1
|
Zhou Z, Hatzios SK. Microbial metabolism of host-derived antioxidants. Curr Opin Chem Biol 2024; 84:102565. [PMID: 39721219 DOI: 10.1016/j.cbpa.2024.102565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024]
Abstract
Humans are exposed to a wide variety of small molecules with antioxidant properties that are poorly metabolized by mammalian cells. However, gastrointestinal microbes encode enzymes that convert these redox-active molecules into nutrient sources and electron acceptors to support bacterial growth in the gut. Here, we describe recent studies highlighting how microbial metabolism of host-derived antioxidants modulates interspecies interactions and provide an overview of the interdisciplinary approaches being used to map these metabolic pathways in vivo. Uncovering microbe-driven biotransformations of redox-active small molecules could create new opportunities to improve human health by modulating redox reactions at the host-microbe interface.
Collapse
Affiliation(s)
- Zhe Zhou
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, 06520, USA; Microbial Sciences Institute, Yale University, West Haven, CT, 06516, USA
| | - Stavroula K Hatzios
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, 06520, USA; Microbial Sciences Institute, Yale University, West Haven, CT, 06516, USA; Department of Chemistry, Yale University, New Haven, CT, 06520, USA.
| |
Collapse
|
2
|
Liao Y, Li B, Chen H, Ma Y, Wang F, Huang L, Shen B, Song H, Yue P. Stimuli-responsive mesoporous silica nanoplatforms for smart antibacterial therapies: From single to combination strategies. J Control Release 2024; 378:60-91. [PMID: 39615754 DOI: 10.1016/j.jconrel.2024.11.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/08/2024] [Accepted: 11/23/2024] [Indexed: 12/13/2024]
Abstract
The demand for new antibacterial therapies is urgent and crucial in the clinical setting because of the growing degree of antibiotic resistance and the limits of conventional antibacterial therapies. Stimuli- responsive nanoplatforms, are sensitive to endogenous or exogenous stimulus (pH, temperature, light, and magnetic fields, etc.) which activate cargo release locally and on-demand, hold great potential in developing next generation personalized precision medicine. For instance, pH-sensitive nanoplatforms can selectively release antibacterial agents in the acidic environment of infection sites. To achieve the stimuli-responsive delivery, mesoporous silica nanoplatforms (MSNs) have demonstrated as prospective candidates for efficient cargo loading and controlled release through strategies such as tunable pore engineering, versatile surface modification/coating, and tailored framework composition. Furthermore, aiming for more precise delivery of MSNs, current research interests are increasingly shifting from single-stimuli antibacterial strategy to integrated strategy that combine multiple-stimulus. In this review, we briefly discuss the microenvironment of bacterial infections and provide a comprehensive summary of current stimuli-responsive strategies, and associated materials design principles of stimuli-responsive mesoporous silica-based smart nanoplatforms (SRMSNs). Additionally, integrative antibacterial strategies with synergistic effects, combining chemodynamic, photodynamic, photothermal, sonodynamic and gas therapies, have also been elaborated. Present research advances and limitations of SRMSNs-based antibacterial therapies, such as limited biodegradability and potential cytotoxicity, have been overviewed with future outlooks presented. This review aims to inspire and guide future research in developing novel antibacterial strategies with integrative solutions.
Collapse
Affiliation(s)
- Yan Liao
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Biao Li
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Hongxin Chen
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Yueqin Ma
- Department of Pharmaceutics, 908th Hospital of Joint Logistics Support Force of PLA, Nanchang 330000, China
| | - Fengxia Wang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Lizhen Huang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Baode Shen
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Hao Song
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, Brisbane, QLD 4072, Australia; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 20139, USA.
| | - Pengfei Yue
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China.
