1
|
Conradie T, Caparros-Martin JA, Egan S, Kicic A, Koks S, Stick SM, Agudelo-Romero P. Exploring the Complexity of the Human Respiratory Virome through an In Silico Analysis of Shotgun Metagenomic Data Retrieved from Public Repositories. Viruses 2024; 16:953. [PMID: 38932245 PMCID: PMC11209621 DOI: 10.3390/v16060953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/31/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Respiratory viruses significantly impact global morbidity and mortality, causing more disease in humans than any other infectious agent. Beyond pathogens, various viruses and bacteria colonize the respiratory tract without causing disease, potentially influencing respiratory diseases' pathogenesis. Nevertheless, our understanding of respiratory microbiota is limited by technical constraints, predominantly focusing on bacteria and neglecting crucial populations like viruses. Despite recent efforts to improve our understanding of viral diversity in the human body, our knowledge of viral diversity associated with the human respiratory tract remains limited. METHODS Following a comprehensive search in bibliographic and sequencing data repositories using keyword terms, we retrieved shotgun metagenomic data from public repositories (n = 85). After manual curation, sequencing data files from 43 studies were analyzed using EVEREST (pipEline for Viral assEmbly and chaRactEriSaTion). Complete and high-quality contigs were further assessed for genomic and taxonomic characterization. RESULTS Viral contigs were obtained from 194 out of the 868 FASTQ files processed through EVEREST. Of the 1842 contigs that were quality assessed, 8% (n = 146) were classified as complete/high-quality genomes. Most of the identified viral contigs were taxonomically classified as bacteriophages, with taxonomic resolution ranging from the superkingdom level down to the species level. Captured contigs were spread across 25 putative families and varied between RNA and DNA viruses, including previously uncharacterized viral genomes. Of note, airway samples also contained virus(es) characteristic of the human gastrointestinal tract, which have not been previously described as part of the lung virome. Additionally, by performing a meta-analysis of the integrated datasets, ecological trends within viral populations linked to human disease states and their biogeographical distribution along the respiratory tract were observed. CONCLUSION By leveraging publicly available repositories of shotgun metagenomic data, the present study provides new insights into viral genomes associated with specimens from the human respiratory tract across different disease spectra. Further studies are required to validate our findings and evaluate the potential impact of these viral communities on respiratory tract physiology.
Collapse
Affiliation(s)
- Talya Conradie
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, Perth, WA 6009, Australia
- Medical, Molecular and Forensic Sciences, Murdoch University, Perth, WA 6150, Australia
| | | | - Siobhon Egan
- Medical, Molecular and Forensic Sciences, Murdoch University, Perth, WA 6150, Australia
- Centre for Computational and Systems Medicine, Health Future Institute, Murdoch University, Perth, WA 6150, Australia
| | - Anthony Kicic
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, Perth, WA 6009, Australia
- Department of Respiratory and Sleep Medicine, Perth Children’s Hospital for Children, Perth, WA 6009, Australia
- Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, Perth, WA 6009, Australia
- School of Population Health, Curtin University, Perth, WA 6102, Australia
| | - Sulev Koks
- Perron Institute for Neurological and Translational Science, Perth, WA 6009, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA 6150, Australia
| | - Stephen M. Stick
- Department of Respiratory and Sleep Medicine, Perth Children’s Hospital for Children, Perth, WA 6009, Australia
- Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, Perth, WA 6009, Australia
| | - Patricia Agudelo-Romero
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, Perth, WA 6009, Australia
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
- European Virus Bioinformatics Centre, Friedrich-Schiller-Universitat Jena, 07737 Jena, Germany
| |
Collapse
|
2
|
Parent KN. The phage fought the cells, and the phage won: a satellite symposium at the ASV 2023 annual meeting. J Virol 2023; 97:e0142023. [PMID: 37991366 PMCID: PMC10734453 DOI: 10.1128/jvi.01420-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023] Open
Abstract
This satellite symposium was focused on the molecular arms race between bacteria and their predators, the bacteriophages: who's the friend and who's the foe? This Gem recounts highlights of the talks and presents food for thought and additional reflections on the current state of the field.
