1
|
Sayid R, van den Hurk AWM, Rothschild-Rodriguez D, Herrema H, de Jonge PA, Nobrega FL. Characteristics of phage-plasmids and their impact on microbial communities. Essays Biochem 2024; 68:583-592. [PMID: 39611587 DOI: 10.1042/ebc20240014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/20/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
Bacteria host various foreign genetic elements, most notably plasmids and bacteriophages (or phages). Historically, these two classes were seen as separate, but recent research has shown considerable interplay between them. Phage-plasmids (P-Ps) exhibit characteristics of both phages and plasmids, allowing them to exist extrachromosomally within bacterial hosts as plasmids, but also to infect and lyse bacteria as phages. This dual functionality enables P-Ps to utilize the modes of transmission of both phage and plasmids, facilitating the rapid dissemination of genetic material, including antibiotic resistance and virulence genes, throughout bacterial populations. Additionally, P-Ps have been found to encode toxin-antitoxin and CRISPR-Cas adaptive immune systems, which enhance bacterial survival under stress and provide immunity against other foreign genetic elements. Despite a growing body of literature on P-Ps, large gaps remain in our understanding of their ecological roles and environmental prevalence. This review aims to synthesise existing knowledge and identify research gaps on the impacts of P-Ps on microbial communities.
Collapse
Affiliation(s)
- Ruweyda Sayid
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - Anne W M van den Hurk
- Departments of Internal and Experimental Vascular Medicine, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam; the Netherlands
- Amsterdam Gastroenterology, Endocrinology & Metabolism; Endocrinology, metabolism & nutrition, Amsterdam UMC, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Diabetes & Metabolism, Amsterdam UMC, Amsterdam, the Netherlands
| | | | - Hilde Herrema
- Departments of Internal and Experimental Vascular Medicine, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam; the Netherlands
- Amsterdam Gastroenterology, Endocrinology & Metabolism; Endocrinology, metabolism & nutrition, Amsterdam UMC, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Diabetes & Metabolism, Amsterdam UMC, Amsterdam, the Netherlands
| | - Patrick A de Jonge
- Departments of Internal and Experimental Vascular Medicine, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam; the Netherlands
- Amsterdam Gastroenterology, Endocrinology & Metabolism; Endocrinology, metabolism & nutrition, Amsterdam UMC, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Diabetes & Metabolism, Amsterdam UMC, Amsterdam, the Netherlands
| | - Franklin L Nobrega
- School of Biological Sciences, University of Southampton, Southampton, UK
| |
Collapse
|
2
|
Phuntumart V, Boulos L, Nunnally B, Lima I, Motter J, Sidoti O, Rutherford S, Wei HH, Larsen R, Zeilstra-Ryalls JH. Genome Sequence of the Mycobacterium smegmatis Bacteriophage Eugenia. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001401. [PMID: 39734747 PMCID: PMC11682537 DOI: 10.17912/micropub.biology.001401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/09/2024] [Accepted: 12/13/2024] [Indexed: 12/31/2024]
Abstract
We report the discovery and genome sequence of mycobacteriophage Eugenia, isolated from soil samples collected in Akron, OH. Eugenia is a double-stranded DNA virus with a genome size of 69,139 bp, featuring 104 predicted protein-encoding genes, with 32 of these genes assigned putative functions.
