1
|
Huang LZY, Shaw ZL, Penman R, Cheeseman S, Truong VK, Higgins MJ, Caruso RA, Elbourne A. Cell Adhesion, Elasticity, and Rupture Forces Guide Microbial Cell Death on Nanostructured Antimicrobial Titanium Surfaces. ACS APPLIED BIO MATERIALS 2024; 7:344-361. [PMID: 38100088 DOI: 10.1021/acsabm.3c00943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Naturally occurring and synthetic nanostructured surfaces have been widely reported to resist microbial colonization. The majority of these studies have shown that both bacterial and fungal cells are killed upon contact and subsequent surface adhesion to such surfaces. This occurs because the presence of high-aspect-ratio structures can initiate a self-driven mechanical rupture of microbial cells during the surface adsorption process. While this technology has received a large amount of scientific and medical interest, one important question still remains: what factors drive microbial death on the surface? In this work, the interplay between microbial-surface adhesion, cell elasticity, cell membrane rupture forces, and cell lysis at the microbial-nanostructure biointerface during adsorptive processes was assessed using a combination of live confocal laser scanning microscopy, scanning electron microscopy, in situ amplitude atomic force microscopy, and single-cell force spectroscopy. Specifically, the adsorptive behavior and nanomechanical properties of live Gram-negative (Pseudomonas aeruginosa) and Gram-positive (methicillin-resistant Staphylococcus aureus) bacterial cells, as well as the fungal species Candida albicans and Cryptococcus neoformans, were assessed on unmodified and nanostructured titanium surfaces. Unmodified titanium and titanium surfaces with nanostructures were used as model substrates for investigation. For all microbial species, cell elasticity, rupture force, maximum cell-surface adhesion force, the work of adhesion, and the cell-surface tether behavior were compared to the relative cell death observed for each surface examined. For cells with a lower elastic modulus, lower force to rupture through the cell, and higher work of adhesion, the surfaces had a higher antimicrobial activity, supporting the proposed biocidal mode of action for nanostructured surfaces. This study provides direct quantification of the differences observed in the efficacy of nanostructured antimicrobial surface as a function of microbial species indicating that a universal, antimicrobial surface architecture may be hard to achieve.
Collapse
Affiliation(s)
- Louisa Z Y Huang
- Applied Chemistry and Environmental Science, School of Science, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia
| | - Z L Shaw
- School of Engineering, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia
| | - Rowan Penman
- Applied Chemistry and Environmental Science, School of Science, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia
| | - Samuel Cheeseman
- Applied Chemistry and Environmental Science, School of Science, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia
- Graeme Clark Institute, Faculty of Engineering and Information Technology & Faculty of Medicine, Dentistry and Health Services, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Vi Khanh Truong
- Applied Chemistry and Environmental Science, School of Science, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Michael J Higgins
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Rachel A Caruso
- Applied Chemistry and Environmental Science, School of Science, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia
| | - Aaron Elbourne
- Applied Chemistry and Environmental Science, School of Science, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia
| |
Collapse
|
2
|
Han R, Feng XQ, Vollmer W, Stoodley P, Chen J. Deciphering the adaption of bacterial cell wall mechanical integrity and turgor to different chemical or mechanical environments. J Colloid Interface Sci 2023; 640:510-520. [PMID: 36878069 DOI: 10.1016/j.jcis.2023.02.100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/16/2023] [Accepted: 02/19/2023] [Indexed: 02/24/2023]
Abstract
Bacteria adapt the mechanical properties of their cell envelope, including cell wall stiffness, turgor, and cell wall tension and deformation, to grow and survive in harsh environments. However, it remains a technical challenge to simultaneously determine these mechanical properties at a single cell level. Here we combined theoretical modelling with an experimental approach to quantify the mechanical properties and turgor of Staphylococcus epidermidis. It was found that high osmolarity leads to a decrease in both cell wall stiffness and turgor. We also demonstrated that the turgor change is associated with a change in the viscosity of the bacterial cell. We predicted that the cell wall tension is much higher in deionized (DI) water and it decreases with an increase in osmolality. We also found that an external force increases the cell wall deformation to reinforce its adherence to a surface and this effect can be more significant in lower osmolarity. Overall, our work highlights how bacterial mechanics supports survival in harsh environments and uncovers the adaption of bacterial cell wall mechanical integrity and turgor to osmotic and mechanical challenges.
Collapse
Affiliation(s)
- Rui Han
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Xi-Qiao Feng
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Waldemar Vollmer
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4AX, UK
| | - Paul Stoodley
- Department of Microbial Infection and Immunity and the Department of Orthopaedics, The Ohio State University, Columbus, OH 43210, United States; National Centre for Advanced Tribology at Southampton (nCATS), National Biofilm Innovation Centre (NBIC), Mechanical Engineering, University of Southampton, Southampton S017 1BJ, UK
| | - Jinju Chen
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK.
