1
|
Rohwer RR, Kirkpatrick M, Garcia SL, Kellom M, McMahon KD, Baker BJ. Two decades of bacterial ecology and evolution in a freshwater lake. Nat Microbiol 2025; 10:246-257. [PMID: 39753668 DOI: 10.1038/s41564-024-01888-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 11/14/2024] [Indexed: 01/12/2025]
Abstract
Ecology and evolution are considered distinct processes that interact on contemporary time scales in microbiomes. Here, to observe these processes in a natural system, we collected a two-decade, 471-metagenome time series from Lake Mendota (Wisconsin, USA). We assembled 2,855 species-representative genomes and found that genomic change was common and frequent. By tracking strain composition via single nucleotide variants, we identified cyclical seasonal patterns in 80% and decadal shifts in 20% of species. In the dominant freshwater family Nanopelagicaceae, environmental extremes coincided with shifts in strain composition and positive selection of amino acid and nucleic acid metabolism genes. These genes identify organic nitrogen compounds as potential drivers of freshwater responses to global change. Seasonal and long-term strain dynamics could be regarded as ecological processes or, equivalently, as evolutionary change. Rather than as distinct interacting processes, we propose a conceptualization of ecology and evolution as a continuum to better describe change in microbial communities.
Collapse
Affiliation(s)
- Robin R Rohwer
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA.
| | - Mark Kirkpatrick
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA
| | - Sarahi L Garcia
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
- Science for Life Laboratory, Department of Ecology, Environment, and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Matthew Kellom
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Katherine D McMahon
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, WI, USA.
| | - Brett J Baker
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA.
- Department of Marine Science, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
2
|
Ruff SE, de Angelis IH, Mullis M, Payet JP, Magnabosco C, Lloyd KG, Sheik CS, Steen AD, Shipunova A, Morozov A, Reese BK, Bradley JA, Lemonnier C, Schrenk MO, Joye SB, Huber JA, Probst AJ, Morrison HG, Sogin ML, Ladau J, Colwell F. A global comparison of surface and subsurface microbiomes reveals large-scale biodiversity gradients, and a marine-terrestrial divide. SCIENCE ADVANCES 2024; 10:eadq0645. [PMID: 39693444 DOI: 10.1126/sciadv.adq0645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 11/13/2024] [Indexed: 12/20/2024]
Abstract
Subsurface environments are among Earth's largest habitats for microbial life. Yet, until recently, we lacked adequate data to accurately differentiate between globally distributed marine and terrestrial surface and subsurface microbiomes. Here, we analyzed 478 archaeal and 964 bacterial metabarcoding datasets and 147 metagenomes from diverse and widely distributed environments. Microbial diversity is similar in marine and terrestrial microbiomes at local to global scales. However, community composition greatly differs between sea and land, corroborating a phylogenetic divide that mirrors patterns in plant and animal diversity. In contrast, community composition overlaps between surface to subsurface environments supporting a diversity continuum rather than a discrete subsurface biosphere. Differences in microbial life thus seem greater between land and sea than between surface and subsurface. Diversity of terrestrial microbiomes decreases with depth, while marine subsurface diversity and phylogenetic distance to cultured isolates rivals or exceeds that of surface environments. We identify distinct microbial community compositions but similar microbial diversity for Earth's subsurface and surface environments.
