validated using a luminescent reporter. The potential of the resulting secretion cassette has been shown with set of active clinically relevant proteins (interleukins and nanobodies). CONCLUSIONS We have engineered Mycoplasma feriruminatoris for producing and secreting functional proteins of medical interest.
Collapse
Affiliation(s)
- Javier Gonzalez-de-Miguel
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, Barcelona, 08003, Spain
| | - Ariadna Montero-Blay
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, Barcelona, 08003, Spain
- Orikine Bio, Dr Aiguader 88, Barcelona, 08003, Spain
| | - Ludovica Ciampi
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, Barcelona, 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Irene Rodriguez-Arce
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, Barcelona, 08003, Spain.
| | - Luis Serrano
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, Barcelona, 08003, Spain.
- Universitat Pompeu Fabra (UPF), Barcelona, Spain.
- ICREA, Pg. Lluis Companys 23, Barcelona, 08010, Spain.
| |
Collapse
|
3
|
Helminiak L, Mishra S, Keun Kim H. Pathogenicity and virulence of Rickettsia. Virulence 2022; 13:1752-1771. [PMID: 36208040 PMCID: PMC9553169 DOI: 10.1080/21505594.2022.2132047] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/16/2022] [Accepted: 09/29/2022] [Indexed: 12/24/2022] Open
Abstract
Rickettsiae include diverse Gram-negative microbial species that exhibit obligatory intracellular lifecycles between mammalian hosts and arthropod vectors. Human infections with arthropod-borne Rickettsia continue to cause significant morbidity and mortality as recent environmental changes foster the proliferation of arthropod vectors and increased exposure to humans. However, the technical difficulties in working with Rickettsia have delayed our progress in understanding the molecular mechanisms involved in rickettsial pathogenesis and disease transmission. Recent advances in developing genetic tools for Rickettsia have enabled investigators to identify virulence genes, uncover molecular functions, and characterize host responses to rickettsial determinants. Therefore, continued efforts to determine virulence genes and their biological functions will help us understand the underlying mechanisms associated with arthropod-borne rickettsioses.
Collapse
Affiliation(s)
| | | | - Hwan Keun Kim
- Center for Infectious Diseases, Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
4
|
Mayer J, Knuuti T, Baumgarten L, Menke E, Bischoff L, Bunk B, Biedendieck R. Construction and Application of a Plasmid-Based Signal Peptide Library for Improved Secretion of Recombinant Proteins with Priestia megaterium. Microorganisms 2022; 10:microorganisms10040777. [PMID: 35456829 PMCID: PMC9032162 DOI: 10.3390/microorganisms10040777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 02/04/2023] Open
Abstract
The secretion of recombinant proteins plays an important role in their economic production and purification. The secretion efficiency depends on the responsible signal peptide (SP) in combination with the target protein and the given host and cannot be predicted so far. Due to its high plasmid stability, the lack of alkaline extracellular proteases and only few contaminating extracellular host proteins, Priestia megaterium provides a promising alternative to common Bacillus species. For the development of an easy and fast cloning and screening system to identify the SP best suited to a distinct protein, a plasmid-based SP library containing all predicted 182 Sec-dependent SPs from P. megaterium was established. The splitting of the SPs into 10 groups of individual multi-SP plasmids (pMSPs) allows their grouped amplification and application in screening approaches. The functionality of the whole library was demonstrated by enhancing the amount of the already well-secreted α-amylase AmyE by 1.6-fold. The secretion of a novel penicillin G acylase, which remained as insoluble protein inside the cells, as its native SP is unsuitable for secretion in P. megaterium, could be enhanced even up to 29-fold. Overall, only around 170 recombinant P. megaterium clones based on 50 inserted SPs had to be screened to achieve sufficient amounts for further enzyme characterizations. Thus, this newly developed plasmid-based genetic tool applicable for P. megaterium and also other Bacillus species facilitates the identification of suitable SPs for secretion of recombinant proteins.
Collapse
Affiliation(s)
- Janine Mayer
- Institute of Microbiology and Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Rebenring 56, 38106 Braunschweig, Germany; (J.M.); (T.K.); (L.B.); (E.M.); (L.B.)
| | - Tobias Knuuti
- Institute of Microbiology and Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Rebenring 56, 38106 Braunschweig, Germany; (J.M.); (T.K.); (L.B.); (E.M.); (L.B.)
| | - Lisa Baumgarten
- Institute of Microbiology and Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Rebenring 56, 38106 Braunschweig, Germany; (J.M.); (T.K.); (L.B.); (E.M.); (L.B.)
| | - Elise Menke
- Institute of Microbiology and Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Rebenring 56, 38106 Braunschweig, Germany; (J.M.); (T.K.); (L.B.); (E.M.); (L.B.)
| | - Lena Bischoff
- Institute of Microbiology and Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Rebenring 56, 38106 Braunschweig, Germany; (J.M.); (T.K.); (L.B.); (E.M.); (L.B.)
| | - Boyke Bunk
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7, 38124 Braunschweig, Germany;
| | - Rebekka Biedendieck
- Institute of Microbiology and Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Rebenring 56, 38106 Braunschweig, Germany; (J.M.); (T.K.); (L.B.); (E.M.); (L.B.)