| |
Collapse
|
3
|
Ruzic M, Hefferan AIA, Conaway A, Hogan DA. Pseudomonas aeruginosa LasR-deficient mutants have increased methylglyoxal and hydrogen peroxide sensitivity due to low intracellular glutathione. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.25.615034. [PMID: 39386711 PMCID: PMC11463435 DOI: 10.1101/2024.09.25.615034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The electrophile methylglyoxal (MG) is produced by microorganisms and host cells through central metabolic pathways. MG is a highly reactive electrophile, so it must be rapidly detoxified to prevent damaging modifications to macromolecules. Pseudomonas aeruginosa, a pathogen of concern due to its ability develop multidrug resistance, causes many types of infections that have been associated with elevated MG levels, including cystic fibrosis (CF). P. aeruginosa isolates commonly have mutations that lead to LasR loss-of-function (LasR-) and we found that lasR mutations confer sensitivity to MG in multiple strain backgrounds. LasR- strains have increased activity of the CbrAB two-component system which represses Crc regulation of metabolism. Here, we show that higher CbrAB activity and low Crc activity renders cells sensitive to MG. We found that P. aeruginosa LasR- strains are more sensitive to MG and have lower intracellular reduced glutathione (GSH) compared to their LasR+ comparators. Consistent with published reports, mutants lacking gloA3, which encodes a MG-glyoxalase, and mutants lacking GSH biosynthesis enzymes (gshA or gshB) were sensitive to MG. Exogenous GSH rescued MG sensitivity in LasR- strains and gshA or gshB mutants, but not in a gloA3 mutant strain. We propose that low GSH levels in LasR- strains contribute to increased sensitivity to MG and H2O2.
Collapse
Affiliation(s)
- Marina Ruzic
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | | | - Amy Conaway
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Deborah A Hogan
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| |
Collapse
|
4
|
Jiang F, Ruan Y, Chen XH, Yu HL, Cheng T, Duan XY, Liu YG, Zhang HY, Zhang QY. Metabolites of pathogenic microorganisms database (MPMdb) and its seed metabolite applications. Microbiol Spectr 2024; 12:e0234223. [PMID: 38391229 PMCID: PMC10986615 DOI: 10.1128/spectrum.02342-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 01/23/2024] [Indexed: 02/24/2024] Open
Abstract
Seed metabolites are the combination of essential compounds required by an organism across various potential environmental conditions. The seed metabolites screening framework based on the network topology approach can capture important biological information of species. This study aims to identify comprehensively the relationship between seed metabolites and pathogenic bacteria. A large-scale data set was compiled, describing the seed metabolite sets and metabolite sets of 124,192 pathogenic strains from 34 genera, by constructing genome-scale metabolic models. The enrichment analysis method was used to screen the specific seed metabolites of each species/genus of pathogenic bacteria. The metabolites of pathogenic microorganisms database (MPMdb) (http://qyzhanglab.hzau.edu.cn/MPMdb/) was established for browsing, searching, predicting, or downloading metabolites and seed metabolites of pathogenic microorganisms. Based on the MPMdb, taxonomic and phylogenetic analyses of pathogenic bacteria were performed according to the function of seed metabolites and metabolites. The results showed that the seed metabolites could be used as a feature for microorganism chemotaxonomy, and they could mirror the phylogeny of pathogenic bacteria. In addition, our screened specific seed metabolites of pathogenic bacteria can be used not only for further tapping the nutritional resources and identifying auxotrophies of pathogenic bacteria but also for designing targeted bactericidal compounds by combining with existing antimicrobial agents.IMPORTANCEMetabolites serve as key communication links between pathogenic microorganisms and hosts, with seed metabolites being crucial for microbial growth, reproduction, external communication, and host infection. However, the large-scale screening of metabolites and the identification of seed metabolites have always been the main technical bottleneck due to the low throughput and costly analysis. Genome-scale metabolic models have become a recognized research paradigm to investigate the metabolic characteristics of species. The developed metabolites of pathogenic microorganisms database in this study is committed to systematically predicting and identifying the metabolites and seed metabolites of pathogenic microorganisms, which could provide a powerful resource platform for pathogenic bacteria research.
