1
|
Sánchez-Maroto L, Gella P, Couce A. Novel Fosfomycin Resistance Mechanism in Pseudomonas entomophila Due to Atypical Pho Regulon Control of GlpT. Antibiotics (Basel) 2024; 13:1008. [PMID: 39596703 PMCID: PMC11590989 DOI: 10.3390/antibiotics13111008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/18/2024] [Accepted: 10/24/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives:Pseudomonas entomophila is a ubiquitous bacterium capable of killing insects of different orders and has become a model for host-pathogen studies and a promising tool for biological pest control. In the human pathogen Pseudomonas aeruginosa, spontaneous resistance to fosfomycin arises almost exclusively from mutations in the glycerol-3-phosphate transporter (GlpT), the drug's sole entry route in this species. Here, we investigated whether this specificity is conserved in P. entomophila, as it could provide a valuable marker system for studying mutation rates and spectra and for selection in genetic engineering. Methods: We isolated 16 independent spontaneous fosfomycin-resistant mutants in P. entomophila, and studied the genetic basis of the resistance using a combination of sequencing, phenotyping and computational approaches. Results: We only found two mutants without alterations in glpT or any of its known regulatory elements. Whole-genome sequencing revealed unique inactivating mutations in phoU, a key regulator of the phosphate starvation (Pho) regulon. Computational analyses identified a PhoB binding site in the glpT promoter, and experiments showed that phoU inactivation reduced glpT expression nearly 20-fold. While placing a sugar-phosphate transporter under the Pho regulon may seem advantageous, bioinformatic analysis shows this configuration is atypical among pseudomonads. Conclusions: This atypical Pho regulon control of GlpT probably reflects the peculiarities of P. entomophila's habitat and lifestyle; highlighting how readily regulatory evolution can lead to the rapid divergence of resistance mechanisms, even among closely related species.
Collapse
Affiliation(s)
| | | | - Alejandro Couce
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM), 28223 Madrid, Spain (P.G.)
| |
Collapse
|
2
|
Dong W, Xiang Q, Zhao H, Sheng Q, He L, Sheng X. A combination of physiology, metabolomics, and genetics reveals the two-component system ResS/ResR-mediated Fe and Al release from biotite by Pseudomonas pergaminensis F77. Microbiol Res 2024; 287:127861. [PMID: 39094394 DOI: 10.1016/j.micres.2024.127861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/12/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Understanding of the mechanisms on bacteria-regulated mineral dissolution functions is important for further insight into mineral-microbe interactions. The functions of the two-component system have been studied. However, the molecular mechanisms involved in bacterial two-component system-mediated mineral dissolution are poorly understood. Here, the two-component regulatory system ResS/ResR in the mineral-solubilizing bacterium Pseudomonas pergaminensis F77 was characterized for its involvement in biotite dissolution. Strain F77 and the F77ΔresS, F77ΔresR, and F77ΔresS/R mutants were constructed and compared for the ResS/ResR system-mediated Fe and Al release from biotite in the medium and the mechanisms involved. After 3 days of incubation, the F77ΔresS, F77ΔresR, and F77ΔresS/R mutants significantly decreased the Fe and Al concentrations in the medium compared with F77. The F77ΔresS/R mutant had a greater impact on Fe and Al release from biotite than did the F77ΔresS or F77ΔresR mutant. The F77∆resS/R mutant exhibited significantly reduced Fe and Al concentrations by 21-61 % between 12 h and 48 h of incubation compared with F77. Significantly increased pH values and decreased cell counts on the mineral surfaces were found in the presence of the F77∆resS/R mutant compared with those in the presence of F77 between 12 h and 48 h of incubation. Metabolomic analysis revealed that the extracellular metabolites associated with biotite dissolution were downregulated in the F77ΔresS/R mutant. These downregulated metabolites included GDP-fucose, 20-carboxyleukotriene B4, PGP (16:1(9Z)/16:0), 3',5'-cyclic AMP, and a variety of acidic metabolites involved in carbohydrate, amino acid, and lipid metabolisms, glycan biosynthesis, and cellular community function. Furthermore, the expression levels of the genes involved in the production of these metabolites were downregulated in the F77ΔresS/R mutant compared with those in F77. Our findings suggested that the ResS/ResR system in F77 contributed to mineral dissolution by mediating the production of mineral-solubilizing related extracellular metabolites and bacterial adsorption on mineral surface.
Collapse
Affiliation(s)
- Wen Dong
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture, Nanjing 210095, China
| | - Qiyu Xiang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture, Nanjing 210095, China
| | - Hui Zhao
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture, Nanjing 210095, China
| | - Qi Sheng
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture, Nanjing 210095, China.
| | - Linyan He
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture, Nanjing 210095, China
| | - Xiafang Sheng
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture, Nanjing 210095, China.
| |
Collapse
|
3
|
Bruna RE, Kendra CG, Pontes MH. An intracellular phosphorus-starvation signal activates the PhoB/PhoR two-component system in Salmonella enterica. mBio 2024; 15:e0164224. [PMID: 39152718 PMCID: PMC11389368 DOI: 10.1128/mbio.01642-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/01/2024] [Indexed: 08/19/2024] Open
Abstract
Bacteria acquire P primarily as inorganic orthophosphate (Pi, PO43-). Once internalized, Pi is rapidly assimilated into biomass during the synthesis of ATP. Because Pi is essential, but excessive ATP is toxic, the acquisition of environmental Pi is tightly regulated. In the bacterium Salmonella enterica (Salmonella), growth in Pi-limiting environments activates the membrane sensor histidine kinase PhoR, leading to the phosphorylation of its cognate transcriptional regulator PhoB and subsequent transcription of genes involved in adaptations to low Pi. Pi limitation promotes PhoR kinase activity by altering the conformation of a membrane signaling complex comprised of PhoR, the multicomponent Pi transporter system PstSACB and the regulatory protein PhoU. However, the identity of the Pi-starvation signal and how it controls PhoR activity remain unknown. Here, we identify conditions where the PhoB and PhoR signal transduction proteins can be maintained in an inactive state when Salmonella is grown in media lacking Pi. Our results demonstrate that PhoB/PhoR is activated by an intracellular P-insufficiency signal.IMPORTANCEIn enteric bacteria, the transcriptional response to phosphorus (P) starvation is controlled by a specialized signal transduction system comprised of a membrane-bound, multicomponent signal sensor, and a cytoplasmic transcriptional factor. Whereas this system has been primarily studied in the context of phosphate (Pi) starvation, it is currently unknown how this stress initiates signal transduction. In the current study, we establish that this signaling system is regulated by a cytoplasmic signal arising from insufficient P. We demonstrate that rather than responding to extracellular conditions, cells couple the activation of their P starvation response to the availability of cytoplasmic P. This regulatory logic may enable cells to prevent toxicity resulting from excessive Pi acquisition and hinder the onset of a P starvation response when their metabolic demands are being met through the consumption of P sources other than Pi.
Collapse
Affiliation(s)
- Roberto E. Bruna
- Department of Pathology and Laboratory Medicine, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
- The One Health Microbiome Center, Huck Institute of the Life Sciences, Pennsylvania State University, Camp Hill, Pennsylvania, USA
| | - Christopher G. Kendra
- Department of Pathology and Laboratory Medicine, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
- The One Health Microbiome Center, Huck Institute of the Life Sciences, Pennsylvania State University, Camp Hill, Pennsylvania, USA
| | - Mauricio H. Pontes
- Department of Pathology and Laboratory Medicine, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
- The One Health Microbiome Center, Huck Institute of the Life Sciences, Pennsylvania State University, Camp Hill, Pennsylvania, USA
| |
Collapse
|
4
|
Billini M, Hoffmann T, Kühn J, Bremer E, Thanbichler M. The cytoplasmic phosphate level has a central regulatory role in the phosphate starvation response of Caulobacter crescentus. Commun Biol 2024; 7:772. [PMID: 38926609 PMCID: PMC11208175 DOI: 10.1038/s42003-024-06469-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 06/19/2024] [Indexed: 06/28/2024] Open
Abstract
In bacteria, the availability of environmental inorganic phosphate is typically sensed by the conserved PhoR-PhoB two-component signal transduction pathway, which uses the flux through the PstSCAB phosphate transporter as a readout of the extracellular phosphate level to control phosphate-responsive genes. While the sensing of environmental phosphate is well-investigated, the regulatory effects of cytoplasmic phosphate are unclear. Here, we disentangle the physiological and transcriptional responses of Caulobacter crescentus to changes in the environmental and cytoplasmic phosphate levels by uncoupling phosphate uptake from the activity of the PstSCAB system, using an additional, heterologously produced phosphate transporter. This approach reveals a two-pronged response of C. crescentus to phosphate limitation, in which PhoR-PhoB signaling mostly facilitates the utilization of alternative phosphate sources, whereas the cytoplasmic phosphate level controls the morphological and physiological adaptation of cells to growth under global phosphate limitation. These findings open the door to a comprehensive understanding of phosphate signaling in bacteria.
Collapse
Affiliation(s)
- Maria Billini
- Department of Biology, University of Marburg, 35043, Marburg, Germany
- Max Planck Institute for Terrestrial Microbiology, 35043, Marburg, Germany
| | - Tamara Hoffmann
- Department of Biology, University of Marburg, 35043, Marburg, Germany
- Center for Synthetic Microbiology, 35043, Marburg, Germany
| | - Juliane Kühn
- Department of Biology, University of Marburg, 35043, Marburg, Germany
| | - Erhard Bremer
- Department of Biology, University of Marburg, 35043, Marburg, Germany
- Center for Synthetic Microbiology, 35043, Marburg, Germany
| | - Martin Thanbichler
- Department of Biology, University of Marburg, 35043, Marburg, Germany.