| |
Collapse
|
3
|
Artasensi A, Mazzotta S, Fumagalli L. Back to Basics: Choosing the Appropriate Surface Disinfectant. Antibiotics (Basel) 2021; 10:antibiotics10060613. [PMID: 34063833 PMCID: PMC8224088 DOI: 10.3390/antibiotics10060613] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/17/2021] [Accepted: 05/17/2021] [Indexed: 12/24/2022] Open
Abstract
From viruses to bacteria, our lives are filled with exposure to germs. In built environments, exposure to infectious microorganisms and their byproducts is clearly linked to human health. In the last year, public health emergency surrounding the COVID-19 pandemic stressed the importance of having good biosafety measures and practices. To prevent infection from spreading and to maintain the barrier, disinfection and hygiene habits are crucial, especially when the microorganism can persist and survive on surfaces. Contaminated surfaces are called fomites and on them, microorganisms can survive even for months. As a consequence, fomites serve as a second reservoir and transfer pathogens between hosts. The knowledge of microorganisms, type of surface, and antimicrobial agent is fundamental to develop the best approach to sanitize fomites and to obtain good disinfection levels. Hence, this review has the purpose to briefly describe the organisms, the kind of risk associated with them, and the main classes of antimicrobials for surfaces, to help choose the right approach to prevent exposure to pathogens.
Collapse
|
4
|
Gloag ES, Wozniak DJ, Stoodley P, Hall-Stoodley L. Mycobacterium abscessus biofilms have viscoelastic properties which may contribute to their recalcitrance in chronic pulmonary infections. Sci Rep 2021; 11:5020. [PMID: 33658597 PMCID: PMC7930093 DOI: 10.1038/s41598-021-84525-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/10/2021] [Indexed: 12/11/2022] Open
Abstract
Mycobacterium abscessus is emerging as a cause of recalcitrant chronic pulmonary infections, particularly in people with cystic fibrosis (CF). Biofilm formation has been implicated in the pathology of this organism, however the role of biofilm formation in infection is unclear. Two colony-variants of M. abscessus are routinely isolated from CF samples, smooth (MaSm) and rough (MaRg). These two variants display distinct colony morphologies due to the presence (MaSm) or absence (MaRg) of cell wall glycopeptidolipids (GPLs). We hypothesized that MaSm and MaRg variant biofilms might have different mechanical properties. To test this hypothesis, we performed uniaxial mechanical indentation, and shear rheometry on MaSm and MaRg colony-biofilms. We identified that MaRg biofilms were significantly stiffer than MaSm under a normal force, while MaSm biofilms were more pliant compared to MaRg, under both normal and shear forces. Furthermore, using theoretical indices of mucociliary and cough clearance, we identified that M. abscessus biofilms may be more resistant to mechanical forms of clearance from the lung, compared to another common pulmonary pathogen, Pseudomonas aeruginosa. Thus, the mechanical properties of M. abscessus biofilms may contribute to the persistent nature of pulmonary infections caused by this organism.
Collapse
Affiliation(s)
- Erin S Gloag
- Department of Microbial Infection and Immunity, The Ohio State University, 711 Biomedical Research Tower, 460 W 12th Avenue, Columbus, OH, USA
| | - Daniel J Wozniak
- Department of Microbial Infection and Immunity, The Ohio State University, 711 Biomedical Research Tower, 460 W 12th Avenue, Columbus, OH, USA
- Department of Microbiology, The Ohio State University, Columbus, OH, 43210, USA
| | - Paul Stoodley
- Department of Microbial Infection and Immunity, The Ohio State University, 711 Biomedical Research Tower, 460 W 12th Avenue, Columbus, OH, USA
- Department of Orthopedics, The Ohio State University, Columbus, OH, 43210, USA
- National Biofilm Innovation Centre (NBIC) and National Centre for Advanced Tribology at Southampton (nCATS), University of Southampton, Southampton, SO17 1BJ, UK
| | - Luanne Hall-Stoodley
- Department of Microbial Infection and Immunity, The Ohio State University, 711 Biomedical Research Tower, 460 W 12th Avenue, Columbus, OH, USA.
| |
Collapse
|
5
|
Xie Y, Qu X, Li J, Li D, Wei W, Hui D, Zhang Q, Meng F, Yin H, Xu X, Wang Y, Wang L, Zhou Z. Ultrafast physical bacterial inactivation and photocatalytic self-cleaning of ZnO nanoarrays for rapid and sustainable bactericidal applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 738:139714. [PMID: 32531587 PMCID: PMC7266591 DOI: 10.1016/j.scitotenv.2020.139714] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/07/2020] [Accepted: 05/24/2020] [Indexed: 05/09/2023]
Abstract
Various nanostructured surfaces have been developed recently to physically inactivate bacteria, for reducing the rapidly spreading threat of pathogenic bacteria. However, it generally takes several hours for these surfaces to inactivate most of the bacteria, which greatly limits their application in the fields favoring rapid bactericidal performance. Besides, the accumulated bacteria debris left on these surfaces is rarely discussed in the previous reports. Herein we report the nanotip-engineered ZnO nanoarrays (NAs) with ultrafast physical bactericidal rate and the ability to photocatalytically remove the bacteria debris. Neither chemical (Zn2+ or reactive oxygen species) nor photocatalytic effect leads to the ultrafast bactericidal rate, where 97.5% of E. coli and 94.9% of S. aureus are inactivated within only 1 min. The simulation analysis further supported our proposed mechanism attributing the ultrafast bactericidal activity to the great stress enabled by the uneven topography. Moreover, the re-exposure of the ZnO NAs nanotips can be achieved in only 10 min under a mild UV light source. This study not only presents an ultrafast physical bactericidal activity, but also demonstrates the potential of the recyclable and photocatalytic self-cleaning functions of theses surfaces for applications that desire rapid and sustainable bactericidal performance.