Collapse
Affiliation(s)
- Kristin N. Parent
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
3
|
Zünd M, Dunham SJB, Rothman JA, Whiteson KL. What Lies Beneath? Taking the Plunge into the Murky Waters of Phage Biology. mSystems 2023; 8:e0080722. [PMID: 36651762 PMCID: PMC9948730 DOI: 10.1128/msystems.00807-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The sequence revolution revealed that bacteria-infecting viruses, known as phages, are Earth's most abundant biological entities. Phages have far-reaching impacts on the form and function of microbial communities and play a fundamental role in ecological processes. However, even well into the sequencing revolution, we have only just begun to explore the murky waters around the phage biology iceberg. Many viral reads cannot be assigned to a culturable isolate, and reference databases are biased toward more easily collectible samples, which likely distorts our conclusions. This minireview points out alternatives to mapping reads to reference databases and highlights innovative bioinformatic and experimental approaches that can help us overcome some of the challenges in phage research and better decipher the impact of phages on microbial communities. Moving beyond the identification of novel phages, we highlight phage metabolomics as an important influencer of bacterial host cell physiology and hope to inspire the reader to consider the effects of phages on host metabolism and ecosystems at large. We encourage researchers to report unassigned/unknown sequencing reads and contigs and to continue developing alternative methods to investigate phages within sequence data.
Collapse
Affiliation(s)
- Mirjam Zünd
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA
| | - Sage J. B. Dunham
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA
| | - Jason A. Rothman
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA
| | - Katrine L. Whiteson
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA
| |
Collapse
|
4
|
Lane S, Hilliam Y, Bomberger JM. Microbial and Immune Regulation of the Gut-Lung Axis during Viral-Bacterial Coinfection. J Bacteriol 2023; 205:e0029522. [PMID: 36409130 PMCID: PMC9879096 DOI: 10.1128/jb.00295-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Viral-bacterial coinfections of the respiratory tract have long been associated with worsened disease outcomes. Clinical and basic research studies demonstrate that these infections are driven via complex interactions between the infecting pathogens, microbiome, and host immune response, although how these interactions contribute to disease progression is still not fully understood. Research over the last decade shows that the gut has a significant role in mediating respiratory outcomes, in a phenomenon known as the "gut-lung axis." Emerging literature demonstrates that acute respiratory viruses can modulate the gut-lung axis, suggesting that dysregulation of gut-lung cross talk may be a contributing factor during respiratory coinfection. This review will summarize the current literature regarding modulation of the gut-lung axis during acute respiratory infection, with a focus on the role of the microbiome, secondary infections, and the host immune response.
Collapse
Affiliation(s)
- Sidney Lane
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yasmin Hilliam
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jennifer M. Bomberger
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
5
|
Mutalik VK, Arkin AP. A Phage Foundry Framework to Systematically Develop Viral Countermeasures to Combat Antibiotic-Resistant Bacterial Pathogens. iScience 2022; 25:104121. [PMID: 35402883 PMCID: PMC8983348 DOI: 10.1016/j.isci.2022.104121] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
At its current rate, the rise of antimicrobial-resistant (AMR) infections is predicted to paralyze our industries and healthcare facilities while becoming the leading global cause of loss of human life. With limited new antibiotics on the horizon, we need to invest in alternative solutions. Bacteriophages (phages)-viruses targeting bacteria-offer a powerful alternative approach to tackle bacterial infections. Despite recent advances in using phages to treat recalcitrant AMR infections, the field lacks systematic development of phage therapies scalable to different applications. We propose a Phage Foundry framework to establish metrics for phage characterization and to fill the knowledge and technological gaps in phage therapeutics. Coordinated investment in AMR surveillance, sampling, characterization, and data sharing procedures will enable rational exploitation of phages for treatments. A fully realized Phage Foundry will enhance the sharing of knowledge, technology, and viral reagents in an equitable manner and will accelerate the biobased economy.