Collapse
Affiliation(s)
- Vipaporn Phuntumart
- Biological Sciences, Bowling Green State University, Bowling Green, Ohio, United States
| | - Lucia Boulos
- Biological Sciences, Bowling Green State University, Bowling Green, Ohio, United States
| | - Bella Nunnally
- Biological Sciences, Bowling Green State University, Bowling Green, Ohio, United States
| | - Isabella Lima
- Biological Sciences, Bowling Green State University, Bowling Green, Ohio, United States
| | - John Motter
- Biological Sciences, Bowling Green State University, Bowling Green, Ohio, United States
| | - Olivia Sidoti
- Biological Sciences, Bowling Green State University, Bowling Green, Ohio, United States
| | - Sam Rutherford
- Biological Sciences, Bowling Green State University, Bowling Green, Ohio, United States
| | - Hsin-Ho Wei
- Biological Sciences, Bowling Green State University, Bowling Green, Ohio, United States
| | - Raymond Larsen
- Biological Sciences, Bowling Green State University, Bowling Green, Ohio, United States
| | | |
Collapse
|
3
|
Richards VA, Ferrell BD, Polson SW, Wommack KE, Fuhrmann JJ. Soybean Bradyrhizobium spp. Spontaneously Produce Abundant and Diverse Temperate Phages in Culture. Viruses 2024; 16:1750. [PMID: 39599864 PMCID: PMC11599138 DOI: 10.3390/v16111750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
Soybean bradyrhizobia (Bradyrhizobium spp.) are symbiotic root-nodulating bacteria that fix atmospheric nitrogen for the host plant. The University of Delaware Bradyrhizobium Culture Collection (UDBCC; 353 accessions) was created to study the diversity and ecology of soybean bradyrhizobia. Some UDBCC accessions produce temperate (lysogenic) bacteriophages spontaneously under routine culture conditions without chemical or other apparent inducing agents. Spontaneous phage production may promote horizontal gene transfer and shape bacterial genomes and associated phenotypes. A diverse subset (n = 98) of the UDBCC was examined for spontaneously produced virus-like particles (VLPs) using epifluorescent microscopy, with a majority (69%) producing detectable VLPs (>1 × 107 mL-1) in laboratory culture. Phages from the higher-producing accessions (>2.0 × 108 VLP mL-1; n = 44) were examined using transmission electron microscopy. Diverse morphologies were observed, including various tail types and lengths, capsid sizes and shapes, and the presence of collars or baseplates. In many instances, putative extracellular vesicles of a size similar to virions were also observed. Three of the four species examined (B. japonicum, B. elkanii, and B. diazoefficiens) produced apparently tailless phages. All species except B. ottawaense also produced siphovirus-like phages, while all but B. diazoefficiens additionally produced podovirus-like phages. Myovirus-like phages were restricted to B. japonicum and B. elkanii. At least three strains were polylysogens, producing up to three distinct morphotypes. These observations suggest spontaneously produced phages may play a significant role in the ecology and evolution of soybean bradyrhizobia.
Collapse
Affiliation(s)
- Vanessa A. Richards
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Barbra D. Ferrell
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19716, USA
| | - Shawn W. Polson
- Department of Computer and Information Sciences, University of Delaware, Newark, DE 19713, USA
- Microbiology Graduate Program, University of Delaware, Newark, DE 19713, USA
| | - K. Eric Wommack
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19716, USA
- Microbiology Graduate Program, University of Delaware, Newark, DE 19713, USA
| | - Jeffry J. Fuhrmann
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19716, USA
- Microbiology Graduate Program, University of Delaware, Newark, DE 19713, USA
| |
Collapse
|
4
|
Das R, Arora R, Nadar K, Saroj S, Singh AK, Patil SA, Raman SK, Misra A, Bajpai U. Insights into the genomic features and lifestyle of B1 subcluster mycobacteriophages. J Basic Microbiol 2024; 64:e2400027. [PMID: 38548701 DOI: 10.1002/jobm.202400027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 02/24/2024] [Indexed: 06/06/2024]
Abstract
Bacteriophages infecting Mycobacterium smegmatis mc2155 are numerous and, hence, are classified into clusters based on nucleotide sequence similarity. Analyzing phages belonging to clusters/subclusters can help gain deeper insights into their biological features and potential therapeutic applications. In this study, for genomic characterization of B1 subcluster mycobacteriophages, a framework of online tools was developed, which enabled functional annotation of about 55% of the previously deemed hypothetical proteins in B1 phages. We also studied the phenotype, lysogeny status, and antimycobacterial activity of 10 B1 phages against biofilm and an antibiotic-resistant M. smegmatis strain (4XR1). All 10 phages belonged to the Siphoviridae family, appeared temperate based on their spontaneous release from the putative lysogens and showed antibiofilm activity. The highest inhibitory and disruptive effects on biofilm were 64% and 46%, respectively. This systematic characterization using a combination of genomic and experimental tools is a promising approach to furthering our understanding of viral dark matter.
