1
|
Tuaillon E, Mwyia M, Bollore K, Pisoni A, Rubbo PA, Richard M, Kremer L, Tonga MMW, Chanda D, Peries M, Vallo R, Eymard-Duvernay S, D'Ottavi M, Kankasa C, de Perre PV, Moles JP, Nagot N. Combination of serological and cytokine release assays for improved diagnosis of childhood tuberculosis in Zambia (PROMISE-TB). Int J Infect Dis 2024; 148:107248. [PMID: 39341421 DOI: 10.1016/j.ijid.2024.107248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024] Open
Abstract
OBJECTIVES The diagnostic gaps for childhood tuberculosis (TB) remain considerable in settings with high TB incidence and resource constraints. We established and evaluated the performance of a scoring system based on a combination of serological tests and T-cell cytokine release assays, chosen for their ability to detect immune responses indicative of TB, in a context of high prevalence of pediatric HIV infection. METHODS We enrolled 628 consecutive children aged ≤15 years, admitted for TB suspicion. Multiple cytokine levels in QuantiFERON Gold In-Tube supernatants and antigen 85B (Ag85B) antibodies were assessed in children who tested positive with either Xpert TB or mycobacterial culture. The results were compared with those of control children. RESULTS Among the biomarkers most strongly associated with TB, random forest classification analysis selected Ag85B antibodies, interleukin-2/interferon-γ ratio, and monokine induced by interferon-γ for the scoring system. The receiver operating characteristic curve derived from our scoring system showed an area under the curve of 0.95 (0.91-0.99), yielding 91% sensitivity and 88% specificity. The internal bootstrap validation gave the following 95% confidence intervals for the score performance: sensitivity 71%-97% and specificity 79%-99%. CONCLUSIONS This study suggests that supplementing the QuantiFERON assay with a combination of serological and T-cell markers could enhance childhood TB screening regardless of HIV status and age. Further validation among the target population is necessary to confirm the performance of this scoring system.
Collapse
Affiliation(s)
- Edouard Tuaillon
- Pathogenesis and Control of Chronic and Emerging Infections, Université de Montpellier, Inserm, Etablissement Français du Sang, Université des Antilles, Montpellier, France; University Hospital of Montpellier, Montpellier, France.
| | - Mwiya Mwyia
- Pediatric Center of Excellence, University Teaching Hospital, Lusaka, Zambia
| | - Karine Bollore
- Pathogenesis and Control of Chronic and Emerging Infections, Université de Montpellier, Inserm, Etablissement Français du Sang, Université des Antilles, Montpellier, France
| | - Amandine Pisoni
- Pathogenesis and Control of Chronic and Emerging Infections, Université de Montpellier, Inserm, Etablissement Français du Sang, Université des Antilles, Montpellier, France; University Hospital of Montpellier, Montpellier, France
| | - Pierre-Alain Rubbo
- Pathogenesis and Control of Chronic and Emerging Infections, Université de Montpellier, Inserm, Etablissement Français du Sang, Université des Antilles, Montpellier, France; University Hospital of Montpellier, Montpellier, France
| | - Matthias Richard
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
| | - Laurent Kremer
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
| | - Maria M W Tonga
- Pediatric Center of Excellence, University Teaching Hospital, Lusaka, Zambia
| | - Duncan Chanda
- Pediatric Center of Excellence, University Teaching Hospital, Lusaka, Zambia
| | - Marianne Peries
- Pathogenesis and Control of Chronic and Emerging Infections, Université de Montpellier, Inserm, Etablissement Français du Sang, Université des Antilles, Montpellier, France
| | - Roselyne Vallo
- Pathogenesis and Control of Chronic and Emerging Infections, Université de Montpellier, Inserm, Etablissement Français du Sang, Université des Antilles, Montpellier, France
| | - Sabrina Eymard-Duvernay
- Pathogenesis and Control of Chronic and Emerging Infections, Université de Montpellier, Inserm, Etablissement Français du Sang, Université des Antilles, Montpellier, France
| | - Morgana D'Ottavi
- Pathogenesis and Control of Chronic and Emerging Infections, Université de Montpellier, Inserm, Etablissement Français du Sang, Université des Antilles, Montpellier, France
| | - Chipepo Kankasa
- Pediatric Center of Excellence, University Teaching Hospital, Lusaka, Zambia
| | - Philippe Van de Perre
- Pathogenesis and Control of Chronic and Emerging Infections, Université de Montpellier, Inserm, Etablissement Français du Sang, Université des Antilles, Montpellier, France; University Hospital of Montpellier, Montpellier, France
| | - Jean-Pierre Moles
- Pathogenesis and Control of Chronic and Emerging Infections, Université de Montpellier, Inserm, Etablissement Français du Sang, Université des Antilles, Montpellier, France
| | - Nicolas Nagot
- Pathogenesis and Control of Chronic and Emerging Infections, Université de Montpellier, Inserm, Etablissement Français du Sang, Université des Antilles, Montpellier, France; University Hospital of Montpellier, Montpellier, France
| |
Collapse
|
2
|
Grace PS, Peters JM, Sixsmith J, Lu R, Luedeman C, Fenderson BA, Vickers A, Slein MD, Irvine EB, McKitrick T, Wei MH, Cummings RD, Wallace A, Cavacini LA, Choudhary A, Proulx MK, Sundling C, Källenius G, Reljic R, Ernst JD, Casadevall A, Locht C, Pinter A, Sasseti CM, Bryson BD, Fortune SM, Alter G. Antibody-Fab and -Fc features promote Mycobacterium tuberculosis restriction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.07.617070. [PMID: 39416184 PMCID: PMC11482752 DOI: 10.1101/2024.10.07.617070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), is a leading cause of death by an infectious disease globally, with no efficacious vaccine. Antibodies are implicated in Mtb control, but the mechanisms of antibody action remain poorly understood. We assembled a library of TB monoclonal antibodies (mAb) and screened for the ability to restrict Mtb in mice, identifying protective antibodies targeting known and novel antigens. To dissect the mechanism of mAb-mediated Mtb restriction, we optimized a protective lipoarabinomannan-specific mAb through Fc-swapping. In vivo analysis of these Fc-variants revealed a critical role for Fc-effector function in Mtb restriction. Restrictive Fc-variants altered distribution of Mtb across innate immune cells. Single-cell transcriptomics highlighted distinctly activated molecular circuitry within innate immune cell subpopulations, highlighting early activation of neutrophils as a key signature of mAb-mediated Mtb restriction. Therefore, improved antibody-mediated restriction of Mtb is associated with reorganization of the tissue-level immune response to infection and depends on the collaboration of antibody Fab and Fc.