- Max Planck Institute for Terrestrial Microbiology, 35043, Marburg, Germany.
- Center for Synthetic Microbiology, 35043, Marburg, Germany.
| |
Collapse
|
5
|
Baek S, Lee EJ. PhoU: a multifaceted regulator in microbial signaling and homeostasis. Curr Opin Microbiol 2024; 77:102401. [PMID: 37988810 DOI: 10.1016/j.mib.2023.102401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/18/2023] [Accepted: 10/24/2023] [Indexed: 11/23/2023]
Abstract
Inorganic phosphate (Pi) is a fundamental molecule crucial for numerous biological processes, such as ATP synthesis and phospholipid formation. To prevent cellular toxicity, Pi transport is often linked to counterion transport within the bacterium. This review discusses the multifaceted functions of the PhoU protein in bacterial regulation, focusing on its role in coordinating Pi transport with counterions, controlling polyphosphate accumulation, and regulating secondary metabolite biosynthesis and DNA repair. We also explore recent findings that challenge the conventional view of PhoU simply as a negative regulator in phosphate signaling, suggesting its broader impact on bacterial physiology and stress response. Understanding the diverse functions of PhoU provides new insight into bacterial biology and offers potential therapeutic implications.
Collapse
Affiliation(s)
- Seungwoo Baek
- Department of Life Sciences, School of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| | - Eun-Jin Lee
- Department of Life Sciences, School of Life Sciences and Biotechnology, Korea University, Seoul, South Korea.
| |
Collapse
|
6
|
Kahramanoğulları O. Chemical Reaction Models in Synthetic Promoter Design in Bacteria. Methods Mol Biol 2024; 2844:3-31. [PMID: 39068329 DOI: 10.1007/978-1-0716-4063-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
We discuss the formalism of chemical reaction networks (CRNs) as a computer-aided design interface for using formal methods in engineering living technologies. We set out by reviewing formal methods within a broader view of synthetic biology. Based on published results, we illustrate, step by step, how mathematical and computational techniques on CRNs can be used to study the structural and dynamic properties of the designed systems. As a case study, we use an E. coli two-component system that relays the external inorganic phosphate concentration signal to genetic components. We show how CRN models can scan and explore phenotypic regimes of synthetic promoters with varying detection thresholds, thereby providing a means for fine-tuning the promoter strength to match the specification.
Collapse
|
7
|
Bruna RE, Kendra CG, Pontes MH. Phosphorus starvation response and PhoB-independent utilization of organic phosphate sources by Salmonella enterica. Microbiol Spectr 2023; 11:e0226023. [PMID: 37787565 PMCID: PMC10715179 DOI: 10.1128/spectrum.02260-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/21/2023] [Indexed: 10/04/2023] Open
Abstract
IMPORTANCE Phosphorus (P) is the fifth most abundant element in living cells. This element is acquired mainly as inorganic phosphate (Pi, PO4 3-). In enteric bacteria, P starvation activates a two-component signal transduction system which is composed of the membrane sensor protein PhoR and its cognate transcription regulator PhoB. PhoB, in turn, promotes the transcription of genes that help maintain Pi homeostasis. Here, we characterize the P starvation response of the bacterium Salmonella enterica. We determine the PhoB-dependent and independent transcriptional changes promoted by P starvation and identify proteins enabling the utilization of a range of organic substrates as sole P sources. We show that transcription and activity of a subset of these proteins are independent of PhoB and Pi availability. These results establish that Salmonella enterica can maintain Pi homeostasis and repress PhoB/PhoR activation even when cells are grown in medium lacking Pi.
Collapse
Affiliation(s)
- Roberto E. Bruna
- Department of Pathology and Laboratory Medicine, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
- The One Health Microbiome Center, Huck Institute of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Christopher G. Kendra
- Department of Pathology and Laboratory Medicine, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
- The One Health Microbiome Center, Huck Institute of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Mauricio H. Pontes
- Department of Pathology and Laboratory Medicine, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
- The One Health Microbiome Center, Huck Institute of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
8
|
Stevenson MJ, Phanor SK, Patel U, Gisselbrecht SS, Bulyk ML, O'Brien LL. Altered binding affinity of SIX1-Q177R correlates with enhanced WNT5A and WNT pathway effector expression in Wilms tumor. Dis Model Mech 2023; 16:dmm050208. [PMID: 37815464 PMCID: PMC10668032 DOI: 10.1242/dmm.050208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 09/27/2023] [Indexed: 10/11/2023] Open
Abstract
Wilms tumors present as an amalgam of varying proportions of tissues located within the developing kidney, one being the nephrogenic blastema comprising multipotent nephron progenitor cells (NPCs). The recurring missense mutation Q177R in NPC transcription factors SIX1 and SIX2 is most correlated with tumors of blastemal histology and is significantly associated with relapse. Yet, the transcriptional regulatory consequences of SIX1/2-Q177R that might promote tumor progression and recurrence have not been investigated extensively. Utilizing multiple Wilms tumor transcriptomic datasets, we identified upregulation of the gene encoding non-canonical WNT ligand WNT5A in addition to other WNT pathway effectors in SIX1/2-Q177R mutant tumors. SIX1 ChIP-seq datasets from Wilms tumors revealed shared binding sites for SIX1/SIX1-Q177R within a promoter of WNT5A and at putative distal cis-regulatory elements (CREs). We demonstrate colocalization of SIX1 and WNT5A in Wilms tumor tissue and utilize in vitro assays that support SIX1 and SIX1-Q177R activation of expression from the WNT5A CREs, as well as enhanced binding affinity within the WNT5A promoter that may promote the differential expression of WNT5A and other WNT pathway effectors associated with SIX1-Q177R tumors.
Collapse
Affiliation(s)
- Matthew J. Stevenson
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sabrina K. Phanor
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Urvi Patel
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Stephen S. Gisselbrecht
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Martha L. Bulyk
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Lori L. O'Brien
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
9
|
Yu Z, Li W, Ge C, Sun X, Wang J, Shen X, Yuan Q. Functional expansion of the natural inorganic phosphorus starvation response system in Escherichia coli. Biotechnol Adv 2023; 66:108154. [PMID: 37062526 DOI: 10.1016/j.biotechadv.2023.108154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/08/2023] [Accepted: 04/09/2023] [Indexed: 04/18/2023]
Abstract
Phosphorus, an indispensable nutrient, plays an essential role in cell composition, metabolism, and signal transduction. When inorganic phosphorus (Pi) is scarce, the Pi starvation response in E. coli is activated to increase phosphorus acquisition and drive the cells into a non-growing state to reduce phosphorus consumption. In the six decades of research history, the initiation, output, and shutdown processes of the Pi starvation response have been extensively studied. Simultaneously, Pi starvation has been used in biosensor development, recombinant protein production, and natural product biosynthesis. In this review, we focus on the output process and the applications of the Pi starvation response that have not been summarized before. Meanwhile, based on the current status of mechanistic studies and applications, we propose practical strategies to develop the natural Pi starvation response into a multifunctional and standardized regulatory system in four aspects, including response threshold, temporal expression, intensity range, and bifunctional regulation, which will contribute to its broader application in more fields such as industrial production, medical analysis, and environmental protection.
Collapse
Affiliation(s)
- Zheng Yu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wenna Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chang Ge
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xinxiao Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jia Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaolin Shen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Qipeng Yuan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
10
|
Gao R, Brokaw SE, Li Z, Helfant LJ, Wu T, Malik M, Stock AM. Exploring the mono-/bistability range of positively autoregulated signaling systems in the presence of competing transcription factor binding sites. PLoS Comput Biol 2022; 18:e1010738. [PMID: 36413575 PMCID: PMC9725139 DOI: 10.1371/journal.pcbi.1010738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 12/06/2022] [Accepted: 11/14/2022] [Indexed: 11/23/2022] Open
Abstract
Binding of transcription factor (TF) proteins to regulatory DNA sites is key to accurate control of gene expression in response to environmental stimuli. Theoretical modeling of transcription regulation is often focused on a limited set of genes of interest, while binding of the TF to other genomic sites is seldom considered. The total number of TF binding sites (TFBSs) affects the availability of TF protein molecules and sequestration of a TF by TFBSs can promote bistability. For many signaling systems where a graded response is desirable for continuous control over the input range, biochemical parameters of the regulatory proteins need be tuned to avoid bistability. Here we analyze the mono-/bistable parameter range for positively autoregulated two-component systems (TCSs) in the presence of different numbers of competing TFBSs. TCS signaling, one of the major bacterial signaling strategies, couples signal perception with output responses via protein phosphorylation. For bistability, competition for TF proteins by TFBSs lowers the requirement for high fold change of the autoregulated transcription but demands high phosphorylation activities of TCS proteins. We show that bistability can be avoided with a low phosphorylation capacity of TCSs, a high TF affinity for the autoregulated promoter or a low fold change in signaling protein levels upon induction. These may represent general design rules for TCSs to ensure uniform graded responses. Examining the mono-/bistability parameter range allows qualitative prediction of steady-state responses, which are experimentally validated in the E. coli CusRS system.