Collapse
Affiliation(s)
- S Emil Ruff
- Marine Biological Laboratory, Woods Hole, MA, USA
| | | | | | - Jérôme P Payet
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR, USA
| | | | | | - Cody S Sheik
- Large Lakes Observatory and Department of Biology, University of Minnesota Duluth, Duluth, MN, USA
| | | | | | | | - Brandi Kiel Reese
- University of South Alabama, Mobile, AL, USA
- Dauphin Island Sea Laboratory, Dauphin Island, AL, USA
| | - James A Bradley
- Aix Marseille University, University of Toulon, CNRS, IRD, MIO, Marseille, France
- Queen Mary University of London, London, UK
| | - Clarisse Lemonnier
- UMR CARRTEL, INRAE, Université Savoie Mont-Blanc, Thonon-les-Bains, France
| | - Matthew O Schrenk
- Department of Earth and Environmental Sciences, Michigan State University, East Lansing, MI. USA
| | - Samantha B Joye
- Department of Marine Sciences, University of Georgia, Athens, GA, USA
| | - Julie A Huber
- Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Alexander J Probst
- Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, Faculty of Chemistry and Centre of Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, Germany
| | | | | | - Joshua Ladau
- Department of Computational Precision Health, University of California, San Francisco, CA, USA
- Arva Intelligence, Houston, TX, USA
| | - Frederick Colwell
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
3
|
Robador A. The subseafloor crustal biosphere: Ocean's hidden biogeochemical reactor. Front Microbiol 2024; 15:1495895. [PMID: 39664056 PMCID: PMC11631926 DOI: 10.3389/fmicb.2024.1495895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/13/2024] [Indexed: 12/13/2024] Open
Abstract
Underlying the thick sediment layer in ocean basins, the flow of seawater through the cracked and porous upper igneous crust supports a previously hidden and largely unexplored active subsurface microbial biome. Subseafloor crustal systems offer an enlarged surface area for microbial habitats and prolonged cell residence times, promoting the evolution of novel microbial lineages in the presence of steep physical and thermochemical gradients. The substantial metabolic potential and dispersal capabilities of microbial communities within these systems underscore their crucial role in biogeochemical cycling. However, the intricate interplay between fluid chemistry, temperature variations, and microbial activity remains poorly understood. These complexities introduce significant challenges in unraveling the factors that regulate microbial distribution and function within these dynamic ecosystems. Using synthesized data from previous studies, this work describes how the ocean crustal biosphere functions as a continuous-flow biogechemical reactor. It simultaneously promotes the breakdown of surface-derived organic carbon and the creation of new, chemosynthetic material, thereby enhancing element recycling and ocean carbon productivity. Insights gained from the qualitative analysis of the extent of biogeochemical microbial activity and diversity across the temperature and chemical gradients that characterize these habitats, as reviewed herein, challenge traditional models of global ocean carbon productivity and provide the development of a new conceptual framework for understanding the quantitative metabolic potential and broad dispersal of the crustal microbial biome.
Collapse
Affiliation(s)
- Alberto Robador
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
4
|
Wei X, Tsai MS, Liang L, Jiang L, Hung CJ, Jelliffe-Pawlowski L, Rand L, Snyder M, Jiang C. Vaginal microbiomes show ethnic evolutionary dynamics and positive selection of Lactobacillus adhesins driven by a long-term niche-specific process. Cell Rep 2024; 43:114078. [PMID: 38598334 DOI: 10.1016/j.celrep.2024.114078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 03/01/2024] [Accepted: 03/22/2024] [Indexed: 04/12/2024] Open
Abstract
The vaginal microbiome's composition varies among ethnicities. However, the evolutionary landscape of the vaginal microbiome in the multi-ethnic context remains understudied. We perform a systematic evolutionary analysis of 351 vaginal microbiome samples from 35 multi-ethnic pregnant women, in addition to two validation cohorts, totaling 462 samples from 90 women. Microbiome alpha diversity and community state dynamics show strong ethnic signatures. Lactobacillaceae have a higher ratio of non-synonymous to synonymous polymorphism and lower nucleotide diversity than non-Lactobacillaceae in all ethnicities, with a large repertoire of positively selected genes, including the mucin-binding and cell wall anchor genes. These evolutionary dynamics are driven by the long-term evolutionary process unique to the human vaginal niche. Finally, we propose an evolutionary model reflecting the environmental niches of microbes. Our study reveals the extensive ethnic signatures in vaginal microbial ecology and evolution, highlighting the importance of studying the host-microbiome ecosystem from an evolutionary perspective.
Collapse
Affiliation(s)
- Xin Wei
- MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310030, China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Ming-Shian Tsai
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Liang Liang
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Liuyiqi Jiang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310030, China
| | - Chia-Jui Hung
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Biomedical Informatics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Laura Jelliffe-Pawlowski
- Department of Epidemiology and Biostatistics, School of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Larry Rand
- Department of Obstetrics, Gynecology & Reproductive Sciences, School of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Michael Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Chao Jiang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310030, China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.
