1
|
Li Y, Kumar S, Zhang L. Mechanisms of Antibiotic Resistance and Developments in Therapeutic Strategies to Combat Klebsiella pneumoniae Infection. Infect Drug Resist 2024; 17:1107-1119. [PMID: 38525477 PMCID: PMC10960543 DOI: 10.2147/idr.s453025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/12/2024] [Indexed: 03/26/2024] Open
Abstract
Infections with drug-resistant bacteria have become one of the greatest public health challenges, and K. pneumoniae is among the top six drug-resistant bacteria. K. pneumoniae often causes nosocomial infections, leading to illnesses such as pneumonia, liver abscesses, soft tissue infections, urinary tract infections, bacteremia, and in some cases death. As the pathogen continues to evolve and its multidrug resistance increases, K. pneumoniae poses a direct threat to humans. Drug resistance in K. pneumoniae may occur due to the formation of biofilms, efflux pumps, and the production of β-lactamases. In many cases, resistance is further enhanced by enzymatic modification and loss of porins. Drug resistance to K. pneumoniae has led to a decline in the effectiveness of conventional therapies against this pathogen. Therefore, there is an urgent need to accelerate the development of new antibiotics and explore new therapeutic approaches such as antimicrobial peptides, phages, traditional Chinese medicine, immunotherapy, Antimicrobial nanoparticle technology, antisense oligonucleotides and gene editing technologies. In this review, we discuss the mechanisms of drug resistance in K. pneumoniae and compare several new potential therapeutic strategies to overcome drug resistance in the treatment of K. pneumoniae infections.
Collapse
Affiliation(s)
- Yanping Li
- Pharmacy Department, Jiangsu Vocational College of Medicine, Yancheng, Jiangsu, People’s Republic of China
- Post Graduate Centre, Management and Science University, Shah Alam, Malaysia
| | - Suresh Kumar
- Department of Diagnostic and Allied Health Science, Faculty of Health and Life Sciences, Management and Science University, Shah Alam, Malaysia
| | - Lihu Zhang
- Pharmacy Department, Jiangsu Vocational College of Medicine, Yancheng, Jiangsu, People’s Republic of China
| |
Collapse
|
2
|
Wilkening RV, Langouët-Astrié C, Severn MM, Federle MJ, Horswill AR. Identifying genetic determinants of Streptococcus pyogenes-host interactions in a murine intact skin infection model. Cell Rep 2023; 42:113332. [PMID: 37889753 PMCID: PMC10841832 DOI: 10.1016/j.celrep.2023.113332] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/12/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
Streptococcus pyogenes is an obligate human pathobiont associated with many disease states. Here, we present a model of S. pyogenes infection using intact murine epithelium. We were able to perform RNA sequencing to evaluate genetic changes undertaken by both the bacterium and host at 5 and 24 h post-infection. Analysis of these genomic data demonstrate that S. pyogenes undergoes genetic adaptation to successfully infect the murine epithelium, including changes to metabolism and activation of the Rgg2/Rgg3 quorum-sensing (QS) system. Subsequent experiments demonstrate that an intact Rgg2/Rgg3 QS cascade is necessary to establish a stable superficial skin infection. QS cascade activation results in increased murine morbidity and bacterial burden on the skin. This phenotype is associated with gross changes to the murine skin and with evidence of inflammation. These experiments offer a method to investigate S. pyogenes-epithelial interactions and demonstrate that a well-studied QS pathway is critical to a persistent infection.
Collapse
Affiliation(s)
- Reid V Wilkening
- Section of Pediatric Critical Care Medicine, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA; Department of Microbiology and Immunology, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| | - Christophe Langouët-Astrié
- Section of Pulmonary Sciences and Critical Care, Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Morgan M Severn
- Department of Microbiology and Immunology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Michael J Federle
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Alexander R Horswill
- Department of Microbiology and Immunology, University of Colorado School of Medicine, Aurora, CO 80045, USA; Department of Veterans Affairs, Eastern Colorado Healthcare System, Aurora, CO 80045, USA.
| |
Collapse
|
3
|
Nepomuceno VM, Tylor KM, Carlson S, Federle MJ, Murphy BT, Perez Morales T. A Streptomyces tendae Specialized Metabolite Inhibits Quorum Sensing in Group A Streptococcus. Microbiol Spectr 2023; 11:e0527922. [PMID: 37284782 PMCID: PMC10434017 DOI: 10.1128/spectrum.05279-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/19/2023] [Indexed: 06/08/2023] Open
Abstract
Quorum sensing (QS) is a means of bacterial communication accomplished by microbe-produced signals and sensory systems. QS systems regulate important population-wide behaviors in bacteria, including secondary metabolite production, swarming motility, and bioluminescence. The human pathogen Streptococcus pyogenes (group A Streptococcus [GAS]) utilizes Rgg-SHP QS systems to regulate biofilm formation, protease production, and activation of cryptic competence pathways. Given their reliance on small-molecule signals, QS systems are attractive targets for small-molecule modulators that would then affect gene expression. In this study, a high-throughput luciferase assay was employed to screen an Actinobacteria-derived secondary metabolite (SM) fraction library to identify small molecule inhibitors of Rgg regulation. A metabolite produced by Streptomyces tendae D051 was found to be a general inhibitor of GAS Rgg-mediated QS. Herein, we describe the biological activity of this metabolite as a QS inhibitor. IMPORTANCE Streptococcus pyogenes, a human pathogen known for causing infections such as pharyngitis and necrotizing fasciitis, uses quorum sensing (QS) to regulate social responses in its environment. Previous studies have focused on disrupting QS as a means to control specific bacterial signaling outcomes. In this work, we identified and described the activity of a naturally derived S. pyogenes QS inhibitor. This study demonstrates that the inhibitor affects three separate but similar QS signaling pathways.