- Correspondence: ; Tel.: +49-531-391-55291
| |
Collapse
|
5
|
The Carbapenemase BKC-1 from Klebsiella pneumoniae Is Adapted for Translocation by Both the Tat and Sec Translocons. mBio 2021; 12:e0130221. [PMID: 34154411 PMCID: PMC8262980 DOI: 10.1128/mbio.01302-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The cell envelope of Gram-negative bacteria consists of two membranes surrounding the periplasm and peptidoglycan layer. β-Lactam antibiotics target the periplasmic penicillin-binding proteins that synthesize peptidoglycan, resulting in cell death. The primary means by which bacterial species resist the effects of β-lactam drugs is to populate the periplasmic space with β-lactamases. Resistance to β-lactam drugs is spread by lateral transfer of genes encoding β-lactamases from one species of bacteria to another. However, the resistance phenotype depends in turn on these “alien” protein sequences being recognized and exported across the cytoplasmic membrane by either the Sec or Tat protein translocation machinery of the new bacterial host. Here, we examine BKC-1, a carbapenemase from an unknown bacterial source that has been identified in a single clinical isolate of Klebsiella pneumoniae. BKC-1 was shown to be located in the periplasm, and functional in both K. pneumoniae and Escherichia coli. Sequence analysis revealed the presence of an unusual signal peptide with a twin arginine motif and a duplicated hydrophobic region. Biochemical assays showed this signal peptide directs BKC-1 for translocation by both Sec and Tat translocons. This is one of the few descriptions of a periplasmic protein that is functionally translocated by both export pathways in the same organism, and we suggest it represents a snapshot of evolution for a β-lactamase adapting to functionality in a new host.
Collapse
|
6
|
Jomori T, Matsuda K, Egami Y, Abe I, Takai A, Wakimoto T. Insights into phosphatase-activated chemical defense in a marine sponge holobiont. RSC Chem Biol 2021; 2:1600-1607. [PMID: 34977575 PMCID: PMC8637855 DOI: 10.1039/d1cb00163a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/04/2021] [Indexed: 11/30/2022] Open
Abstract
Marine sponges often contain potent cytotoxic compounds, which in turn evokes the principle question of how marine sponges avoid self-toxicity. In a marine sponge Discodermia calyx, the highly toxic calyculin A is detoxified by the phosphorylation, which is catalyzed by the phosphotransferase CalQ of a producer symbiont, “Candidatus Entotheonella” sp. Here we show the activating mechanism to dephosphorylate the stored phosphocalyculin A protoxin. The phosphatase specific to phosphocalyculin A is CalL, which is also encoded in the calyculin biosynthetic gene cluster. CalL represents a new clade and unprecedently coordinates the heteronuclear metals Cu and Zn. CalL is localized in the periplasmic space of the sponge symbiont, where it is ready for the on-demand production of calyculin A in response to sponge tissue disruption. The phosphatase that activates calyculin biogenesis in the sponge Discodermia calyx turned out to originate from the bacterial symbiont Entotheonella.![]()
Collapse
Affiliation(s)
- Takahiro Jomori
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Sapporo 060-0812, Japan
| | - Kenichi Matsuda
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Sapporo 060-0812, Japan
- Global Station for Biosurfaces and Drug Discovery, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Kita 12, Nishi 6, Sapporo 060-0812, Japan
| | - Yoko Egami
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Sapporo 060-0812, Japan
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Akira Takai
- Department of Physiology, Asahikawa Medical University, 1-1-1 Midorigaoka Higashi 2 jo, Asahikawa 078-8510, Japan
| | - Toshiyuki Wakimoto
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Sapporo 060-0812, Japan
- Global Station for Biosurfaces and Drug Discovery, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Kita 12, Nishi 6, Sapporo 060-0812, Japan
| |
Collapse
|
7
|
Forrest S, Welch M. Arming the troops: Post-translational modification of extracellular bacterial proteins. Sci Prog 2020; 103:36850420964317. [PMID: 33148128 PMCID: PMC10450907 DOI: 10.1177/0036850420964317] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Protein secretion is almost universally employed by bacteria. Some proteins are retained on the cell surface, whereas others are released into the extracellular milieu, often playing a key role in virulence. In this review, we discuss the diverse types and potential functions of post-translational modifications (PTMs) occurring to extracellular bacterial proteins.
Collapse
Affiliation(s)
- Suzanne Forrest
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Martin Welch
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
8
|
Direct detection of intact Klebsiella pneumoniae carbapenemase variants from cell lysates: Identification, characterization and clinical implications. CLINICAL MASS SPECTROMETRY 2020; 17:12-21. [PMID: 34820520 DOI: 10.1016/j.clinms.2020.07.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 06/29/2020] [Accepted: 07/03/2020] [Indexed: 12/20/2022]
Abstract
Introduction Carbapenemase-producing organisms (CPOs) are a growing threat to human health. Among the enzymes conferring antibiotic resistance produced by these organisms, Klebsiella pneumoniae carbapenemase (KPC) is considered to be a growing global health threat. Reliable and specific detection of this antibiotic resistance-causing enzyme is critical both for effective therapy and to mitigate further spread. Objectives The objective of this study is to develop an intact protein mass spectrometry-based method for detection and differentiation of clinically-relevant KPC variants directly from bacterial cell lysates. The method should be specific for any variant expressed in multiple bacterial species, limit false positive results and be rapid in nature to directly influence clinical outcomes. Methods Lysates obtained directly from bacterial colonies were used for intact protein detection using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). Bottom-up and top-down proteomic methods were used to characterize the KPC protein targets of interest. Comparisons between KPC-producing and KPC-non-producing isolates from a wide variety of species were also performed. Results Characterization of the mature KPC protein revealed an unexpected signal peptide cleavage site preceding an AXA signal peptide motif, modifying the molecular weight (MW) of the mature protein. Taking the additional AXA residues into account allowed for direct detection of the intact protein using top-down proteomic methods. Further validation was performed by transforming a KPC-harboring plasmid into a negative control strain, followed by MS detection of the KPC variant from the transformed cell line. Application of this approach to clearly identify clinically-relevant variants among several species is presented for KPC-2, KPC-3, KPC-4 and KPC-5. Conclusion Direct detection of these enzymes contributes to the understanding of occurrence and spread of these antibiotic-resistant organisms. The ability to detect intact KPC variants via a simple LC-MS/MS approach could have a direct and positive impact on clinical therapy, by providing both direction for epidemiological tracking and appropriate therapy.