Collapse
Affiliation(s)
- Yuan Xie
- School of Materials Science and Engineering, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| | - Xi Qu
- Beijing Space Technology Research and Test Center, China Academy of Space Technology, Beijing 100094, China
| | - Jinyang Li
- School of Materials Science and Engineering, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China.
| | - Da Li
- School of Materials Science and Engineering, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| | - Wei Wei
- School of Materials Science and Engineering, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| | - David Hui
- Department of Mechanical Engineering, University of New Orleans, New Orleans, LA 70148, USA
| | - Qiao Zhang
- School of Materials Science and Engineering, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| | - Fanbin Meng
- School of Materials Science and Engineering, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| | - Hong Yin
- Shenzhou Space Biology Science and Technology (Group) Co., Ltd., Beijing 100190, China
| | - Xiaoling Xu
- School of Materials Science and Engineering, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| | - Yong Wang
- School of Materials Science and Engineering, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| | - Li Wang
- Qian Xuesen Laboratory of Space Technology, Beijing 100094, China.
| | - Zuowan Zhou
- School of Materials Science and Engineering, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China.
| |
Collapse
|
6
|
Grzeszczuk Z, Rosillo A, Owens Ó, Bhattacharjee S. Atomic Force Microscopy (AFM) As a Surface Mapping Tool in Microorganisms Resistant Toward Antimicrobials: A Mini-Review. Front Pharmacol 2020; 11:517165. [PMID: 33123004 PMCID: PMC7567160 DOI: 10.3389/fphar.2020.517165] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 09/14/2020] [Indexed: 12/28/2022] Open
Abstract
The worldwide emergence of antimicrobial resistance (AMR) in pathogenic microorganisms, including bacteria and viruses due to a plethora of reasons, such as genetic mutation and indiscriminate use of antimicrobials, is a major challenge faced by the healthcare sector today. One of the issues at hand is to effectively screen and isolate resistant strains from sensitive ones. Utilizing the distinct nanomechanical properties (e.g., elasticity, intracellular turgor pressure, and Young’s modulus) of microbes can be an intriguing way to achieve this; while atomic force microscopy (AFM), with or without modification of the tips, presents an effective way to investigate such biophysical properties of microbial surfaces or an entire microbial cell. Additionally, advanced AFM instruments, apart from being compatible with aqueous environments—as often is the case for biological samples—can measure the adhesive forces acting between AFM tips/cantilevers (conjugated to bacterium/virion, substrates, and molecules) and target cells/surfaces to develop informative force-distance curves. Moreover, such force spectroscopies provide an idea of the nature of intercellular interactions (e.g., receptor-ligand) or propensity of microbes to aggregate into densely packed layers, that is, the formation of biofilms—a property of resistant strains (e.g., Staphylococcus aureus, Pseudomonas aeruginosa). This mini-review will revisit the use of single-cell force spectroscopy (SCFS) and single-molecule force spectroscopy (SMFS) that are emerging as powerful additions to the arsenal of researchers in the struggle against resistant microbes, identify their strengths and weakness and, finally, prioritize some future directions for research.
Collapse
Affiliation(s)
| | | | - Óisín Owens
- School of Physics, Technological University Dublin, Dublin, Ireland
| | | |
Collapse
|
7
|
Juma A, Lemoine P, Simpson ABJ, Murray J, O'Hagan BMG, Naughton PJ, Dooley JG, Banat IM. Microscopic Investigation of the Combined Use of Antibiotics and Biosurfactants on Methicillin Resistant Staphylococcus aureus. Front Microbiol 2020; 11:1477. [PMID: 32733412 PMCID: PMC7358407 DOI: 10.3389/fmicb.2020.01477] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 06/05/2020] [Indexed: 12/13/2022] Open
Abstract
One current strategy to deal with the serious issue of antibiotic resistance is to use biosurfactants, weak antimicrobials in their own right, with antibiotics in order to extend the efficacy of antibiotics. Although an adjuvant effect has been observed, the underlying mechanisms are poorly understood. To investigate the nature of the antibiotic and biosurfactant interaction, we undertook a scanning electron microscopy (SEM) and atomic force microscopy (AFM) microscopic study of the effects of the tetracycline antibiotic, combined with sophorolipid and rhamnolipid biosurfactants, on Methicillin-resistant Staphylococcus aureus using tetracycline concentrations below and above the minimum inhibitory concentration (MIC). Control and treated bacterial samples were prepared with an immersion technique by adsorbing the bacteria onto glass substrates grafted with the poly-cationic polymer polyethyleneimine. Bacterial surface morphology, hydrophobic and hydrophilic surface characters as well as the local bacterial cell stiffness were measured following combined antibiotic and biosurfactant treatment. The sophorolipid biosurfactant stands alone insofar as, when used with the antibiotic at sub-MIC concentration, it resulted in bacterial morphological changes, larger diameters (from 758 ± 75 to 1276 ± 220 nm, p-value = 10-4) as well as increased bacterial core stiffness (from 205 ± 46 to 396 ± 66 mN/m, p-value = 5 × 10-5). This investigation demonstrates that such combination of microscopic analysis can give useful information which could complement biological assays to understand the mechanisms of synergy between antibiotics and bioactive molecules such as biosurfactants.