Collapse
|
3
|
Yang Y, Chen YZ, Xia T. Optimizing antigen selection for the development of tuberculosis vaccines. CELL INSIGHT 2024; 3:100163. [PMID: 38572176 PMCID: PMC10987857 DOI: 10.1016/j.cellin.2024.100163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 04/05/2024]
Abstract
Tuberculosis (TB) remains a prevalent global infectious disease caused by genetically closely related tubercle bacilli in Mycobacterium tuberculosis complex (MTBC). For a century, the Bacillus Calmette-Guérin (BCG) vaccine has been the primary preventive measure against TB. While it effectively protects against extrapulmonary forms of pediatric TB, it lacks consistent efficacy in providing protection against pulmonary TB in adults. Consequently, the exploration and development of novel TB vaccines, capable of providing broad protection to populations, have consistently constituted a prominent area of interest in medical research. This article presents a concise overview of the novel TB vaccines currently undergoing clinical trials, discussing their classification, protective efficacy, immunogenicity, advantages, and limitations. In vaccine development, the careful selection of antigens that can induce strong and diverse specific immune responses is essential. Therefore, we have summarized the molecular characteristics, biological function, immunogenicity, and relevant studies associated with the chosen antigens for TB vaccines. These insights gained from vaccines and immunogenic proteins will inform the development of novel mycobacterial vaccines, particularly mRNA vaccines, for effective TB control.
Collapse
Affiliation(s)
- Yang Yang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Yi-Zhen Chen
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Tian Xia
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China
| |
Collapse
|
4
|
Sayedahmed EE, Elshafie NO, dos Santos AP, Jagannath C, Sambhara S, Mittal SK. Development of NP-Based Universal Vaccine for Influenza A Viruses. Vaccines (Basel) 2024; 12:157. [PMID: 38400140 PMCID: PMC10892571 DOI: 10.3390/vaccines12020157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
The nucleoprotein (NP) is a vital target for the heterosubtypic immunity of CD8+ cytotoxic T lymphocytes (CTLs) due to its conservation among influenza virus subtypes. To further enhance the T cell immunity of NP, autophagy-inducing peptide C5 (AIP-C5) from the CFP10 protein of Mycobacterium tuberculosis was used. Mice were immunized intranasally (i.n.) with human adenoviral vectors, HAd-C5-NP(H7N9) or HAd-NP(H7N9), expressing NP of an H7N9 influenza virus with or without the AIP-C5, respectively. Both vaccines developed similar levels of NP-specific systemic and mucosal antibody titers; however, there was a significantly higher number of NP-specific CD8 T cells secreting interferon-gamma (IFN-γ) in the HAd-C5-NP(H7N9) group than in the HAd-NP(H7N9) group. The HAd-C5-NP(H7N9) vaccine provided better protection following the challenge with A/Puerto Rico/8/1934(H1N1), A/Hong Kong/1/68(H3N2), A/chukkar/MN/14951-7/1998(H5N2), A/goose/Nebraska/17097/2011(H7N9), or A/Hong Kong/1073/1999(H9N2) influenza viruses compared to the HAd-NP(H7N9) group. The autophagy transcriptomic gene analysis of the HAd-C5-NP(H7N9) group revealed the upregulation of some genes involved in the positive regulation of the autophagy process. The results support further exploring the use of NP and AIP-C5 for developing a universal influenza vaccine for pandemic preparedness.