Collapse
Affiliation(s)
- Vivek K. Mutalik
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Adam P. Arkin
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Bioengineering, University of California, Berkeley, CA, USA
| |
Collapse
|
6
|
Woodley FW, Gecili E, Szczesniak RD, Shrestha CL, Nemastil CJ, Kopp BT, Hayes D. Sweat metabolomics before and after intravenous antibiotics for pulmonary exacerbation in people with cystic fibrosis. Respir Med 2022; 191:106687. [PMID: 34864373 PMCID: PMC8810598 DOI: 10.1016/j.rmed.2021.106687] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/06/2021] [Accepted: 11/20/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND People with cystic fibrosis (PWCF) suffer from acute unpredictable reductions in pulmonary function associated with a pulmonary exacerbation (PEx) that may require hospitalization. PEx symptoms vary between PWCF without universal diagnostic criteria for diagnosis and response to treatment. RESEARCH QUESTION We characterized sweat metabolomes before and after intravenous (IV) antibiotics in PWCF hospitalized for PEx to determine feasibility and define biological alterations by IV antibiotics for PEx. STUDY DESIGN AND METHODS PWCF with PEx requiring hospitalization for IV antibiotics were recruited from clinic. Sweat samples were collected using the Macroduct® Sweat Collection System at admission prior to initiation of IV antibiotics and after completion prior to discharge. Samples were analyzed for metabolite changes using ultra-high-performance liquid chromatography/tandem accurate mass spectrometry. RESULTS Twenty-six of 29 hospitalized PWCF completed the entire study. A total of 326 compounds of known identity were detected in sweat samples. Of detected metabolites, 147 were significantly different between pre-initiation and post-completion of IV antibiotics for PEx (average treatment 14 days). Global sweat metabolomes changed from before and after IV antibiotic treatment. We discovered specific metabolite profiles predictive of PEx status as well as enriched biologic pathways associated with PEx. However, metabolomic changes were similar in PWCF who failed to return to baseline pulmonary function and those who did not. INTERPRETATION Our findings demonstrate the feasibility of non-invasive sweat metabolomic profiling in PWCF and the potential for sweat metabolomics as a prospective diagnostic and research tool to further advance our understanding of PEx in PWCF.
Collapse
Affiliation(s)
- Frederick W. Woodley
- Division of Gastroenterology, Hepatology and Nutrition, Nationwide Children’s Hospital and The Ohio State University College of Medicine, Columbus, OH, USA
| | - Emrah Gecili
- Division of Biostatistics and Epidemiology, Cincinnati Children’s Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Rhonda D. Szczesniak
- Division of Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH, USA,Division of Biostatistics and Epidemiology, Cincinnati Children’s Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Chandra L. Shrestha
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Christopher J. Nemastil
- Division of Pulmonary Medicine, Nationwide Children’s Hospital and The Ohio State University College of Medicine, Columbus, OH, USA
| | - Benjamin T. Kopp
- Division of Pulmonary Medicine, Nationwide Children’s Hospital and The Ohio State University College of Medicine, Columbus, OH, USA,Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Don Hayes
- Division of Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
7
|
Multi-Omics Study of Keystone Species in a Cystic Fibrosis Microbiome. Int J Mol Sci 2021; 22:ijms222112050. [PMID: 34769481 PMCID: PMC8584531 DOI: 10.3390/ijms222112050] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/28/2021] [Accepted: 11/02/2021] [Indexed: 12/23/2022] Open
Abstract
Ecological networking and in vitro studies predict that anaerobic, mucus-degrading bacteria are keystone species in cystic fibrosis (CF) microbiomes. The metabolic byproducts from these bacteria facilitate the colonization and growth of CF pathogens like Pseudomonas aeruginosa. Here, a multi-omics study informed the control of putative anaerobic keystone species during a transition in antibiotic therapy of a CF patient. A quantitative metagenomics approach combining sequence data with epifluorescence microscopy showed that during periods of rapid lung function loss, the patient's lung microbiome was dominated by the anaerobic, mucus-degrading bacteria belonging to Streptococcus, Veillonella, and Prevotella genera. Untargeted metabolomics and community cultures identified high rates of fermentation in these sputa, with the accumulation of lactic acid, citric acid, and acetic acid. P. aeruginosa utilized these fermentation products for growth, as indicated by quantitative transcriptomics data. Transcription levels of P. aeruginosa genes for the utilization of fermentation products were proportional to the abundance of anaerobic bacteria. Clindamycin therapy targeting Gram-positive anaerobes rapidly suppressed anaerobic bacteria and the accumulation of fermentation products. Clindamycin also lowered the abundance and transcription of P. aeruginosa, even though this patient's strain was resistant to this antibiotic. The treatment stabilized the patient's lung function and improved respiratory health for two months, lengthening by a factor of four the between-hospitalization time for this patient. Killing anaerobes indirectly limited the growth of P. aeruginosa by disrupting the cross-feeding of fermentation products. This case study supports the hypothesis that facultative anaerobes operated as keystone species in this CF microbiome. Personalized multi-omics may become a viable approach for routine clinical diagnostics in the future, providing critical information to inform treatment decisions.