Collapse
Affiliation(s)
- Vanessa M. Nepomuceno
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Kaitlyn M. Tylor
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Skylar Carlson
- Department of Chemistry, University of the Pacific, Stockton, California, USA
| | - Michael J. Federle
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Brian T. Murphy
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Tiara Perez Morales
- Biological Sciences Department, Benedictine University, Lisle, Illinois, USA
| |
Collapse
|
4
|
Hu D, Laczkovich I, Federle MJ, Morrison DA. Identification and Characterization of Negative Regulators of Rgg1518 Quorum Sensing in Streptococcus pneumoniae. J Bacteriol 2023; 205:e0008723. [PMID: 37341600 PMCID: PMC10367586 DOI: 10.1128/jb.00087-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/02/2023] [Indexed: 06/22/2023] Open
Abstract
Streptococcus pneumoniae is an agent of otitis media, septicemia, and meningitis and remains the leading cause of community-acquired pneumonia regardless of vaccine use. Of the various strategies that S. pneumoniae takes to enhance its potential to colonize the human host, quorum sensing (QS) is an intercellular communication process that provides coordination of gene expression at a community level. Numerous putative QS systems are identifiable in the S. pneumoniae genome, but their gene-regulatory activities and contributions to fitness have yet to be fully evaluated. To contribute to assessing regulatory activities of rgg paralogs present in the D39 genome, we conducted transcriptomic analysis of mutants of six QS regulators. Our results find evidence that at least four QS regulators impact the expression of a polycistronic operon (encompassing genes spd_1517 to spd_1513) that is directly controlled by the Rgg/SHP1518 QS system. As an approach to unravel the convergent regulation placed on the spd_1513-1517 operon, we deployed transposon mutagenesis screening in search of upstream regulators of the Rgg/SHP1518 QS system. The screen identified two types of insertion mutants that result in increased activity of Rgg1518-dependent transcription, one type being where the transposon inserted into pepO, an annotated endopeptidase, and the other type being insertions in spxB, a pyruvate oxidase. We demonstrate that pneumococcal PepO degrades SHP1518 to prevent activation of Rgg/SHP1518 QS. Moreover, the glutamic acid residue in the conserved "HExxH" domain is indispensable for the catalytic function of PepO. Finally, we confirmed the metalloendopeptidase property of PepO, which requires zinc ions, but not other ions, to facilitate peptidyl hydrolysis. IMPORTANCE Streptococcus pneumoniae uses quorum sensing to communicate and regulate virulence. In our study, we focused on one Rgg quorum sensing system (Rgg/SHP1518) and found that multiple other Rgg regulators also control it. We further identified two enzymes that inhibit Rgg/SHP1518 signaling and revealed and validated one enzyme's mechanisms for breaking down quorum sensing signaling molecules. Our findings shed light on the complex regulatory network of quorum sensing in Streptococcus pneumoniae.
Collapse
Affiliation(s)
- Duoyi Hu
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Irina Laczkovich
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Michael J. Federle
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
- Center for Biomolecular Science, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Donald A. Morrison
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
5
|
Charoenkwan P, Chumnanpuen P, Schaduangrat N, Oh C, Manavalan B, Shoombuatong W. PSRQSP: An effective approach for the interpretable prediction of quorum sensing peptide using propensity score representation learning. Comput Biol Med 2023; 158:106784. [PMID: 36989748 DOI: 10.1016/j.compbiomed.2023.106784] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/07/2023] [Accepted: 03/10/2023] [Indexed: 03/14/2023]
Abstract
Quorum sensing peptides (QSPs) are microbial signaling molecules involved in several cellular processes, such as cellular communication, virulence expression, bioluminescence, and swarming, in various bacterial species. Understanding QSPs is essential for identifying novel drug targets for controlling bacterial populations and pathogenicity. In this study, we present a novel computational approach (PSRQSP) for improving the prediction and analysis of QSPs. In PSRQSP, we develop a novel propensity score representation learning (PSR) scheme. Specifically, we utilized the PSR approach to extract and learn a comprehensive set of estimated propensities of 20 amino acids, 400 dipeptides, and 400 g-gap dipeptides from a pool of scoring card method-based models. Finally, to maximize the utility of the propensity scores, we explored a set of optimal propensity scores and combined them to construct a final meta-predictor. Our experimental results showed that combining multiview propensity scores was more beneficial for identifying QSPs than the conventional feature descriptors. Moreover, extensive benchmarking experiments based on the independent test were sufficient to demonstrate the predictive capability and effectiveness of PSRQSP by outperforming the conventional ML-based and existing methods, with an accuracy of 94.44% and AUC of 0.967. PSR-derived propensity scores were employed to determine the crucial physicochemical properties for a better understanding of the functional mechanisms of QSPs. Finally, we constructed an easy-to-use web server for the PSRQSP (http://pmlabstack.pythonanywhere.com/PSRQSP). PSRQSP is anticipated to be an efficient computational tool for accelerating the data-driven discovery of potential QSPs for drug discovery and development.
Collapse
Affiliation(s)
- Phasit Charoenkwan
- Modern Management and Information Technology, College of Arts, Media and Technology, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Pramote Chumnanpuen
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand; Omics Center for Agriculture, Bioresources, Food, and Health, Kasetsart University (OmiKU), Bangkok, 10900, Thailand
| | - Nalini Schaduangrat
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| | - Changmin Oh
- Computational Biology and Bioinformatics Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, 16419, Gyeonggi-do, Republic of Korea
| | - Balachandran Manavalan
- Computational Biology and Bioinformatics Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, 16419, Gyeonggi-do, Republic of Korea.
| | - Watshara Shoombuatong
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand.
| |
Collapse
|
6
|
Martínez OF, Duque HM, Franco OL. Peptidomimetics as Potential Anti-Virulence Drugs Against Resistant Bacterial Pathogens. Front Microbiol 2022; 13:831037. [PMID: 35516442 PMCID: PMC9062693 DOI: 10.3389/fmicb.2022.831037] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/28/2022] [Indexed: 12/11/2022] Open
Abstract
The uncontrollable spread of superbugs calls for new approaches in dealing with microbial-antibiotic resistance. Accordingly, the anti-virulence approach has arisen as an attractive unconventional strategy to face multidrug-resistant pathogens. As an emergent strategy, there is an imperative demand for discovery, design, and development of anti-virulence drugs. In this regard, peptidomimetic compounds could be a valuable source of anti-virulence drugs, since these molecules circumvent several shortcomings of natural peptide-based drugs like proteolytic instability, immunogenicity, toxicity, and low bioavailability. Some emerging evidence points to the feasibility of peptidomimetics to impair pathogen virulence. Consequently, in this review, we shed some light on the potential of peptidomimetics as anti-virulence drugs to overcome antibiotic resistance. Specifically, we address the anti-virulence activity of peptidomimetics against pathogens' secretion systems, biofilms, and quorum-sensing systems.