Collapse
Key Words
- ATCC, American type culture collection
- BLAST, basic local alignment search tool
- CDC, Centers for Disease Control and Prevention
- CPO, carbapenemase-producing organisms
- CSD, charge state distribution
- Carbapenem-resistant Enterobacteriaceae
- Carbapenemase-producing organisms
- ESI, electrospray ionization
- KPC, Klebsiella pneumoniae carbapenemase
- Klebsiella pneumoniae carbapenemase
- LC, liquid chromatography
- MALDI, matrix-assisted laser desorption ionization
- MS, mass spectrometry
- MS/MS, tandem mass spectrometry
- MW, molecular weight
- Mass Spectrometry
- PCR, polymerase chain reaction
- TOF, time-of-flight
- Tandem mass spectrometry
- m/z, mass-to-charge ratio
Collapse
|
9
|
Singh A, Lakhanpaul S. Detection, characterization and evolutionary aspects of S54LP of SP (SAP54 Like Protein of Sesame Phyllody): a phytoplasma effector molecule associated with phyllody development in sesame ( Sesamum indicum L.). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:445-458. [PMID: 32205922 PMCID: PMC7078397 DOI: 10.1007/s12298-020-00764-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 12/24/2019] [Accepted: 01/14/2020] [Indexed: 05/05/2023]
Abstract
SAP54, an effector protein secreted by phytoplasmas has been reported to induce phyllody. S54LP of SP (SAP54 Like Protein of Sesame Phyllody), a SAP54 ortholog from phyllody and witches' broom affected sesame (Sesamum indicum L.) was amplified, cloned and sequenced. Comparative sequence and phylogenetic analysis of diverse phytoplasma strains was carried out to delineate the evolution of S54LP of SP. The degree of polymorphism across SAP54 orthologs and the evolutionary forces acting on this effector protein were ascertained. Site-specific selection across SAP54 orthologs was estimated using Fixed Effects Likelihood (FEL) approach. Nonsynonymous substitutions were detected in the SAP54 orthologs' sequences from phytoplasmas belonging to same (sub) group. Phylogenetic analysis based on S54LP of SP grouped phytoplasmas belonging to same 16SrDNA (sub) groups into different clusters. Analysis of selection forces acting on SAP54 orthologs from nine different phytoplasma (sub)groups, affecting plant species belonging to twelve different families across ten countries showed the orthologs to be under purifying (negative) selection. One amino acid residue was found to be under pervasive diversifying (positive) selection and a total of three amino acid sites were found to be under pervasive purifying (negative) selection. The location of these amino acids in the signal peptide and mature protein was studied with an aim to understand their role in protein-protein interaction. Asparagine residues (at positions 68 and 84) were found to be under pervasive purifying selection suggesting their functional importance in the effector protein. Our study suggests lack of coevolution between SAP54 and 16SrDNA. Signal peptide appears to evolve at a rate slightly higher than the mature protein. Overall, SAP54 and its orthologs are evolving under purifying selection confirming their functional importance in phytoplasma virulence.
Collapse
Affiliation(s)
- Amrita Singh
- Department of Botany, University of Delhi, Delhi, 110007 India
| | | |
Collapse
|
10
|
In silico Analysis of Different Signal Peptides for the Excretory Production of Recombinant NS3-GP96 Fusion Protein in Escherichia coli. Int J Pept Res Ther 2018. [DOI: 10.1007/s10989-018-9775-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
11
|
Hönigschmid P, Bykova N, Schneider R, Ivankov D, Frishman D. Evolutionary Interplay between Symbiotic Relationships and Patterns of Signal Peptide Gain and Loss. Genome Biol Evol 2018; 10:928-938. [PMID: 29608732 PMCID: PMC5952966 DOI: 10.1093/gbe/evy049] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2018] [Indexed: 01/18/2023] Open
Abstract
Can orthologous proteins differ in terms of their ability to be secreted? To answer this question, we investigated the distribution of signal peptides within the orthologous groups of Enterobacterales. Parsimony analysis and sequence comparisons revealed a large number of signal peptide gain and loss events, in which signal peptides emerge or disappear in the course of evolution. Signal peptide losses prevail over gains, an effect which is especially pronounced in the transition from the free-living or commensal to the endosymbiotic lifestyle. The disproportionate decline in the number of signal peptide-containing proteins in endosymbionts cannot be explained by the overall reduction of their genomes. Signal peptides can be gained and lost either by acquisition/elimination of the corresponding N-terminal regions or by gradual accumulation of mutations. The evolutionary dynamics of signal peptides in bacterial proteins represents a powerful mechanism of functional diversification.