Collapse
Affiliation(s)
- Rong Gao
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology, Rutgers University - Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Samantha E. Brokaw
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology, Rutgers University - Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Zeyue Li
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology, Rutgers University - Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Libby J. Helfant
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology, Rutgers University - Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Ti Wu
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology, Rutgers University - Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Muhammad Malik
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology, Rutgers University - Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Ann M. Stock
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology, Rutgers University - Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| |
Collapse
|
11
|
“Structure”-function relationships in eukaryotic transcription factors: The role of intrinsically disordered regions in gene regulation. Mol Cell 2022; 82:3970-3984. [DOI: 10.1016/j.molcel.2022.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/19/2022] [Accepted: 09/21/2022] [Indexed: 11/06/2022]
|
12
|
Coordination of Phosphate and Magnesium Metabolism in Bacteria. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1362:135-150. [PMID: 35288878 DOI: 10.1007/978-3-030-91623-7_12] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The majority of cellular phosphate (PO4-3; Pi) exists as nucleoside triphosphates, mainly adenosine triphosphate (ATP), and ribosomal RNA (rRNA). ATP and rRNA are also the largest cytoplasmic reservoirs of magnesium (Mg2+), the most abundant divalent cation in living cells. The co-occurrence of these ionic species in the cytoplasm is not coincidental. Decades of work in the Pi and Mg2+ starvation responses of two model enteric bacteria, Escherichia coli and Salmonella enterica, have led to the realization that the metabolisms of Pi and Mg2+ are interconnected. Bacteria must acquire these nutrients in a coordinated manner to achieve balanced growth and avoid loss of viability. In this chapter, we will review how bacteria sense and respond to fluctuations in environmental and intracellular Pi and Mg2+ levels. We will also discuss how these two compounds are functionally linked, and how cells elicit physiological responses to maintain their homeostasis.
Collapse
|
13
|
Schweizer G, Wagner A. Both Binding Strength and Evolutionary Accessibility Affect the Population Frequency of Transcription Factor Binding Sequences in Arabidopsis thaliana. Genome Biol Evol 2021; 13:6459646. [PMID: 34894231 PMCID: PMC8712246 DOI: 10.1093/gbe/evab273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2021] [Indexed: 11/22/2022] Open
Abstract
Mutations in DNA sequences that bind transcription factors and thus modulate gene expression are a source of adaptive variation in gene expression. To understand how transcription factor binding sequences evolve in natural populations of the thale cress Arabidopsis thaliana, we integrated genomic polymorphism data for loci bound by transcription factors with in vitro data on binding affinity for these transcription factors. Specifically, we studied 19 different transcription factors, and the allele frequencies of 8,333 genomic loci bound in vivo by these transcription factors in 1,135 A. thaliana accessions. We find that transcription factor binding sequences show very low genetic diversity, suggesting that they are subject to purifying selection. High frequency alleles of such binding sequences tend to bind transcription factors strongly. Conversely, alleles that are absent from the population tend to bind them weakly. In addition, alleles with high frequencies also tend to be the endpoints of many accessible evolutionary paths leading to these alleles. We show that both high affinity and high evolutionary accessibility contribute to high allele frequency for at least some transcription factors. Although binding sequences with stronger affinity are more frequent, we did not find them to be associated with higher gene expression levels. Epistatic interactions among individual mutations that alter binding affinity are pervasive and can help explain variation in accessibility among binding sequences. In summary, combining in vitro binding affinity data with in vivo binding sequence data can help understand the forces that affect the evolution of transcription factor binding sequences in natural populations.
Collapse
Affiliation(s)
- Gabriel Schweizer
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Switzerland.,Swiss Institute of Bioinformatics, Quartier Sorge-Batiment Genopode, Lausanne, Switzerland
| | - Andreas Wagner
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Switzerland.,Swiss Institute of Bioinformatics, Quartier Sorge-Batiment Genopode, Lausanne, Switzerland.,Santa Fe Institute, Santa Fe, New Mexico, USA.,Stellenbosch Institute for Advanced Study (STIAS), Wallenberg Research Centre at Stellenbosch University, South Africa
| |
Collapse
|
14
|
Gao R, Helfant LJ, Wu T, Li Z, Brokaw SE, Stock AM. A balancing act in transcription regulation by response regulators: titration of transcription factor activity by decoy DNA binding sites. Nucleic Acids Res 2021; 49:11537-11549. [PMID: 34669947 PMCID: PMC8599769 DOI: 10.1093/nar/gkab935] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/13/2021] [Accepted: 09/28/2021] [Indexed: 11/30/2022] Open
Abstract
Studies of transcription regulation are often focused on binding of transcription factors (TFs) to a small number of promoters of interest. It is often assumed that TFs are in great excess to their binding sites (TFBSs) and competition for TFs between DNA sites is seldom considered. With increasing evidence that TFBSs are exceedingly abundant for many TFs and significant variations in TF and TFBS numbers occur during growth, the interplay between a TF and all TFBSs should not be ignored. Here, we use additional decoy DNA sites to quantitatively analyze how the relative abundance of a TF to its TFBSs impacts the steady-state level and onset time of gene expression for the auto-activated Escherichia coli PhoB response regulator. We show that increasing numbers of decoy sites progressively delayed transcription activation and lowered promoter activities. Perturbation of transcription regulation by additional TFBSs did not require extreme numbers of decoys, suggesting that PhoB is approximately at capacity for its DNA sites. Addition of decoys also converted a graded response to a bi-modal response. We developed a binding competition model that captures the major features of experimental observations, providing a quantitative framework to assess how variations in TFs and TFBSs influence transcriptional responses.
Collapse
Affiliation(s)
- Rong Gao
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology, Rutgers University - Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - Libby J Helfant
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology, Rutgers University - Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - Ti Wu
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology, Rutgers University - Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - Zeyue Li
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology, Rutgers University - Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - Samantha E Brokaw
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology, Rutgers University - Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - Ann M Stock
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology, Rutgers University - Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| |
Collapse
|
15
|
Torres‐Bacete J, Luís García J, Nogales J. A portable library of phosphate-depletion based synthetic promoters for customable and automata control of gene expression in bacteria. Microb Biotechnol 2021; 14:2643-2658. [PMID: 33783967 PMCID: PMC8601176 DOI: 10.1111/1751-7915.13808] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/14/2021] [Indexed: 12/14/2022] Open
Abstract
Industrial biotechnology gene expression systems relay on constitutive promoters compromising cellular growth from the start of the bioprocess, or on inducible devices, which require manual addition of cognate inducers. To overcome this shortcoming, we engineered an automata regulatory system based on cell-stress mechanisms. Specifically, we engineered a synthetic and highly portable phosphate-depletion library of promoters inspired by bacterial PHO starvation system (Pliar promoters). Furthermore, we fully characterized 10 synthetic promoters within the background of two well-known bacterial workhorses such as E. coli W and P. putida KT2440. The promoters displayed an interesting host-dependent performance and a wide strength spectrum ranging from 0.4- to 1.3-fold when compared to the wild-type phosphatase alkaline promoter (PphoA). By comparing with available gene expression systems, we proved the suitability of this new library for the automata and effective decoupling of growth from production in P. putida. Growth phase-dependent expression of these promoters could therefore be activated by fine tuning the initial concentration of phosphate in the medium. Finally, the Pliar library was implemented in the SEVA platform in a ready-to-use mode allowing its broad use by the scientific community.
Collapse
Affiliation(s)
- Jesús Torres‐Bacete
- Department of Systems BiologyCentro Nacional de Biotecnología (CSIC)Madrid28049Spain
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy‐Spanish National Research Council (SusPlast‐CSIC)MadridSpain
| | - José Luís García
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy‐Spanish National Research Council (SusPlast‐CSIC)MadridSpain
- Department of Microbial and Plant BiotechnologyCentro de Investigaciones Biológicas (CIB)Centro Nacional de Biotecnología (CSIC)MadridSpain
| | - Juan Nogales
- Department of Systems BiologyCentro Nacional de Biotecnología (CSIC)Madrid28049Spain
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy‐Spanish National Research Council (SusPlast‐CSIC)MadridSpain
| |
Collapse
|
16
|
Righetti E, Kahramanoğulları O. The inverse correlation between robustness and sensitivity to autoregulation in two-component systems. Math Biosci 2021; 341:108706. [PMID: 34563549 DOI: 10.1016/j.mbs.2021.108706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/24/2021] [Accepted: 08/31/2021] [Indexed: 10/20/2022]
Abstract
Two-component systems (TCS) are signal transduction systems in bacteria and many other organisms that relay the sensory signal to genetic components. TCS consist of two proteins: a histidine kinase and a response regulator that the histidine kinase activates. This seemingly simple machinery can generate complex regulatory dynamics that enables the level of gene expression that matches the input signal: many TCS response regulators act on their own genes as transcription factors, resulting in a positive autoregulation mechanism. This regulation, in return, modulates the transcription factor activity as a function of the input signal. Positive autoregulation does not necessarily result in positive feedback. Sensitivity to autoregulation is quantified as the output level amplification resulting from the positive autoregulation mechanism. Another structural property of these systems is formally characterized as "robustness": in a robust TCS, the output of the system is solely a function of the input signal. Thus, a robust TCS remains insensitive to fluctuations in the concentrations of its protein components and, this way, maintains the precision in the output transcription factor activity in response to input stimulus. In this paper, we show with a formal model that TCS operate on a spectrum of inverse correlation between robustness and sensitivity to autoregulation. Our model predicts that the modulation by positive autoregulation is a function of loss in TCS robustness, for example, by spontaneous dephosphorylation of the histidine kinase. Consequently, the loss in robustness provides a proportional modulation by positive autoregulation to widen the response range with a scaled amplification of the output. At the other end of the spectrum, in the presence of a strictly robust TCS machinery, amplification of the transcription factor activity by autoregulation is diminished. We show that our results are in agreement with published experimental results. Our results suggest that these TCS evolve to converge at a trade-off between robustness and positive autoregulation.