Collapse
Affiliation(s)
- Osmel Fleitas Martínez
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília, Brasília, Brazil.,Programa de Pós-Graduação em Biotecnologia, S-Inova Biotech, Universidade Católica Dom Bosco, Campo Grande, Brazil
| | - Harry Morales Duque
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília, Brasília, Brazil
| | - Octávio Luiz Franco
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília, Brasília, Brazil.,Programa de Pós-Graduação em Biotecnologia, S-Inova Biotech, Universidade Católica Dom Bosco, Campo Grande, Brazil
| |
Collapse
|
7
|
Herrera AL, Chaussee MS. Signaling Peptide SpoV Is Essential for Streptococcus pyogenes Virulence, and Prophylaxis with Anti-SpoV Decreases Disease Severity. Microorganisms 2021; 9:microorganisms9112321. [PMID: 34835447 PMCID: PMC8619256 DOI: 10.3390/microorganisms9112321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/03/2021] [Accepted: 11/06/2021] [Indexed: 11/25/2022] Open
Abstract
Streptococcal peptide of virulence (SpoV) is a Streptococcus pyogenes (group A streptococcus (GAS))-specific peptide that is important for GAS survival in murine blood, and the expression of the virulence factors streptolysin O (slo) and streptolysin S (sagA). We used a spoV mutant in isolate MGAS315 to assess the contribution of the SpoV peptide to virulence by using a murine model of invasive disease and an ex vivo human model (Lancefield assay). We then used antibodies to SpoV in both models to evaluate their ability to decrease morbidity and mortality. Results showed that SpoV is essential for GAS virulence, and targeting the peptide has therapeutic potential.
Collapse
|
8
|
Abstract
Some bacterial pathogens utilize cell-cell communication systems, such as quorum sensing (QS), to coordinate genetic programs during host colonization and infection. The human-restricted pathosymbiont Streptococcus pyogenes (group A streptococcus [GAS]) uses the Rgg2/Rgg3 QS system to modify the bacterial surface, enabling biofilm formation and lysozyme resistance. Here, we demonstrate that innate immune cell responses to GAS are substantially altered by the QS status of the bacteria. We found that macrophage activation, stimulated by multiple agonists and assessed by cytokine production and NF-κB activity, was substantially suppressed upon interaction with QS-active GAS but not QS-inactive bacteria. Neither macrophage viability nor bacterial adherence, internalization, or survival were altered by the QS activation status, yet tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6), and interferon beta (IFN-β) levels and NF-κB reporter activity were drastically lower following infection with QS-active GAS. Suppression required contact between viable bacteria and macrophages. A QS-regulated biosynthetic gene cluster (BGC) in the GAS genome, encoding several putative enzymes, was also required for macrophage modulation. Our findings suggest a model wherein upon contact with macrophages, QS-active GAS produce a BGC-derived factor capable of suppressing inflammatory responses. The suppressive capability of QS-active GAS is abolished after treatment with a specific QS inhibitor. These observations suggest that interfering with the ability of bacteria to collaborate via QS can serve as a strategy to counteract microbial efforts to manipulate host defenses.
Collapse
|
9
|
Abstract
Gram-positive bacteria employ an array of secreted peptides to control population-level behaviors in response to environmental cues. We review mechanistic and functional features of secreted peptides produced by the human pathogen Streptococcus pneumoniae. We discuss sequence features, mechanisms of transport, and receptors for 3 major categories of small peptides: the double-glycine peptides, the Rap, Rgg, NprR, PlcR, and PrgX (RRNPP)-binding peptides, and the lanthionine-containing peptides. We highlight the impact of factors that contribute to carriage and pathogenesis, specifically genetic diversity, microbial competition, biofilm development, and environmental adaptation. A recent expansion in pneumococcal peptide studies reveals a complex network of interacting signaling systems where multiple peptides are integrated into the same signaling pathway, allowing multiple points of entry into the pathway and extending information content in new directions. In addition, since peptides are present in the extracellular milieu, there are opportunities for crosstalk, quorum sensing (QS), as well as intra- and interstrain and species interactions. Knowledge on the manner that population-level behaviors contribute to disease provides an avenue for the design and development of anti-infective strategies.
Collapse
|
10
|
Structure-function studies of Rgg binding to pheromones and target promoters reveal a model of transcription factor interplay. Proc Natl Acad Sci U S A 2020; 117:24494-24502. [PMID: 32907945 DOI: 10.1073/pnas.2008427117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Regulator gene of glucosyltransferase (Rgg) family proteins, such as Rgg2 and Rgg3, have emerged as primary quorum-sensing regulated transcription factors in Streptococcus species, controlling virulence, antimicrobial resistance, and biofilm formation. Rgg2 and Rgg3 function is regulated by their interaction with oligopeptide quorum-sensing signals called short hydrophobic peptides (SHPs). The molecular basis of Rgg-SHP and Rgg-target DNA promoter specificity was unknown. To close this gap, we determined the cryoelectron microscopy (cryo-EM) structure of Streptococcus thermophilus Rgg3 bound to its quorum-sensing signal, SHP3, and the X-ray crystal structure of Rgg3 alone. Comparison of these structures with that of an Rgg in complex with cyclosporin A (CsA), an inhibitor of SHP-induced Rgg activity, reveals the molecular basis of CsA function. Furthermore, to determine how Rgg proteins recognize DNA promoters, we determined X-ray crystal structures of both Streptococcus dysgalactiae Rgg2 and S. thermophilus Rgg3 in complex with their target DNA promoters. The physiological importance of observed Rgg-DNA interactions was dissected using in vivo genetic experiments and in vitro biochemical assays. Based on these structure-function studies, we present a revised unifying model of Rgg regulatory interplay. In contrast to existing models, where Rgg2 proteins are transcriptional activators and Rgg3 proteins are transcriptional repressors, we propose that both are capable of transcriptional activation. However, when Rgg proteins with different activation requirements compete for the same DNA promoters, those with more stringent activation requirements function as repressors by blocking promoter access of SHP-bound conformationally active Rgg proteins. While a similar gene expression regulatory scenario has not been previously described, in all likelihood it is not unique to streptococci.