Collapse
Affiliation(s)
- Abulaziz Juma
- School of Biomedical Sciences, Ulster University, Coleraine, United Kingdom
| | - Patrick Lemoine
- School of Engineering, Nanotechnology and Integrated Bioengineering Centre (NIBEC), Ulster University, Newtownabbey, United Kingdom
| | - Alistair B J Simpson
- School of Engineering, Nanotechnology and Integrated Bioengineering Centre (NIBEC), Ulster University, Newtownabbey, United Kingdom
| | - Jason Murray
- School of Biomedical Sciences, Ulster University, Coleraine, United Kingdom
| | - Barry M G O'Hagan
- School of Biomedical Sciences, Ulster University, Coleraine, United Kingdom
| | - Patrick J Naughton
- School of Biomedical Sciences, Ulster University, Coleraine, United Kingdom
| | - James G Dooley
- School of Biomedical Sciences, Ulster University, Coleraine, United Kingdom
| | - Ibrahim M Banat
- School of Biomedical Sciences, Ulster University, Coleraine, United Kingdom
| |
Collapse
|
8
|
Harper CE, Hernandez CJ. Cell biomechanics and mechanobiology in bacteria: Challenges and opportunities. APL Bioeng 2020; 4:021501. [PMID: 32266323 PMCID: PMC7113033 DOI: 10.1063/1.5135585] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 02/27/2020] [Indexed: 12/11/2022] Open
Abstract
Physical forces play a profound role in the survival and function of all known forms of life. Advances in cell biomechanics and mechanobiology have provided key insights into the physiology of eukaryotic organisms, but much less is known about the roles of physical forces in bacterial physiology. This review is an introduction to bacterial mechanics intended for persons familiar with cells and biomechanics in mammalian cells. Bacteria play a major role in human health, either as pathogens or as beneficial commensal organisms within the microbiome. Although bacteria have long been known to be sensitive to their mechanical environment, understanding the effects of physical forces on bacterial physiology has been limited by their small size (∼1 μm). However, advancements in micro- and nano-scale technologies over the past few years have increasingly made it possible to rigorously examine the mechanical stress and strain within individual bacteria. Here, we review the methods currently used to examine bacteria from a mechanical perspective, including the subcellular structures in bacteria and how they differ from those in mammalian cells, as well as micro- and nanomechanical approaches to studying bacteria, and studies showing the effects of physical forces on bacterial physiology. Recent findings indicate a large range in mechanical properties of bacteria and show that physical forces can have a profound effect on bacterial survival, growth, biofilm formation, and resistance to toxins and antibiotics. Advances in the field of bacterial biomechanics have the potential to lead to novel antibacterial strategies, biotechnology approaches, and applications in synthetic biology.
Collapse
Affiliation(s)
- Christine E. Harper
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, USA
| | | |
Collapse
|
9
|
Tamayo L, Melo F, Caballero L, Hamm E, Díaz M, Leal MS, Guiliani N, Urzúa MD. Does Bacterial Elasticity Affect Adhesion to Polymer Fibers? ACS APPLIED MATERIALS & INTERFACES 2020; 12:14507-14517. [PMID: 32118396 DOI: 10.1021/acsami.9b21060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The factors governing bacterial adhesion to substrates with different topographies are still not fully identified. The present work seeks to elucidate for the first time and with quantitative data the roles of bacterial elasticity and shape and substrate topography in bacterial adhesion. With this aim, populations of three bacterial species, P. aeruginosa DSM 22644, B. subtilis DSM 10, and S. aureus DSM 20231 adhered on flat substrates covered with electrospun polycaprolactone fibers of different diameters ranging from 0.4 to 5.5 μm are counted. Populations of bacterial cells are classified according to the preferred binding sites of the bacteria to the substrate. The colloidal probe technique was used to assess the stiffness of the bacteria and bacteria-polymer surface adhesion energy. A theoretical model is developed to interpret the observed populations in terms of a balance between stiffness and adhesion energy of the bacteria. The model, which also incorporates the radius of the fiber and the size and shape of the bacteria, predicts increased adhesion for a low level of stiffness and for a larger number of available bacteria-fiber contact points. Te adhesive propensity of bacteria depends in a nontrivial way on the radius of the fibers due to the random arrangement of fibers.