| |
Collapse
|
5
|
Trouche B, Schauberger C, Bouderka F, Auguet JC, Belser C, Poulain J, Thamdrup B, Wincker P, Arnaud-Haond S, Glud RN, Maignien L. Distribution and genomic variation of ammonia-oxidizing archaea in abyssal and hadal surface sediments. ISME COMMUNICATIONS 2023; 3:133. [PMID: 38135695 PMCID: PMC10746724 DOI: 10.1038/s43705-023-00341-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 11/20/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023]
Abstract
Ammonia-oxidizing archaea of the phylum Thaumarchaeota play a central role in the biogeochemical cycling of nitrogen in benthic sediments, at the interface between pelagic and subsurface ecosystems. However, our understanding of their niche separation and of the processes controlling their population structure in hadal and abyssal surface sediments is still limited. Here, we reconstructed 47 AOA metagenome-assembled genomes (MAGs) from surface sediments of the Atacama and Kermadec trench systems. They formed deep-sea-specific groups within the family Nitrosopumilaceae and were assigned to six amoA gene-based clades. MAGs from different clades had distinct distribution patterns along oxygen-ammonium counter gradients in surface sediments. At the species level, MAGs thus seemed to form different ecotypes and follow deterministic niche-based distributions. In contrast, intraspecific population structure, defined by patterns of Single Nucleotide Variants (SNV), seemed to reflect more complex contributions of both deterministic and stochastic processes. Firstly, the bathymetric range had a strong effect on population structure, with distinct populations in abyssal plains and hadal trenches. Then, hadal populations were clearly separated by trench system, suggesting a strong isolation-by-topography effect, whereas abyssal populations were rather controlled by sediment depth or geographic distances, depending on the clade considered. Interestingly, genetic variability between samples was lowest in sediment layers where the mean MAG coverage was highest, highlighting the importance of selective pressure linked with each AOA clade's ecological niche. Overall, our results show that deep-sea AOA genome distributions seem to follow both deterministic and stochastic processes, depending on the genomic variability scale considered.
Collapse
Affiliation(s)
- Blandine Trouche
- Univ Brest, CNRS, Ifremer, UMR6197 Biologie et Ecologie des Ecosystèmes marins Profonds, F-29280, Plouzané, France.
- Hadal & Nordcee, Department of Biology, University of Southern Denmark, Odense, Denmark.
| | - Clemens Schauberger
- Hadal & Nordcee, Department of Biology, University of Southern Denmark, Odense, Denmark
| | - Feriel Bouderka
- Univ Brest, CNRS, Ifremer, UMR6197 Biologie et Ecologie des Ecosystèmes marins Profonds, F-29280, Plouzané, France
| | | | - Caroline Belser
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, University of Évry, Université Paris-Saclay, 91057, Evry, France
| | - Julie Poulain
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, University of Évry, Université Paris-Saclay, 91057, Evry, France
| | - Bo Thamdrup
- Hadal & Nordcee, Department of Biology, University of Southern Denmark, Odense, Denmark
| | - Patrick Wincker
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, University of Évry, Université Paris-Saclay, 91057, Evry, France
| | | | - Ronnie N Glud
- Hadal & Nordcee, Department of Biology, University of Southern Denmark, Odense, Denmark
- Department of Ocean and Environmental Sciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
- Danish Institute for Advanced Study (DIAS), University of Southern Denmark, Campusvej 55, 5230, Odense, Denmark
| | - Loïs Maignien
- Univ Brest, CNRS, Ifremer, UMR6197 Biologie et Ecologie des Ecosystèmes marins Profonds, F-29280, Plouzané, France.
- Marine Biological Laboratory, Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Woods Hole, MA, USA.