Collapse
|
11
|
Vila J, Moreno-Morales J, Ballesté-Delpierre C. Current landscape in the discovery of novel antibacterial agents. Clin Microbiol Infect 2019; 26:596-603. [PMID: 31574341 DOI: 10.1016/j.cmi.2019.09.015] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 09/11/2019] [Accepted: 09/15/2019] [Indexed: 12/29/2022]
Abstract
BACKGROUND Standard treatments against bacterial infections are becoming ineffective due to the rise of antibacterial resistance worldwide. Classical approaches to develop new antibacterial agents are not sufficient to fulfil the current pipeline, therefore new strategies are currently being devised in the field of antibacterial discovery. OBJECTIVES The objective of this narrative review is to compile the most successful strategies for drug discovery within the antibacterial context that are currently being pursued. SOURCES Peer-reviewed publications from the MEDLINE database with robust data addressing the discovery of new antibacterial agents in the current pipeline have been selected. CONTENT Several strategies to discover new antibacterials are described in this review: (i) derivatives of known antibacterial agents; the activity of a known antimicrobial agent can be improved through two strategies: (a) the modification of the original chemical structure of an antimicrobial agent to circumvent antibacterial resistance mechanisms and (b) the development of a compound that inhibits the mechanisms of resistance to an antibacterial agent; (ii) new antibacterial agents targeting new proteins; (iii) inhibitors of virulence factors; (iv) nanoparticles; (v) antimicrobial peptides and peptidomimetics; (vi) phage therapy and enzybiotics; and (vii) antisense oligonucleotides. IMPLICATIONS This review intends to provide a positive message affirming that several different strategies to design new antibacterial agents are currently being developed, and we are therefore confident that in the near future some of the most promising approaches will come to fruition.
Collapse
Affiliation(s)
- J Vila
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain; Department of Clinical Microbiology, Centre for Biomedical Diagnosis, Hospital Clínic, Barcelona, Spain.
| | - J Moreno-Morales
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | | |
Collapse
|
12
|
Abstract
Bacterial antibiotic resistance modulation by small signaling molecules is an emerging mechanism that has been increasingly reported in recent years. Several studies indicate that indole, an interkingdom signaling molecule, increases bacterial antibiotic resistance. However, the mechanism through which indole reduces antibiotic resistance is largely unknown. In this study, we demonstrated a novel mechanism for indole-mediated reversal of intrinsic antibiotic resistance in Lysobacter This reversal was facilitated by a novel BtuD-associated dual-function importer that can transfer both vitamin B12 and antibiotics. Indole stimulated btuD overexpression and promoted efficient absorption of extracellular vitamin B12; meanwhile, the weak selectivity of the importer caused cells to take up excessive doses of antibiotics that resulted in cell death. Consistently, btuD deletion and G48Y/K49D substitution led to marked reductions in the uptake of both antibiotics and vitamin B12 This novel mechanism is common across multiple bacterial species, among which the Q-loop amino acid of BtuD proteins is Glu (E) instead of Gln (Q). Interestingly, the antibiotic resistance of Lysobacter spp. can be restored by another small quorum sensing signaling factor, 13-methyltetradecanoic acid, designated LeDSF, in response to bacterial population density. This work highlights the mechanisms underlying dynamic regulation of bacterial antibiotic resistance by small signaling molecules and suggests that the effectiveness of traditional antibiotics could be increased by coupling them with appropriate signaling molecules.IMPORTANCE Recently, signaling molecules were found to play a role in mediating antibiotic resistance. In this study, we demonstrated that indole reversed the intrinsic antibiotic resistance (IRAR) of multiple bacterial species by promoting the expression of a novel dual-function importer. In addition, population-dependent behavior induced by 13-methyltetradecanoic acid, a quorum sensing signal molecule designated LeDSF, was involved in the IRAR process. This study highlights the dynamic regulation of bacterial antibiotic resistance by small signaling molecules and provides direction for new therapeutic strategies using traditional antibiotics in combination with signaling molecules.
Collapse
|
13
|
Xie Z, Meng K, Yang X, Liu J, Yu J, Zheng C, Cao W, Liu H. Identification of a Quorum Sensing System Regulating Capsule Polysaccharide Production and Biofilm Formation in Streptococcus zooepidemicus. Front Cell Infect Microbiol 2019; 9:121. [PMID: 31058104 PMCID: PMC6482233 DOI: 10.3389/fcimb.2019.00121] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/04/2019] [Indexed: 01/16/2023] Open
Abstract
Streptococcus zooepidemicus is an important opportunistic pathogen of several species including humans. This organism is also well-known as the main producing strain in industrial production of hyaluronic acid (HA), which is the component of its capsule polysaccharide. How its virulence and capsule polysaccharide production is regulated remains poorly understood. Intercellular chemical signaling among bacteria provides communities of microbes the opportunity to coordinate gene expression to facilitate group behavior, such as pathogenicity, capsule polysaccharide production, etc. Yet no conserved cell-to-cell signaling system has been elucidated in S. zooepidemicus. Encoded within the genome of S. zooepidemicus is one Rgg regulator encoding gene (rgg) with low similarity to both rgg2 and rgg3 from Streptococcus pyogenes. A small ORF (named as shp) encoding a novel short hydrophobic peptide (SHP) was found in the vicinity of rgg. We found that the active form of pheromone is short and hydrophobic (LLLLKLA), corresponding to the C terminal 7 amino acids of the pre-peptide Shp, which shows divergent sequence to all peptide pheromones reported in streptococci. In response to active SHP, Rgg functions as a transcriptional activator to induce the expression of shp, forming a positive feedback circuit. Bacteria social behaviors, such as capsule polysaccharide production and biofilm formation, were significantly affected when the rgg-shp pathway was inactivated. These data provide the first demonstration that Rgg/Shp signaling pathway comprises an active quorum sensing system in S. zooepidemicus.