Collapse
Affiliation(s)
- Laura Tamayo
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras, Santiago 3425, Chile
| | - Francisco Melo
- Departamento Física, Facultad de Ciencia, Universidad de Santiago de Chile, Avenida Ecuador, Santiago 3493, Chile
- Center for Soft Matter Research, SMAT-C, Avenida Libertador Bernardo O'Higgins, Santiago 3363, Chile
| | - Leonardo Caballero
- Departamento Física, Facultad de Ciencia, Universidad de Santiago de Chile, Avenida Ecuador, Santiago 3493, Chile
- Center for Soft Matter Research, SMAT-C, Avenida Libertador Bernardo O'Higgins, Santiago 3363, Chile
| | - Eugenio Hamm
- Departamento Física, Facultad de Ciencia, Universidad de Santiago de Chile, Avenida Ecuador, Santiago 3493, Chile
| | - M Díaz
- Laboratorio de Comunicación Bacteriana, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras, Ñuñoa, Santiago 3425, Chile
| | - M S Leal
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras, Santiago 3425, Chile
| | - N Guiliani
- Laboratorio de Comunicación Bacteriana, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras, Ñuñoa, Santiago 3425, Chile
| | - M D Urzúa
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras, Santiago 3425, Chile
| |
Collapse
|
10
|
Mechanomicrobiology: how bacteria sense and respond to forces. Nat Rev Microbiol 2020; 18:227-240. [DOI: 10.1038/s41579-019-0314-2] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2019] [Indexed: 12/26/2022]
|
11
|
Halvey AK, Macdonald B, Dhyani A, Tuteja A. Design of surfaces for controlling hard and soft fouling. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2019; 377:20180266. [PMID: 30967072 PMCID: PMC6335287 DOI: 10.1098/rsta.2018.0266] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/12/2018] [Indexed: 05/29/2023]
Abstract
In this review, we present a framework to guide the design of surfaces which are resistant to solid fouling, based on the modulus and length scale of the fouling material. Solid fouling is defined as the undesired attachment of solid contaminants including ice, clathrates, waxes, inorganic scale, polymers, proteins, dust and biological materials. We first provide an overview of the surface design approaches typically applied across the scope of solid fouling and explain how these disparate research efforts can be united to an extent under a single framework. We discuss how the elastic modulus and the operating length scale of a foulant determine its ability or inability to elastically deform surfaces. When surface deformation occurs, minimization of the substrate elastic modulus is critical for the facile de-bonding of a solid contaminant. Foulants with low modulus or small deposition sizes cannot deform an elastic bulk material and instead de-bond more readily from surfaces with chemistries that minimize their interfacial free energy or induce a particular repellant interaction with the foulant. Overall, we review reported surface design strategies for the reduction in solid fouling, and provide perspective regarding how our framework, together with the modulus and length scale of a foulant, can guide future antifouling surface designs. This article is part of the theme issue 'Bioinspired materials and surfaces for green science and technology'.
Collapse
Affiliation(s)
- Alex Kate Halvey
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- BioInterfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Brian Macdonald
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- BioInterfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Abhishek Dhyani
- BioInterfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Anish Tuteja
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- BioInterfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
12
|
A Multi-scale Biophysical Approach to Develop Structure-Property Relationships in Oral Biofilms. Sci Rep 2018; 8:5691. [PMID: 29632310 PMCID: PMC5890245 DOI: 10.1038/s41598-018-23798-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 03/19/2018] [Indexed: 11/09/2022] Open
Abstract
Over the last 5–10 years, optical coherence tomography (OCT) and atomic force microscopy (AFM) have been individually applied to monitor the morphological and mechanical properties of various single-species biofilms respectively. This investigation looked to combine OCT and AFM as a multi-scale approach to understand the role sucrose concentration and age play in the morphological and mechanical properties of oral, microcosm biofilms, in-vitro. Biofilms with low (0.1% w/v) and high (5% w/v) sucrose concentrations were grown on hydroxyapatite (HAP) discs from pooled human saliva and incubated for 3 and 5 days. Distinct mesoscale features of biofilms such as regions of low and high extracellular polymeric substances (EPS) were identified through observations made by OCT. Mechanical analysis revealed increasing sucrose concentration decreased Young’s modulus and increased cantilever adhesion (p < 0.0001), relative to the biofilm. Increasing age was found to decrease adhesion only (p < 0.0001). This was due to mechanical interactions between the indenter and the biofilm increasing as a function of increased EPS content, due to increasing sucrose. An expected decrease in EPS cantilever contact decreased adhesion due to bacteria proliferation with biofilm age. The application OCT and AFM revealed new structure-property relationships in oral biofilms, unattainable if the techniques were used independently.
Collapse
|
13
|
Kolewe KW, Zhu J, Mako NR, Nonnenmann SS, Schiffman JD. Bacterial Adhesion Is Affected by the Thickness and Stiffness of Poly(ethylene glycol) Hydrogels. ACS APPLIED MATERIALS & INTERFACES 2018; 10:2275-2281. [PMID: 29283244 PMCID: PMC5785418 DOI: 10.1021/acsami.7b12145] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Despite lacking visual, auditory, and olfactory perception, bacteria sense and attach to surfaces. Many factors, including the chemistry, topography, and mechanical properties of a surface, are known to alter bacterial attachment, and in this study, using a library of nine protein-resistant poly(ethylene glycol) (PEG) hydrogels immobilized on glass slides, we demonstrate that the thickness or amount of polymer concentration also matters. Hydrated atomic force microscopy and rheological measurements corroborated that thin (15 μm), medium (40 μm), and thick (150 μm) PEG hydrogels possessed Young's moduli in three distinct regimes, soft (20 kPa), intermediate (300 kPa), and stiff (1000 kPa). The attachment of two diverse bacteria, flagellated Gram-negative Escherichia coli and nonmotile Gram-positive Staphylococcus aureus was assessed after a 24 h incubation on the nine PEG hydrogels. On the thickest PEG hydrogels (150 μm), E. coli and S. aureus attachment increased with increasing hydrogel stiffness. However, when the hydrogel's thickness was reduced to 15 μm, a substantially greater adhesion of E. coli and S. aureus was observed. Twelve times fewer S. aureus and eight times fewer E. coli adhered to thin-soft hydrogels than to thick-soft hydrogels. Although a full mechanism to explain this behavior is beyond the scope of this article, we suggest that because the Young's moduli of thin-soft and thick-soft hydrogels were statistically equivalent, potentially, the very stiff underlying glass slide was causing the thin-soft hydrogels to feel stiffer to the bacteria. These findings suggest a key takeaway design rule; to optimize fouling-resistance, hydrogel coatings should be thick and soft.