Collapse
Affiliation(s)
- Elena Righetti
- Department of Mathematics, University of Trento, Trento, Italy
| | | |
Collapse
|
17
|
Mazzuoli MV, Daunesse M, Varet H, Rosinski-Chupin I, Legendre R, Sismeiro O, Gominet M, Kaminski PA, Glaser P, Chica C, Trieu-Cuot P, Firon A. The CovR regulatory network drives the evolution of Group B Streptococcus virulence. PLoS Genet 2021; 17:e1009761. [PMID: 34491998 PMCID: PMC8448333 DOI: 10.1371/journal.pgen.1009761] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 09/17/2021] [Accepted: 08/09/2021] [Indexed: 01/31/2023] Open
Abstract
Virulence of the neonatal pathogen Group B Streptococcus is under the control of the master regulator CovR. Inactivation of CovR is associated with large-scale transcriptome remodeling and impairs almost every step of the interaction between the pathogen and the host. However, transcriptome analyses suggested a plasticity of the CovR signaling pathway in clinical isolates leading to phenotypic heterogeneity in the bacterial population. In this study, we characterized the CovR regulatory network in a strain representative of the CC-17 hypervirulent lineage responsible of the majority of neonatal meningitis. Transcriptome and genome-wide binding analysis reveal the architecture of the CovR network characterized by the direct repression of a large array of virulence-associated genes and the extent of co-regulation at specific loci. Comparative functional analysis of the signaling network links strain-specificities to the regulation of the pan-genome, including the two specific hypervirulent adhesins and horizontally acquired genes, to mutations in CovR-regulated promoters, and to variability in CovR activation by phosphorylation. This regulatory adaptation occurs at the level of genes, promoters, and of CovR itself, and allows to globally reshape the expression of virulence genes. Overall, our results reveal the direct, coordinated, and strain-specific regulation of virulence genes by the master regulator CovR and suggest that the intra-species evolution of the signaling network is as important as the expression of specific virulence factors in the emergence of clone associated with specific diseases. Streptococcus agalactiae, commonly known as the Group B Streptococcus (GBS), is a commensal bacterium of the intestinal and vaginal tracts found in approximately 30% of healthy adults. However, GBS is also an opportunistic pathogen and the leading cause of neonatal invasive infections. Epidemiologic data have identified a particular GBS clone, designated the CC-17 hypervirulent clonal complex, as responsible for the overwhelming majority of neonatal meningitis. The hypervirulence of CC-17 has been linked to the expression of two specific surface proteins increasing their abilities to cross epithelial and endothelial barriers. In this study, we characterized the role of the major regulator of virulence gene expression, the CovR response regulator, in a representative hypervirulent strain. Transcriptome and genome-wide binding analysis reveal the architecture of the CovR signaling network characterized by the direct repression of a large array of virulence-associated genes, including the specific hypervirulent adhesins. Comparative analysis in a non-CC-17 wild type strain demonstrates a high level of plasticity of the regulatory network, allowing to globally reshape pathogen-host interaction. Overall, our results suggest that the intra-species evolution of the regulatory network is an important factor in the emergence of GBS clones associated with specific pathologies.
Collapse
Affiliation(s)
- Maria-Vittoria Mazzuoli
- Unité Biologie des Bactéries Pathogènes à Gram-positif, CNRS UMR2001 Microbiologie Intégrative et Moléculaire, Institut Pasteur, Paris, France
- Sorbonne Paris Cité, Université de Paris, Paris, France
| | - Maëlle Daunesse
- Hub de Bioinformatique et Biostatistique—Département Biologie Computationnelle, Institut Pasteur, Paris, France
| | - Hugo Varet
- Hub de Bioinformatique et Biostatistique—Département Biologie Computationnelle, Institut Pasteur, Paris, France
- Plate-forme Technologique Biomics—Centre de Ressources et Recherches Technologiques (C2RT), Institut Pasteur, Paris, France
| | - Isabelle Rosinski-Chupin
- Unité Écologie et Évolution de la Résistance aux Antibiotiques, CNRS UMR3525, Institut Pasteur, Paris, France
| | - Rachel Legendre
- Hub de Bioinformatique et Biostatistique—Département Biologie Computationnelle, Institut Pasteur, Paris, France
- Plate-forme Technologique Biomics—Centre de Ressources et Recherches Technologiques (C2RT), Institut Pasteur, Paris, France
| | - Odile Sismeiro
- Unité Biologie des Bactéries Pathogènes à Gram-positif, CNRS UMR2001 Microbiologie Intégrative et Moléculaire, Institut Pasteur, Paris, France
- Plate-forme Technologique Biomics—Centre de Ressources et Recherches Technologiques (C2RT), Institut Pasteur, Paris, France
| | - Myriam Gominet
- Unité Biologie des Bactéries Pathogènes à Gram-positif, CNRS UMR2001 Microbiologie Intégrative et Moléculaire, Institut Pasteur, Paris, France
| | - Pierre Alexandre Kaminski
- Unité Biologie des Bactéries Pathogènes à Gram-positif, CNRS UMR2001 Microbiologie Intégrative et Moléculaire, Institut Pasteur, Paris, France
| | - Philippe Glaser
- Unité Écologie et Évolution de la Résistance aux Antibiotiques, CNRS UMR3525, Institut Pasteur, Paris, France
| | - Claudia Chica
- Hub de Bioinformatique et Biostatistique—Département Biologie Computationnelle, Institut Pasteur, Paris, France
| | - Patrick Trieu-Cuot
- Unité Biologie des Bactéries Pathogènes à Gram-positif, CNRS UMR2001 Microbiologie Intégrative et Moléculaire, Institut Pasteur, Paris, France
| | - Arnaud Firon
- Unité Biologie des Bactéries Pathogènes à Gram-positif, CNRS UMR2001 Microbiologie Intégrative et Moléculaire, Institut Pasteur, Paris, France
- * E-mail:
| |
Collapse
|
18
|
Rozovski U, Harris DM, Li P, Liu Z, Jain P, Manshouri T, Veletic I, Ferrajoli A, Bose P, Thompson P, Jain N, Verstovsek S, Wierda W, Keating MJ, Estrov Z. STAT3 induces the expression of GLI1 in chronic lymphocytic leukemia cells. Oncotarget 2021; 12:401-411. [PMID: 33747356 PMCID: PMC7939524 DOI: 10.18632/oncotarget.27884] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/26/2021] [Indexed: 01/05/2023] Open
Abstract
The glioma associated oncogene-1 (GLI1), a downstream effector of the embryonic Hedgehog pathway, was detected in chronic lymphocytic leukemia (CLL), but not normal adult cells. GLI1 activating mutations were identified in 10% of patients with CLL. However, what induces GLI1 expression in GLI1-unmutated CLL cells is unknown. Because signal transducer and activator of transcription 3 (STAT3) is constitutively activated in CLL cells and sequence analysis detected putative STAT3-binding sites in the GLI1 gene promoter, we hypothesized that STAT3 induces the expression of GLI1. Western immunoblotting detected GLI1 in CLL cells from 7 of 7 patients, flow cytometry analysis confirmed that CD19+/CD5+ CLL cells co-express GLI1 and confocal microscopy showed co-localization of GLI1 and phosphorylated STAT3. Chromatin immunoprecipitation showed that STAT3 protein co-immunoprecipitated GLI1 as well as other STAT3-regulated genes. Transfection of CLL cells with STAT3-shRNA induced a mark decrease in GLI1 levels, suggesting that STAT3 binds to and induces the expression of GLI1 in CLL cells. An electromobility shift assay confirmed that STAT3 binds, and a luciferase assay showed that STAT3 activates the GLI1 gene. Transfection with GLI1-siRNA significantly increased the spontaneous apoptosis rate of CLL cells, suggesting that GLI1 inhibitors might provide therapeutic benefit to patients with CLL.
Collapse
Affiliation(s)
- Uri Rozovski
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Division of Hematology, Davidoff Cancer Center, Rabin Medical Center, Petach Tiqva, and The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - David M Harris
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ping Li
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zhiming Liu
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Preetesh Jain
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Taghi Manshouri
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ivo Veletic
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alessandra Ferrajoli
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Prithviraj Bose
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Phillip Thompson
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nitin Jain
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Srdan Verstovsek
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - William Wierda
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael J Keating
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zeev Estrov
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
19
|
Gene-Editing Technologies and Applications for Molecular Imaging. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00061-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
20
|
Choudhary KS, Kleinmanns JA, Decker K, Sastry AV, Gao Y, Szubin R, Seif Y, Palsson BO. Elucidation of Regulatory Modes for Five Two-Component Systems in Escherichia coli Reveals Novel Relationships. mSystems 2020; 5:e00980-20. [PMID: 33172971 PMCID: PMC7657598 DOI: 10.1128/msystems.00980-20] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 10/20/2020] [Indexed: 11/27/2022] Open
Abstract
Escherichia coli uses two-component systems (TCSs) to respond to environmental signals. TCSs affect gene expression and are parts of E. coli's global transcriptional regulatory network (TRN). Here, we identified the regulons of five TCSs in E. coli MG1655: BaeSR and CpxAR, which were stimulated by ethanol stress; KdpDE and PhoRB, induced by limiting potassium and phosphate, respectively; and ZraSR, stimulated by zinc. We analyzed RNA-seq data using independent component analysis (ICA). ChIP-exo data were used to validate condition-specific target gene binding sites. Based on these data, we do the following: (i) identify the target genes for each TCS; (ii) show how the target genes are transcribed in response to stimulus; and (iii) reveal novel relationships between TCSs, which indicate noncognate inducers for various response regulators, such as BaeR to iron starvation, CpxR to phosphate limitation, and PhoB and ZraR to cell envelope stress. Our understanding of the TRN in E. coli is thus notably expanded.IMPORTANCE E. coli is a common commensal microbe found in the human gut microenvironment; however, some strains cause diseases like diarrhea, urinary tract infections, and meningitis. E. coli's two-component systems (TCSs) modulate target gene expression, especially related to virulence, pathogenesis, and antimicrobial peptides, in response to environmental stimuli. Thus, it is of utmost importance to understand the transcriptional regulation of TCSs to infer bacterial environmental adaptation and disease pathogenicity. Utilizing a combinatorial approach integrating RNA sequencing (RNA-seq), independent component analysis, chromatin immunoprecipitation coupled with exonuclease treatment (ChIP-exo), and data mining, we suggest five different modes of TCS transcriptional regulation. Our data further highlight noncognate inducers of TCSs, which emphasizes the cross-regulatory nature of TCSs in E. coli and suggests that TCSs may have a role beyond their cognate functionalities. In summary, these results can lead to an understanding of the metabolic capabilities of bacteria and correctly predict complex phenotype under diverse conditions, especially when further incorporated with genome-scale metabolic models.