Collapse
Affiliation(s)
- Ekramy E. Sayedahmed
- Department of Comparative Pathobiology, Purdue Institute for Immunology, Inflammation and Infectious Disease, Purdue University Center for Cancer Research, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA; (E.E.S.); (N.O.E.); (A.P.d.S.)
| | - Nelly O. Elshafie
- Department of Comparative Pathobiology, Purdue Institute for Immunology, Inflammation and Infectious Disease, Purdue University Center for Cancer Research, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA; (E.E.S.); (N.O.E.); (A.P.d.S.)
| | - Andrea P. dos Santos
- Department of Comparative Pathobiology, Purdue Institute for Immunology, Inflammation and Infectious Disease, Purdue University Center for Cancer Research, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA; (E.E.S.); (N.O.E.); (A.P.d.S.)
| | - Chinnaswamy Jagannath
- Department of Pathology and Genomic Medicine, Center for Infectious Diseases and Translational Medicine, Houston Methodist Research Institute, Weill-Cornell Medicine, Houston, TX 77030, USA;
| | - Suryaprakash Sambhara
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Suresh K. Mittal
- Department of Comparative Pathobiology, Purdue Institute for Immunology, Inflammation and Infectious Disease, Purdue University Center for Cancer Research, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA; (E.E.S.); (N.O.E.); (A.P.d.S.)
| |
Collapse
|
5
|
Primo LMDG, Roque-Borda CA, Carnero Canales CS, Caruso IP, de Lourenço IO, Colturato VMM, Sábio RM, de Melo FA, Vicente EF, Chorilli M, da Silva Barud H, Barbugli PA, Franzyk H, Hansen PR, Pavan FR. Antimicrobial peptides grafted onto the surface of N-acetylcysteine-chitosan nanoparticles can revitalize drugs against clinical isolates of Mycobacterium tuberculosis. Carbohydr Polym 2024; 323:121449. [PMID: 37940311 DOI: 10.1016/j.carbpol.2023.121449] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/21/2023] [Accepted: 09/28/2023] [Indexed: 11/10/2023]
Abstract
Tuberculosis is caused by Mycobacterium tuberculosis (MTB) and is the leading cause of death from infectious diseases in the World. The search for new antituberculosis drugs is a high priority, since several drug-resistant TB-strains have emerged. Many nanotechnology strategies are being explored to repurpose or revive drugs. An interesting approach is to graft antimicrobial peptides (AMPs) to antibiotic-loaded nanoparticles. The objective of the present work was to determine the anti-MTB activity of rifampicin-loaded N-acetylcysteine-chitosan-based nanoparticles (NPs), conjugated with the AMP Ctx(Ile21)-Ha; against clinical isolates (multi- and extensively-drug resistant) and the H37Rv strain. The modified chitosan and drug-loaded NPs were characterized with respect to their physicochemical stability and their antimycobacterial profile, which showed potent inhibition (MIC values <0.977 μg/mL) by the latter. Furthermore, their accumulation within macrophages and cytotoxicity were determined. To understand the possible mechanisms of action, an in silico study of the peptide against MTB membrane receptors was performed. The results presented herein demonstrate that antibiotic-loaded NPs grafted with an AMP can be a powerful tool for revitalizing drugs against multidrug-resistant M. tuberculosis strains, by launching multiple attacks against MTB. This approach could potentially serve as a novel treatment strategy for various long-term diseases requiring extended treatment periods.
Collapse
Affiliation(s)
- Laura Maria Duran Gleriani Primo
- São Paulo State University (UNESP), Tuberculosis Research Laboratory, School of Pharmaceutical Sciences, Araraquara, São Paulo, Brazil
| | - Cesar Augusto Roque-Borda
- São Paulo State University (UNESP), Tuberculosis Research Laboratory, School of Pharmaceutical Sciences, Araraquara, São Paulo, Brazil; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Christian Shleider Carnero Canales
- Vicerrectorado de Investigación, Facultad de Ciencias Farmacéuticas bioquímicas y biotecnológicas, Universidad Católica de Santa María, Arequipa, Peru
| | - Icaro Putinhon Caruso
- Department of Physics - Institute of Biosciences, Humanities and Exact Sciences (IBILCE), São Paulo State University (UNESP), 15054-000 São José do Rio Preto, São Paulo, Brazil
| | - Isabella Ottenio de Lourenço
- Department of Physics - Institute of Biosciences, Humanities and Exact Sciences (IBILCE), São Paulo State University (UNESP), 15054-000 São José do Rio Preto, São Paulo, Brazil
| | - Vitória Maria Medalha Colturato
- Department of Biotechnology, Laboratory of Polymers and Biomaterials, University of Araraquara (UNIARA), Araraquara, São Paulo, Brazil
| | - Rafael Miguel Sábio
- São Paulo State University (UNESP), Department of Drug and Medicines, School of Pharmaceutical Sciences, Araraquara, São Paulo, Brazil
| | - Fernando Alves de Melo
- Department of Physics - Institute of Biosciences, Humanities and Exact Sciences (IBILCE), São Paulo State University (UNESP), 15054-000 São José do Rio Preto, São Paulo, Brazil
| | - Eduardo Festozo Vicente
- School of Sciences and Engineering, São Paulo State University (UNESP), Tupã, São Paulo, Brazil
| | - Marlus Chorilli
- São Paulo State University (UNESP), Department of Drug and Medicines, School of Pharmaceutical Sciences, Araraquara, São Paulo, Brazil
| | - Hernane da Silva Barud
- Department of Biotechnology, Laboratory of Polymers and Biomaterials, University of Araraquara (UNIARA), Araraquara, São Paulo, Brazil
| | - Paula Aboud Barbugli
- Department of Dental Materials and Prosthodontics, School of Dentistry, Sao Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Henrik Franzyk
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Paul Robert Hansen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Fernando Rogério Pavan
- São Paulo State University (UNESP), Tuberculosis Research Laboratory, School of Pharmaceutical Sciences, Araraquara, São Paulo, Brazil.