Collapse
Affiliation(s)
- Ritam Das
- Department of Life Science, Acharya Narendra Dev College, University of Delhi, Kalkaji, New Delhi, India
- Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany
| | - Ritu Arora
- Department of Biomedical Science, Acharya Narendra Dev College, University of Delhi, Kalkaji, New Delhi, India
| | - Kanika Nadar
- Department of Biomedical Science, Acharya Narendra Dev College, University of Delhi, Kalkaji, New Delhi, India
| | - Saroj Saroj
- Department of Biomedical Science, Acharya Narendra Dev College, University of Delhi, Kalkaji, New Delhi, India
| | - Amit K Singh
- Experimental Animal Facility, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Agra, India
| | - Shripad A Patil
- Experimental Animal Facility, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Agra, India
| | - Sunil K Raman
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Amit Misra
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, India
- Pharmaceutics and Pharmacokinetic Division, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Urmi Bajpai
- Department of Biomedical Science, Acharya Narendra Dev College, University of Delhi, Kalkaji, New Delhi, India
| |
Collapse
|
5
|
Guerrero-Bustamante CA, Hatfull GF. Bacteriophage tRNA-dependent lysogeny: requirement of phage-encoded tRNA genes for establishment of lysogeny. mBio 2024; 15:e0326023. [PMID: 38236026 PMCID: PMC10865867 DOI: 10.1128/mbio.03260-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 12/11/2023] [Indexed: 01/19/2024] Open
Abstract
Bacteriophages are large and diverse components of the biosphere, and many phages are temperate. Upon infection, temperate phages can establish lysogeny in which a prophage is typically integrated into the bacterial chromosome. Here, we describe the phenomenon of tRNA-dependent lysogeny, a previously unrecognized behavior of some temperate phages. tRNA-dependent lysogeny is characterized by two unusual features. First, a phage-encoded tyrosine family integrase mediates site-specific recombination between a phage attP site and a bacterial attB site overlapping a host tRNA gene. However, attP and attB share only a short (~10 bp) common core such that a functional tRNA is not reconstructed upon integration. Second, the phage encodes a tRNA of the same isotype as the disrupted but essential host tRNA, complementing its loss, and consequently is required for the survival of lysogenic progeny. As expected, an integrase-defective phage mutant forms turbid plaques, and bacterial progeny are immune to superinfection, but they lack stability, and the prophage is rapidly lost. In contrast, a tRNA-defective phage mutant forms clear plaques and more closely resembles a repressor mutant, and lysogens are recovered only at very low frequency through the use of secondary attachment sites elsewhere in the host genome. Integration-proficient plasmids derived from these phages must also carry a cognate phage tRNA gene for efficient integration, and these may be useful tools for mycobacterial genetics. We show that tRNA-dependent lysogeny is used by phages within multiple different groups of related viruses and may be prevalent elsewhere in the broader phage community.IMPORTANCEBacteriophages are the most numerous biological entities in the biosphere, and a substantial proportion of phages are temperate, forming stable lysogens in which a prophage copy of the genome integrates into the bacterial chromosome. Many phages encode a variety of tRNA genes whose roles are poorly understood, although it has been proposed that they enhance translational efficiencies in lytic growth or that they counteract host defenses that degrade host tRNAs. Here, we show that phage-encoded tRNAs play key roles in the establishment of lysogeny of some temperate phages. They do so by compensating for the loss of tRNA function when phages integrate at an attB site overlapping a tRNA gene but fail to reconstruct the tRNA at the attachment junction. In this system of tRNA-dependent lysogeny, the phage-encoded tRNA is required for lysogeny, and deletion of the phage tRNA gives rise to a clear plaque phenotype and obligate lytic growth.