Collapse
Affiliation(s)
- Feng Jiang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Yao Ruan
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Xiao-Hui Chen
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Hai-Long Yu
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Ting Cheng
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Xin-Ya Duan
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Yan-Guang Liu
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Hong-Yu Zhang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Qing-Ye Zhang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
5
|
Su MSW, Cheng YL, Lin YS, Wu JJ. Interplay between group A Streptococcus and host innate immune responses. Microbiol Mol Biol Rev 2024; 88:e0005222. [PMID: 38451081 PMCID: PMC10966951 DOI: 10.1128/mmbr.00052-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024] Open
Abstract
SUMMARYGroup A Streptococcus (GAS), also known as Streptococcus pyogenes, is a clinically well-adapted human pathogen that harbors rich virulence determinants contributing to a broad spectrum of diseases. GAS is capable of invading epithelial, endothelial, and professional phagocytic cells while evading host innate immune responses, including phagocytosis, selective autophagy, light chain 3-associated phagocytosis, and inflammation. However, without a more complete understanding of the different ways invasive GAS infections develop, it is difficult to appreciate how GAS survives and multiplies in host cells that have interactive immune networks. This review article attempts to provide an overview of the behaviors and mechanisms that allow pathogenic GAS to invade cells, along with the strategies that host cells practice to constrain GAS infection. We highlight the counteractions taken by GAS to apply virulence factors such as streptolysin O, nicotinamide-adenine dinucleotidase, and streptococcal pyrogenic exotoxin B as a hindrance to host innate immune responses.
Collapse
Affiliation(s)
- Marcia Shu-Wei Su
- Department of Medical Laboratory Science and Biotechnology, College of Medical and Health Sciences, Asia University, Taichung, Taiwan
- Department of Biotechnology and Laboratory Science in Medicine, College of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Lin Cheng
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yee-Shin Lin
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jiunn-Jong Wu
- Department of Medical Laboratory Science and Biotechnology, College of Medical and Health Sciences, Asia University, Taichung, Taiwan
- Department of Biotechnology and Laboratory Science in Medicine, College of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| |
Collapse
|
6
|
Sullivan MJ, Terán I, Goh KG, Ulett GC. Resisting death by metal: metabolism and Cu/Zn homeostasis in bacteria. Emerg Top Life Sci 2024; 8:45-56. [PMID: 38362914 PMCID: PMC10903455 DOI: 10.1042/etls20230115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/31/2024] [Accepted: 02/04/2024] [Indexed: 02/17/2024]
Abstract
Metal ions such as zinc and copper play important roles in host-microbe interactions and their availability can drastically affect the survival of pathogenic bacteria in a host niche. Mechanisms of metal homeostasis protect bacteria from starvation, or intoxication, defined as when metals are limiting, or in excess, respectively. In this mini-review, we summarise current knowledge on the mechanisms of resistance to metal stress in bacteria, focussing specifically on the homeostasis of cellular copper and zinc. This includes a summary of the factors that subvert metal stress in bacteria, which are independent of metal efflux systems, and commentary on the role of small molecules and metabolic systems as important mediators of metal resistance.
Collapse
Affiliation(s)
- Matthew J. Sullivan
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, U.K
- School of Pharmacy and Medical Sciences, and Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Gold Coast, QLD 4222, Australia
| | - Ignacio Terán
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, U.K
| | - Kelvin G.K. Goh
- School of Pharmacy and Medical Sciences, and Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Gold Coast, QLD 4222, Australia
| | - Glen C. Ulett
- School of Pharmacy and Medical Sciences, and Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Gold Coast, QLD 4222, Australia
| |
Collapse
|
7
|
Guerra S, LaRock C. Group A Streptococcus interactions with the host across time and space. Curr Opin Microbiol 2024; 77:102420. [PMID: 38219421 PMCID: PMC10922997 DOI: 10.1016/j.mib.2023.102420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 01/16/2024]
Abstract
Group A Streptococcus (GAS) has a fantastically wide tissue tropism in humans, manifesting as different diseases depending on the strain's virulence factor repertoire and the tissue involved. Activation of immune cells and pro-inflammatory signaling has historically been considered an exclusively host-protective response that a pathogen would seek to avoid. However, recent advances in human and animal models suggest that in some tissues, GAS will activate and manipulate specific pro-inflammatory pathways to promote growth, nutrient acquisition, persistence, recurrent infection, competition with other microbial species, dissemination, and transmission. This review discusses molecular interactions between the host and pathogen to summarize how infection varies across tissue and stages of inflammation. A need for inflammation for GAS survival during common, mild infections may drive selection for mechanisms that cause pathological and excess inflammation severe diseases such as toxic shock syndrome, necrotizing fasciitis, and rheumatic heart disease.