| |
Collapse
|
6
|
Cleverley TL, Peddineni S, Guarner J, Cingolani F, Garcia PK, Koehler H, Mocarski ES, Kalman D. The host-directed therapeutic imatinib mesylate accelerates immune responses to Mycobacterium marinum infection and limits pathology associated with granulomas. PLoS Pathog 2023; 19:e1011387. [PMID: 37200402 PMCID: PMC10231790 DOI: 10.1371/journal.ppat.1011387] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 05/31/2023] [Accepted: 04/25/2023] [Indexed: 05/20/2023] Open
Abstract
Infections caused by members of the mycobacterium tuberculosis complex [MTC] and nontuberculous mycobacteria [NTM] can induce widespread morbidity and mortality in people. Mycobacterial infections cause both a delayed immune response, which limits rate of bacterial clearance, and formation of granulomas, which contain bacterial spread, but also contribute to lung damage, fibrosis, and morbidity. Granulomas also limit access of antibiotics to bacteria, which may facilitate development of resistance. Bacteria resistant to some or all antibiotics cause significant morbidity and mortality, and newly developed antibiotics readily engender resistance, highlighting the need for new therapeutic approaches. Imatinib mesylate, a cancer drug used to treat chronic myelogenous leukemia [CML] that targets Abl and related tyrosine kinases, is a possible host-directed therapeutic [HDT] for mycobacterial infections, including those causing TB. Here, we use the murine Mycobacterium marinum [Mm] infection model, which induces granulomatous tail lesions. Based on histological measurements, imatinib reduces both lesion size and inflammation of surrounding tissue. Transcriptomic analysis of tail lesions indicates that imatinib induces gene signatures indicative of immune activation and regulation at early time points post infection that resemble those seen at later ones, suggesting that imatinib accelerates but does not substantially alter anti-mycobacterial immune responses. Imatinib likewise induces signatures associated with cell death and promotes survival of bone marrow-derived macrophages [BMDMs] in culture following infection with Mm. Notably, the capacity of imatinib to limit formation and growth of granulomas in vivo and to promote survival of BMDMs in vitro depends upon caspase 8, a key regulator of cell survival and death. These data provide evidence for the utility of imatinib as an HDT for mycobacterial infections in accelerating and regulating immune responses, and limiting pathology associated with granulomas, which may mitigate post-treatment morbidity.
Collapse
Affiliation(s)
- Tesia L. Cleverley
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Immunology and Molecular Pathogenesis Graduate Program, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Siri Peddineni
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Jeannette Guarner
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Francesca Cingolani
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Pamela K. Garcia
- Immunology and Molecular Pathogenesis Graduate Program, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Heather Koehler
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Edward S. Mocarski
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Daniel Kalman
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| |
Collapse
|
7
|
Yan Z, Wang X, Yi L, Yang B, Wei P, Ruan H, Wang J, Yang X, Zhang H. Enhanced Serum IgG Detection Potential Using 38KD-MPT32-MPT64, CFP10-Mtb81-EspC Fusion Protein and Lipoarabinomannan (LAM) for Human Tuberculosis. Pathogens 2022; 11:pathogens11121545. [PMID: 36558879 PMCID: PMC9787591 DOI: 10.3390/pathogens11121545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/04/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022] Open
Abstract
For the rapid, reliable, and cost-effective methods of tuberculosis (TB) auxiliary diagnosis, antibody (Ab) detection to multiple antigens of Mycobacterium tuberculosis (Mtb) has great potential; however, this methodology requires optimization. We constructed 38KD-MPT32-MPT64, CFP10-Mtb81-EspC, and Ag85B-HBHA fusion proteins and evaluated the serum Ab response to these fusion proteins and to lipoarabinomannan (LAM) by ELISA in 50 TB patients and 17 non-TB subjects. IgG responses to the three fusion proteins and to LAM were significantly higher in TB patients, especially in Xpert Mtb-positive TB patients (TB-Xpert+), than in non-TB subjects. Only the anti-38KD-MPT32-MPT64 Ab showed higher levels in the Xpert Mtb-negative TB patients (TB-Xpert-) than in the non-TB, and only the anti-LAM Ab showed higher levels in the TB-Xpert+ group than in the TB-Xpert- group. Anti-Ag85B-HBHA Ab-positive samples could be accurately identified using 38KD-MPT32-MPT64. The combination of 38KD-MPT32-MPT64, CFP10-Mtb81-EspC, and LAM conferred definite complementarity for the serum IgG detection of TB, with relatively high sensitivity (74.0%) and specificity (88.2%). These data suggest that the combination of 38KD-MPT32-MPT64, CFP10-Mtb81-EspC, and LAM antigens provided a basis for IgG detection and for evaluation of the humoral immune response in patients with TB.