Collapse
Affiliation(s)
| | - Graham F. Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
6
|
Abad L, Gauthier CH, Florian I, Jacobs-Sera D, Hatfull GF. The heterogenous and diverse population of prophages in Mycobacterium genomes. mSystems 2023; 8:e0044623. [PMID: 37791767 PMCID: PMC10654092 DOI: 10.1128/msystems.00446-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/18/2023] [Indexed: 10/05/2023] Open
Abstract
IMPORTANCE Mycobacterium species include several human pathogens and mycobacteriophages show potential for therapeutic use to control Mycobacterium infections. However, phage infection profiles vary greatly among Mycobacterium abscessus clinical isolates and phage therapies must be personalized for individual patients. Mycobacterium phage susceptibility is likely determined primarily by accessory parts of bacterial genomes, and we have identified the prophage and phage-related genomic regions across sequenced Mycobacterium strains. The prophages are numerous and diverse, especially in M. abscessus genomes, and provide a potentially rich reservoir of new viruses that can be propagated lytically and used to expand the repertoire of therapeutically useful phages.
Collapse
Affiliation(s)
- Lawrence Abad
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Christian H. Gauthier
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Isabella Florian
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Deborah Jacobs-Sera
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Graham F. Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
7
|
Dulberger CL, Guerrero-Bustamante CA, Owen SV, Wilson S, Wuo MG, Garlena RA, Serpa LA, Russell DA, Zhu J, Braunecker BJ, Squyres GR, Baym M, Kiessling LL, Garner EC, Rubin EJ, Hatfull GF. Mycobacterial nucleoid-associated protein Lsr2 is required for productive mycobacteriophage infection. Nat Microbiol 2023; 8:695-710. [PMID: 36823286 PMCID: PMC10066036 DOI: 10.1038/s41564-023-01333-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 01/23/2023] [Indexed: 02/25/2023]
Abstract
Mycobacteriophages are a diverse group of viruses infecting Mycobacterium with substantial therapeutic potential. However, as this potential becomes realized, the molecular details of phage infection and mechanisms of resistance remain ill-defined. Here we use live-cell fluorescence microscopy to visualize the spatiotemporal dynamics of mycobacteriophage infection in single cells and populations, showing that infection is dependent on the host nucleoid-associated Lsr2 protein. Mycobacteriophages preferentially adsorb at Mycobacterium smegmatis sites of new cell wall synthesis and following DNA injection, Lsr2 reorganizes away from host replication foci to establish zones of phage DNA replication (ZOPR). Cells lacking Lsr2 proceed through to cell lysis when infected but fail to generate consecutive phage bursts that trigger epidemic spread of phage particles to neighbouring cells. Many mycobacteriophages code for their own Lsr2-related proteins, and although their roles are unknown, they do not rescue the loss of host Lsr2.
Collapse
Affiliation(s)
- Charles L Dulberger
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | | | - Siân V Owen
- Department of Biomedical Informatics and Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Sean Wilson
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Michael G Wuo
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Rebecca A Garlena
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lexi A Serpa
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daniel A Russell
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Junhao Zhu
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Ben J Braunecker
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Georgia R Squyres
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Michael Baym
- Department of Biomedical Informatics and Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Laura L Kiessling
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ethan C Garner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Eric J Rubin
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA.
| | - Graham F Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
8
|
Strathdee SA, Hatfull GF, Mutalik VK, Schooley RT. Phage therapy: From biological mechanisms to future directions. Cell 2023; 186:17-31. [PMID: 36608652 PMCID: PMC9827498 DOI: 10.1016/j.cell.2022.11.017] [Citation(s) in RCA: 236] [Impact Index Per Article: 118.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/01/2022] [Accepted: 11/16/2022] [Indexed: 01/07/2023]
Abstract
Increasing antimicrobial resistance rates have revitalized bacteriophage (phage) research, the natural predators of bacteria discovered over 100 years ago. In order to use phages therapeutically, they should (1) preferably be lytic, (2) kill the bacterial host efficiently, and (3) be fully characterized to exclude side effects. Developing therapeutic phages takes a coordinated effort of multiple stakeholders. Herein, we review the state of the art in phage therapy, covering biological mechanisms, clinical applications, remaining challenges, and future directions involving naturally occurring and genetically modified or synthetic phages.