Collapse
Affiliation(s)
- Peter Hönigschmid
- Department of Bioinformatics, Technische Universität München, Wissenschaftszentrum Weihenstephan, Freising, Germany
| | - Nadya Bykova
- Institute for Information Transmission Problems (Kharkevich Institute), RAS, Moscow, Russia
| | - René Schneider
- Department of Bioinformatics, Technische Universität München, Wissenschaftszentrum Weihenstephan, Freising, Germany
| | - Dmitry Ivankov
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Dmitrij Frishman
- Department of Bioinformatics, Technische Universität München, Wissenschaftszentrum Weihenstephan, Freising, Germany.,Laboratory of Bioinformatics, RASA Research Center, St. Petersburg State Polytechnical University, Russia
| |
Collapse
|
12
|
Optimization of Human Serum Albumin Periplasmic Localization in Escherichia coli Using In Silico Evaluation of Different Signal Peptides. Int J Pept Res Ther 2018. [DOI: 10.1007/s10989-018-9709-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
N-terminome and proteogenomic analysis of the Methylobacterium extorquens DM4 reference strain for dichloromethane utilization. J Proteomics 2018; 179:131-139. [DOI: 10.1016/j.jprot.2018.03.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 02/28/2018] [Accepted: 03/16/2018] [Indexed: 12/29/2022]
|
14
|
Kupriyanova EV, Sinetova MA, Bedbenov VS, Pronina NA, Los DA. Putative extracellular α-class carbonic anhydrase, EcaA, of Synechococcus elongatus PCC 7942 is an active enzyme: a sequel to an old story. MICROBIOLOGY-SGM 2018; 164:576-586. [PMID: 29485398 DOI: 10.1099/mic.0.000634] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Carbonic anhydrase (CA) EcaA of Synechococcus elongatus PCC 7942 was previously characterized as a putative extracellular α-class CA, however, its activity was never verified. Here we show that EcaA possesses specific CA activity, which is inhibited by ethoxyzolamide. An active EcaA was expressed in heterologous bacterial system, which supports the formation of disulfide bonds, as a full-length protein (EcaA+L) and as a mature protein that lacks a leader peptide (EcaA-L). EcaA-L exhibited higher specific activity compared to EcaA+L. The recombinant EcaA, expressed in a bacterial system that does not support optimal disulfide bond formation, exhibited extremely low activity. This activity, however, could be enhanced by the thiol-oxidizing agent, diamide; while a disulfide bond-reducing agent, dithiothreitol, further inactivated the enzyme. Intact E. coli cells that overexpress EcaA+L possess a small amount of processed protein, EcaA-L, whereas the bulk of the full-length protein resides in the cytosol. This may indicate poor recognition of the EcaA leader peptide by protein export systems. S. elongatus possessed a relatively low level of ecaA mRNA, which varied insignificantly in response to changes in CO2 supply. However, the presence of protein in the cells is not obvious. This points to the physiological insignificance of EcaA in S. elongatus, at least under the applied experimental conditions.
Collapse
Affiliation(s)
- Elena V Kupriyanova
- Laboratory of Cell Regulation, Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya street 35, Moscow 127276, Russia
| | - Maria A Sinetova
- Laboratory of Cell Regulation, Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya street 35, Moscow 127276, Russia
| | - Vladimir S Bedbenov
- Laboratory of Cell Regulation, Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya street 35, Moscow 127276, Russia
| | - Natalia A Pronina
- Laboratory of Cell Regulation, Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya street 35, Moscow 127276, Russia
| | - Dmitry A Los
- Laboratory of Cell Regulation, Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya street 35, Moscow 127276, Russia
| |
Collapse
|
15
|
Protein Secretion in Gram-Positive Bacteria: From Multiple Pathways to Biotechnology. Curr Top Microbiol Immunol 2017; 404:267-308. [PMID: 27885530 DOI: 10.1007/82_2016_49] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A number of Gram-positive bacteria are important players in industry as producers of a diverse array of economically interesting metabolites and proteins. As discussed in this overview, several Gram-positive bacteria are valuable hosts for the production of heterologous proteins. In contrast to Gram-negative bacteria, proteins secreted by Gram-positive bacteria are released into the culture medium where conditions for correct folding are more appropriate, thus facilitating the isolation and purification of active proteins. Although seven different protein secretion pathways have been identified in Gram-positive bacteria, the majority of heterologous proteins are produced via the general secretion or Sec pathway. Not all proteins are equally well secreted, because heterologous protein production often faces bottlenecks including hampered secretion, susceptibility to proteases, secretion stress, and metabolic burden. These bottlenecks are associated with reduced yields leading to non-marketable products. In this chapter, besides a general overview of the different protein secretion pathways, possible hurdles that may hinder efficient protein secretion are described and attempts to improve yield are discussed including modification of components of the Sec pathway. Attention is also paid to omics-based approaches that may offer a more rational approach to optimize production of heterologous proteins.
Collapse
|
16
|
Maffei B, Francetic O, Subtil A. Tracking Proteins Secreted by Bacteria: What's in the Toolbox? Front Cell Infect Microbiol 2017; 7:221. [PMID: 28620586 PMCID: PMC5449463 DOI: 10.3389/fcimb.2017.00221] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 05/15/2017] [Indexed: 01/14/2023] Open
Abstract
Bacteria have acquired multiple systems to expose proteins on their surface, release them in the extracellular environment or even inject them into a neighboring cell. Protein secretion has a high adaptive value and secreted proteins are implicated in many functions, which are often essential for bacterial fitness. Several secreted proteins or secretion machineries have been extensively studied as potential drug targets. It is therefore important to identify the secretion substrates, to understand how they are specifically recognized by the secretion machineries, and how transport through these machineries occurs. The purpose of this review is to provide an overview of the biochemical, genetic and imaging tools that have been developed to evaluate protein secretion in a qualitative or quantitative manner. After a brief overview of the different tools available, we will illustrate their advantages and limitations through a discussion of some of the current open questions related to protein secretion. We will start with the question of the identification of secreted proteins, which for many bacteria remains a critical initial step toward a better understanding of their interactions with the environment. We will then illustrate our toolbox by reporting how these tools have been applied to better understand how substrates are recognized by their cognate machinery, and how secretion proceeds. Finally, we will highlight recent approaches that aim at investigating secretion in real time, and in complex environments such as a tissue or an organism.