Collapse
Affiliation(s)
- Kristopher W. Kolewe
- Department of Chemical Engineering, University of Massachusetts
Amherst, Amherst, Massachusetts 01003-9303
| | - Jiaxin Zhu
- Department of Mechanical and Industrial Engineering, University of
Massachusetts Amherst, Amherst, Massachusetts 01003-9265
| | - Natalie R. Mako
- Department of Chemical Engineering, University of Massachusetts
Amherst, Amherst, Massachusetts 01003-9303
| | - Stephen S. Nonnenmann
- Department of Mechanical and Industrial Engineering, University of
Massachusetts Amherst, Amherst, Massachusetts 01003-9265
| | - Jessica D. Schiffman
- Department of Chemical Engineering, University of Massachusetts
Amherst, Amherst, Massachusetts 01003-9303
| |
Collapse
|
14
|
Even C, Marlière C, Ghigo JM, Allain JM, Marcellan A, Raspaud E. Recent advances in studying single bacteria and biofilm mechanics. Adv Colloid Interface Sci 2017; 247:573-588. [PMID: 28754382 DOI: 10.1016/j.cis.2017.07.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 07/18/2017] [Accepted: 07/18/2017] [Indexed: 12/15/2022]
Abstract
Bacterial biofilms correspond to surface-associated bacterial communities embedded in hydrogel-like matrix, in which high cell density, reduced diffusion and physico-chemical heterogeneity play a protective role and induce novel behaviors. In this review, we present recent advances on the understanding of how bacterial mechanical properties, from single cell to high-cell density community, determine biofilm tri-dimensional growth and eventual dispersion and we attempt to draw a parallel between these properties and the mechanical properties of other well-studied hydrogels and living systems.
Collapse
|
15
|
Gu J, Valdevit A, Chou TM, Libera M. Substrate effects on cell-envelope deformation during early-stage Staphylococcus aureus biofilm formation. SOFT MATTER 2017; 13:2967-2976. [PMID: 28361145 DOI: 10.1039/c6sm02815b] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Bacterial adhesion to a surface is the first step in biofilm formation, and adhesive forces between the surface and a bacterium are believed to give rise to planktonic-to-biofilm phenotypic changes. Here we use Focused-Ion-Beam (FIB) tomography with backscattered scanning electron microscopy (SEM) to image Staphyolococcus aureus (S. aureus) biofilms grown on Au-coated polystyrene (PS) and Au-coated PS modified by mixed thiols of triethylene glycol mono-11-mercaptoundecyl ether (EG3) and 1-dodecanethiol (CH3). The FIB-SEM technique enables a direct measurement of the contact area between individual bacteria and the substrate. The area of adhesion is effectively zero on the EG3 substrate. It is nonzero on all of the other substrates and increases with increasing hydrophobicity. The fact that the contact area is highest on the unmodified gold, however, indicates that other forces beyond hydrophobicity are significant. The magnitude of bacterial deformation suggests that the adhesive forces are on the order of a few nN, consistent with AFM force measurements reported in the literature. The resolution afforded by electron microscopy furthermore enables us to probe changes in the cell-envelope thickness, which decreases within and near the contact area relative to other parts of the same bacterium. This finding supports the idea that mechanosensing due to stress-induced membrane thinning plays a role in the planktonic-to-biofilm transition associated with bacterial adhesion.
Collapse
Affiliation(s)
- Jiahua Gu
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, NJ 07030, USA.
| | | | | | | |
Collapse
|
16
|
Quantification of the viscoelasticity of the bond of biotic and abiotic particles adhering to solid-liquid interfaces using a window-equipped quartz crystal microbalance with dissipation. Colloids Surf B Biointerfaces 2016; 148:255-262. [DOI: 10.1016/j.colsurfb.2016.08.062] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 08/30/2016] [Accepted: 08/31/2016] [Indexed: 11/22/2022]
|
17
|
Aguayo S, Strange A, Gadegaard N, Dalby MJ, Bozec L. Influence of biomaterial nanotopography on the adhesive and elastic properties of Staphylococcus aureus cells. RSC Adv 2016. [DOI: 10.1039/c6ra12504b] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Despite the well-known beneficial effects of biomaterial nanopatterning on host tissue integration, the influence of controlled nanoscale topography on bacterial colonisation and infection remains unknown.