Collapse
Affiliation(s)
- Steffanie A Strathdee
- Center for Innovative Phage Applications and Therapeutics, Division of Infectious Disease and Global Public Health, University of California, San Diego, La Jolla, CA 92093-0507, USA.
| | - Graham F Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Vivek K Mutalik
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Robert T Schooley
- Center for Innovative Phage Applications and Therapeutics, Division of Infectious Disease and Global Public Health, University of California, San Diego, La Jolla, CA 92093-0507, USA
| |
Collapse
|
9
|
Complete Genome Sequences of Actinobacteriophages Anaysia and Caviar. Microbiol Resour Announc 2022; 11:e0094422. [DOI: 10.1128/mra.00944-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Anaysia and Caviar are temperate siphoviruses isolated from soil using
Gordonia terrae
3612 and
Mycobacterium smegmatis
mc
2
155, respectively. Anaysia’s 52,861-bp genome carries 102 genes, while Caviar’s 47,074-bp genome carries 79 genes. Based on gene content similarity, Anaysia and Caviar are assigned to phage clusters A15 and A3, respectively.
Collapse
|
10
|
Abstract
Mycobacteriophages-bacteriophages infecting Mycobacterium hosts-contribute substantially to our understanding of viral diversity and evolution, provide resources for advancing Mycobacterium genetics, are the basis of high-impact science education programs, and show considerable therapeutic potential. Over 10,000 individual mycobacteriophages have been isolated by high school and undergraduate students using the model organism Mycobacterium smegmatis mc2155 and 2,100 have been completely sequenced, giving a high-resolution view of the phages that infect a single common host strain. The phage genomes are revealed to be highly diverse and architecturally mosaic and are replete with genes of unknown function. Mycobacteriophages have provided many widely used tools for Mycobacterium genetics including integration-proficient vectors and recombineering systems, as well as systems for efficient delivery of reporter genes, transposons, and allelic exchange substrates. The genomic insights and engineering tools have facilitated exploration of phages for treatment of Mycobacterium infections, although their full therapeutic potential has yet to be realized.
Collapse
Affiliation(s)
- Graham F. Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, United States of America
| |
Collapse
|
11
|
Gauthier CH, Abad L, Venbakkam AK, Malnak J, Russell D, Hatfull G. OUP accepted manuscript. Nucleic Acids Res 2022; 50:e75. [PMID: 35451479 PMCID: PMC9303363 DOI: 10.1093/nar/gkac273] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/11/2022] [Accepted: 04/06/2022] [Indexed: 11/26/2022] Open
Abstract
Advances in genome sequencing have produced hundreds of thousands of bacterial genome sequences, many of which have integrated prophages derived from temperate bacteriophages. These prophages play key roles by influencing bacterial metabolism, pathogenicity, antibiotic resistance, and defense against viral attack. However, they vary considerably even among related bacterial strains, and they are challenging to identify computationally and to extract precisely for comparative genomic analyses. Here, we describe DEPhT, a multimodal tool for prophage discovery and extraction. It has three run modes that facilitate rapid screening of large numbers of bacterial genomes, precise extraction of prophage sequences, and prophage annotation. DEPhT uses genomic architectural features that discriminate between phage and bacterial sequences for efficient prophage discovery, and targeted homology searches for precise prophage extraction. DEPhT is designed for prophage discovery in Mycobacterium genomes but can be adapted broadly to other bacteria. We deploy DEPhT to demonstrate that prophages are prevalent in Mycobacterium strains but are absent not only from the few well-characterized Mycobacterium tuberculosis strains, but also are absent from all ∼30 000 sequenced M. tuberculosis strains.