Collapse
Affiliation(s)
- Zhoujie Xie
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China.,Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin University of Science and Technology, Tianjin, China
| | - Kai Meng
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Xiaoli Yang
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Jie Liu
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Jie Yu
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | | | - Wei Cao
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China.,Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin University of Science and Technology, Tianjin, China
| | - Hao Liu
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China.,Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
14
|
Abstract
Entry into genetic competence in streptococci is controlled by ComX, an alternative sigma factor for genes that enable the import of exogenous DNA. In Streptococcus mutans, the immediate activator of comX is the ComRS quorum system. ComS is the precursor of XIP, a seven-residue peptide that is imported into the cell and interacts with the cytosolic receptor ComR to form a transcriptional activator for both comX and comS Although intercellular quorum signaling by ComRS has been demonstrated, observations of bimodal expression of comX suggest that comRS may also function as an intracellular feedback loop, activating comX without export or detection of extracellular XIP. Here we used microfluidic and single-cell methods to test whether ComRS induction of comX requires extracellular XIP or ComS. We found that individual comS-overexpressing cells activate their own comX, independently of the rate at which their growth medium is replaced. However, in the absence of lysis they do not activate comS-deficient mutants growing in coculture. We also found that induction of comR and comS genes introduced into Escherichia coli cells leads to activation of a comX reporter. Therefore, ComRS control of comX does not require either the import or extracellular accumulation of ComS or XIP or specific processing of ComS to XIP. We also found that endogenously and exogenously produced ComS and XIP have inequivalent effects on comX activation. These data are fully consistent with identification of intracellular positive feedback in comS transcription as the origin of bimodal comX expression in S. mutans IMPORTANCE The ComRS system can function as a quorum sensing trigger for genetic competence in S. mutans The signal peptide XIP, which is derived from the precursor ComS, enters the cell and interacts with the Rgg-type cytosolic receptor ComR to activate comX, which encodes the alternative sigma factor for the late competence genes. Previous studies have demonstrated intercellular signaling via ComRS, although release of the ComS or XIP peptide to the extracellular medium appears to require lysis of the producing cells. Here we tested the complementary hypothesis that ComRS can drive comX through a purely intracellular mechanism that does not depend on extracellular accumulation or import of ComS or XIP. By combining single-cell, coculture, and microfluidic approaches, we demonstrated that endogenously produced ComS can enable ComRS to activate comX without requiring processing, export, or import. These data provide insight into intracellular mechanisms that generate noise and heterogeneity in S. mutans competence.
Collapse
|
15
|
Hakansson AP, Orihuela CJ, Bogaert D. Bacterial-Host Interactions: Physiology and Pathophysiology of Respiratory Infection. Physiol Rev 2018; 98:781-811. [PMID: 29488821 PMCID: PMC5966719 DOI: 10.1152/physrev.00040.2016] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 09/08/2017] [Accepted: 09/11/2017] [Indexed: 02/06/2023] Open
Abstract
It has long been thought that respiratory infections are the direct result of acquisition of pathogenic viruses or bacteria, followed by their overgrowth, dissemination, and in some instances tissue invasion. In the last decades, it has become apparent that in contrast to this classical view, the majority of microorganisms associated with respiratory infections and inflammation are actually common members of the respiratory ecosystem and only in rare circumstances do they cause disease. This suggests that a complex interplay between host, environment, and properties of colonizing microorganisms together determines disease development and its severity. To understand the pathophysiological processes that underlie respiratory infectious diseases, it is therefore necessary to understand the host-bacterial interactions occurring at mucosal surfaces, along with the microbes inhabiting them, during symbiosis. Current knowledge regarding host-bacterial interactions during asymptomatic colonization will be discussed, including a plausible role for the human microbiome in maintaining a healthy state. With this as a starting point, we will discuss possible disruptive factors contributing to dysbiosis, which is likely to be a key trigger for pathobionts in the development and pathophysiology of respiratory diseases. Finally, from this renewed perspective, we will reflect on current and potential new approaches for treatment in the future.
Collapse
Affiliation(s)
- A P Hakansson
- Division of Experimental Infection Medicine, Department of Translational Medicine, Lund University , Lund , Sweden ; Department of Microbiology, University of Alabama at Birmingham , Birmingham, Alabama ; and Center for Inflammation Research, Queens Medical Research Institute, University of Edinburgh , Edinburgh , United Kingdom
| | - C J Orihuela
- Division of Experimental Infection Medicine, Department of Translational Medicine, Lund University , Lund , Sweden ; Department of Microbiology, University of Alabama at Birmingham , Birmingham, Alabama ; and Center for Inflammation Research, Queens Medical Research Institute, University of Edinburgh , Edinburgh , United Kingdom
| | - D Bogaert
- Division of Experimental Infection Medicine, Department of Translational Medicine, Lund University , Lund , Sweden ; Department of Microbiology, University of Alabama at Birmingham , Birmingham, Alabama ; and Center for Inflammation Research, Queens Medical Research Institute, University of Edinburgh , Edinburgh , United Kingdom
| |
Collapse
|
16
|
Pérez Morales TG, Ratia K, Wang DS, Gogos A, Bloem L, Driver TG, Federle MJ. A novel chemical inducer of Streptococcus quorum sensing acts by inhibiting the pheromone-degrading endopeptidase PepO. J Biol Chem 2017; 293:931-940. [PMID: 29203527 DOI: 10.1074/jbc.m117.810994] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 11/16/2017] [Indexed: 01/01/2023] Open
Abstract
Bacteria produce chemical signals (pheromones) to coordinate behaviors across a population in a process termed quorum sensing (QS). QS systems comprising peptide pheromones and their corresponding Rgg receptors are widespread among Firmicutes and may be useful targets for manipulating microbial behaviors, like suppressing virulence. The Rgg2/3 QS circuit of the human pathogen Streptococcus pyogenes controls genes affecting resistance to host lysozyme in response to short hydrophobic pheromones (SHPs). Considering that artificial activation of a QS pathway may be as useful in the objective of manipulating bacteria as inhibiting it, we sought to identify small-molecule inducers of the Rgg2/3 QS system. We report the identification of a small molecule, P516-0475, that specifically induced expression of Rgg2/3-regulated genes in the presence of SHP pheromones at concentrations lower than typically required for QS induction. In searching for the mode of action of P516-0475, we discovered that an S. pyogenes mutant deficient in pepO, a neprilysin-like metalloendopeptidase that degrades SHP pheromones, was unresponsive to the compound. P516-0475 directly inhibited recombinant PepO in vitro as an uncompetitive inhibitor. We conclude that this compound induces QS by stabilizing SHP pheromones in culture. Our study indicates the usefulness of cell-based screens that modulate pathway activities to identify unanticipated therapeutic targets contributing to QS signaling.