Collapse
Affiliation(s)
- Zhuohong Yan
- Department of Central Laboratory, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China
| | - Xiaojue Wang
- Department of Central Laboratory, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China
| | - Ling Yi
- Department of Central Laboratory, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China
| | - Bin Yang
- Department of Central Laboratory, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China
| | - Panjian Wei
- Department of Central Laboratory, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China
| | - Hongyun Ruan
- Department of Central Laboratory, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China
| | - Jinghui Wang
- Department of Central Laboratory, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China
- Department of Medical Oncology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China
| | - Xinting Yang
- The Third Department of Tuberculosis, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
- Correspondence: (X.Y.); (H.Z.)
| | - Hongtao Zhang
- Department of Central Laboratory, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China
- Correspondence: (X.Y.); (H.Z.)
| |
Collapse
|
8
|
Zhou L, Luo L, Luo L, Ding Y, Lu Z, Feng D, Xiao Y. Macrophage-Secreted Exosomal HCG11 Promotes Autophagy in Antigen 85B-Infected Macrophages and Inhibits Fibroblast Fibrosis to Affect Tracheobronchial Tuberculosis Progression via the miR-601/Sirtuin 1 Axis. J Biomed Nanotechnol 2022. [DOI: 10.1166/jbn.2022.3426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Background: Tracheobronchial tuberculosis (TBTB) is a serious threat to human health. We aimed to explore the potential regulatory mechanism by which macrophages secrete exosomes that regulate TBTB progression. Methods: Bioinformatics analysis predicted lncRNAs with low
expression in TBTB. Macrophage-derived exosomes were isolated and identified. HCG11 was knocked down and overexpressed, and miR-601 was overexpressed. ELISA was utilized to measure TGF-β, IL-8, IL-6 and IFN-γ levels. Based on bioinformatics prediction and dual-luciferase
assay analysis, lncRNA HCG11 bound to miR-601, and miR-601 bound to SIRT1. The mRNA or protein expressions of lncRNA HCG11, miR- 601, SIRT1, PI3K/Akt/mTOR pathway-related factors, ATG5 and LC3B, as well as COL-1, MMP2, Timp-1 and Timp-3, were evaluated. Results: HCG11 was expressed
at low levels in TBTB patients. Macrophage-secreted exosomes inhibited Ag85B-induced macrophage proinflammatory response and promoted autophagy. Moreover, normal macrophage (MØ)-exo-derived HCG11 could inhibit Ag85B-induced macrophage proinflammatory response and promote autophagy.
HCG11 bound to miR-601, and miR-601 bound to SIRT1. HCG11 inhibited miR-601 to upregulate SIRT1. In addition, MØ-exo-derived HCG11 reduced Ag85B-induced fibroblast hyperproliferation and extracellular matrix deposition through the miR-601/SIRT1 axis. Conclusion: Macrophage-secreted
exosomal HCG11 promotes autophagy in Ag85B-infected macrophages and inhibits fibroblast fibrosis to affect TBTB progression via the miR-601/SIRT1 axis.
Collapse
Affiliation(s)
- Lei Zhou
- Endoscopy Center, Hunan Chest Hospital, Changsha, 410016, China
| | - Li Luo
- Endoscopy Center, Hunan Chest Hospital, Changsha, 410016, China
| | - Linzi Luo
- Endoscopy Center, Hunan Chest Hospital, Changsha, 410016, China
| | - Yan Ding
- Endoscopy Center, Hunan Chest Hospital, Changsha, 410016, China
| | - Zhibin Lu
- Endoscopy Center, Hunan Chest Hospital, Changsha, 410016, China
| | - Dan Feng
- Endoscopy Center, Hunan Chest Hospital, Changsha, 410016, China
| | - Yangbao Xiao
- Endoscopy Center, Hunan Chest Hospital, Changsha, 410016, China
| |
Collapse
|
9
|
Monitoring IgG against Mycobacterium tuberculosis proteins in an Asian elephant cured of tuberculosis that developed from long-term latency. Sci Rep 2022; 12:4310. [PMID: 35279668 PMCID: PMC8917326 DOI: 10.1038/s41598-022-08228-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 03/04/2022] [Indexed: 11/08/2022] Open
Abstract
Tuberculosis (TB) is fatal in elephants, hence protecting elephants from TB is key not only in the conservation of this endangered animal, but also to prevent TB transmission from elephants to humans. Most human TB cases arise from long-term asymptomatic infections. Significant diagnostic challenges remain in the detection of both infection and disease development from latency in elephants due to their huge bodies. In this study, we assessed cryopreserved sera collected for over 16 years, from the first Japanese treatment case of elephant TB. Semi-quantification of IgG levels to 11 proteins showed high detection levels of 3 proteins, namely ESAT6/CFP10, MPB83 and Ag85B. The level of IgG specific to these 3 antigens was measured longitudinally, revealing high and stable ESAT6/CFP10 IgG levels regardless of onset or treatment. Ag85B-specifc IgG levels were largely responsive to onset or treatment, while those of MPB83 showed intermediate responses. These results suggest that ESAT6/CFP10 is immunodominant in both asymptomatic and symptomatic phases, making it useful in the detection of infection. On the other hand, Ag85B has the potential to be a marker for the prediction of disease onset and in the evaluation of treatment effectiveness in elephants.