Collapse
Affiliation(s)
| | | | - Ananya K Venbakkam
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Julia Malnak
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Daniel A Russell
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Graham F Hatfull
- To whom correspondence should be addressed. Tel: +1 412 624 6975;
| |
Collapse
|
12
|
Abstract
Viruses that infect different actinobacterial host species are known as actinobacteriophages. They are composed of highly divergent and mosaic genomes due to frequent gene exchange between their bacterial hosts and related viral species. This is also reflected by the adaptive incorporation of host transcription factors (TFs) into phage regulatory networks. Previous studies discovered Lsr2-type and WhiB-type regulators encoded by actinobacteriophage genomes. However, limited information is available about their distribution, evolution, and impact on host species. In this study, we computationally screened the distribution of known bacterial and phage TFs inside 2951 complete actinobacteriophage genomes and identified 13 different TF domains. Among those, WhiB, Lsr2, MerR, and Cro/CI-like proteins were widespread and found in more than 10% of the analyzed actinobacteriophage genomes. Neighboring genomic context analysis of the whiB and lsr2 loci showed group-specific conservation of gene synteny and potential involvement of these genes in diverse regulatory functions. Both genes were significantly enriched in temperate phages, and the Lsr2-encoding genomes featured an overall lower GC content. Phylogenetic analysis of WhiB and Lsr2 proteins showed the grouping of phage sequences within bacterial clades, suggesting gene acquisition by phages from their bacterial host species or by multiple, independent acquisition events. Overall, our study reports the global distribution of actinobacteriophage regulatory proteins and sheds light on their origin and evolution. IMPORTANCE Actinobacteriophages are viruses that infect bacterial species of the diverse phylum of Actinobacteria. Phages engage in a close relationship with their bacterial host. This is also reflected by the adoption of genetic material from their host and its incorporation into phage regulatory circuits. In this study, we systematically searched the genomes of actinobacteriophages for the presence of transcription factor domains. We show that proteins belonging to the regulator families of WhiB and Lsr2 belong to the most abundant regulatory proteins encoded by actinobacteriophages. Further phylogenetic analysis shed light on their origin and evolution. Altogether, this study provides an important basis for further experimental investigation of their role in the coordination of the phage life cycle and their interaction with the host regulatory network in this important bacterial phylum.
Collapse
|
13
|
Hatfull GF. Wildy Prize Lecture, 2020-2021: Who wouldn't want to discover a new virus? MICROBIOLOGY-SGM 2021; 167. [PMID: 34468308 PMCID: PMC8549241 DOI: 10.1099/mic.0.001094] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Innovations in science education are desperately needed to find ways to engage and interest students early in their undergraduate careers. Exposing students to authentic research experiences is highly beneficial, but finding ways to include all types of students and to do this at large scale is especially challenging. An attractive solution is the concept of an inclusive research education community (iREC) in which centralized research leadership and administration supports multiple institutions, including diverse groups of schools and universities, faculty and students. The Science Education Alliance Phage Hunters Advancing Genomics and Evolutionary Sciences (SEA-PHAGES) programme is an excellent example of an iREC, in which students explore viral diversity and evolution through discovery and genomic analysis of novel bacteriophages. The SEA-PHAGES programme has proven to be sustainable, to be implemented at large scale, and to enhance student persistence in science, as well as to produce substantial research advances. Discovering a new virus with the potential for new biological insights and clinical applications is inherently exciting. Who wouldn't want to discover a new virus?
Collapse
Affiliation(s)
- Graham F Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
14
|
Mavrich TN, Gauthier C, Abad L, Bowman CA, Cresawn SG, Hatfull GF. pdm_utils: a SEA-PHAGES MySQL phage database management toolkit. Bioinformatics 2021; 37:2464-2466. [PMID: 33226064 DOI: 10.1093/bioinformatics/btaa983] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/27/2020] [Accepted: 11/10/2020] [Indexed: 01/21/2023] Open
Abstract
SUMMARY Bacteriophages (phages) are incredibly abundant and genetically diverse. The volume of phage genomics data is rapidly increasing, driven in part by the SEA-PHAGES program, which isolates, sequences and manually annotates hundreds of phage genomes each year. With an ever-expanding genomics dataset, there are many opportunities for generating new biological insights through comparative genomic and bioinformatic analyses. As a result, there is a growing need to be able to store, update, explore and analyze phage genomics data. The package pdm_utils provides a collection of tools for MySQL phage database management designed to meet specific needs in the SEA-PHAGES program and phage genomics generally. AVAILABILITY AND IMPLEMENTATION https://pypi.org/project/pdm-utils/.