Collapse
|
8
|
Integrated mass spectrometry-based multi-omics for elucidating mechanisms of bacterial virulence. Biochem Soc Trans 2021; 49:1905-1926. [PMID: 34374408 DOI: 10.1042/bst20191088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 11/17/2022]
Abstract
Despite being considered the simplest form of life, bacteria remain enigmatic, particularly in light of pathogenesis and evolving antimicrobial resistance. After three decades of genomics, we remain some way from understanding these organisms, and a substantial proportion of genes remain functionally unknown. Methodological advances, principally mass spectrometry (MS), are paving the way for parallel analysis of the proteome, metabolome and lipidome. Each provides a global, complementary assay, in addition to genomics, and the ability to better comprehend how pathogens respond to changes in their internal (e.g. mutation) and external environments consistent with infection-like conditions. Such responses include accessing necessary nutrients for survival in a hostile environment where co-colonizing bacteria and normal flora are acclimated to the prevailing conditions. Multi-omics can be harnessed across temporal and spatial (sub-cellular) dimensions to understand adaptation at the molecular level. Gene deletion libraries, in conjunction with large-scale approaches and evolving bioinformatics integration, will greatly facilitate next-generation vaccines and antimicrobial interventions by highlighting novel targets and pathogen-specific pathways. MS is also central in phenotypic characterization of surface biomolecules such as lipid A, as well as aiding in the determination of protein interactions and complexes. There is increasing evidence that bacteria are capable of widespread post-translational modification, including phosphorylation, glycosylation and acetylation; with each contributing to virulence. This review focuses on the bacterial genotype to phenotype transition and surveys the recent literature showing how the genome can be validated at the proteome, metabolome and lipidome levels to provide an integrated view of organism response to host conditions.
Collapse
|
9
|
Hardouin P, Chiron R, Marchandin H, Armengaud J, Grenga L. Metaproteomics to Decipher CF Host-Microbiota Interactions: Overview, Challenges and Future Perspectives. Genes (Basel) 2021; 12:892. [PMID: 34207804 PMCID: PMC8227082 DOI: 10.3390/genes12060892] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/30/2021] [Accepted: 06/08/2021] [Indexed: 12/17/2022] Open
Abstract
Cystic fibrosis (CF) is a hereditary disease caused by mutations in the CF transmembrane conductance regulator (CFTR) gene, triggering dysfunction of the anion channel in several organs including the lung and gut. The main cause of morbidity and mortality is chronic infection. The microbiota is now included among the additional factors that could contribute to the exacerbation of patient symptoms, to treatment outcome, and more generally to the phenotypic variability observed in CF patients. In recent years, various omics tools have started to shed new light on microbial communities associated with CF and host-microbiota interactions. In this context, proteomics targets the key effectors of the responses from organisms, and thus their phenotypes. Recent advances are promising in terms of gaining insights into the CF microbiota and its relation with the host. This review provides an overview of the contributions made by proteomics and metaproteomics to our knowledge of the complex host-microbiota partnership in CF. Considering the strengths and weaknesses of proteomics-based approaches in profiling the microbiota in the context of other diseases, we illustrate their potential and discuss possible strategies to overcome their limitations in monitoring both the respiratory and intestinal microbiota in sample from patients with CF.
Collapse
Affiliation(s)
- Pauline Hardouin
- Laboratoire Innovations technologiques pour la Détection et le Diagnostic (Li2D), Université de Montpellier, 30207 Bagnols-sur-Cèze, France;
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, SPI, 30200 Bagnols-sur-Cèze, France;
| | - Raphael Chiron
- HydroSciences Montpellier, CNRS, IRD, Université de Montpellier, Centre de Ressources et de Compétences de la Mucoviscidose, CHU de Montpellier, 34093 Montpellier, France;
| | - Hélène Marchandin
- HydroSciences Montpellier, CNRS, IRD, Université de Montpellier, Service de Microbiologie et Hygiène Hospitalière, CHU Nîmes, 34093 Nîmes, France;
| | - Jean Armengaud
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, SPI, 30200 Bagnols-sur-Cèze, France;
| | - Lucia Grenga
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, SPI, 30200 Bagnols-sur-Cèze, France;
| |
Collapse
|
10
|
Abstract
Cystic fibrosis patients frequently suffer from recurring respiratory infections caused by colonizing pathogenic and commensal bacteria. Although modern therapies can sometimes alleviate respiratory symptoms by ameliorating residual function of the protein responsible for the disorder, management of chronic respiratory infections remains an issue. In cystic fibrosis, dynamic and complex communities of microbial pathogens and commensals can colonize the lung. Cultured isolates from lung sputum reveal high inter- and intraindividual variability in pathogen strains, sequence variants, and phenotypes; disease progression likely depends on the precise combination of infecting lineages. Routine clinical protocols, however, provide a limited overview of the colonizer populations. Therefore, a more comprehensive and precise identification and characterization of infecting lineages could assist in making corresponding decisions on treatment. Here, we describe longitudinal tracking for four cystic fibrosis patients who exhibited extreme clinical phenotypes and, thus, were selected from a pilot cohort of 11 patients with repeated sampling for more than a year. Following metagenomics sequencing of lung sputum, we find that the taxonomic identity of individual colonizer lineages can be easily established. Crucially, even superficially clonal pathogens can be subdivided into multiple sublineages at the sequence level. By tracking individual allelic differences over time, an assembly-free clustering approach allows us to reconstruct multiple lineage-specific genomes with clear structural differences. Our study showcases a culture-independent shotgun metagenomics approach for longitudinal tracking of sublineage pathogen dynamics, opening up the possibility of using such methods to assist in monitoring disease progression through providing high-resolution routine characterization of the cystic fibrosis lung microbiome.