Collapse
Affiliation(s)
- Tiara G Pérez Morales
- From the Center for Biomolecular Sciences, Department of Medicinal Chemistry and Pharmacognosy
| | - Kiira Ratia
- the UIC High-throughput Screening Core Facility, and
| | | | - Artemis Gogos
- Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois 60607 and
| | - Laura Bloem
- UICentre for Drug Discovery, University of Illinois at Chicago
| | - Tom G Driver
- the Departments of Chemistry and.,the Institute of Next Generation Matter Transformation, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian 361021, China
| | - Michael J Federle
- From the Center for Biomolecular Sciences, Department of Medicinal Chemistry and Pharmacognosy, .,Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois 60607 and
| |
Collapse
|
17
|
Neiditch MB, Capodagli GC, Prehna G, Federle MJ. Genetic and Structural Analyses of RRNPP Intercellular Peptide Signaling of Gram-Positive Bacteria. Annu Rev Genet 2017; 51:311-333. [PMID: 28876981 PMCID: PMC6588834 DOI: 10.1146/annurev-genet-120116-023507] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Bacteria use diffusible chemical messengers, termed pheromones, to coordinate gene expression and behavior among cells in a community by a process known as quorum sensing. Pheromones of many gram-positive bacteria, such as Bacillus and Streptococcus, are small, linear peptides secreted from cells and subsequently detected by sensory receptors such as those belonging to the large family of RRNPP proteins. These proteins are cytoplasmic pheromone receptors sharing a structurally similar pheromone-binding domain that functions allosterically to regulate receptor activity. X-ray crystal structures of prototypical RRNPP members have provided atomic-level insights into their mechanism and regulation by pheromones. This review provides an overview of RRNPP prototype signaling; describes the structure-function of this protein family, which is spread widely among gram-positive bacteria; and suggests approaches to target RRNPP systems in order to manipulate beneficial and harmful bacterial behaviors.
Collapse
Affiliation(s)
- Matthew B Neiditch
- Department of Microbiology, Biochemistry, and Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey 07103, USA; ,
| | - Glenn C Capodagli
- Department of Microbiology, Biochemistry, and Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey 07103, USA; ,
| | - Gerd Prehna
- Center for Structural Biology, Research Resources Center and Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois 60607, USA;
| | - Michael J Federle
- Department of Medicinal Chemistry and Pharmacognosy and Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, Illinois 60607, USA;
| |
Collapse
|
18
|
Wilkening RV, Capodagli GC, Khataokar A, Tylor KM, Neiditch MB, Federle MJ. Activating mutations in quorum-sensing regulator Rgg2 and its conformational flexibility in the absence of an intermolecular disulfide bond. J Biol Chem 2017; 292:20544-20557. [PMID: 29030429 DOI: 10.1074/jbc.m117.801670] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 10/10/2017] [Indexed: 01/08/2023] Open
Abstract
Rap/Rgg/NprR/PlcR/PrgX (RRNPP) quorum-sensing systems use extracellular peptide pheromones that are detected by cytoplasmic receptors to regulate gene expression in firmicute bacteria. Rgg-type receptors are allosterically regulated through direct pheromone binding to control transcriptional activity; however, the receptor activation mechanism remains poorly understood. Previous work has identified a disulfide bond between Cys-45 residues within the homodimer interface of Rgg2 from Streptococcus dysgalactiae (Rgg2Sd). Here, we compared two Rgg2Sd(C45S) X-ray crystal structures with that of wild-type Rgg2Sd and found that in the absence of the intermolecular disulfide, the Rgg2Sd dimer interface is destabilized and Rgg2Sd can adopt multiple conformations. One conformation closely resembled the "disulfide-locked" Rgg2Sd secondary and tertiary structures, but another displayed more extensive rigid-body shifts as well as dramatic secondary structure changes. In parallel experiments, a genetic screen was used to identify mutations in rgg2 of Streptococcus pyogenes (rgg2Sp ) that conferred pheromone-independent transcriptional activation of an Rgg2-stimulated promoter. Eight mutations yielding constitutive Rgg2 activity, designated Rgg2Sp*, were identified, and five of them clustered in or near an Rgg2 region that underwent conformational changes in one of the Rgg2Sd(C45S) crystal structures. The Rgg2Sp* mutations increased Rgg2Sp sensitivity to pheromone and pheromone variants while displaying decreased sensitivity to the Rgg2 antagonist cyclosporine A. We propose that Rgg2Sp* mutations invoke shifts in free-energy bias to favor the active state of the protein. Finally, we present evidence for an electrostatic interaction between an N-terminal Asp of the pheromone and Arg-153 within the proposed pheromone-binding pocket of Rgg2Sp.
Collapse
Affiliation(s)
- Reid V Wilkening
- From the Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois 60607
| | - Glenn C Capodagli
- the Department of Microbiology, Biochemistry, and Molecular Genetics, New Jersey Medical School, Rutgers, State University of New Jersey, Newark, New Jersey 07103, and
| | - Atul Khataokar
- the Department of Microbiology, Biochemistry, and Molecular Genetics, New Jersey Medical School, Rutgers, State University of New Jersey, Newark, New Jersey 07103, and
| | - Kaitlyn M Tylor
- From the Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois 60607
| | - Matthew B Neiditch
- the Department of Microbiology, Biochemistry, and Molecular Genetics, New Jersey Medical School, Rutgers, State University of New Jersey, Newark, New Jersey 07103, and
| | - Michael J Federle
- From the Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois 60607, .,the Department of Medicinal Chemistry and Pharmacognosy, Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, Illinois 60607
| |
Collapse
|
19
|
Cuevas RA, Eutsey R, Kadam A, West-Roberts JA, Woolford CA, Mitchell AP, Mason KM, Hiller NL. A novel streptococcal cell-cell communication peptide promotes pneumococcal virulence and biofilm formation. Mol Microbiol 2017; 105:554-571. [PMID: 28557053 DOI: 10.1111/mmi.13721] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2017] [Indexed: 12/29/2022]
Abstract
Streptococcus pneumoniae (pneumococcus) is a major human pathogen. It is a common colonizer of the human respiratory track, where it utilizes cell-cell communication systems to coordinate population-level behaviors. We reasoned that secreted peptides that are highly expressed during infection are pivotal for virulence. Thus, we used in silico pattern searches to define a pneumococcal secretome and analyzed the transcriptome of the clinically important PMEN1 lineage to identify which peptide-encoding genes are highly expressed in vivo. In this study, we characterized virulence peptide 1 (vp1), a highly expressed Gly-Gly peptide-encoding gene in chinchilla middle ear effusions. The vp1 gene is widely distributed across pneumococcus as well as encoded in related species. Studies in the chinchilla model of middle ear infection demonstrated that VP1 is a virulence determinant. The vp1 gene is positively regulated by a transcription factor from the Rgg family and its cognate SHP (short hydrophobic peptide). In vitro data indicated that VP1 promotes increased thickness and biomass for biofilms grown on chinchilla middle ear epithelial cells. Furthermore, the wild-type biofilm is restored with the exogenous addition of synthetic VP1. We conclude that VP1 is a novel streptococcal regulatory peptide that controls biofilm development and pneumococcal pathogenesis.