Collapse
Affiliation(s)
- S. Aguayo
- Department of Biomaterials and Tissue Engineering
- UCL Eastman Dental Institute
- University College London
- London
- WC1X 8LD – UK
| | - A. Strange
- Department of Biomaterials and Tissue Engineering
- UCL Eastman Dental Institute
- University College London
- London
- WC1X 8LD – UK
| | - N. Gadegaard
- Division of Biomedical Engineering
- School of Engineering
- University of Glasgow
- UK
| | - M. J. Dalby
- Centre for Cell Engineering
- Institute of Molecular, Cell and Systems Biology
- University of Glasgow
- UK
| | - L. Bozec
- Department of Biomaterials and Tissue Engineering
- UCL Eastman Dental Institute
- University College London
- London
- WC1X 8LD – UK
| |
Collapse
|
18
|
Mechanics of Bacterial Cells and Initial Surface Colonisation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 915:245-60. [DOI: 10.1007/978-3-319-32189-9_15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
19
|
Preedy EC, Perni S, Prokopovich P. Nanomechanical and surface properties of rMSCs post-exposure to CAP treated UHMWPE wear particles. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 12:723-734. [PMID: 26554392 PMCID: PMC4819529 DOI: 10.1016/j.nano.2015.10.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 09/13/2015] [Accepted: 10/22/2015] [Indexed: 12/28/2022]
Abstract
Wear debris generated by ultra-high molecular weight polyethylene (UHMWPE) used in joint replacement devices has been of concern due to reductions of the implant longevity. Cold atmospheric plasma (CAP) has been used to improve the wear performance of UHMWPE. Our aim was to investigate the elastic and adhesive properties of rat mesenchymal stem cells (rMSCs), through AFM, after exposure to UHMWPE wear debris pre- and post-CAP treatment. The results indicated that the main changes in cell elasticity and spring constant of MSC exposed to wear particles occurred in the first 24 h of contact and the particle concentration from 0.5 to 50 mg/l did not play a significant role. For UHMWPE treated for 7.5 min, with progression of the wear simulation the results of the CAP treated samples were getting closer to the result of untreated samples; while with longer CAP treatment this was not observed. From the Clinical Editor Joint replacements are now common clinical practice. However, the use of ultra-high molecular weight polyethylene (UHMWPE) still poses a concern, due to the presence of wear debris. The authors here investigated the effects of wear debris after cold atmospheric plasma treatment on rat mesenchymal stem cells. The positive results provided new strategies in future design of joint replacement materials.
Collapse
Affiliation(s)
| | - Stefano Perni
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK; Department of Biological Engineering, MA Institute of Technology, Cambridge, MA, USA
| | - Polina Prokopovich
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK; Department of Biological Engineering, MA Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
20
|
Loskill P, Pereira PM, Jung P, Bischoff M, Herrmann M, Pinho MG, Jacobs K. Reduction of the peptidoglycan crosslinking causes a decrease in stiffness of the Staphylococcus aureus cell envelope. Biophys J 2015; 107:1082-1089. [PMID: 25185544 DOI: 10.1016/j.bpj.2014.07.029] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 06/30/2014] [Accepted: 07/15/2014] [Indexed: 11/28/2022] Open
Abstract
We have used atomic-force microscopy (AFM) to probe the effect of peptidoglycan crosslinking reduction on the elasticity of the Staphylococcus aureus cell wall, which is of particular interest as a target for antimicrobial chemotherapy. Penicillin-binding protein 4 (PBP4) is a nonessential transpeptidase, required for the high levels of peptidoglycan crosslinking characteristic of S. aureus. Importantly, this protein is essential for β-lactam resistance in community-acquired, methicillin-resistant S. aureus (MRSA) strains but not in hospital-acquired MRSA strains. Using AFM in a new mode for recording force/distance curves, we observed that the absence of PBP4, and the concomitant reduction of the peptidoglycan crosslinking, resulted in a reduction in stiffness of the S. aureus cell wall. Importantly, the reduction in cell wall stiffness in the absence of PBP4 was observed both in community-acquired and hospital-acquired MRSA strains, indicating that high levels of peptidoglycan crosslinking modulate the overall structure and mechanical properties of the S. aureus cell envelope in both types of clinically relevant strains. Additionally, we were able to show that the applied method enables the separation of cell wall properties and turgor pressure.
Collapse
Affiliation(s)
- Peter Loskill
- Experimental Physics, Saarland University, Saarbrücken, Germany
| | - Pedro M Pereira
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Philipp Jung
- Institute of Medical Microbiology and Hygiene, Saarland University, Homburg/Saar, Germany
| | - Markus Bischoff
- Institute of Medical Microbiology and Hygiene, Saarland University, Homburg/Saar, Germany
| | - Mathias Herrmann
- Institute of Medical Microbiology and Hygiene, Saarland University, Homburg/Saar, Germany
| | - Mariana G Pinho
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal.
| | - Karin Jacobs
- Experimental Physics, Saarland University, Saarbrücken, Germany.
| |
Collapse
|
21
|
Diao M, Nguyen TA, Taran E, Mahler SM, Nguyen AV. Effect of energy source, salt concentration and loading force on colloidal interactions between Acidithiobacillus ferrooxidans cells and mineral surfaces. Colloids Surf B Biointerfaces 2015; 132:271-80. [DOI: 10.1016/j.colsurfb.2015.05.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Revised: 05/11/2015] [Accepted: 05/14/2015] [Indexed: 11/28/2022]
|
22
|
Aguayo S, Donos N, Spratt D, Bozec L. Single-bacterium nanomechanics in biomedicine: unravelling the dynamics of bacterial cells. NANOTECHNOLOGY 2015; 26:062001. [PMID: 25598514 DOI: 10.1088/0957-4484/26/6/062001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The use of the atomic force microscope (AFM) in microbiology has progressed significantly throughout the years since its first application as a high-resolution imaging instrument. Modern AFM setups are capable of characterizing the nanomechanical behaviour of bacterial cells at both the cellular and molecular levels, where elastic properties and adhesion forces of single bacterium cells can be examined under different experimental conditions. Considering that bacterial and biofilm-mediated infections continue to challenge the biomedical field, it is important to understand the biophysical events leading towards bacterial adhesion and colonization on both biological and non-biological substrates. The purpose of this review is to present the latest findings concerning the field of single-bacterium nanomechanics, and discuss future trends and applications of nanoindentation and single-cell force spectroscopy techniques in biomedicine.