Collapse
|
11
|
Thavamani A, Salem I, Sferra TJ, Sankararaman S. Impact of Altered Gut Microbiota and Its Metabolites in Cystic Fibrosis. Metabolites 2021; 11:metabo11020123. [PMID: 33671639 PMCID: PMC7926988 DOI: 10.3390/metabo11020123] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/15/2021] [Accepted: 02/20/2021] [Indexed: 12/14/2022] Open
Abstract
Cystic fibrosis (CF) is the most common lethal, multisystemic genetic disorder in Caucasians. Mutations in the gene encoding the cystic fibrosis transmembrane regulator (CFTR) protein are responsible for impairment of epithelial anionic transport, leading to impaired fluid regulation and pH imbalance across multiple organs. Gastrointestinal (GI) manifestations in CF may begin in utero and continue throughout the life, resulting in a chronic state of an altered intestinal milieu. Inherent dysfunction of CFTR leads to dysbiosis of the gut. This state of dysbiosis is further perpetuated by acquired factors such as use of antibiotics for recurrent pulmonary exacerbations. Since the gastrointestinal microbiome and their metabolites play a vital role in nutrition, metabolic, inflammatory, and immune functions, the gut dysbiosis will in turn impact various manifestations of CF-both GI and extra-GI. This review focuses on the consequences of gut dysbiosis and its metabolic implications on CF disease and possible ways to restore homeostasis.
Collapse
Affiliation(s)
- Aravind Thavamani
- Department of Pediatrics, Division of Pediatric Gastroenterology, UH Rainbow Babies & Children’s Hospital, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; (A.T.); (T.J.S.)
| | - Iman Salem
- Center for Medial Mycology, Case Western Reserve University School of Medicine, UH Cleveland Medical Center, Cleveland, OH 44106, USA;
| | - Thomas J. Sferra
- Department of Pediatrics, Division of Pediatric Gastroenterology, UH Rainbow Babies & Children’s Hospital, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; (A.T.); (T.J.S.)
| | - Senthilkumar Sankararaman
- Department of Pediatrics, Division of Pediatric Gastroenterology, UH Rainbow Babies & Children’s Hospital, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; (A.T.); (T.J.S.)
- Correspondence: ; Tel.: +1-216-844-1765
| |
Collapse
|
12
|
de Almeida OGG, Capizzani CPDC, Tonani L, Grizante Barião PH, da Cunha AF, De Martinis ECP, Torres LAGMM, von Zeska Kress MR. The Lung Microbiome of Three Young Brazilian Patients With Cystic Fibrosis Colonized by Fungi. Front Cell Infect Microbiol 2020; 10:598938. [PMID: 33262957 PMCID: PMC7686462 DOI: 10.3389/fcimb.2020.598938] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/09/2020] [Indexed: 12/29/2022] Open
Abstract
Microbial communities infiltrate the respiratory tract of cystic fibrosis patients, where chronic colonization and infection lead to clinical decline. This report aims to provide an overview of the diversity of bacterial and fungal species from the airway secretion of three young CF patients with severe pulmonary disease. The bacterial and fungal microbiomes were investigated by culture isolation, metataxonomics, and metagenomics shotgun. Virulence factors and antibiotic resistance genes were also explored. A. fumigatus was isolated from cultures and identified in high incidence from patient sputum samples. Candida albicans, Penicillium sp., Hanseniaspora sp., Torulaspora delbrueckii, and Talaromyces amestolkiae were isolated sporadically. Metataxonomics and metagenomics detected fungal reads (Saccharomyces cerevisiae, A. fumigatus, and Schizophyllum sp.) in one sputum sample. The main pathogenic bacteria identified were Staphylococcus aureus, Pseudomonas aeruginosa, Burkholderia cepacia complex, and Achromobacter xylosoxidans. The canonical core CF microbiome is composed of species from the genera Streptococcus, Neisseria, Rothia, Prevotella, and Haemophilus. Thus, the airways of the three young CF patients presented dominant bacterial genera and interindividual variability in microbial community composition and diversity. Additionally, a wide diversity of virulence factors and antibiotic resistance genes were identified in the CF lung microbiomes, which may be linked to the clinical condition of the CF patients. Understanding the microbial community is crucial to improve therapy because it may have the opposite effect, restructuring the pathogenic microbiota. Future studies focusing on the influence of fungi on bacterial diversity and microbial interactions in CF microbiomes will be welcome to fulfill this huge gap of fungal influence on CF physiopathology.