Collapse
|
10
|
Belnoue E, Vogelzang A, Nieuwenhuizen NE, Krzyzaniak MA, Darbre S, Kreutzfeldt M, Wagner I, Merkler D, Lambert PH, Kaufmann SHE, Siegrist CA, Pinschewer DD. Replication-Deficient Lymphocytic Choriomeningitis Virus-Vectored Vaccine Candidate for the Induction of T Cell Immunity against Mycobacterium tuberculosis. Int J Mol Sci 2022; 23:2700. [PMID: 35269842 PMCID: PMC8911050 DOI: 10.3390/ijms23052700] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 11/21/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) represents a major burden to global health, and refined vaccines are needed. Replication-deficient lymphocytic choriomeningitis virus (rLCMV)-based vaccine vectors against cytomegalovirus have proven safe for human use and elicited robust T cell responses in a large proportion of vaccine recipients. Here, we developed an rLCMV vaccine expressing the Mtb antigens TB10.4 and Ag85B. In mice, rLCMV elicited high frequencies of polyfunctional Mtb-specific CD8 and CD4 T cell responses. CD8 but not CD4 T cells were efficiently boosted upon vector re-vaccination. High-frequency responses were also observed in neonatally vaccinated mice, and co-administration of rLCMV with Expanded Program of Immunization (EPI) vaccines did not result in substantial reciprocal interference. Importantly, rLCMV immunization significantly reduced the lung Mtb burden upon aerosol challenge, resulting in improved lung ventilation. Protection was associated with increased CD8 T cell recruitment but reduced CD4 T cell infiltration upon Mtb challenge. When combining rLCMV with BCG vaccination in a heterologous prime-boost regimen, responses to the rLCMV-encoded Mtb antigens were further augmented, but protection was not significantly different from rLCMV or BCG vaccination alone. This work suggests that rLCMV may show utility for neonatal and/or adult vaccination efforts against pulmonary tuberculosis.
Collapse
Affiliation(s)
- Elodie Belnoue
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva 4, Switzerland; (E.B.); (S.D.); (M.K.); (I.W.); (D.M.); (P.-H.L.); (C.-A.S.)
- W.H.O. Collaborating Centre for Vaccine Immunology, University of Geneva, 1211 Geneva 4, Switzerland
| | - Alexis Vogelzang
- Department of Immunology, Max Planck Institute for Infection Biology, 10117 Berlin, Germany; (A.V.); (N.E.N.); (S.H.E.K.)
| | - Natalie E. Nieuwenhuizen
- Department of Immunology, Max Planck Institute for Infection Biology, 10117 Berlin, Germany; (A.V.); (N.E.N.); (S.H.E.K.)
| | - Magdalena A. Krzyzaniak
- Division of Experimental Virology, Department of Biomedicine, University of Basel, 4003 Basel, Switzerland;
| | - Stephanie Darbre
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva 4, Switzerland; (E.B.); (S.D.); (M.K.); (I.W.); (D.M.); (P.-H.L.); (C.-A.S.)
- W.H.O. Collaborating Centre for Vaccine Immunology, University of Geneva, 1211 Geneva 4, Switzerland
| | - Mario Kreutzfeldt
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva 4, Switzerland; (E.B.); (S.D.); (M.K.); (I.W.); (D.M.); (P.-H.L.); (C.-A.S.)
- Division of Clinical Pathology, Geneva University Hospital, 1211 Geneva 4, Switzerland
| | - Ingrid Wagner
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva 4, Switzerland; (E.B.); (S.D.); (M.K.); (I.W.); (D.M.); (P.-H.L.); (C.-A.S.)
| | - Doron Merkler
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva 4, Switzerland; (E.B.); (S.D.); (M.K.); (I.W.); (D.M.); (P.-H.L.); (C.-A.S.)
- Division of Clinical Pathology, Geneva University Hospital, 1211 Geneva 4, Switzerland
| | - Paul-Henri Lambert
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva 4, Switzerland; (E.B.); (S.D.); (M.K.); (I.W.); (D.M.); (P.-H.L.); (C.-A.S.)
- W.H.O. Collaborating Centre for Vaccine Immunology, University of Geneva, 1211 Geneva 4, Switzerland
| | - Stefan H. E. Kaufmann
- Department of Immunology, Max Planck Institute for Infection Biology, 10117 Berlin, Germany; (A.V.); (N.E.N.); (S.H.E.K.)
| | - Claire-Anne Siegrist
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva 4, Switzerland; (E.B.); (S.D.); (M.K.); (I.W.); (D.M.); (P.-H.L.); (C.-A.S.)
- W.H.O. Collaborating Centre for Vaccine Immunology, University of Geneva, 1211 Geneva 4, Switzerland
| | - Daniel D. Pinschewer
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva 4, Switzerland; (E.B.); (S.D.); (M.K.); (I.W.); (D.M.); (P.-H.L.); (C.-A.S.)