Collapse
Affiliation(s)
- Rolando A Cuevas
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Rory Eutsey
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Anagha Kadam
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Jacob A West-Roberts
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Carol A Woolford
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Aaron P Mitchell
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Kevin M Mason
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - N Luisa Hiller
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA.,Center of Excellence in Biofilm Research, Allegheny Health Network, Pittsburgh, PA 15211, USA
| |
Collapse
|
20
|
Drug repurposing for antivirulence therapy against opportunistic bacterial pathogens. Emerg Top Life Sci 2017; 1:13-22. [DOI: 10.1042/etls20160018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 02/21/2017] [Accepted: 02/22/2017] [Indexed: 12/23/2022]
Abstract
Antibiotic resistance is a serious public health concern at the global level. Available antibiotics have saved millions of lives, but are progressively losing their efficacy against many bacterial pathogens, and very few new antibiotics are being developed by the pharmaceutical industry. Over the last few decades, progress in understanding the pathogenic process of bacterial infections has led researchers to focus on bacterial virulence factors as potential targets for ‘antivirulence' drugs, i.e. compounds which inhibit the ability of bacteria to cause damage to the host, as opposed to inhibition of bacterial growth which is typical of antibiotics. Hundreds of virulence inhibitors have been examined to date in vitro and/or in animal models, but only a few were entered into clinical trials and none were approved, thus hindering the clinical validation of antivirulence therapy. To breathe new life into antivirulence research and speed-up its transfer to the clinic, antivirulence activities have also been sought in drugs already approved for different therapeutic purposes in humans. If effective, these drugs could be repositioned for antivirulence therapy and have an easier and faster transfer to the clinic. In this work we summarize the approaches which have led to the identification of repurposing candidates with antivirulence activities, and discuss the challenges and opportunities related to antivirulence therapy and drug repurposing. While this approach undoubtedly holds promise for boosting antivirulence drug research, some important issues remain to be addressed in order to make antivirulence drugs viable alternatives to traditional antibacterials.
Collapse
|
21
|
Szafrański SP, Deng ZL, Tomasch J, Jarek M, Bhuju S, Rohde M, Sztajer H, Wagner-Döbler I. Quorum sensing of Streptococcus mutans is activated by Aggregatibacter actinomycetemcomitans and by the periodontal microbiome. BMC Genomics 2017; 18:238. [PMID: 28320314 PMCID: PMC5359896 DOI: 10.1186/s12864-017-3618-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 03/10/2017] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The oral cavity is inhabited by complex microbial communities forming biofilms that can cause caries and periodontitis. Cell-cell communication might play an important role in modulating the physiologies of individual species, but evidence so far is limited. RESULTS Here we demonstrate that a pathogen of the oral cavity, Aggregatibacter actinomycetemcomitans (A. act.), triggers expression of the quorum sensing (QS) regulon of Streptococcus mutans, a well-studied model organism for cariogenic streptococci, in dual-species biofilms grown on artificial saliva. The gene for the synthesis of the QS signal XIP is essential for this interaction. Transcriptome sequencing of biofilms revealed that S. mutans up-regulated the complete QS regulon (transformasome and mutacins) in the presence of A. act. and down-regulated oxidative stress related genes. A.act. required the presence of S. mutans for growth. Fimbriae and toxins were its most highly expressed genes and up-regulation of anaerobic metabolism, chaperones and iron acquisition genes was observed in co-culture. Metatranscriptomes from periodontal pockets showed highly variable levels of S. mutans and low levels of A. act.. Transcripts of the alternative sigma-factor SigX, the key regulator of QS in S. mutans, were significantly enriched in periodontal pockets compared to single cultures (log2 4.159, FDR ≤0.001, and expression of mutacin related genes and transformasome components could be detected. CONCLUSION The data show that the complete QS regulon of S. mutans can be induced by an unrelated oral pathogen and S. mutans may be competent in oral biofilms in vivo.
Collapse
Affiliation(s)
- Szymon P Szafrański
- Microbial Communication, Helmholtz-Center for Infection Research, Braunschweig, Germany.,Present address: Hannover Medical School (MHH), Hannover, Germany
| | - Zhi-Luo Deng
- Microbial Communication, Helmholtz-Center for Infection Research, Braunschweig, Germany
| | - Jürgen Tomasch
- Microbial Communication, Helmholtz-Center for Infection Research, Braunschweig, Germany
| | - Michael Jarek
- Genome Analytics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Sabin Bhuju
- Genome Analytics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Helena Sztajer
- Microbial Communication, Helmholtz-Center for Infection Research, Braunschweig, Germany
| | - Irene Wagner-Döbler
- Microbial Communication, Helmholtz-Center for Infection Research, Braunschweig, Germany.
| |
Collapse
|
22
|
Zaccaria E, Wels M, van Baarlen P, Wells JM. Temporal Regulation of the Transformasome and Competence Development in Streptococcus suis. Front Microbiol 2016; 7:1922. [PMID: 28066332 PMCID: PMC5167698 DOI: 10.3389/fmicb.2016.01922] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 11/16/2016] [Indexed: 11/19/2022] Open
Abstract
In S. suis the ComX-inducing peptide (XIP) pheromone regulates ComR-dependent transcriptional activation of comX (or sigX) the regulator of the late competence regulon. The aims of this study were to identify the ComR-regulated genes and in S. suis using genome-wide transcriptomics and identify their function based on orthology and the construction of specific knockout mutants. The ComX regulon we identified, includes all homologs of the “transformasome” a type 4-like pilus DNA binding and transport apparatus identified in Streptococcus pneumoniae, Streptococcus mutans, and Streptococcus thermophilus. A conserved CIN-box (YTACGAAYW), predicted to be bound by ComX, was found in the promoters of operons encoding genes involved in expression of the transformasome. Mutants lacking the major pilin gene comYC were not transformable demonstrating that the DNA uptake pilus is indeed required for competence development in S. suis. Competence was a transient state with the comX regulon shut down after ~15 min even when transcription of comX had not returned to basal levels, indicating other mechanisms control the exit from competence. The ComX regulon also included genes involved in DNA repair including cinA which we showed to be required for high efficiency transformation. In contrast to S. pneumoniae and S. mutans the ComX regulon of S. suis did not include endA which converts the transforming DNA into ssDNA, or ssbA, which protects the transforming ssDNA from degradation. EndA appeared to be essential in S. suis so we could not generate mutants and confirm its role in DNA transformation. Finally, we identified a putative homolog of fratricin, and a putative bacteriocin gene cluster, that were also part of the CIN-box regulon and thus may play a role in DNA release from non-competent cells, enabling gene transfer between S. suis pherotypes or S. suis and other species. S. suis mutants of oppA, the binding subunit of the general oligopeptide transporter were not transformable, suggesting that it is required for the import of XIP.