Collapse
Affiliation(s)
- Stephanie Guerra
- Microbiology and Molecular Genetics Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, GA 30322, USA
| | - Christopher LaRock
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA; Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA; Antimicrobial Resistance Center, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
8
|
Tikhomirova A, Rahman MM, Kidd SP, Ferrero RL, Roujeinikova A. Cysteine and resistance to oxidative stress: implications for virulence and antibiotic resistance. Trends Microbiol 2024; 32:93-104. [PMID: 37479622 DOI: 10.1016/j.tim.2023.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/23/2023]
Abstract
Reactive oxygen species (ROS), including the superoxide radical anion (O2•-), hydrogen peroxide (H2O2), and the hydroxyl radical (•HO), are inherent components of bacterial metabolism in an aerobic environment. Bacteria also encounter exogenous ROS, such as those produced by the host cells during the respiratory burst. As ROS have the capacity to damage bacterial DNA, proteins, and lipids, detoxification of ROS is critical for bacterial survival. It has been recently recognised that low-molecular-weight (LMW) thiols play a central role in this process. Here, we review the emerging role of cysteine in bacterial resistance to ROS with a link to broader elements of bacterial lifestyle closely associated with cysteine-mediated oxidative stress response, including virulence and antibiotic resistance.
Collapse
Affiliation(s)
- Alexandra Tikhomirova
- Monash University, Department of Microbiology, Infection and Immunity Program, Monash Biomedicine Discovery Institute, Melbourne, VIC 3800, Australia
| | - Mohammad M Rahman
- University of Kentucky, Department of Microbiology, Immunology and Molecular Genetics, Lexington, KY, USA
| | - Stephen P Kidd
- University of Adelaide, Department of Molecular and Biomedical Sciences, School of Biological Sciences, Adelaide, SA 5005, Australia; University of Adelaide, Research Centre for Infectious Disease (RCID) and Australian Centre for Antimicrobial Resistance Ecology (ACARE), Adelaide, SA 5005, Australia
| | - Richard L Ferrero
- Monash University, Department of Microbiology, Infection and Immunity Program, Monash Biomedicine Discovery Institute, Melbourne, VIC 3800, Australia; Hudson Institute of Medical Research, Centre for Innate Immunity and Infectious Diseases, Melbourne, VIC 3168, Australia; Monash University, Department of Molecular and Translational Science, Infection and Immunity Program, Monash Biomedicine Discovery Institute, Melbourne, VIC 3800, Australia
| | - Anna Roujeinikova
- Monash University, Department of Microbiology, Infection and Immunity Program, Monash Biomedicine Discovery Institute, Melbourne, VIC 3800, Australia; Monash University, Department of Biochemistry and Molecular Biology, Melbourne, VIC 3800, Australia.
| |
Collapse
|
9
|
van Hoek ML, Marchesani A, Rawat M. Diverse roles of low-molecular weight thiol GSH in Francisella's virulence, location sensing and GSH-stealing from host. CURRENT RESEARCH IN MICROBIAL SCIENCES 2023; 6:100218. [PMID: 38303966 PMCID: PMC10831187 DOI: 10.1016/j.crmicr.2023.100218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024] Open
Abstract
Low-molecular weight (LMW) thiols, encompassing peptides and small proteins with active cysteine residue(s), are important to bacteria as they are involved in a wide range of redox reactions. They include the tripeptide glutathione (GSH) and the small redox proteins, thioredoxins and glutaredoxins. We review the low MW thiols and related molecules in Francisella species and what role they may play in growth and virulence. Genes for GSH biosynthesis, metabolism and thioredoxins are present in all strains of Francisella, including the fully human-virulent strains. GSH and cysteine (CSH) are the major LMW thiols in Francisella extracts. We explore the potential role of the LMW thiols to overcome the nutritional challenges of intracellular growth (high GSH conditions) as well as the nutritional challenges of planktonic growth (low GSH conditions), and their contribution to Francisella's sensing its environmental location. Francisella may also use GSH as a source of CSH, for which it is auxotrophic. "Glutathione stealing" from the host may be an important part of Francisella's success strategy as a facultative intracellular pathogen both to detect its location and obtain CSH. An understanding of GSH metabolism in Francisella provides insights into the interaction of this pathogen with its host and may reveal additional targets for therapeutic intervention for tularemia infections.