Collapse
Affiliation(s)
- Benoit Maffei
- Unité de Biologie Cellulaire de l'Infection Microbienne, Institut PasteurParis, France.,Centre National de la Recherche Scientifique UMR3691Paris, France
| | - Olivera Francetic
- Unité de Biochimie des Interactions Macromoléculaires, Institut PasteurParis, France.,Centre National de la Recherche Scientifique ERL6002Paris, France
| | - Agathe Subtil
- Unité de Biologie Cellulaire de l'Infection Microbienne, Institut PasteurParis, France.,Centre National de la Recherche Scientifique UMR3691Paris, France
| |
Collapse
|
17
|
Abstract
SignalP is the currently most widely used program for prediction of signal peptides from amino acid sequences. Proteins with signal peptides are targeted to the secretory pathway, but are not necessarily secreted. After a brief introduction to the biology of signal peptides and the history of signal peptide prediction, this chapter will describe all the options of the current version of SignalP and the details of the output from the program. The chapter includes a case study where the scores of SignalP were used in a novel way to predict the functional effects of amino acid substitutions in signal peptides.
Collapse
Affiliation(s)
- Henrik Nielsen
- Department of Bio and Health Informatics, Technical University of Denmark, Kemitorvet, Bldg., 208, 3500 Kgs., Lyngby, Denmark.
| |
Collapse
|
18
|
Bastos PAD, da Costa JP, Vitorino R. A glimpse into the modulation of post-translational modifications of human-colonizing bacteria. J Proteomics 2016; 152:254-275. [PMID: 27888141 DOI: 10.1016/j.jprot.2016.11.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/22/2016] [Accepted: 11/07/2016] [Indexed: 12/19/2022]
Abstract
Protein post-translational modifications (PTMs) are a key bacterial feature that holds the capability to modulate protein function and responses to environmental cues. Until recently, their role in the regulation of prokaryotic systems has been largely neglected. However, the latest developments in mass spectrometry-based proteomics have allowed an unparalleled identification and quantification of proteins and peptides that undergo PTMs in bacteria, including in species which directly or indirectly affect human health. Herein, we address this issue by carrying out the largest and most comprehensive global pooling and comparison of PTM peptides and proteins from bacterial species performed to date. Data was collected from 91 studies relating to PTM bacterial peptides or proteins identified by mass spectrometry-based methods. The present analysis revealed that there was a considerable overlap between PTMs across species, especially between acetylation and other PTMs, particularly succinylation. Phylogenetically closer species may present more overlapping phosphoproteomes, but environmental triggers also contribute to this proximity. PTMs among bacteria were found to be extremely versatile and diverse, meaning that the same protein may undergo a wide variety of different modifications across several species, but it could also suffer different modifications within the same species.
Collapse
Affiliation(s)
- Paulo André Dias Bastos
- Department of Medical Sciences, Institute for Biomedicine-iBiMED, University of Aveiro, Aveiro, Portugal; Department of Chemistry, University of Aveiro, Portugal
| | | | - Rui Vitorino
- Department of Medical Sciences, Institute for Biomedicine-iBiMED, University of Aveiro, Aveiro, Portugal; Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto, Portugal.
| |
Collapse
|
19
|
Garg SG, Gould SB. The Role of Charge in Protein Targeting Evolution. Trends Cell Biol 2016; 26:894-905. [PMID: 27524662 DOI: 10.1016/j.tcb.2016.07.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/28/2016] [Accepted: 07/11/2016] [Indexed: 12/31/2022]
Abstract
Two eukaryotic compartments are of endosymbiotic origin, the mitochondrion and plastid. These organelles need to import hundreds of proteins from the cytosol. The import machineries of both are of independent origin, but function in a similar fashion and recognize N-terminal targeting sequences that also share similarities. Targeting, however, is generally specific, even though plastid targeting evolved in the presence of established mitochondrial targeting. Here we review current advances on protein import into mitochondria and plastids from diverse eukaryotic lineages and highlight the impact of charged amino acids in targeting. Their presence or absence alone can determine localization, and comparisons across diverse eukaryotes, and their different types of mitochondria and plastids, uncover unexplored avenues of protein import research.