Collapse
Affiliation(s)
- Kumari Sonal Choudhary
- Department of Bioengineering, University of California, San Diego, San Diego, California, USA
| | - Julia A Kleinmanns
- Department of Bioengineering, University of California, San Diego, San Diego, California, USA
| | - Katherine Decker
- Department of Bioengineering, University of California, San Diego, San Diego, California, USA
| | - Anand V Sastry
- Department of Bioengineering, University of California, San Diego, San Diego, California, USA
| | - Ye Gao
- Department of Bioengineering, University of California, San Diego, San Diego, California, USA
| | - Richard Szubin
- Department of Bioengineering, University of California, San Diego, San Diego, California, USA
| | - Yara Seif
- Department of Bioengineering, University of California, San Diego, San Diego, California, USA
| | - Bernhard O Palsson
- Department of Bioengineering, University of California, San Diego, San Diego, California, USA
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
21
|
Kelly TJ, Brümmer A, Hooshdaran N, Tariveranmoshabad M, Zamudio JR. Temporal Control of the TGF-β Signaling Network by Mouse ESC MicroRNA Targets of Different Affinities. Cell Rep 2020; 29:2702-2717.e7. [PMID: 31775039 PMCID: PMC6939994 DOI: 10.1016/j.celrep.2019.10.109] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 04/03/2019] [Accepted: 10/28/2019] [Indexed: 12/13/2022] Open
Abstract
Although microRNAs (miRNAs) function in the control of embryonic stem cell (ESC) pluripotency, a systems-level understanding is still being developed. Through the analysis of progressive Argonaute (Ago)-miRNA depletion and rescue, including stable Ago knockout mouse ESCs, we uncover transforming growth factor beta (TGF-β) pathway activation as a direct and early response to ESC miRNA reduction. Mechanistically, we link the derepression of weaker miRNA targets, including TGF-β receptor 1 (Tgfbr1), to the sensitive TGF-β pathway activation. In contrast, stronger miRNA targets impart a more robust repression, which dampens concurrent transcriptional activation. We verify such dampened induction for TGF-β antagonist Lefty. We find that TGF-β pathway activation contributes to the G1 cell-cycle accumulation of miRNA-deficient ESCs. We propose that miRNA target affinity is a determinant of the temporal response to miRNA changes, which enables the coordination of gene network responses. Kelly et al. report the transcriptional and post-transcriptional dynamics that occur with loss of Argonaute proteins in embryonic stem cells. They find that Argonaute proteins are not required for ESC viability, function to control the transforming growth factor beta (TGF-β) pathway, and mediate temporal responses during changes in miRNA levels.
Collapse
Affiliation(s)
- Timothy J Kelly
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Anneke Brümmer
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Nima Hooshdaran
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Mito Tariveranmoshabad
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jesse R Zamudio
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
22
|
Abstract
Bacteria are able to sense environmental conditions and respond accordingly. Their sensorial system relies on pairs of sensory and regulatory proteins, known as two-component systems (TCSs). The majority of bacteria contain dozens of TCSs, each of them responsible for sensing and responding to a different range of signals. Traditionally, the function of each TCS has been determined by analyzing the changes in gene expression caused by the absence of individual TCSs. Here, we used a bacterial strain deprived of the complete TC sensorial system to introduce, one by one, the active form of every TCS. This gain-of-function strategy allowed us to identify the changes in gene expression conferred by each TCS without interference of other members of the family. In bacteria, adaptation to changes in the environment is mainly controlled through two-component signal transduction systems (TCSs). Most bacteria contain dozens of TCSs, each of them responsible for sensing a different range of signals and controlling the expression of a repertoire of target genes (regulon). Over the years, identification of the regulon controlled by each individual TCS in different bacteria has been a recurrent question. However, limitations associated with the classical approaches used have left our knowledge far from complete. In this report, using a pioneering approach in which a strain devoid of the complete nonessential TCS network was systematically complemented with the constitutively active form of each response regulator, we have reconstituted the regulon of each TCS of S. aureus in the absence of interference between members of the family. Transcriptome sequencing (RNA-Seq) and proteomics allowed us to determine the size, complexity, and insulation of each regulon and to identify the genes regulated exclusively by one or many TCSs. This gain-of-function strategy provides the first description of the complete TCS regulon in a living cell, which we expect will be useful to understand the pathobiology of this important pathogen. IMPORTANCE Bacteria are able to sense environmental conditions and respond accordingly. Their sensorial system relies on pairs of sensory and regulatory proteins, known as two-component systems (TCSs). The majority of bacteria contain dozens of TCSs, each of them responsible for sensing and responding to a different range of signals. Traditionally, the function of each TCS has been determined by analyzing the changes in gene expression caused by the absence of individual TCSs. Here, we used a bacterial strain deprived of the complete TC sensorial system to introduce, one by one, the active form of every TCS. This gain-of-function strategy allowed us to identify the changes in gene expression conferred by each TCS without interference of other members of the family.
Collapse
|
23
|
Gao R, Stock AM. Overcoming the Cost of Positive Autoregulation by Accelerating the Response with a Coupled Negative Feedback. Cell Rep 2019; 24:3061-3071.e6. [PMID: 30208328 PMCID: PMC6194859 DOI: 10.1016/j.celrep.2018.08.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 07/06/2018] [Accepted: 08/08/2018] [Indexed: 12/13/2022] Open
Abstract
A fundamental trade-off between rapid response and optimal expression of genes below cytotoxic levels exists for many signaling circuits, particularly for positively autoregulated systems with an inherent response delay. Here, we describe a regulatory scheme in the E. coli PhoB-PhoR two-component system, which overcomes the cost of positive feedback and achieves both fast and optimal steadystate response for maximal fitness across different environments. Quantitation of the cellular activities enables accurate modeling of the response dynamics to describe how requirements for optimal protein concentrations place limits on response speed. An observed fast response that exceeds the limit led to the prediction and discovery of a coupled negative autoregulation, which allows fast gene expression without increasing steady-state levels. We demonstrate the fitness advantages for the coupled feedbacks in both dynamic and stable environments. Such regulatory schemes offer great flexibility for accurate control of gene expression levels and dynamics upon environmental changes. Positive autoregulation of transcription produces a delayed response. Gao and Stock describe the limit of response delay caused by requirements of optimal protein levels in the PhoBR twocomponent system. Coupled negative autoregulation is discovered to allow a strong promoter for fast response without incurring cost of increasing protein expression levels.
Collapse
Affiliation(s)
- Rong Gao
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology, Rutgers University-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - Ann M Stock
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology, Rutgers University-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
| |
Collapse
|
24
|
Abstract
Phosphorus is required for many biological molecules and essential functions, including DNA replication, transcription of RNA, protein translation, posttranslational modifications, and numerous facets of metabolism. In order to maintain the proper level of phosphate for these processes, many bacteria adapt to changes in environmental phosphate levels. The mechanisms for sensing phosphate levels and adapting to changes have been extensively studied for multiple organisms. The phosphate response of Escherichia coli alters the expression of numerous genes, many of which are involved in the acquisition and scavenging of phosphate more efficiently. This review shares findings on the mechanisms by which E. coli cells sense and respond to changes in environmental inorganic phosphate concentrations by reviewing the genes and proteins that regulate this response. The PhoR/PhoB two-component signal transduction system is central to this process and works in association with the high-affinity phosphate transporter encoded by the pstSCAB genes and the PhoU protein. Multiple models to explain how this process is regulated are discussed.
Collapse
Affiliation(s)
- Stewart G Gardner
- Department of Biological Sciences, Emporia State University, Emporia, KS 66801
| | - William R McCleary
- Microbiology and Molecular Biology Department, Brigham Young University, Provo, UT 84602
| |
Collapse
|
25
|
Bobrovskyy M, Azam MS, Frandsen JK, Zhang J, Poddar A, Ma X, Henkin TM, Ha T, Vanderpool CK. Determinants of target prioritization and regulatory hierarchy for the bacterial small RNA SgrS. Mol Microbiol 2019; 112:1199-1218. [PMID: 31340077 DOI: 10.1111/mmi.14355] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2019] [Indexed: 01/10/2023]
Abstract
Small RNA (sRNA) regulators promote efficient responses to stress, but the mechanisms for prioritizing target mRNA regulation remain poorly understood. This study examines mechanisms underlying hierarchical regulation by the sRNA SgrS, found in enteric bacteria and produced under conditions of metabolic stress. SgrS posttranscriptionally coordinates a nine-gene regulon to restore growth and homeostasis. An in vivo reporter system quantified SgrS-dependent regulation of target genes and established that SgrS exhibits a clear target preference. Regulation of some targets is efficient even at low SgrS levels, whereas higher SgrS concentrations are required to regulate other targets. In vivo and in vitro analyses revealed that RNA structure and the number and position of base pairing sites relative to the start of translation impact the efficiency of regulation of SgrS targets. The RNA chaperone Hfq uses distinct modes of binding to different SgrS mRNA targets, which differentially influences positive and negative regulation. The RNA degradosome plays a larger role in regulation of some SgrS targets compared to others. Collectively, our results suggest that sRNA selection of target mRNAs and regulatory hierarchy are influenced by several molecular features and that the combination of these features precisely tunes the efficiency of regulation of multi-target sRNA regulons.