Collapse
Affiliation(s)
- Travis N Mavrich
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Christian Gauthier
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Lawrence Abad
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Charles A Bowman
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Steven G Cresawn
- Department of Biology, James Madison University, Harrisonburg, VA 22807, USA
| | - Graham F Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
15
|
Kirsch JM, Brzozowski RS, Faith D, Round JL, Secor PR, Duerkop BA. Bacteriophage-Bacteria Interactions in the Gut: From Invertebrates to Mammals. Annu Rev Virol 2021; 8:95-113. [PMID: 34255542 DOI: 10.1146/annurev-virology-091919-101238] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bacteria and their viruses (bacteriophages or phages) interact antagonistically and beneficially in polymicrobial communities such as the guts of animals. These interactions are multifaceted and are influenced by environmental conditions. In this review, we discuss phage-bacteria interactions as they relate to the complex environment of the gut. Within the mammalian and invertebrate guts, phages and bacteria engage in diverse interactions including genetic coexistence through lysogeny, and phages directly modulate microbiota composition and the immune system with consequences that are becoming recognized as potential drivers of health and disease. With greater depth of understanding of phage-bacteria interactions in the gut and the outcomes, future phage therapies become possible. Expected final online publication date for the Annual Review of Virology, Volume 8 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Joshua M Kirsch
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado 80045, USA;
| | - Robert S Brzozowski
- Division of Biological Sciences, University of Montana, Missoula, Montana 59812, USA;
| | - Dominick Faith
- Division of Biological Sciences, University of Montana, Missoula, Montana 59812, USA;
| | - June L Round
- Department of Pathology, Division of Microbiology and Immunology, University of Utah School of Medicine, Salt Lake City, Utah 84113, USA;
| | - Patrick R Secor
- Division of Biological Sciences, University of Montana, Missoula, Montana 59812, USA;
| | - Breck A Duerkop
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado 80045, USA;
| |
Collapse
|
16
|
Abstract
Mycobacterium abscessus is an emerging pathogen that is often refractory to antibiotic control. Treatment is further complicated by considerable variation among clinical isolates in both their genetic constitution and their clinical manifestations. Here, we show that the prophage and plasmid mobilome is a likely contributor to this variation. Prophages and plasmids are common, abundant, and highly diverse, and code for large repertoires of genes influencing virulence, antibiotic susceptibility, and defense against viral infection. At least 85% of the strains we describe carry one or more prophages, representing at least 17 distinct and diverse sequence "clusters," integrated at 18 different attB locations. The prophages code for 19 distinct configurations of polymorphic toxin and toxin-immunity systems, each with WXG-100 motifs for export through type VII secretion systems. These are located adjacent to attachment junctions, are lysogenically expressed, and are implicated in promoting growth in infected host cells. Although the plethora of prophages and plasmids confounds the understanding of M. abscessus pathogenicity, they also provide an abundance of tools for M. abscessus engineering.IMPORTANCE Mycobacterium abscessus is an important emerging pathogen that is challenging to treat with current antibiotic regimens. There is substantial genomic variation in M. abscessus clinical isolates, but little is known about how this influences pathogenicity and in vivo growth. Much of the genomic variation is likely due to the large and varied mobilome, especially a large and diverse array of prophages and plasmids. The prophages are unrelated to previously characterized phages of mycobacteria and code for a diverse array of genes implicated in both viral defense and in vivo growth. Prophage-encoded polymorphic toxin proteins secreted via the type VII secretion system are common and highly varied and likely contribute to strain-specific pathogenesis.
Collapse
|
17
|
Pfeifer E, Moura de Sousa JA, Touchon M, Rocha EPC. Bacteria have numerous distinctive groups of phage-plasmids with conserved phage and variable plasmid gene repertoires. Nucleic Acids Res 2021; 49:2655-2673. [PMID: 33590101 PMCID: PMC7969092 DOI: 10.1093/nar/gkab064] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/20/2021] [Accepted: 01/25/2021] [Indexed: 01/16/2023] Open
Abstract
Plasmids and temperate phages are key contributors to bacterial evolution. They are usually regarded as very distinct. However, some elements, termed phage–plasmids, are known to be both plasmids and phages, e.g. P1, N15 or SSU5. The number, distribution, relatedness and characteristics of these phage–plasmids are poorly known. Here, we screened for these elements among ca. 2500 phages and 12000 plasmids and identified 780 phage–plasmids across very diverse bacterial phyla. We grouped 92% of them by similarity of gene repertoires to eight defined groups and 18 other broader communities of elements. The existence of these large groups suggests that phage–plasmids are ancient. Their gene repertoires are large, the average element is larger than an average phage or plasmid, and they include slightly more homologs to phages than to plasmids. We analyzed the pangenomes and the genetic organization of each group of phage–plasmids and found the key phage genes to be conserved and co-localized within distinct groups, whereas genes with homologs in plasmids are much more variable and include most accessory genes. Phage–plasmids are a sizeable fraction of the sequenced plasmids (∼7%) and phages (∼5%), and could have key roles in bridging the genetic divide between phages and other mobile genetic elements.