Collapse
Affiliation(s)
- Sriram G Garg
- Institute for Molecular Evolution, University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Sven B Gould
- Institute for Molecular Evolution, University of Düsseldorf, 40225 Düsseldorf, Germany.
| |
Collapse
|
20
|
Overexpression and secretion of AgaA7 from Pseudoalteromonas hodoensis sp. nov in Bacillus subtilis for the depolymerization of agarose. Enzyme Microb Technol 2016; 90:19-25. [PMID: 27241288 DOI: 10.1016/j.enzmictec.2016.04.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 02/18/2016] [Accepted: 04/19/2016] [Indexed: 12/20/2022]
Abstract
Interest in agar or agarose-based pharmaceutical products has driven the search for potent agarolytic enzymes. An extracellular β-agarase (AgaA7) recently isolated from Pseudoalteromonas hodoensis sp. nov was expressed in Bacillus subtilis, which was chosen due to its capability to overproduce and secrete functional enzymes. Phenotypic analysis showed that the engineered B. subtilis secreted a functional AgaA7 when fused with the aprE signal peptide (SP) at the amino-terminus. The maximum agarolytic activity was observed during the late logarithmic phase. To further improve the secretion of AgaA7, an expression library of AgaA7 fused to different naturally occurring B. subtilis SPs was created. The amount of AgaA7 secreted by the clones was compared through activity assay, immuno-blot, and purification via affinity chromatography. Although the aprE SP can readily facilitate the secretion of AgaA7, other SPs such as yqgA, pel, and lipA were relatively more efficient. Among these SPs, lipA was the most efficient in improving the secretion of AgaA7.The use of B. subtilis as host for the expression and secretion of agarolytic and other hydrolytic enzymes can be a useful tool in the field of white biotechnology.
Collapse
|
21
|
Gillespie JJ, Kaur SJ, Rahman MS, Rennoll-Bankert K, Sears KT, Beier-Sexton M, Azad AF. Secretome of obligate intracellular Rickettsia. FEMS Microbiol Rev 2014; 39:47-80. [PMID: 25168200 DOI: 10.1111/1574-6976.12084] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The genus Rickettsia (Alphaproteobacteria, Rickettsiales, Rickettsiaceae) is comprised of obligate intracellular parasites, with virulent species of interest both as causes of emerging infectious diseases and for their potential deployment as bioterrorism agents. Currently, there are no effective commercially available vaccines, with treatment limited primarily to tetracycline antibiotics, although others (e.g. josamycin, ciprofloxacin, chloramphenicol, and azithromycin) are also effective. Much of the recent research geared toward understanding mechanisms underlying rickettsial pathogenicity has centered on characterization of secreted proteins that directly engage eukaryotic cells. Herein, we review all aspects of the Rickettsia secretome, including six secretion systems, 19 characterized secretory proteins, and potential moonlighting proteins identified on surfaces of multiple Rickettsia species. Employing bioinformatics and phylogenomics, we present novel structural and functional insight on each secretion system. Unexpectedly, our investigation revealed that the majority of characterized secretory proteins have not been assigned to their cognate secretion pathways. Furthermore, for most secretion pathways, the requisite signal sequences mediating translocation are poorly understood. As a blueprint for all known routes of protein translocation into host cells, this resource will assist research aimed at uniting characterized secreted proteins with their apposite secretion pathways. Furthermore, our work will help in the identification of novel secreted proteins involved in rickettsial 'life on the inside'.
Collapse
Affiliation(s)
- Joseph J Gillespie
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Simran J Kaur
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - M Sayeedur Rahman
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kristen Rennoll-Bankert
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Khandra T Sears
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Magda Beier-Sexton
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Abdu F Azad
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
22
|
Kucharova V, Wiker HG. Proteogenomics in microbiology: taking the right turn at the junction of genomics and proteomics. Proteomics 2014; 14:2360-675. [PMID: 25263021 DOI: 10.1002/pmic.201400168] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 08/18/2014] [Accepted: 09/23/2014] [Indexed: 12/14/2022]
Abstract
High-accuracy and high-throughput proteomic methods have completely changed the way we can identify and characterize proteins. MS-based proteomics can now provide a unique supplement to genomic data and add a new level of information to the interpretation of genomic sequences. Proteomics-driven genome annotation has become especially relevant in microbiology where genomes are sequenced on a daily basis and limitations of an in silico driven annotation process are well recognized. In this review paper, we outline different strategies on how one can design a proteogenomic experiment, for example on genome-sequenced (synonymous proteogenomics) versus unsequenced organisms (ortho-proteogenomics) or with the aid of other "omic" data such as RNA-seq. We touch upon many challenges that are encountered during a typical proteogenomic study, mostly concerning bioinformatics methods and downstream data analysis, but also related to creation and use of sequence databases. A large list of proteogenomic case studies of different microorganisms is provided to illustrate the mapping of MS/MS-derived peptide spectra to genomic DNA sequences. These investigations have led to accurate determination of translational initiation sites, pointed out eventual read-throughs or programmed frameshifts, detected signal peptide processing or other protein maturation events, removed questionable annotation assignments, and provided evidence for predicted hypothetical proteins.
Collapse
Affiliation(s)
- Veronika Kucharova
- Department of Clinical Science, The Gade Research Group for Infection and Immunity, University of Bergen, Norway
| | | |
Collapse
|
23
|
Agarwal R, Zakharov S, Hasan SS, Ryan CM, Whitelegge JP, Cramer WA. Structure-function of cyanobacterial outer-membrane protein, Slr1270: homolog of Escherichia coli drug export/colicin import protein, TolC. FEBS Lett 2014; 588:3793-801. [PMID: 25218435 PMCID: PMC4288923 DOI: 10.1016/j.febslet.2014.08.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 08/18/2014] [Accepted: 08/19/2014] [Indexed: 01/07/2023]
Abstract
Compared to thylakoid and inner membrane proteins in cyanobacteria, no structure-function information is available presently for integral outer-membrane proteins (OMPs). The Slr1270 protein from the cyanobacterium Synechocystis 6803, over-expressed in Escherichia coli, was refolded, and characterized for molecular size, secondary structure, and ion-channel function. Refolded Slr1270 displays a single band in native-electrophoresis, has an α-helical content of 50-60%, as in E. coli TolC with which it has significant secondary-structure similarity, and an ion-channel function with a single-channel conductance of 80-200pS, and a monovalent ion (K(+):Cl(-)) selectivity of 4.7:1. The pH-dependence of channel conductance implies a role for carboxylate residues in channel gating, analogous to that in TolC.