Collapse
Affiliation(s)
- Edoardo Zaccaria
- Host-Microbe Interactomics, Animal Sciences, Wageningen University Wageningen, Netherlands
| | | | - Peter van Baarlen
- Host-Microbe Interactomics, Animal Sciences, Wageningen University Wageningen, Netherlands
| | - Jerry M Wells
- Host-Microbe Interactomics, Animal Sciences, Wageningen University Wageningen, Netherlands
| |
Collapse
|
23
|
Shanker E, Morrison DA, Talagas A, Nessler S, Federle MJ, Prehna G. Pheromone Recognition and Selectivity by ComR Proteins among Streptococcus Species. PLoS Pathog 2016; 12:e1005979. [PMID: 27907154 PMCID: PMC5131902 DOI: 10.1371/journal.ppat.1005979] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 10/04/2016] [Indexed: 12/11/2022] Open
Abstract
Natural transformation, or competence, is an ability inherent to bacteria for the uptake of extracellular DNA. This process is central to bacterial evolution and allows for the rapid acquirement of new traits, such as antibiotic resistance in pathogenic microorganisms. For the Gram-positive bacteria genus Streptococcus, genes required for competence are under the regulation of quorum sensing (QS) mediated by peptide pheromones. One such system, ComRS, consists of a peptide (ComS) that is processed (XIP), secreted, and later imported into the cytoplasm, where it binds and activates the transcription factor ComR. ComR then engages in a positive feedback loop for the expression of ComS and the alternative sigma-factor SigX. Although ComRS are present in the majority of Streptococcus species, the sequence of both ComS/XIP and ComR diverge significantly, suggesting a mechanism for species-specific communication. To study possible cross-talk between streptococcal species in the regulation of competence, and to explore in detail the molecular interaction between ComR and XIP we undertook an interdisciplinary approach. We developed a 'test-bed' assay to measure the activity of different ComR proteins in response to cognate and heterologous XIP peptides in vivo, revealing distinct ComR classes of strict, intermediate, and promiscuous specificity among species. We then solved an X-ray crystal structure of ComR from S. suis to further understand the interaction with XIP and to search for structural features in ComR proteins that may explain XIP recognition. Using the structure as a guide, we probed the apo conformation of the XIP-binding pocket by site-directed mutagenesis, both in test-bed cultures and biochemically in vitro. In alignments with ComR proteins from other species, we find that the pocket is lined by a variable and a conserved face, where residues of the conserved face contribute to ligand binding and the variable face discriminate among XIP peptides. Together, our results not only provide a model for XIP recognition and specificity, but also allow for the prediction of novel XIP peptides that induce ComR activity.
Collapse
Affiliation(s)
- Erin Shanker
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, IL, United States of America
- Center for Biomolecular Science, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Donald A. Morrison
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Antoine Talagas
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, France
| | - Sylvie Nessler
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, France
| | - Michael J. Federle
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, IL, United States of America
- Center for Biomolecular Science, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Gerd Prehna
- Center for Structural Biology, Research Resources Center, University of Illinois at Chicago, Chicago, IL, United States of America
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, United States of America
| |
Collapse
|
24
|
Chang JC, Jimenez JC, Federle MJ. Induction of a quorum sensing pathway by environmental signals enhances group A streptococcal resistance to lysozyme. Mol Microbiol 2015; 97:1097-113. [PMID: 26062094 DOI: 10.1111/mmi.13088] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2015] [Indexed: 01/29/2023]
Abstract
The human-restricted pathogen Streptococcus pyogenes (Group A Streptococcus, GAS) is responsible for wide-ranging pathologies at numerous sites in the body but has the proclivity to proliferate in individuals asymptomatically. The ability to survive in diverse tissues is undoubtedly benefited by sensory pathways that recognize environmental cues corresponding to stress and nutrient availability and thereby trigger adaptive responses. We investigated the impact that environmental signals contribute to cell-to-cell chemical communication [quorum sensing (QS)] by monitoring activity of the Rgg2/Rgg3 and SHP-pheromone system in GAS. We identified metal limitation and the alternate carbon source mannose as two environmental indicators likely to be encountered by GAS in the host that significantly induced the Rgg-SHP system. Disruption of the metal regulator MtsR partially accounted for the response to metal depletion, whereas ptsABCD was primarily responsible for QS induction due to mannose, but each sensory system induced Rgg-SHP signaling apparently by different mechanisms. Significantly, we found that induction of QS, regardless of the GAS serotype tested, led to enhanced resistance to the antimicrobial agent lysozyme. These results indicate the benefits for GAS to integrate environmental signals with intercellular communication pathways in protection from host defenses.
Collapse
Affiliation(s)
- Jennifer C Chang
- Department of Medicinal Chemistry and Pharmacognosy, Center for Pharmaceutical Biotechnology, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Juan Cristobal Jimenez
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Michael J Federle
- Department of Medicinal Chemistry and Pharmacognosy, Center for Pharmaceutical Biotechnology, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60607, USA
| |
Collapse
|
25
|
Abstract
Resistance of important bacterial pathogens to common antimicrobial therapies and the emergence of multidrug-resistant bacteria are increasing at an alarming rate and constitute one of our greatest challenges in the combat of bacterial infection and accompanied diseases. The current shortage of effective drugs, lack of successful prevention measures and only a few new antibiotics in the clinical pipeline demand the development of novel treatment options and alternative antimicrobial therapies. Our increasing understanding of bacterial virulence strategies and the induced molecular pathways of the infectious disease provides novel opportunities to target and interfere with crucial pathogenicity factors or virulence-associated traits of the bacteria while bypassing the evolutionary pressure on the bacterium to develop resistance. In the past decade, numerous new bacterial targets for anti-virulence therapies have been identified, and structure-based tailoring of intervention strategies and screening assays for small-molecule inhibitors of such pathways were successfully established. In this chapter, we will take a closer look at the bacterial virulence-related factors and processes that present promising targets for anti-virulence therapies, recently discovered inhibitory substances and their promises and discuss the challenges, and problems that have to be faced.
Collapse
|