Collapse
Affiliation(s)
- Monique L. van Hoek
- School of Systems Biology, George Mason University, Manassas, VA, United States
| | | | - Mamta Rawat
- Biology Department, California State University, Fresno, CA, United States
| |
Collapse
|
10
|
Loi VV, Busche T, Schnaufer F, Kalinowski J, Antelmann H. The neutrophil oxidant hypothiocyanous acid causes a thiol-specific stress response and an oxidative shift of the bacillithiol redox potential in Staphylococcus aureus. Microbiol Spectr 2023; 11:e0325223. [PMID: 37930020 PMCID: PMC10715087 DOI: 10.1128/spectrum.03252-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/02/2023] [Indexed: 11/07/2023] Open
Abstract
IMPORTANCE Staphylococcus aureus colonizes the skin and the airways but can also lead to life-threatening systemic and chronic infections. During colonization and phagocytosis by immune cells, S. aureus encounters the thiol-reactive oxidant HOSCN. The understanding of the adaptation mechanisms of S. aureus toward HOSCN stress is important to identify novel drug targets to combat multi-resistant S. aureus isolates. As a defense mechanism, S. aureus uses the flavin disulfide reductase MerA, which functions as HOSCN reductase and protects against HOSCN stress. Moreover, MerA homologs have conserved functions in HOSCN detoxification in other bacteria, including intestinal and respiratory pathogens. In this work, we studied the comprehensive thiol-reactive mode of action of HOSCN and its effect on the reversible shift of the E BSH to discover new defense mechanisms against the neutrophil oxidant. These findings provide new leads for future drug design to fight the pathogen at the sites of colonization and infections.
Collapse
Affiliation(s)
- Vu Van Loi
- Institute of Biology-Microbiology, Freie Universität Berlin, Berlin, Germany
| | - Tobias Busche
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Franziska Schnaufer
- Institute of Biology-Microbiology, Freie Universität Berlin, Berlin, Germany
| | - Jörn Kalinowski
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Haike Antelmann
- Institute of Biology-Microbiology, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
11
|
Chen M, Zhang J, Xia J, Sun J, Zhang X, Xu J, Deng S, Han Y, Jiang L, Song H, Cheng C. Listeria monocytogenes GshF contributes to oxidative stress tolerance via regulation of the phosphoenolpyruvate-carbohydrate phosphotransferase system. Microbiol Spectr 2023; 11:e0236523. [PMID: 37668404 PMCID: PMC10580955 DOI: 10.1128/spectrum.02365-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/31/2023] [Indexed: 09/06/2023] Open
Abstract
Glutathione (GSH) is an essential component of the glutaredoxin (Grx) system, and it is synthesized by the enzyme glutathione synthase GshF in Listeria monocytogenes. GSH plays a crucial role in regulating Listeria virulence by modifying the virulence factors LLO and PrfA. In this study, we investigated the involvement of L. monocytogenes GshF in oxidative tolerance and intracellular infection. Our findings revealed that the deletion of gshF resulted in a significant reduction in bacterial growth in vitro when exposed to diamide and copper ions stress. More importantly, this deletion also impaired the efficiency of invasion and proliferation in macrophages and mice organs. Furthermore, GshF influenced global transcriptional profiles, including carbohydrate and amino acid metabolism, particularly those related to the phosphoenolpyruvate-carbohydrate phosphotransferase system (PTS) genes lmo1997-lmo2004, under oxidative stress conditions. In the wild-type strain, the transcription of lmo1997-lmo2004 was notably downregulated in response to copper ions and diamide stress compared to normal conditions. However, in the absence of gshF, the transcripts of lmo1997-lmo2004 were upregulated in response to these stress conditions. Notably, the deletion of iiBman (lmo2002) enhanced oxidative stress tolerance to copper ions, whereas overexpression of iiBman reduced this resistance. In conclusion, our study provides the first evidence that L. monocytogenes GshF plays a crucial role in bacterial antioxidation through the regulation of iiBman.IMPORTANCEListeria monocytogenes has developed various mechanisms to withstand oxidative stress, including the thioredoxin and glutaredoxin systems. However, the specific role of the glutathione synthase GshF, responsible for synthesizing GSH in L. monocytogenes, in oxidative tolerance remains unclear. This study aimed to elucidate the relationship between GshF and oxidative tolerance in L. monocytogenes by examining the efficiency of invasion and proliferation in macrophages and mice organs, as well as analyzing global transcriptional profiles under oxidative stress conditions. The results revealed that GshF plays a significant role in L. monocytogenes' response to oxidative stress. Notably, GshF acts to suppress the transcription of phosphoenolpyruvate-carbohydrate phosphotransferase system genes lmo1997-lmo2004, among which iiBman (lmo2002) was identified as the most critical gene for resisting oxidative stress. These findings enhance our understanding of how L. monocytogenes adapts to its environment and provide valuable insights for investigating the environmental adaptation mechanisms of other pathogenic bacteria.