Collapse
Affiliation(s)
- Rachna Agarwal
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States; Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Stanislav Zakharov
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States; Institute of Basic Problems of Biology, Russian Academy of Sciences, Puschino, Moscow Region, Russian Federation
| | - S Saif Hasan
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Christopher M Ryan
- Pasarow Mass Spectrometry Laboratory, NPI-Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, CA, United States
| | - Julian P Whitelegge
- Pasarow Mass Spectrometry Laboratory, NPI-Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, CA, United States
| | - William A Cramer
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States.
| |
Collapse
|
24
|
Abstract
Signal peptide (SP) domains have a common motif but also sequence specific features. This knowledge was mainly ignored by immunologists who considered SP as generic, short-lived, targeting sequences. Consequently, while SP-derived MHC class I, class II and HLA-E epitopes have been isolated, their use as antigen-specific vaccine candidates (VCs) was mostly neglected. Recently we demonstrated the rational of selecting entire SP domains as multi-epitope long peptide VCs based on their high T and B-cell epitope densities. This review summarizes preclinical and clinical results demonstrating the various advantages of human SP domain VCs derived from both bacterial and tumor antigens. Such vaccine design provides for a straightforward, yet unique immunotherapeutic means of generating robust, non-toxic, diversified, combined antigen-specific CD4+/CD8+ T/B-cell immunity, irrespective of patient HLA repertoire also in disease associated transporter-associated with antigen processing (TAP) deficiencies. Subsequent clinical trials will further assess the full potential of this approach.
Collapse
Key Words
- ADCC, antibody-dependent cell-mediated cytotoxicity
- AE, adverse events
- APC, antigen presenting cells
- DC, dendritic cells
- ER, endoplasmic reticulum
- ImMucin
- LP, long peptide
- MHC
- MHC, major histocompatibility complex
- MM, multiple myeloma
- MUC1
- PBMC, peripheral blood mononuclear cells
- SP, signal peptide
- SPP, signal peptide peptidase
- SPase, signal peptidase
- T-cell
- TAA, tumor associated antigen
- TAP, transporter-associated with antigen processing
- VC, vaccine candidate
- antibodies
- cancer
- hGM-CSF, human granulocyte-macrophage colony-stimulating factor
- long peptide
- signal peptide
- tuberculosis
- vaccine
Collapse
|
25
|
Kovjazin R, Carmon L. The use of signal peptide domains as vaccine candidates. Hum Vaccin Immunother 2014. [DOI: 10.4161/hv.29549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
26
|
Nagano R, Masuda K. Establishment of a signal peptide with cross-species compatibility for functional antibody expression in both Escherichia coli and Chinese hamster ovary cells. Biochem Biophys Res Commun 2014; 447:655-9. [PMID: 24755069 DOI: 10.1016/j.bbrc.2014.04.060] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 04/12/2014] [Indexed: 10/25/2022]
Abstract
Signal peptides are short peptides located at the N-terminus of secreted proteins. They characteristically have three domains; a basic region at the N-terminus (n-region), a central hydrophobic core (h-region) and a carboxy-terminal cleavage region (c-region). Although hundreds of different signal peptides have been identified, it has not been completely understood how their features enable signal peptides to influence protein expression. Antibody-derived signal peptides are often used to prepare recombinant antibodies expressed by eukaryotic cells, especially Chinese hamster ovary (CHO) cells. However, when prokaryotic Escherichia coli (E. coli) are utilized in drug discovery processes, such as for phage display selection or antibody humanization, signal peptides have been selected separately due to the differences in the expression systems between the species. In this study, we successfully established a signal peptide that enables a functional antibody to be expressed in both prokaryotic and eukaryotic cells by focusing on the importance of having an Ala residue in the c-region of the signal sequence. We found that changing Ser to Ala at only two positions significantly augmented the anti-HER2 antigen binding fragment (Fab) expression in E. coli. In addition, this altered signal peptide also retained the ability to express functional anti-HER2 antibody in CHO cells. Taken together, the present findings indicate that the signal peptide can promote functional antibody expression in both prokaryotic E. coli and eukaryotic CHO cells. This finding will contribute to the understanding of signal peptides and accelerate therapeutic antibody research.
Collapse
Affiliation(s)
- Ryuma Nagano
- Research Core Function Laboratories, Research Functions Unit, R&D Division, Kyowa Hakko Kirin Co., Ltd, 3-6-6 Asahi-machi, Machida-shi, Tokyo 194-8533, Japan
| | - Kazuhiro Masuda
- Innovative Technology Laboratories, Research Functions Unit, R&D Division, Kyowa Hakko Kirin Co., Ltd, 3-6-6 Asahi-machi, Machida-shi, Tokyo 194-8533, Japan.