- W.H.O. Collaborating Centre for Vaccine Immunology, University of Geneva, 1211 Geneva 4, Switzerland
- Division of Experimental Virology, Department of Biomedicine, University of Basel, 4003 Basel, Switzerland;
| |
Collapse
|
11
|
Chiwala G, Liu Z, Mugweru JN, Wang B, Khan SA, Bate PNN, Yusuf B, Hameed HMA, Fang C, Tan Y, Guan P, Hu J, Tan S, Liu J, Zhong N, Zhang T. A recombinant selective drug-resistant M. bovis BCG enhances the bactericidal activity of a second-line anti-tuberculosis regimen. Biomed Pharmacother 2021; 142:112047. [PMID: 34426260 DOI: 10.1016/j.biopha.2021.112047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/09/2021] [Accepted: 08/12/2021] [Indexed: 10/20/2022] Open
Abstract
Drug-resistant tuberculosis (DR-TB) poses a new threat to global health; to improve the treatment outcome, therapeutic vaccines are considered the best chemotherapy adjuvants. Unfortunately, there is no therapeutic vaccine approved against DR-TB. Our study assessed the therapeutic efficacy of a recombinant drug-resistant BCG (RdrBCG) vaccine in DR-TB. We constructed the RdrBCG overexpressing Ag85B and Rv2628 by selecting drug-resistant BCG strains and transformed them with plasmid pEBCG or pIBCG to create RdrBCG-E and RdrBCG-I respectively. Following successful stability testing, we tested the vaccine's safety in severe combined immune deficient (SCID) mice that lack both T and B lymphocytes plus immunoglobulins. Finally, we evaluated the RdrBCG's therapeutic efficacy in BALB/c mice infected with rifampin-resistant M. tuberculosis and treated with a second-line anti-TB regimen. We obtained M. bovis strains which were resistant to several second-line drugs and M. tuberculosis resistant to rifampin. Notably, the exogenously inserted genes were lost in RdrBCG-E but remained stable in the RdrBCG-I both in vitro and in vivo. When administered adjunct to a second-line anti-TB regimen in a murine model of DR-TB, the RdrBCG-I lowered lung M. tuberculosis burden by 1 log10. Furthermore, vaccination with RdrBCG-I adjunct to chemotherapy minimized lung tissue pathology in mice. Most importantly, the RdrBCG-I showed almost the same virulence as its parent BCG Tice strain in SCID mice. Our findings suggested that the RdrBCG-I was stable, safe and effective as a therapeutic vaccine. Hence, the "recombinant" plus "drug-resistant" BCG strategy could be a useful concept for developing therapeutic vaccines against DR-TB.
Collapse
MESH Headings
- Amikacin/pharmacology
- Amikacin/therapeutic use
- Animals
- Antigens, Bacterial/biosynthesis
- Antigens, Bacterial/genetics
- Antigens, Bacterial/immunology
- Antitubercular Agents/pharmacology
- Antitubercular Agents/therapeutic use
- BCG Vaccine/biosynthesis
- BCG Vaccine/genetics
- BCG Vaccine/immunology
- BCG Vaccine/therapeutic use
- Disease Models, Animal
- Drug Resistance, Bacterial/genetics
- Levofloxacin/pharmacology
- Levofloxacin/therapeutic use
- Mice, Inbred BALB C
- Mice, SCID
- Mycobacterium bovis/chemistry
- Mycobacterium bovis/drug effects
- Mycobacterium bovis/genetics
- Mycobacterium tuberculosis/drug effects
- Mycobacterium tuberculosis/pathogenicity
- Plasmids
- Prothionamide/pharmacology
- Prothionamide/therapeutic use
- Pyrazinamide/pharmacology
- Pyrazinamide/therapeutic use
- Tuberculosis, Pulmonary/drug therapy
- Tuberculosis, Pulmonary/pathology
- Tuberculosis, Pulmonary/prevention & control
- Vaccines, Synthetic/biosynthesis
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/therapeutic use
- Virulence
- Mice
Collapse
Affiliation(s)
- Gift Chiwala
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China; Guangdong-Hong Kong-Macau Joint Laboratory of Respiratory Infectious Diseases, Guangzhou 510530, China; Guangzhou National Laboratory, Guangzhou 510320, China
| | - Zhiyong Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangdong-Hong Kong-Macau Joint Laboratory of Respiratory Infectious Diseases, Guangzhou 510530, China
| | - Julius N Mugweru
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China; Department of Biological Sciences, University of Embu, Embu 60100, Kenya
| | - Bangxing Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Shahzad Akbar Khan
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China; Guangdong-Hong Kong-Macau Joint Laboratory of Respiratory Infectious Diseases, Guangzhou 510530, China
| | - Petuel Ndip Ndip Bate
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China; Guangdong-Hong Kong-Macau Joint Laboratory of Respiratory Infectious Diseases, Guangzhou 510530, China; Guangzhou National Laboratory, Guangzhou 510320, China
| | - Buhari Yusuf
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China; Guangdong-Hong Kong-Macau Joint Laboratory of Respiratory Infectious Diseases, Guangzhou 510530, China; Guangzhou National Laboratory, Guangzhou 510320, China
| | - H M Adnan Hameed
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China; Guangdong-Hong Kong-Macau Joint Laboratory of Respiratory Infectious Diseases, Guangzhou 510530, China; Guangzhou National Laboratory, Guangzhou 510320, China
| | - Cuiting Fang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China; Guangdong-Hong Kong-Macau Joint Laboratory of Respiratory Infectious Diseases, Guangzhou 510530, China; Guangzhou National Laboratory, Guangzhou 510320, China
| | - Yaoju Tan
- State Key Laboratory of Respiratory Disease, Guangzhou Chest Hospital, Guangzhou 510095, China
| | - Ping Guan
- State Key Laboratory of Respiratory Disease, Guangzhou Chest Hospital, Guangzhou 510095, China
| | - Jinxing Hu
- State Key Laboratory of Respiratory Disease, Guangzhou Chest Hospital, Guangzhou 510095, China
| | - Shouyong Tan
- State Key Laboratory of Respiratory Disease, Guangzhou Chest Hospital, Guangzhou 510095, China
| | - Jianxiong Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Chest Hospital, Guangzhou 510095, China
| | - Nanshan Zhong
- Guangdong-Hong Kong-Macau Joint Laboratory of Respiratory Infectious Diseases, Guangzhou 510530, China; Guangzhou National Laboratory, Guangzhou 510320, China; State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Tianyu Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China; Guangdong-Hong Kong-Macau Joint Laboratory of Respiratory Infectious Diseases, Guangzhou 510530, China; Guangzhou National Laboratory, Guangzhou 510320, China.