Collapse
Affiliation(s)
- Maksym Bobrovskyy
- Department of Microbiology, University of Illinois at Urbana-Champaign, 601 S. Goodwin Ave., Urbana, IL, 61801, USA
| | - Muhammad S Azam
- Department of Microbiology, University of Illinois at Urbana-Champaign, 601 S. Goodwin Ave., Urbana, IL, 61801, USA
| | - Jane K Frandsen
- Department of Microbiology and Center for RNA Biology, The Ohio State University, Columbus, OH, 43210, USA.,Biochemistry Program, The Ohio State University, Columbus, OH, 43210, USA
| | - Jichuan Zhang
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Anustup Poddar
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Xiangqian Ma
- Department of Microbiology, University of Illinois at Urbana-Champaign, 601 S. Goodwin Ave., Urbana, IL, 61801, USA
| | - Tina M Henkin
- Department of Microbiology and Center for RNA Biology, The Ohio State University, Columbus, OH, 43210, USA
| | - Taekjip Ha
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University, Baltimore, MD, 21205, USA.,Howard Hughes Medical Institute, Baltimore, MD, 21205, USA
| | - Carin K Vanderpool
- Department of Microbiology, University of Illinois at Urbana-Champaign, 601 S. Goodwin Ave., Urbana, IL, 61801, USA
| |
Collapse
|
26
|
Mushirobira Y, Nishimiya O, Nagata J, Todo T, Hara A, Reading BJ, Hiramatsu N. Molecular cloning of vitellogenin gene promoters and in vitro and in vivo transcription profiles following estradiol-17β administration in the cutthroat trout. Gen Comp Endocrinol 2018; 267:157-166. [PMID: 29966659 DOI: 10.1016/j.ygcen.2018.06.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 06/26/2018] [Accepted: 06/26/2018] [Indexed: 01/15/2023]
Abstract
Transcription of vitellogenin (vtg) genes are initiated when estradiol-17β (E2)-estrogen receptor (ER) complexes bind estrogen response elements (ERE) located in the gene promoter region. Transcriptional regulation of dual vtg subtypes (major salmonid A-type vtg: vtgAs; minor C-type vtg: vtgC) by E2 was investigated under co-expression of a potential major transcriptional factor, erα1, in cutthroat trout. Two forms of trout vtgAs promoters (1 and 2) and one vtgC promoter were sequenced. These promoters structurally differ based on the number of EREs present. The vtgAs promoter 1 exhibited the highest maximal transcriptional activity by in vitro gene reporter assays. The concentration of E2 that induces 50% of gene reporter activity (half-maximal effective concentrations, EC50) was similar among all vtg promoters and also to the EC50 of E2 administered to induce vtg transcription in vivo. This study revealed a difference in transcriptional properties of multiple vtg promoters for the first time in a salmonid species, providing the basis to understand mechanisms underlying regulation of vitellogenesis via dual vtg gene expression.
Collapse
Affiliation(s)
- Yuji Mushirobira
- Division of Marine Life Science, Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido 041-8611, Japan.
| | - Osamu Nishimiya
- Division of Marine Life Science, Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido 041-8611, Japan
| | - Jun Nagata
- Division of Marine Life Science, Graduate School of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido 041-8611, Japan
| | - Takashi Todo
- Division of Marine Life Science, Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido 041-8611, Japan
| | - Akihiko Hara
- Division of Marine Life Science, Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido 041-8611, Japan
| | - Benjamin J Reading
- Department of Applied Ecology, North Carolina State University, Raleigh, NC 27695-7617, United States
| | - Naoshi Hiramatsu
- Division of Marine Life Science, Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido 041-8611, Japan
| |
Collapse
|
27
|
An Iterative, Synthetic Approach To Engineer a High-Performance PhoB-Specific Reporter. Appl Environ Microbiol 2018; 84:AEM.00603-18. [PMID: 29752265 DOI: 10.1128/aem.00603-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 05/03/2018] [Indexed: 11/20/2022] Open
Abstract
Transcriptional reporters are common tools for analyzing either the transcription of a gene of interest or the activity of a specific transcriptional regulator. Unfortunately, the latter application has the shortcoming that native promoters did not evolve as optimal readouts for the activity of a particular regulator. We sought to synthesize an optimized transcriptional reporter for assessing PhoB activity, aiming for maximal "on" expression when PhoB is active, minimal background in the "off" state, and no control elements for other regulators. We designed specific sequences for promoter elements with appropriately spaced PhoB-binding sites, and at 19 additional intervening nucleotide positions for which we did not predict sequence-specific effects, the bases were randomized. Eighty-three such constructs were screened in Vibrio fischeri, enabling us to identify bases at particular randomized positions that significantly correlated with high-level "on" or low-level "off" expression. A second round of promoter design rationally constrained 13 additional positions, leading to a reporter with high-level PhoB-dependent expression, essentially no background, and no other known regulatory elements. As expressed reporters, we used both stable and destabilized variants of green fluorescent protein (GFP), the latter of which has a half-life of 81 min in V. fischeri In culture, PhoB induced the reporter when phosphate was depleted to a concentration below 10 μM. During symbiotic colonization of its host squid, Euprymna scolopes, the reporter indicated heterogeneous phosphate availability in different light-organ microenvironments. Finally, testing this construct in other members of the Proteobacteria demonstrated its broader utility. The results illustrate how a limited ability to predict synthetic promoter-reporter performance can be overcome through iterative screening and reengineering.IMPORTANCE Transcriptional reporters can be powerful tools for assessing when a particular regulator is active; however, native promoters may not be ideal for this purpose. Optimal reporters should be specific to the regulator being examined and should maximize the difference between the "on" and "off" states; however, these properties are distinct from the selective pressures driving the evolution of natural promoters. Synthetic promoters offer a promising alternative, but our understanding often does not enable fully predictive promoter design, and the large number of alternative sequence possibilities can be intractable. In a synthetic promoter region with over 34 billion sequence variants, we identified bases correlated with favorable performance by screening only 83 candidates, allowing us to rationally constrain our design. We thereby generated an optimized reporter that is induced by PhoB and used it to explore the low-phosphate response of V. fischeri This promoter design strategy will facilitate the engineering of other regulator-specific reporters.
Collapse
|
28
|
Thiriet-Rupert S, Carrier G, Trottier C, Eveillard D, Schoefs B, Bougaran G, Cadoret JP, Chénais B, Saint-Jean B. Identification of transcription factors involved in the phenotype of a domesticated oleaginous microalgae strain of Tisochrysis lutea. ALGAL RES 2018. [DOI: 10.1016/j.algal.2017.12.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
29
|
Pontes MH, Groisman EA. Protein synthesis controls phosphate homeostasis. Genes Dev 2018; 32:79-92. [PMID: 29437726 PMCID: PMC5828397 DOI: 10.1101/gad.309245.117] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 12/27/2017] [Indexed: 12/22/2022]
Abstract
In this study, Pontes et al. show that impaired protein synthesis alone triggers a Pi starvation response even when Pi is plentiful in the extracellular milieu in yeast and bacteria. Their findings identify a regulatory connection between protein synthesis and Pi homeostasis that is widespread in nature. Phosphorus is an essential element assimilated largely as orthophosphate (Pi). Cells respond to Pi starvation by importing Pi from their surroundings. We now report that impaired protein synthesis alone triggers a Pi starvation response even when Pi is plentiful in the extracellular milieu. In the bacterium Salmonella enterica serovar Typhimurium, this response entails phosphorylation of the regulatory protein PhoB and transcription of PhoB-dependent Pi transporter genes and is eliminated upon stimulation of adenosine triphosphate (ATP) hydrolysis. When protein synthesis is impaired due to low cytoplasmic magnesium (Mg2+), Salmonella triggers the Pi starvation response because ribosomes are destabilized, which reduces ATP consumption and thus free cytoplasmic Pi. This response is transient because low cytoplasmic Mg2+ promotes an uptake in Mg2+ and a decrease in ATP levels, which stabilizes ribosomes, resulting in ATP consumption and Pi increase, thus ending the response. Notably, pharmacological inhibition of protein synthesis also elicited a Pi starvation response in the bacterium Escherichia coli and the yeast Saccharomyces cerevisiae. Our findings identify a regulatory connection between protein synthesis and Pi homeostasis that is widespread in nature.
Collapse
Affiliation(s)
- Mauricio H Pontes
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut 06536, USA.,Yale Microbial Sciences Institute, West Haven, Connecticut 06516, USA
| | - Eduardo A Groisman
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut 06536, USA.,Yale Microbial Sciences Institute, West Haven, Connecticut 06516, USA
| |
Collapse
|
30
|
Gao R, Stock AM. Quantitative Analysis of Intracellular Response Regulator Phosphatase Activity of Histidine Kinases. Methods Enzymol 2018; 607:301-319. [PMID: 30149863 DOI: 10.1016/bs.mie.2018.04.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Quantitation of two-component protein activities is becoming increasingly important to understand the general design principles for this widely distributed prokaryotic signaling pathway. In many two-component systems (TCSs), phosphatase activity of the sensor histidine kinase (HK) plays a major role in controlling the system output and resetting the system to the prestimulus state. Quantitation of the phosphatase activity is often carried out in vitro, usually with truncated proteins that may not recapitulate the intact HK in the cellular environment. This chapter outlines a method for characterizing the intracellular phosphatase activity by investigating the TCS deactivation dynamics upon stimulus withdrawal. Two experimental approaches, the direct Phos-tag gel analysis and the indirect reporter assay, are described for measuring the TCS deactivation dynamics in cell. Combined with a mathematic model, the experimentally determined kinetics can lead to proper evaluation of the intracellular phosphatase activity.