| |
Collapse
|
27
|
Armengaud J, Hartmann EM, Bland C. Proteogenomics for environmental microbiology. Proteomics 2013; 13:2731-42. [PMID: 23636904 DOI: 10.1002/pmic.201200576] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 03/06/2013] [Accepted: 04/09/2013] [Indexed: 11/09/2022]
Abstract
Proteogenomics sensu stricto refers to the use of proteomic data to refine the annotation of genomes from model organisms. Because of the limitations of automatic annotation pipelines, a relatively high number of errors occur during the structural annotation of genes coding for proteins. Whether putative orphan sequences or short genes encoding low-molecular-weight proteins really exist is still frequently a mystery. Whether start codons are well defined is also an open debate. These problems are exacerbated for genomes of microorganisms belonging to poorly documented genera, as related sequences are not always available for homology-guided annotation. The functional annotation of a significant proportion of genes is also another well-known issue when annotating environmental microorganisms. High-throughput shotgun proteomics has recently greatly evolved, allowing the exploration of the proteome from any microorganism at an unprecedented depth. The structural and functional annotation process may be usefully complemented with experimental data. Indeed, proteogenomic mapping has been successfully performed for a wide variety of organisms. Specific approaches devoted to systematically establishing the N-termini of a large set of proteins are being developed. N-terminomics is giving rise to datasets of experimentally proven translational start codons as well as validated peptide signals for secreted proteins. By extension, combining genomic and proteomic data is becoming routine in many research projects. The proteomic analysis of organisms with unfinished genome sequences, the so-called composite proteomics, and the search for microbial biomarkers by bottom-up and top-down combined approaches are some examples of proteogenomic-flavored studies. They illustrate the advent of a new era of environmental microbiology where proteomics and genomics are intimately integrated to answer key biological questions.
Collapse
Affiliation(s)
- Jean Armengaud
- CEA, DSV, IBEB, Lab Biochim System Perturb, Bagnols-sur-Cèze, France
| | | | | |
Collapse
|
28
|
Ivankov DN, Bogatyreva NS, Hönigschmid P, Dislich B, Hogl S, Kuhn PH, Frishman D, Lichtenthaler SF. QARIP: a web server for quantitative proteomic analysis of regulated intramembrane proteolysis. Nucleic Acids Res 2013; 41:W459-64. [PMID: 23729472 PMCID: PMC3692105 DOI: 10.1093/nar/gkt436] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Regulated intramembrane proteolysis (RIP) is a critical mechanism for intercellular communication and regulates the function of membrane proteins through sequential proteolysis. RIP typically starts with ectodomain shedding of membrane proteins by extracellular membrane-bound proteases followed by intramembrane proteolysis of the resulting membrane-tethered fragment. However, for the majority of RIP proteases the corresponding substrates and thus, their functions, remain unknown. Proteome-wide identification of RIP protease substrates is possible by mass spectrometry-based quantitative comparison of RIP substrates or their cleavage products between different biological states. However, this requires quantification of peptides from only the ectodomain or cytoplasmic domain. Current analysis software does not allow matching peptides to either domain. Here we present the QARIP (Quantitative Analysis of Regulated Intramembrane Proteolysis) web server which matches identified peptides to the protein transmembrane topology. QARIP allows determination of quantitative ratios separately for the topological domains (cytoplasmic, ectodomain) of a given protein and is thus a powerful tool for quality control, improvement of quantitative ratios and identification of novel substrates in proteomic RIP datasets. To our knowledge, the QARIP web server is the first tool directly addressing the phenomenon of RIP. The web server is available at http://webclu.bio.wzw.tum.de/qarip/. This website is free and open to all users and there is no login requirement.
Collapse
Affiliation(s)
- Dmitry N Ivankov
- Department of Genome Oriented Bioinformatics, Technische Universität München, Wissenschaftszentrum Weihenstephan, Maximus-von-Imhof Forum 3, 85354 Freising, Germany
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Ivankov DN, Payne SH, Galperin MY, Bonissone S, Pevzner PA, Frishman D. How many signal peptides are there in bacteria? Environ Microbiol 2013; 15:983-90. [PMID: 23556536 PMCID: PMC3621014 DOI: 10.1111/1462-2920.12105] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Over the last 5 years proteogenomics (using mass spectroscopy to identify proteins predicted from genomic sequences) has emerged as a promising approach to the high-throughput identification of protein N-termini, which remains a problem in genome annotation. Comparison of the experimentally determined N-termini with those predicted by sequence analysis tools allows identification of the signal peptides and therefore conclusions on the cytoplasmic or extracytoplasmic (periplasmic or extracellular) localization of the respective proteins. We present here the results of a proteogenomic study of the signal peptides in Escherichia coli K-12 and compare its results with the available experimental data and predictions by such software tools as SignalP and Phobius. A single proteogenomics experiment recovered more than a third of all signal peptides that had been experimentally determined during the past three decades and confirmed at least 31 additional signal peptides, mostly in the known exported proteins, which had been previously predicted but not validated. The filtering of putative signal peptides for the peptide length and the presence of an eight-residue hydrophobic patch and a typical signal peptidase cleavage site proved sufficient to eliminate the false-positive hits. Surprisingly, the results of this proteogenomics study, as well as a re-analysis of the E. coli genome with the latest version of SignalP program, show that the fraction of proteins containing signal peptides is only about 10%, or half of previous estimates.
Collapse
Affiliation(s)
- Dmitry N. Ivankov
- Technische Universität München, Department of Genome-Oriented Bioinformatics, 85354 Freising, Germany
| | - Samuel H. Payne
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Michael Y. Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | | | | | - Dmitrij Frishman
- Technische Universität München, Department of Genome-Oriented Bioinformatics, 85354 Freising, Germany
- Helmholtz Zentrum Munich, National Research Center for Environment and Health, Institute for Bioinformatics, 85764 Neuherberg, Germany
| |
Collapse
|