| |
Collapse
|
12
|
Costa DL, Amaral EP, Namasivayam S, Mittereder LR, Andrade BB, Sher A. Enhancement of CD4 + T Cell Function as a Strategy for Improving Antibiotic Therapy Efficacy in Tuberculosis: Does It Work? Front Cell Infect Microbiol 2021; 11:672527. [PMID: 34235093 PMCID: PMC8256258 DOI: 10.3389/fcimb.2021.672527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 06/08/2021] [Indexed: 12/25/2022] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb) remains a major public health problem worldwide due in part to the lack of an effective vaccine and to the lengthy course of antibiotic treatment required for successful cure. Combined immuno/chemotherapeutic intervention represents a major strategy for developing more effective therapies against this important pathogen. Because of the major role of CD4+ T cells in containing Mtb infection, augmentation of bacterial specific CD4+ T cell responses has been considered as an approach in achieving this aim. Here we present new data from our own research aimed at determining whether boosting CD4+ T cell responses can promote antibiotic clearance. In these studies, we first characterized the impact of antibiotic treatment of infected mice on Th1 responses to major Mtb antigens and then performed experiments aimed at sustaining CD4+ T cell responsiveness during antibiotic treatment. These included IL-12 infusion, immunization with ESAT-6 and Ag85B immunodominant peptides and adoptive transfer of Th1-polarized CD4+ T cells specific for ESAT-6 or Ag85B during the initial month of chemotherapy. These approaches failed to enhance antibiotic clearance of Mtb, indicating that boosting Th1 responses to immunogenic Mtb antigens highly expressed by actively dividing bacteria is not an effective strategy to be used in the initial phase of antibiotic treatment, perhaps because replicating organisms are the first to be eliminated by the drugs. These results are discussed in the context of previously published findings addressing this concept along with possible alternate approaches for harnessing Th1 immunity as an adjunct to chemotherapy.
Collapse
Affiliation(s)
- Diego L Costa
- Departmento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil.,Programa de Pós-Graduação em Imunologia Básica e Aplicada, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil.,Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Eduardo P Amaral
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Sivaranjani Namasivayam
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Lara R Mittereder
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States.,Division of Bacterial, Parasitic and Allergenic Products, Laboratory of Mucosal Pathogens and Cellular Immunology, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Bruno B Andrade
- Wellcome Centre for Infectious Disease Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa.,Laboratório de Inflamação e Biomarcadores, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil.,Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil.,Curso de Medicina, Faculdade de Tecnologia e Ciências (FTC), Salvador, Brazil.,Curso de Medicina, Universidade Salvador (UNIFACS), Laureate Universities, Salvador, Brazil.,Escola Bahiana de Medicina e Saúde Pública (EBMSP), Salvador, Brazil.,Division of Infectious Diseases, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Alan Sher
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
13
|
Tran AC, Kim MY, Reljic R. Emerging Themes for the Role of Antibodies in Tuberculosis. Immune Netw 2019; 19:e24. [PMID: 31501712 PMCID: PMC6722270 DOI: 10.4110/in.2019.19.e24] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/12/2019] [Accepted: 06/13/2019] [Indexed: 02/06/2023] Open
Abstract
The best way to debunk a scientific dogma is to throw irrefutable evidence at it. This is especially true if the dogma in question has been nurtured over many decades, as is the case with the apparent redundancy of antibodies (Abs) against intracellular pathogens. Although not fully compelling yet, that ‘hard core’ evidence is nevertheless now slowly beginning to emerge. This is true for several clinically relevant infections but none more so than Mycobacterium tuberculosis, the archetype intracellular pathogen that poses a great health challenge to the mankind. Here, prompted by a spate of recent high-profile reports on the effects of Abs in various experimental models of tuberculosis, we step back and take a critical look at the progress that has been made in the last 5 years and highlight some of the strengths and shortcomings of the presented evidence. We conclude that the tide of the opinion has begun to turn in favour of Abs but we also caution against overinterpreting the currently available limited evidence. For, until definitive evidence that can withstand even the most rigorous of experimental tests is produced, the dogma may yet survive. Or indeed, we may find that the truth is hidden somewhere in between the dogma and the unfulfilled scientific prophecy.
Collapse
Affiliation(s)
- Andy C Tran
- St George's, University of London, London SW17 0RE, UK
| | - Mi-Young Kim
- St George's, University of London, London SW17 0RE, UK.,Department of Molecular Biology and The Institute for Molecular Biology and Genetics, Chonbuk National University, Jeonju 54896, Korea
| | - Rajko Reljic
- St George's, University of London, London SW17 0RE, UK
| |
Collapse
|