Collapse
Affiliation(s)
- Mianmian Chen
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Jiaxue Zhang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Jing Xia
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Jing Sun
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Xian Zhang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Jiali Xu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Simin Deng
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Yue Han
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Lingli Jiang
- Ningbo College of Health Sciences, Ningbo, China
| | - Houhui Song
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Changyong Cheng
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
12
|
Dumitrescu DG, Hatzios SK. Emerging roles of low-molecular-weight thiols at the host-microbe interface. Curr Opin Chem Biol 2023; 75:102322. [PMID: 37201290 PMCID: PMC10524283 DOI: 10.1016/j.cbpa.2023.102322] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/20/2023]
Abstract
Low-molecular-weight (LMW) thiols are an abundant class of cysteine-derived small molecules found in all forms of life that maintain reducing conditions within cells. While their contributions to cellular redox homeostasis are well established, LMW thiols can also mediate other aspects of cellular physiology, including intercellular interactions between microbial and host cells. Here we discuss emerging roles for these redox-active metabolites at the host-microbe interface. We begin by providing an overview of chemical and computational approaches to LMW-thiol discovery. Next, we highlight mechanisms of virulence regulation by LMW thiols in infected cells. Finally, we describe how microbial metabolism of these compounds may influence host physiology.
Collapse
Affiliation(s)
- Daniel G Dumitrescu
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, 06520, USA; Department of Chemistry, Yale University, New Haven, CT, 06520, USA; Microbial Sciences Institute, Yale University, West Haven, CT, 06516, USA
| | - Stavroula K Hatzios
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, 06520, USA; Department of Chemistry, Yale University, New Haven, CT, 06520, USA; Microbial Sciences Institute, Yale University, West Haven, CT, 06516, USA.
| |
Collapse
|
13
|
Lensmire JM, Wischer MR, Kraemer-Zimpel C, Kies PJ, Sosinski L, Ensink E, Dodson JP, Shook JC, Delekta PC, Cooper CC, Havlichek DH, Mulks MH, Lunt SY, Ravi J, Hammer ND. The glutathione import system satisfies the Staphylococcus aureus nutrient sulfur requirement and promotes interspecies competition. PLoS Genet 2023; 19:e1010834. [PMID: 37418503 PMCID: PMC10355420 DOI: 10.1371/journal.pgen.1010834] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/21/2023] [Indexed: 07/09/2023] Open
Abstract
Sulfur is an indispensable element for bacterial proliferation. Prior studies demonstrated that the human pathogen Staphylococcus aureus utilizes glutathione (GSH) as a source of nutrient sulfur; however, mechanisms of GSH acquisition are not defined. Here, we identify a five-gene locus comprising a putative ABC-transporter and predicted γ-glutamyl transpeptidase (ggt) that promotes S. aureus proliferation in medium supplemented with either reduced or oxidized GSH (GSSG) as the sole source of nutrient sulfur. Based on these phenotypes, we name this transporter operon the glutathione import system (gisABCD). Ggt is encoded within the gisBCD operon, and we show that the enzyme is capable of liberating glutamate using either GSH or GSSG as substrates, demonstrating it is a bona fide γ-glutamyl transpeptidase. We also determine that Ggt is expressed in the cytoplasm, representing only the second example of cytoplasmic Ggt localization, the other being Neisseria meningitidis. Bioinformatic analyses revealed that Staphylococcus species closely related to S. aureus encode GisABCD-Ggt homologs. However, homologous systems were not detected in Staphylococcus epidermidis. Consequently, we establish that GisABCD-Ggt provides a competitive advantage for S. aureus over S. epidermidis in a GSH- and GSSG-dependent manner. Overall, this study describes the discovery of a nutrient sulfur acquisition system in S. aureus that targets GSSG in addition to GSH and promotes competition against other staphylococci commonly associated with the human microbiota.