Collapse
Affiliation(s)
- Otávio Guilherme Gonçalves de Almeida
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Carolina Paulino da Costa Capizzani
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Ludmilla Tonani
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Patrícia Helena Grizante Barião
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Anderson Ferreira da Cunha
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Elaine Cristina Pereira De Martinis
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | | | - Marcia Regina von Zeska Kress
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
13
|
Luong T, Salabarria AC, Edwards RA, Roach DR. Standardized bacteriophage purification for personalized phage therapy. Nat Protoc 2020; 15:2867-2890. [PMID: 32709990 DOI: 10.1038/s41596-020-0346-0] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 04/24/2020] [Indexed: 02/08/2023]
Abstract
The world is on the cusp of a post-antibiotic era, but researchers and medical doctors have found a way forward-by looking back at how infections were treated before the advent of antibiotics, namely using phage therapy. Although bacteriophages (phages) continue to lack drug approval in Western medicine, an increasing number of patients are being treated on an expanded-access emergency investigational new drug basis. To streamline the production of high-quality and clinically safe phage preparations, we developed a systematic procedure for medicinal phage isolation, liter-scale cultivation, concentration and purification. The 16- to 21-day procedure described in this protocol uses a combination of modified classic techniques, modern membrane filtration processes and no organic solvents to yield on average 23 mL of 1011 plaque-forming units (PFUs) per milliliter for Pseudomonas, Klebsiella, and Serratia phages tested. Thus, a single production run can produce up to 64,000 treatment doses at 109 PFUs, which would be sufficient for most expanded-access phage therapy cases and potentially for clinical phase I/II applications. The protocol focuses on removing endotoxins early by conducting multiple low-speed centrifugations, microfiltration, and cross-flow ultrafiltration, which reduced endotoxins by up to 106-fold in phage preparations. Implementation of a standardized phage cultivation and purification across research laboratories participating in phage production for expanded-access phage therapy might be pivotal to reintroduce phage therapy to Western medicine.
Collapse
Affiliation(s)
- Tiffany Luong
- Department of Biology, San Diego State University, San Diego, CA, USA
| | | | - Robert A Edwards
- Department of Biology, San Diego State University, San Diego, CA, USA.,Viral Information Institute, San Diego State University, San Diego, CA, USA
| | - Dwayne R Roach
- Department of Biology, San Diego State University, San Diego, CA, USA. .,Viral Information Institute, San Diego State University, San Diego, CA, USA.