| |
Collapse
|
6
|
Dong X, Peng Y, Wang M, Woods L, Wu W, Wang Y, Xiao X, Li J, Jia K, Greening C, Shao Z, Hubert CRJ. Evolutionary ecology of microbial populations inhabiting deep sea sediments associated with cold seeps. Nat Commun 2023; 14:1127. [PMID: 36854684 PMCID: PMC9974965 DOI: 10.1038/s41467-023-36877-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
Deep sea cold seep sediments host abundant and diverse microbial populations that significantly influence biogeochemical cycles. While numerous studies have revealed their community structure and functional capabilities, little is known about genetic heterogeneity within species. Here, we examine intraspecies diversity patterns of 39 abundant species identified in sediment layers down to 430 cm below the sea floor across six cold seep sites. These populations are grouped as aerobic methane-oxidizing bacteria, anaerobic methanotrophic archaea and sulfate-reducing bacteria. Different evolutionary trajectories are observed at the genomic level among these physiologically and phylogenetically diverse populations, with generally low rates of homologous recombination and strong purifying selection. Functional genes related to methane (pmoA and mcrA) and sulfate (dsrA) metabolisms are under strong purifying selection in most species investigated. These genes differ in evolutionary trajectories across phylogenetic clades but are functionally conserved across sites. Intrapopulation diversification of genomes and their mcrA and dsrA genes is depth-dependent and subject to different selection pressure throughout the sediment column redox zones at different sites. These results highlight the interplay between ecological processes and the evolution of key bacteria and archaea in deep sea cold seep extreme environments, shedding light on microbial adaptation in the subseafloor biosphere.
Collapse
Affiliation(s)
- Xiyang Dong
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China.
| | - Yongyi Peng
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Muhua Wang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Laura Woods
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Wenxue Wu
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Yong Wang
- Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Xi Xiao
- Guangzhou Marine Geological Survey, China Geological Survey, Guangzhou, 510075, China
| | - Jiwei Li
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China
| | - Kuntong Jia
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Chris Greening
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Zongze Shao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China.
| | - Casey R J Hubert
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| |
Collapse
|
7
|
Munro-Ehrlich M, Nothaft DB, Fones EM, Matter JM, Templeton AS, Boyd ES. Parapatric speciation of Meiothermus in serpentinite-hosted aquifers in Oman. Front Microbiol 2023; 14:1138656. [PMID: 37125170 PMCID: PMC10130571 DOI: 10.3389/fmicb.2023.1138656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/27/2023] [Indexed: 05/02/2023] Open
Abstract
The factors that control the distribution and evolution of microbial life in subsurface environments remain enigmatic due to challenges associated with sampling fluids from discrete depth intervals via boreholes while avoiding mixing of fluids. Here, using an inflatable packer system, fracture waters were isolated and collected from three discrete depth intervals spanning >130 m in a borehole intersecting an ultramafic rock formation undergoing serpentinization in the Samail Ophiolite, Sultanate of Oman. Near surface aquifer waters were moderately reducing and had alkaline pH while deeper aquifer waters were reduced and had hyperalkaline pH, indicating extensive influence by serpentinization. Metagenomic sequencing and analysis of DNA from filtered biomass collected from discrete depth intervals revealed an abundance of aerobes in near surface waters and a greater proportion of anaerobes at depth. Yet the abundance of the putatively obligate aerobe, Meiothermus, increased with depth, providing an opportunity to evaluate the influence of chemical and spatial variation on its distribution and speciation. Two clades of Meiothermus metagenome assembled genomes (MAGs) were identified that correspond to surface and deep populations termed Types I (S) and II (D), respectively; both clades comprised an apparently Oman-specific lineage indicating a common ancestor. Type II (D) clade MAGs encoded fewer genes and were undergoing slower genome replication as inferred from read mapping. Further, single nucleotide variants (SNVs) and mobile genetic elements identified among MAGs revealed detectable, albeit limited, evidence for gene flow/recombination between spatially segregated Type I (S) and Type II (D) populations. Together, these observations indicate that chemical variation generated by serpentinization, combined with physical barriers that reduce/limit dispersal and gene flow, allowed for the parapatric speciation of Meiothermus in the Samail Ophiolite or a geologic precursor. Further, Meiothermus genomic data suggest that deep and shallow aquifer fluids in the Samail Ophiolite may mix over shorter time scales than has been previously estimated from geochemical data.
Collapse
Affiliation(s)
- Mason Munro-Ehrlich
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, United States
| | - Daniel B. Nothaft
- Department of Geosciences, University of Colorado, Boulder, Boulder, CO, United States
| | - Elizabeth M. Fones
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, United States
| | - Juerg M. Matter
- School of Ocean and Earth Science, University of Southampton, Southampton, United Kingdom
| | - Alexis S. Templeton
- Department of Geosciences, University of Colorado, Boulder, Boulder, CO, United States
| | - Eric S. Boyd
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, United States
- *Correspondence: Eric S. Boyd,
| |
Collapse
|