Collapse
Affiliation(s)
- Joshua M Lensmire
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Michael R Wischer
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Cristina Kraemer-Zimpel
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Paige J Kies
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Lo Sosinski
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, Michigan, United States of America
| | - Elliot Ensink
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, United States of America
| | - Jack P Dodson
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - John C Shook
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Phillip C Delekta
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Christopher C Cooper
- Department of Medicine, Division of Infectious Disease, Michigan State University, East Lansing, Michigan, United States of America
| | - Daniel H Havlichek
- Department of Medicine, Division of Infectious Disease, Michigan State University, East Lansing, Michigan, United States of America
| | - Martha H Mulks
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Sophia Y Lunt
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, United States of America
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan, United States of America
| | - Janani Ravi
- Department of Biomedical Informatics, Center for Health Artificial Intelligence, University of Colorado Anschutz, Aurora, Colorado, United States of America
| | - Neal D Hammer
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| |
Collapse
|
14
|
Davies MR, Keller N, Brouwer S, Jespersen MG, Cork AJ, Hayes AJ, Pitt ME, De Oliveira DMP, Harbison-Price N, Bertolla OM, Mediati DG, Curren BF, Taiaroa G, Lacey JA, Smith HV, Fang NX, Coin LJM, Stevens K, Tong SYC, Sanderson-Smith M, Tree JJ, Irwin AD, Grimwood K, Howden BP, Jennison AV, Walker MJ. Detection of Streptococcus pyogenes M1 UK in Australia and characterization of the mutation driving enhanced expression of superantigen SpeA. Nat Commun 2023; 14:1051. [PMID: 36828918 PMCID: PMC9951164 DOI: 10.1038/s41467-023-36717-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 02/13/2023] [Indexed: 02/26/2023] Open
Abstract
A new variant of Streptococcus pyogenes serotype M1 (designated 'M1UK') has been reported in the United Kingdom, linked with seasonal scarlet fever surges, marked increase in invasive infections, and exhibiting enhanced expression of the superantigen SpeA. The progenitor S. pyogenes 'M1global' and M1UK clones can be differentiated by 27 SNPs and 4 indels, yet the mechanism for speA upregulation is unknown. Here we investigate the previously unappreciated expansion of M1UK in Australia, now isolated from the majority of serious infections caused by serotype M1 S. pyogenes. M1UK sub-lineages circulating in Australia also contain a novel toxin repertoire associated with epidemic scarlet fever causing S. pyogenes in Asia. A single SNP in the 5' transcriptional leader sequence of the transfer-messenger RNA gene ssrA drives enhanced SpeA superantigen expression as a result of ssrA terminator read-through in the M1UK lineage. This represents a previously unappreciated mechanism of toxin expression and urges enhanced international surveillance.
Collapse
Affiliation(s)
- Mark R Davies
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.
| | - Nadia Keller
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences and Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Stephan Brouwer
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences and Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Magnus G Jespersen
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Amanda J Cork
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences and Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Andrew J Hayes
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Miranda E Pitt
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - David M P De Oliveira
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences and Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Nichaela Harbison-Price
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences and Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Olivia M Bertolla
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences and Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Daniel G Mediati
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Bodie F Curren
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences and Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - George Taiaroa
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Jake A Lacey
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Helen V Smith
- Public Health Microbiology, Queensland Health Forensic and Scientific Services, Queensland Health, Coopers Plains, QLD, Australia
| | - Ning-Xia Fang
- Public Health Microbiology, Queensland Health Forensic and Scientific Services, Queensland Health, Coopers Plains, QLD, Australia
| | - Lachlan J M Coin
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Kerrie Stevens
- Microbiological Diagnostic Unit Public Health Laboratory, The Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Steven Y C Tong
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.,Victorian Infectious Diseases Service, The Royal Melbourne Hospital, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Martina Sanderson-Smith
- Illawarra Health and Medical Research Institute and Molecular Horizons, School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Jai J Tree