Collapse
Affiliation(s)
- Eugen Pfeifer
- Microbial Evolutionary Genomics, Institut Pasteur, CNRS, UMR3525, Paris 75015, France
| | | | - Marie Touchon
- Microbial Evolutionary Genomics, Institut Pasteur, CNRS, UMR3525, Paris 75015, France
| | - Eduardo P C Rocha
- Microbial Evolutionary Genomics, Institut Pasteur, CNRS, UMR3525, Paris 75015, France
| |
Collapse
|
18
|
Wetzel KS, Guerrero-Bustamante CA, Dedrick RM, Ko CC, Freeman KG, Aull HG, Divens AM, Rock JM, Zack KM, Hatfull GF. CRISPY-BRED and CRISPY-BRIP: efficient bacteriophage engineering. Sci Rep 2021; 11:6796. [PMID: 33762639 PMCID: PMC7990910 DOI: 10.1038/s41598-021-86112-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/10/2021] [Indexed: 02/07/2023] Open
Abstract
Genome engineering of bacteriophages provides opportunities for precise genetic dissection and for numerous phage applications including therapy. However, few methods are available for facile construction of unmarked precise deletions, insertions, gene replacements and point mutations in bacteriophages for most bacterial hosts. Here we describe CRISPY-BRED and CRISPY-BRIP, methods for efficient and precise engineering of phages in Mycobacterium species, with applicability to phages of a variety of other hosts. This recombineering approach uses phage-derived recombination proteins and Streptococcus thermophilus CRISPR-Cas9.
Collapse
Affiliation(s)
- Katherine S Wetzel
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | | | - Rebekah M Dedrick
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Ching-Chung Ko
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Krista G Freeman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Haley G Aull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Ashley M Divens
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
- Department of Biomedical Sciences, West Virginia University, Morgantown, WV, 26506, USA
| | - Jeremy M Rock
- Department of Host-Pathogen Biology, The Rockefeller University, New York, NY, 10065, USA
| | - Kira M Zack
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Graham F Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
| |
Collapse
|
19
|
The helicase core accessory regions of the phage BFK20 DnaB-like helicase gp43 significantly affect its activity, oligomeric state and DNA binding properties. Virology 2021; 558:96-109. [PMID: 33744744 DOI: 10.1016/j.virol.2021.02.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/23/2021] [Accepted: 02/28/2021] [Indexed: 11/23/2022]
Abstract
The multifunctional phage replication protein gp43 is composed of an N-terminal prim-pol domain and a C-terminal domain similar to the SF4-type replicative helicases. We prepared four mutants all missing the prim-pol domain with the helicase core flanked by accessory N- and C-terminal regions truncated to varying extents. The shortest fragment still possessing strong ssDNA-dependent ATPase activity and helicase activity was gp43HEL519-983. The other proteins tested were gp43HEL557-983, gp43HEL519-855 and gp43HEL519-896. Removal of the 38 N-terminal residues in gp43HEL557-983, or the 128 and 87 C-terminal residues in gp43HEL519-855 and gp43HEL519-896, resulted in a significant decrease in the ATPase activities. The 38-amino acid N-terminal region has probably a function in modulating DNA binding and protein oligomerization. Deletion of the 87 C-terminal residues resulted in a twofold increase in the unwinding rate. This region is likely indispensable for binding to DNA substrates.
Collapse
|