| |
Collapse
|
14
|
High-Resolution Longitudinal Dynamics of the Cystic Fibrosis Sputum Microbiome and Metabolome through Antibiotic Therapy. mSystems 2020; 5:5/3/e00292-20. [PMID: 32576651 PMCID: PMC7311317 DOI: 10.1128/msystems.00292-20] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Microbial diversity in the cystic fibrosis (CF) lung decreases over decades as pathogenic bacteria such as Pseudomonas aeruginosa take over. The dynamics of the CF microbiome and metabolome over shorter time frames, however, remain poorly studied. Here, we analyze paired microbiome and metabolome data from 594 sputum samples collected over 401 days from six adult CF subjects (subject mean = 179 days) through periods of clinical stability and 11 CF pulmonary exacerbations (CFPE). While microbiome profiles were personalized (permutational multivariate analysis of variance [PERMANOVA] r 2 = 0.79, P < 0.001), we observed significant intraindividual temporal variation that was highest during clinical stability (linear mixed-effects [LME] model, P = 0.002). This included periods where the microbiomes of different subjects became highly similar (UniFrac distance, <0.05). There was a linear increase in the microbiome alpha-diversity and in the log ratio of anaerobes to pathogens with time (n = 14 days) during the development of a CFPE (LME P = 0.0045 and P = 0.029, respectively). Collectively, comparing samples across disease states showed there was a reduction of these two measures during antibiotic treatment (LME P = 0.0096 and P = 0.014, respectively), but the stability data and CFPE data were not significantly different from each other. Metabolome alpha-diversity was higher during CFPE than during stability (LME P = 0.0085), but no consistent metabolite signatures of CFPE across subjects were identified. Virulence-associated metabolites from P. aeruginosa were temporally dynamic but were not associated with any disease state. One subject died during the collection period, enabling a detailed look at changes in the 194 days prior to death. This subject had over 90% Pseudomonas in the microbiome at the beginning of sampling, and that level gradually increased to over 99% prior to death. This study revealed that the CF microbiome and metabolome of some subjects are dynamic through time. Future work is needed to understand what drives these temporal dynamics and if reduction of anaerobes correlate to clinical response to CFPE therapy.IMPORTANCE Subjects with cystic fibrosis battle polymicrobial lung infections throughout their lifetime. Although antibiotic therapy is a principal treatment for CF lung disease, we have little understanding of how antibiotics affect the CF lung microbiome and metabolome and how much the community changes on daily timescales. By analyzing 594 longitudinal CF sputum samples from six adult subjects, we show that the sputum microbiome and metabolome are dynamic. Significant changes occur during times of stability and also through pulmonary exacerbations (CFPEs). Microbiome alpha-diversity increased as a CFPE developed and then decreased during treatment in a manner corresponding to the reduction in the log ratio of anaerobic bacteria to classic pathogens. Levels of metabolites from the pathogen P. aeruginosa were also highly variable through time and were negatively associated with anaerobes. The microbial dynamics observed in this study may have a significant impact on the outcome of antibiotic therapy for CFPEs and overall subject health.
Collapse
|
15
|
Françoise A, Héry-Arnaud G. The Microbiome in Cystic Fibrosis Pulmonary Disease. Genes (Basel) 2020; 11:E536. [PMID: 32403302 PMCID: PMC7288443 DOI: 10.3390/genes11050536] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/20/2020] [Accepted: 05/08/2020] [Indexed: 12/19/2022] Open
Abstract
Cystic fibrosis (CF) is a genetic disease with mutational changes leading to profound dysbiosis, both pulmonary and intestinal, from a very young age. This dysbiosis plays an important role in clinical manifestations, particularly in the lungs, affected by chronic infection. The range of microbiological tools has recently been enriched by metagenomics based on next-generation sequencing (NGS). Currently applied essentially in a gene-targeted manner, metagenomics has enabled very exhaustive description of bacterial communities in the CF lung niche and, to a lesser extent, the fungi. Aided by progress in bioinformatics, this now makes it possible to envisage shotgun sequencing and opens the door to other areas of the microbial world, the virome, and the archaeome, for which almost everything remains to be described in cystic fibrosis. Paradoxically, applying NGS in microbiology has seen a rebirth of bacterial culture, but in an extended manner (culturomics), which has proved to be a perfectly complementary approach to NGS. Animal models have also proved indispensable for validating microbiome pathophysiological hypotheses. Description of pathological microbiomes and correlation with clinical status and therapeutics (antibiotic therapy, cystic fibrosis transmembrane conductance regulator (CFTR) modulators) revealed the richness of microbiome data, enabling description of predictive and follow-up biomarkers. Although monogenic, CF is a multifactorial disease, and both genotype and microbiome profiles are crucial interconnected factors in disease progression. Microbiome-genome interactions are thus important to decipher.
Collapse
Affiliation(s)
- Alice Françoise
- UMR 1078 GGB, University of Brest, Inserm, EFS, F-29200 Brest, France;
| | - Geneviève Héry-Arnaud
- UMR 1078 GGB, University of Brest, Inserm, EFS, F-29200 Brest, France;
- Unité de Bactériologie, Pôle de Biologie-Pathologie, Centre Hospitalier Régional et Universitaire de Brest, Hôpital de la Cavale Blanche, Boulevard Tanguy Prigent, 29200 Brest, France
| |
Collapse
|
16
|
Ricard-Blum S, Miele AE. Omic approaches to decipher the molecular mechanisms of fibrosis, and design new anti-fibrotic strategies. Semin Cell Dev Biol 2020; 101:161-169. [DOI: 10.1016/j.semcdb.2019.12.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/16/2019] [Accepted: 12/16/2019] [Indexed: 12/17/2022]
|
17
|
Interplay between host-microbe and microbe-microbe interactions in cystic fibrosis. J Cyst Fibros 2019; 19 Suppl 1:S47-S53. [PMID: 31685398 DOI: 10.1016/j.jcf.2019.10.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/09/2019] [Accepted: 10/15/2019] [Indexed: 11/22/2022]
Abstract
The respiratory tract of individuals with cystic fibrosis is host to polymicrobial infections that persist for decades and lead to significant morbidity and mortality. Improving our understanding of CF respiratory infections requires coordinated efforts from researchers in the fields of microbial physiology, genomics, and ecology, as well as epithelial biology and immunology. Here, we have highlighted examples from recent CF microbial pathogenesis literature of how the host nutritional environment, immune response, and microbe-microbe interactions can feedback onto each other, leading to diverse effects on lung disease pathogenesis in CF.