Collapse
Affiliation(s)
- Rong Gao
- Center for Advanced Biotechnology and Medicine, Rutgers Biomedical and Health Sciences, Piscataway, NJ, United States; Department of Biochemistry and Molecular Biology, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ, United States
| | - Ann M Stock
- Center for Advanced Biotechnology and Medicine, Rutgers Biomedical and Health Sciences, Piscataway, NJ, United States; Department of Biochemistry and Molecular Biology, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ, United States.
| |
Collapse
|
31
|
Counterbalancing Regulation in Response Memory of a Positively Autoregulated Two-Component System. J Bacteriol 2017; 199:JB.00390-17. [PMID: 28674072 DOI: 10.1128/jb.00390-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 06/30/2017] [Indexed: 02/08/2023] Open
Abstract
Fluctuations in nutrient availability often result in recurrent exposures to the same stimulus conditions. The ability to memorize the past event and use the "memory" to make adjustments to current behaviors can lead to a more efficient adaptation to the recurring stimulus. A short-term phenotypic memory can be conferred via carryover of the response proteins to facilitate the recurrent response, but the additional accumulation of response proteins can lead to a deviation from response homeostasis. We used the Escherichia coli PhoB/PhoR two-component system (TCS) as a model system to study how cells cope with the recurrence of environmental phosphate (Pi) starvation conditions. We discovered that "memory" of prior Pi starvation can exert distinct effects through two regulatory pathways, the TCS signaling pathway and the stress response pathway. Although carryover of TCS proteins can lead to higher initial levels of transcription factor PhoB and a faster initial response in prestarved cells than in cells not starved, the response enhancement can be overcome by an earlier and greater repression of promoter activity in prestarved cells due to the memory of the stress response. The repression counterbalances the carryover of the response proteins, leading to a homeostatic response whether or not cells are prestimulated. A computational model based on sigma factor competition was developed to understand the memory of stress response and to predict the homeostasis of other PhoB-regulated response proteins. Our insight into the history-dependent PhoBR response may provide a general understanding of how TCSs respond to recurring stimuli and adapt to fluctuating environmental conditions.IMPORTANCE Bacterial cells in their natural environments experience scenarios that are far more complex than are typically replicated in laboratory experiments. The architectures of signaling systems and the integration of multiple adaptive pathways have evolved to deal with such complexity. In this study, we examined the molecular "memory" that is generated by previous exposure to stimulus. Under our experimental conditions, activating effects of autoregulated two-component signaling and inhibitory effects of the stress response counterbalanced the transcriptional output to approach response homeostasis whether or not cells had been preexposed to stimulus. Modeling allows prediction of response behavior in different scenarios and demonstrates both the robustness of the system output and its sensitivity to historical parameters such as timing and levels of exposure to stimuli.
Collapse
|
32
|
Abstract
Many two-component regulatory systems, including Escherichia coli PhoRB, are positively autoregulated, so stimuli result in an increase in the concentration of signaling proteins. When the quantity of signaling proteins depends on exposure history, how do past conditions affect future responses to stimuli? Hoffer et al. (J. Bacteriol. 183:4914-4917, 2001, https://doi.org/doi:10.1128/JB.183.16.4914-4917.2001) previously reported that E. coli bacteria "learn" from phosphate starvation and respond more rapidly to subsequent episodes of starvation. Gao et al. (J. Bacteriol. 199:e00390-17, 2017, https://doi.org/doi:10.1128/JB.00390-17) describe another aspect of hysteresis in the PhoRB regulon. Phosphate starvation also leads to a global decline in transcription, counteracting the effects of positive autoregulation and resulting in a similar net pho response (homeostasis), regardless of exposure history.
Collapse
|
33
|
Use of a Phosphorylation Site Mutant To Identify Distinct Modes of Gene Repression by the Control of Virulence Regulator (CovR) in Streptococcus pyogenes. J Bacteriol 2017; 199:JB.00835-16. [PMID: 28289082 DOI: 10.1128/jb.00835-16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 03/03/2017] [Indexed: 11/20/2022] Open
Abstract
Control of the virulence regulator/sensor kinase (CovRS) two-component system (TCS) serves as a model for investigating the impact of signaling pathways on the pathogenesis of Gram-positive bacteria. However, the molecular mechanisms by which CovR, an OmpR/PhoB family response regulator, controls virulence gene expression are poorly defined, partly due to the labile nature of its aspartate phosphorylation site. To better understand the regulatory effect of phosphorylated CovR, we generated the phosphorylation site mutant strain 10870-CovR-D53E, which we predicted to have a constitutive CovR phosphorylation phenotype. Interestingly, this strain showed CovR activity only for a subset of the CovR regulon, which allowed for classification of CovR-influenced genes into D53E-regulated and D53E-nonregulated groups. Inspection of the promoter sequences of genes belonging to each group revealed distinct promoter architectures with respect to the location and number of putative CovR-binding sites. Electrophoretic mobility shift analysis demonstrated that recombinant CovR-D53E protein retains its ability to bind promoter DNA from both CovR-D53E-regulated and -nonregulated groups, implying that factors other than mere DNA binding are crucial for gene regulation. In fact, we found that CovR-D53E is incapable of dimerization, a process thought to be critical to OmpR/PhoB family regulator function. Thus, our global analysis of CovR-D53E indicates dimerization-dependent and dimerization-independent modes of CovR-mediated repression, thereby establishing distinct mechanisms by which this critical regulator coordinates virulence gene expression.IMPORTANCEStreptococcus pyogenes causes a wide variety of diseases, ranging from superficial skin and throat infections to life-threatening invasive infections. To establish these various disease manifestations, Streptococcus pyogenes requires tightly coordinated production of its virulence factor repertoire. Here, the response regulator CovR plays a crucial role. As an OmpR/PhoB family member, CovR is activated by phosphorylation on a conserved aspartate residue, leading to protein dimerization and subsequent binding to operator sites. Our transcriptome analysis using the monomeric phosphorylation mimic mutant CovR-D53E broadens this general notion by revealing dimerization-independent repression of a subset of CovR-regulated genes. Combined with promoter analyses, these data suggest distinct mechanisms of CovR transcriptional control, which allow for differential expression of virulence genes in response to environmental cues.
Collapse
|
34
|
Abstract
Two-component systems are a dominant form of bacterial signal transduction. The prototypical two-component system consists of a sensor that responds to a specific input(s) by modifying the output of a cognate regulator. Because the output of a two-component system is the amount of phosphorylated regulator, feedback mechanisms may alter the amount of regulator, and/or modify the ability of a sensor or other proteins to alter the phosphorylation state of the regulator. Two-component systems may display intrinsic feedback whereby the amount of phosphorylated regulator changes under constant inducing conditions and without the participation of additional proteins. Feedback control allows a two-component system to achieve particular steady-state levels, to reach a given steady state with distinct dynamics, to express coregulated genes in a given order, and to activate a regulator to different extents, depending on the signal acting on the sensor.
Collapse
Affiliation(s)
- Eduardo A Groisman
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut 06536; .,Yale Microbial Sciences Institute, West Haven, Connecticut 06516
| |
Collapse
|
35
|
Abstract
Cells rely on accurate control of signaling systems to adapt to environmental perturbations. System deactivation upon stimulus removal is as important as activation of signaling pathways. The two-component system (TCS) is one of the major bacterial signaling schemes. In many TCSs, phosphatase activity of the histidine kinase (HK) is believed to play an essential role in shutting off the pathway and resetting the system to the prestimulus state. Two basic challenges are to understand the dynamic behavior of system deactivation and to quantitatively evaluate the role of phosphatase activity under natural cellular conditions. Here we report a kinetic analysis of the response to shutting off the archetype Escherichia coli PhoR-PhoB TCS pathway using both transcription reporter assays and in vivo phosphorylation analyses. Upon removal of the stimulus, the pathway is shut off by rapid dephosphorylation of the PhoB response regulator (RR) while PhoB-regulated gene products gradually reset to prestimulus levels through growth dilution. We developed an approach combining experimentation and modeling to assess in vivo kinetic parameters of the phosphatase activity with kinetic data from multiple phosphatase-diminished mutants. This enabled an estimation of the PhoR phosphatase activity in vivo, which is much stronger than the phosphatase activity of PhoR cytoplasmic domains analyzed in vitro We quantitatively modeled how strong the phosphatase activity needs to be to suppress nonspecific phosphorylation in TCSs and discovered that strong phosphatase activity of PhoR is required for cross-phosphorylation suppression.IMPORTANCE Activation of TCSs has been extensively studied; however, the kinetics of shutting off TCS pathways is not well characterized. We present comprehensive analyses of the shutoff response for the PhoR-PhoB system that reveal the impact of phosphatase activity on shutoff kinetics. This allows development of a quantitative framework not only to characterize the phosphatase activity in the natural cellular environment but also to understand the requirement for specific strengths of phosphatase activity to suppress nonspecific phosphorylation. Our model suggests that the ratio of the phosphatase rate to the nonspecific phosphorylation rate correlates with TCS expression levels and the ratio of the RR to HK, which may contribute to the great diversity of enzyme levels and activities observed in different TCSs.