Collapse
Affiliation(s)
- S Aguayo
- Department of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, London, UK
| | | | | | | |
Collapse
|
23
|
Mechanical and cell-to-cell adhesive properties of aggregated Methanosarcina. Colloids Surf B Biointerfaces 2015; 126:303-12. [PMID: 25578422 DOI: 10.1016/j.colsurfb.2014.12.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 09/15/2014] [Accepted: 12/19/2014] [Indexed: 11/20/2022]
Abstract
The mechanical and adhesive properties as well as the turgor pressure of microbes play an important role in cell growth and aggregation. By applying AFM together with finite element modelling, one can determine the cell wall structural homogeneity, mechanical and cell-to-cell adhesive properties for aggregated Methanosarcina barkeri cells. This also allows a novel approach to determine in-aggregate turgor pressure determination. Analyzing the AFM force-indentation response of the aggregates under loads less than 10 nN, our study reveals structural inhomogeneity of the polymeric part of the cell wall material and suggests that the cell wall consists of two layers of methanochondroitin (external: with a thickness of 3 ± 1 nm and internal: with a thickness of 169 ± 30 nm). On average, the hyperelastic finite element model showed that the internal layer is more rigid (μ = 14 ± 4 MPa) than the external layer (μ = 2.8 ± 0.9 MPa). To determine the turgor pressure and adhesiveness of the cells, a specific mode of indentation (under a load of 45 nN), aimed towards the centre of the individual aggregate, was performed. By modelling the AFM induced decohesion of the aggregate, the turgor pressure and the cell-to-cell adhesive interface properties could be determined. On average, the turgor pressure is estimated to be 59 ± 22 kPa, the interface strength is 78 ± 12 kPa and the polymer network extensibility is 2.8 ± 0.9 nm. We predict that internal cell wall comprised highly compressed methanochondroitin chains and we are able to identify a conceptual model for stress dependent inner cell wall growth.
Collapse
|
24
|
Safari A, Habimana O, Allen A, Casey E. The significance of calcium ions on Pseudomonas fluorescens biofilms - a structural and mechanical study. BIOFOULING 2014; 30:859-869. [PMID: 25115520 DOI: 10.1080/08927014.2014.938648] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The purpose of this study was to investigate the effects of calcium ions on the structural and mechanical properties of Pseudomonas fluorescens biofilms grown for 48 h. Advanced investigative techniques such as confocal laser scanning microscopy and atomic force spectroscopy were employed to characterize biofilm structure as well as biofilm mechanical properties following growth at different calcium concentrations. The presence of calcium during biofilm development led to higher surface coverage with distinct structural phenotypes in the form of a granular and heterogeneous surface, compared with the smoother and homogeneous biofilm surface in the absence of calcium. The presence of calcium also increased the adhesive nature of the biofilm, while reducing its elastic properties. These results suggest that calcium ions could have a functional role in biofilm development and have practical implications, for example, in analysis of biofouling in membrane-based water-treatment processes such as nanofiltration or reverse osmosis where elevated calcium concentrations may occur at the solid-liquid interface.
Collapse
Affiliation(s)
- Ashkan Safari
- a School of Chemical and Bioprocess Engineering , University College Dublin (UCD) , Belfield , Dublin , Ireland
| | | | | | | |
Collapse
|
25
|
|
26
|
Nanoscale cell wall deformation impacts long-range bacterial adhesion forces on surfaces. Appl Environ Microbiol 2013; 80:637-43. [PMID: 24212582 DOI: 10.1128/aem.02745-13] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adhesion of bacteria occurs on virtually all natural and synthetic surfaces and is crucial for their survival. Once they are adhering, bacteria start growing and form a biofilm, in which they are protected against environmental attacks. Bacterial adhesion to surfaces is mediated by a combination of different short- and long-range forces. Here we present a new atomic force microscopy (AFM)-based method to derive long-range bacterial adhesion forces from the dependence of bacterial adhesion forces on the loading force, as applied during the use of AFM. The long-range adhesion forces of wild-type Staphylococcus aureus parent strains (0.5 and 0.8 nN) amounted to only one-third of these forces measured for their more deformable isogenic Δpbp4 mutants that were deficient in peptidoglycan cross-linking. The measured long-range Lifshitz-Van der Waals adhesion forces matched those calculated from published Hamaker constants, provided that a 40% ellipsoidal deformation of the bacterial cell wall was assumed for the Δpbp4 mutants. Direct imaging of adhering staphylococci using the AFM peak force-quantitative nanomechanical property mapping imaging mode confirmed a height reduction due to deformation in the Δpbp4 mutants of 100 to 200 nm. Across naturally occurring bacterial strains, long-range forces do not vary to the extent observed here for the Δpbp4 mutants. Importantly, however, extrapolating from the results of this study, it can be concluded that long-range bacterial adhesion forces are determined not only by the composition and structure of the bacterial cell surface but also by a hitherto neglected, small deformation of the bacterial cell wall, facilitating an increase in contact area and, therewith, in adhesion force.
Collapse
|