Collapse
|
18
|
Fraser TA, Bell MG, Harris PNA, Bell SC, Bergh H, Nguyen TK, Kidd TJ, Nimmo GR, Sarovich DS, Price EP. Quantitative real-time PCR assay for the rapid identification of the intrinsically multidrug-resistant bacterial pathogen Stenotrophomonas maltophilia. Microb Genom 2019; 5. [PMID: 31617838 PMCID: PMC6861864 DOI: 10.1099/mgen.0.000307] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Stenotrophomonas maltophilia is emerging as an important cause of disease in nosocomial and community-acquired settings, including bloodstream, wound and catheter-associated infections. Cystic fibrosis (CF) airways also provide optimal growth conditions for various opportunistic pathogens with high antibiotic tolerance, including S. maltophilia. Currently, there is no rapid, cost-effective and accurate molecular method for detecting this potentially life-threatening pathogen, particularly in polymicrobial specimens, suggesting that its true prevalence is underestimated. Here, we used large-scale comparative genomics to identify a specific genetic target for S. maltophilia, with subsequent development and validation of a real-time PCR assay for its detection. Analysis of 167 Stenotrophomonas spp. genomes identified a conserved 4 kb region in S. maltophilia, which was targeted for Black Hole Quencher assay design. Our assay yielded the positive detection of 89 of 89 (100%) clinical S. maltophilia strains, and no amplification of 23 non-S. maltophilia clinical isolates. S. maltophilia was detected in 10 of 16 CF sputa, demonstrating the assay's utility for direct detection in respiratory specimens. The assay demonstrated good sensitivity, with limits of detection and quantitation on pure culture of ~10 and ~100 genome equivalents, respectively. Our assay provides a highly specific, sensitive and cost-effective method for the accurate identification of S. maltophilia, and will improve the diagnosis and treatment of this under-recognized pathogen by enabling its accurate and rapid detection from polymicrobial clinical and environmental samples.
Collapse
Affiliation(s)
- Tamieka A Fraser
- Sunshine Coast Health Institute, Birtinya, Queensland, Australia.,GeneCology Research Centre, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Mikaela G Bell
- Sunshine Coast Health Institute, Birtinya, Queensland, Australia.,GeneCology Research Centre, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Patrick N A Harris
- University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia.,Microbiology Department, Central Laboratory, Pathology Queensland, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
| | - Scott C Bell
- Adult Cystic Fibrosis Centre, Prince Charles Hospital, Chermside, Queensland, Australia.,QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Haakon Bergh
- Microbiology Department, Central Laboratory, Pathology Queensland, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
| | - Thuy-Khanh Nguyen
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Timothy J Kidd
- School of Chemistry and Molecular Biosciences, Faculty of Science, University of Queensland, St Lucia, Queensland, Australia.,QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Graeme R Nimmo
- Microbiology Department, Central Laboratory, Pathology Queensland, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
| | - Derek S Sarovich
- Sunshine Coast Health Institute, Birtinya, Queensland, Australia.,GeneCology Research Centre, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Erin P Price
- GeneCology Research Centre, University of the Sunshine Coast, Sippy Downs, Queensland, Australia.,Sunshine Coast Health Institute, Birtinya, Queensland, Australia
| |
Collapse
|
19
|
Tümmler B. Progress in understanding the molecular pathology and microbiology of cystic fibrosis. THE LANCET RESPIRATORY MEDICINE 2019; 8:8-10. [PMID: 31570319 DOI: 10.1016/s2213-2600(19)30333-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 08/13/2019] [Indexed: 11/17/2022]
Affiliation(s)
- Burkhard Tümmler
- Clinic for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, 30625 Hannover, Germany.
| |
Collapse
|