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Adam D Irwin
- University of Queensland Centre for Clinical Research, Brisbane, QLD, Australia.,Queensland Children's Hospital, Brisbane, QLD, Australia
| | - Keith Grimwood
- School of Medicine and Dentistry and Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia.,Departments of Infectious Diseases and Paediatrics, Gold Coast Health, Gold Coast, QLD, Australia
| | - Benjamin P Howden
- Microbiological Diagnostic Unit Public Health Laboratory, The Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Amy V Jennison
- Public Health Microbiology, Queensland Health Forensic and Scientific Services, Queensland Health, Coopers Plains, QLD, Australia
| | - Mark J Walker
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences and Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
15
|
Host-Mediated Copper Stress Is Not Protective against Streptococcus pneumoniae D39 Infection. Microbiol Spectr 2022; 10:e0249522. [PMID: 36413018 PMCID: PMC9769658 DOI: 10.1128/spectrum.02495-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Metal ions are required by all organisms for the chemical processes that support life. However, in excess they can also exert toxicity within biological systems. During infection, bacterial pathogens such as Streptococcus pneumoniae are exposed to host-imposed metal intoxication, where the toxic properties of metals, such as copper, are exploited to aid in microbial clearance. However, previous studies investigating the antimicrobial efficacy of copper in vivo have reported variable findings. Here, we use a highly copper-sensitive strain of S. pneumoniae, lacking both copper efflux and intracellular copper buffering by glutathione, to investigate how copper stress is managed and where it is encountered during infection. We show that this strain exhibits highly dysregulated copper homeostasis, leading to the attenuation of growth and hyperaccumulation of copper in vitro. In a murine infection model, whole-tissue copper quantitation and elemental bioimaging of the murine lung revealed that infection with S. pneumoniae resulted in increased copper abundance in specific tissues, with the formation of spatially discrete copper hot spots throughout the lung. While the increased copper was able to reduce the viability of the highly copper-sensitive strain in a pneumonia model, copper levels in professional phagocytes and in a bacteremic model were insufficient to prosecute bacterial clearance. Collectively, this study reveals that host copper is redistributed to sites of infection and can impact bacterial viability in a hypersusceptible strain. However, in wild-type S. pneumoniae, the concerted actions of the copper homeostatic mechanisms are sufficient to facilitate continued viability and virulence of the pathogen. IMPORTANCE Streptococcus pneumoniae (the pneumococcus) is one of the world's foremost bacterial pathogens. Treatment of both localized and systemic pneumococcal infection is becoming complicated by increasing rates of multidrug resistance globally. Copper is a potent antimicrobial agent used by the mammalian immune system in the defense against bacterial pathogens. However, unlike other bacterial species, this copper stress is unable to prosecute pneumococcal clearance. This study determines how the mammalian host inflicts copper stress on S. pneumoniae and the bacterial copper tolerance mechanisms that contribute to maintenance of viability and virulence in vitro and in vivo. This work has provided insight into the chemical biology of the host-pneumococcal interaction and identified a potential avenue for novel antimicrobial development.
Collapse
|
16
|
A newly identified flavoprotein disulfide reductase Har protects Streptococcus pneumoniae against hypothiocyanous acid. J Biol Chem 2022; 298:102359. [PMID: 35952759 PMCID: PMC9483559 DOI: 10.1016/j.jbc.2022.102359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 11/25/2022] Open
Abstract
Hypothiocyanous acid (HOSCN) is an antimicrobial oxidant produced from hydrogen peroxide and thiocyanate anions by heme peroxidases in secretory fluids such as in the human respiratory tract. Some respiratory tract pathogens display tolerance to this oxidant, which suggests that there might be therapeutic value in targeting HOSCN defense mechanisms. However, surprisingly little is known about how bacteria protect themselves from HOSCN. We hypothesized that tolerant pathogens have a flavoprotein disulfide reductase that uses NAD(P)H to directly reduce HOSCN, similar to thioredoxin reductase in mammalian cells. Here, we report the discovery of a previously uncharacterized flavoprotein disulfide reductase with HOSCN reductase activity, which we term Har (hypothiocyanous acid reductase), in Streptococcus pneumoniae, a bacterium previously found to be tolerant of HOSCN. S. pneumoniae generates large amounts of hydrogen peroxide that can be converted to HOSCN in the respiratory tract. Using deletion mutants, we demonstrate that the HOSCN reductase is dispensable for growth of S. pneumoniae in the presence of lactoperoxidase and thiocyanate. However, bacterial growth in the HOSCN-generating system was completely crippled when deletion of HOSCN reductase activity was combined with disruption of GSH import or recycling. Our findings identify a new bacterial HOSCN reductase and demonstrate a role for this protein in combination with GSH utilization to protect S. pneumoniae from HOSCN.
Collapse
|