Collapse
|
36
|
Structure-function analysis of the DNA-binding domain of a transmembrane transcriptional activator. Sci Rep 2017; 7:1051. [PMID: 28432336 PMCID: PMC5430869 DOI: 10.1038/s41598-017-01031-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 03/23/2017] [Indexed: 11/08/2022] Open
Abstract
The transmembrane DNA-binding protein CadC of E. coli, a representative of the ToxR-like receptor family, combines input and effector domains for signal sensing and transcriptional activation, respectively, in a single protein, thus representing one of the simplest signalling systems. At acidic pH in a lysine-rich environment, CadC activates the transcription of the cadBA operon through recruitment of the RNA polymerase (RNAP) to the two cadBA promoter sites, Cad1 and Cad2, which are directly bound by CadC. However, the molecular details for its interaction with DNA have remained elusive. Here, we present the crystal structure of the CadC DNA-binding domain (DBD) and show that it adopts a winged helix-turn-helix fold. The interaction with the cadBA promoter site Cad1 is studied by using nuclear magnetic resonance (NMR) spectroscopy, biophysical methods and functional assays and reveals a preference for AT-rich regions. By mutational analysis we identify amino acids within the CadC DBD that are crucial for DNA-binding and functional activity. Experimentally derived structural models of the CadC-DNA complex indicate that the CadC DBD employs mainly non-sequence-specific over a few specific contacts. Our data provide molecular insights into the CadC-DNA interaction and suggest how CadC dimerization may provide high-affinity binding to the Cad1 promoter.
Collapse
|
37
|
Wong PS, Tashiro K, Kuhara S, Aburatani S. Elucidation of the sequential transcriptional activity in Escherichia coli using time-series RNA-seq data. Bioinformation 2017; 13:25-30. [PMID: 28479747 PMCID: PMC5405090 DOI: 10.6026/97320630013025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 01/25/2017] [Indexed: 11/23/2022] Open
Abstract
Functional genomics and gene regulation inference has readily expanded our knowledge and understanding of gene interactions with regards to expression regulation. With the advancement of transcriptome sequencing in time-series comes the ability to study the sequential changes of the transcriptome. Here, we present a new method to augment regulation networks accumulated in literature with transcriptome data gathered from time-series experiments to construct a sequential representation of transcription factor activity. We apply our method on a time-series RNA-Seq data set of Escherichia coli as it transitions from growth to stationary phase over five hours and investigate the various activity in gene regulation process by taking advantage of the correlation between regulatory gene pairs to examine their activity on a dynamic network. We analyse the changes in metabolic activity of the pagP gene and associated transcription factors during phase transition, and visualize the sequential transcriptional activity to describe the change in metabolic pathway activity originating from the pagP transcription factor, phoP. We observe a shift from amino acid and nucleic acid metabolism, to energy metabolism during the transition to stationary phase in E. coli.
Collapse
Affiliation(s)
- Pui Shan Wong
- Biotechnology Research Institute for Drug Discovery, National Institute of AIST, Tokyo, Japan
| | - Kosuke Tashiro
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Satoru Kuhara
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Sachiyo Aburatani
- Biotechnology Research Institute for Drug Discovery, National Institute of AIST, Tokyo, Japan
- Com. Bio Big Data Open Innovation Lab. (CBBD-OIL), National Institute of AIST, Tokyo, Japan
| |
Collapse
|
38
|
Leskinen K, Pajunen MI, Varjosalo M, Fernández-Carrasco H, Bengoechea JA, Skurnik M. Several Hfq-dependent alterations in physiology of Yersinia enterocolitica O:3 are mediated by derepression of the transcriptional regulator RovM. Mol Microbiol 2017; 103:1065-1091. [PMID: 28010054 DOI: 10.1111/mmi.13610] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2016] [Indexed: 12/27/2022]
Abstract
In bacteria, the RNA chaperone Hfq enables pairing of small regulatory RNAs with their target mRNAs and therefore is a key player of post-transcriptional regulation network. As a global regulator, Hfq is engaged in the adaptation to external environment, regulation of metabolism and bacterial virulence. In this study we used RNA-sequencing and quantitative proteomics (LC-MS/MS) to elucidate the role of this chaperone in the physiology and virulence of Yersinia enterocolitica serotype O:3. This global approach revealed the profound impact of Hfq on gene and protein expression. Furthermore, the role of Hfq in the cell morphology, metabolism, cell wall integrity, resistance to external stresses and pathogenicity was evaluated. Importantly, our results revealed that several alterations typical for the hfq-negative phenotype were due to derepression of the transcriptional factor RovM. The overexpression of RovM caused by the loss of Hfq chaperone resulted in extended growth defect, alterations in the lipid A structure, motility and biofilm formation defects, as well as changes in mannitol utilization. Furthermore, in Y. enterocolitica RovM only in the presence of Hfq affected the abundance of RpoS. Finally, the impact of hfq and rovM mutations on the virulence was assessed in the mouse infection model.
Collapse
Affiliation(s)
- Katarzyna Leskinen
- Department of Bacteriology and Immunology, Medicum, Research Programs Unit, Immunobiology, University of Helsinki, Finland
| | - Maria I Pajunen
- Department of Bacteriology and Immunology, Medicum, Research Programs Unit, Immunobiology, University of Helsinki, Finland
| | - Markku Varjosalo
- Institute of Biotechnology, University of Helsinki.,Biocentrum Helsinki, Finland: Finnish Institute of Molecular Medicine, Finland
| | | | - José A Bengoechea
- Centre for Experimental Medicine, Queens University Belfast, Belfast, UK
| | - Mikael Skurnik
- Department of Bacteriology and Immunology, Medicum, Research Programs Unit, Immunobiology, University of Helsinki, Finland.,Division of Clinical Microbiology, Helsinki University Hospital, HUSLAB, Helsinki, Finland
| |
Collapse
|
39
|
Schramke H, Laermann V, Tegetmeyer HE, Brachmann A, Jung K, Altendorf K. Revisiting regulation of potassium homeostasis in Escherichia coli: the connection to phosphate limitation. Microbiologyopen 2017; 6. [PMID: 28097817 PMCID: PMC5458449 DOI: 10.1002/mbo3.438] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 11/29/2016] [Accepted: 12/06/2016] [Indexed: 11/10/2022] Open
Abstract
Two-component signal transduction constitutes the predominant strategy used by bacteria to adapt to fluctuating environments. The KdpD/KdpE system is one of the most widespread, and is crucial for K+ homeostasis. In Escherichia coli, the histidine kinase KdpD senses K+ availability, whereas the response regulator KdpE activates synthesis of the high-affinity K+ uptake system KdpFABC. Here we show that, in the absence of KdpD, kdpFABC expression can be activated via phosphorylation of KdpE by the histidine kinase PhoR. PhoR and its cognate response regulator PhoB comprise a phosphate-responsive two-component system, which senses phosphate limitation indirectly through the phosphate transporter PstCAB and its accessory protein PhoU. In vivo two-hybrid interaction studies based on the bacterial adenylate cyclase reveal pairwise interactions between KdpD, PhoR, and PhoU. Finally, we demonstrate that cross-regulation between the kdpFABC and pstSCAB operons occurs in both directions under simultaneous K+ and phosphate limitation, both in vitro and in vivo. This study for the first time demonstrates direct coupling between intracellular K+ and phosphate homeostasis and provides a mechanism for fine-tuning of the balance between positively and negatively charged ions in the bacterial cell.
Collapse
Affiliation(s)
- Hannah Schramke
- Department of Biology I, Microbiology, Center for integrated Protein Science Munich (CiPSM), Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Vera Laermann
- Fachbereich Biologie/Chemie, Universität Osnabrück, Osnabrück, Germany
| | - Halina E Tegetmeyer
- Centrum für Biotechnologie, Universität Bielefeld, Bielefeld, Germany.,Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany.,Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Andreas Brachmann
- Department of Biology I, Genetics, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Kirsten Jung
- Department of Biology I, Microbiology, Center for integrated Protein Science Munich (CiPSM), Ludwig-Maximilians-Universität München, Martinsried, Germany
| | | |
Collapse
|
40
|
Tsoy OV, Ravcheev DA, Čuklina J, Gelfand MS. Nitrogen Fixation and Molecular Oxygen: Comparative Genomic Reconstruction of Transcription Regulation in Alphaproteobacteria. Front Microbiol 2016; 7:1343. [PMID: 27617010 PMCID: PMC4999443 DOI: 10.3389/fmicb.2016.01343] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 08/15/2016] [Indexed: 11/13/2022] Open
Abstract
Biological nitrogen fixation plays a crucial role in the nitrogen cycle. An ability to fix atmospheric nitrogen, reducing it to ammonium, was described for multiple species of Bacteria and Archaea. The transcriptional regulatory network for nitrogen fixation was extensively studied in several representatives of the class Alphaproteobacteria. This regulatory network includes the activator of nitrogen fixation NifA, working in tandem with the alternative sigma-factor RpoN as well as oxygen-responsive regulatory systems, one-component regulators FnrN/FixK and two-component system FixLJ. Here we used a comparative genomics approach for in silico study of the transcriptional regulatory network in 50 genomes of Alphaproteobacteria. We extended the known regulons and proposed the scenario for the evolution of the nitrogen fixation transcriptional network. The reconstructed network substantially expands the existing knowledge of transcriptional regulation in nitrogen-fixing microorganisms and can be used for genetic experiments, metabolic reconstruction, and evolutionary analysis.
Collapse
Affiliation(s)
- Olga V Tsoy
- Research and Training Center on Bioinformatics, A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences Moscow, Russia
| | - Dmitry A Ravcheev
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg Esch-sur-Alzette, Luxembourg
| | - Jelena Čuklina
- Research and Training Center on Bioinformatics, A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of SciencesMoscow, Russia; Moscow Institute of Physics and TechnologyDolgoprudny, Russia
| | - Mikhail S Gelfand
- Research and Training Center on Bioinformatics, A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of SciencesMoscow, Russia; Faculty of Bioengineering and Bioinformatics, Moscow State UniversityMoscow, Russia; Skolkovo Institute of Science and TechnologySkolkovo, Russia; Faculty of Computer Science, Higher School of EconomicsMoscow, Russia
| |
Collapse
|