1
|
Paul S, Todd OA, Eichelberger KR, Tkaczyk C, Sellman BR, Noverr MC, Cassat JE, Fidel PL, Peters BM. A fungal metabolic regulator underlies infectious synergism during Candida albicans-Staphylococcus aureus intra-abdominal co-infection. Nat Commun 2024; 15:5746. [PMID: 38982056 PMCID: PMC11233573 DOI: 10.1038/s41467-024-50058-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 06/26/2024] [Indexed: 07/11/2024] Open
Abstract
Candida albicans and Staphylococcus aureus are two commonly associated pathogens that cause nosocomial infections with high morbidity and mortality. Our prior and current work using a murine model of polymicrobial intra-abdominal infection (IAI) demonstrates that synergistic lethality is driven by Candida-induced upregulation of functional S. aureus α-toxin leading to polymicrobial sepsis and organ damage. In order to determine the candidal effector(s) mediating enhanced virulence, an unbiased screen of C. albicans transcription factor mutants was undertaken revealing that zcf13Δ/Δ fails to drive augmented α-toxin or lethal synergism during co-infection. A combination of transcriptional and phenotypic profiling approaches shows that ZCF13 regulates genes involved in pentose metabolism, including RBK1 and HGT7 that contribute to fungal ribose catabolism and uptake, respectively. Subsequent experiments reveal that ribose inhibits the staphylococcal agr quorum sensing system and concomitantly represses toxicity. Unlike wild-type C. albicans, zcf13Δ/Δ did not effectively utilize ribose during co-culture or co-infection leading to exogenous ribose accumulation and agr repression. Forced expression of RBK1 and HGT7 in the zcf13Δ/Δ mutant fully restores pathogenicity during co-infection. Collectively, our results detail the interwoven complexities of cross-kingdom interactions and highlight how intermicrobial metabolism impacts polymicrobial disease pathogenesis with devastating consequences for the host.
Collapse
Affiliation(s)
- Saikat Paul
- Department of Clinical Pharmacy and Translational Science, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Olivia A Todd
- Integrated Program in Biomedical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Kara R Eichelberger
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Christine Tkaczyk
- Early Vaccines and Immune Therapies, AstraZeneca, Gaithersburg, MD, USA
| | - Bret R Sellman
- Early Vaccines and Immune Therapies, AstraZeneca, Gaithersburg, MD, USA
| | - Mairi C Noverr
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA, USA
| | - James E Cassat
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation (VI4), Vanderbilt University Medical Center, Nashville, TN, USA
| | - Paul L Fidel
- Department of Oral and Craniofacial Biology, Louisiana State University Health - School of Dentistry, New Orleans, LA, USA
| | - Brian M Peters
- Department of Clinical Pharmacy and Translational Science, University of Tennessee Health Science Center, Memphis, TN, USA.
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
2
|
Paul S, Todd OA, Eichelberger KR, Tkaczyk C, Sellman BR, Noverr MC, Cassat JE, Fidel PL, Peters BM. A fungal metabolic regulator underlies infectious synergism during Candida albicans - Staphylococcus aureus intra-abdominal co-infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.15.580531. [PMID: 38405692 PMCID: PMC10888754 DOI: 10.1101/2024.02.15.580531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Candida albicans and Staphylococcus aureus are two commonly associated pathogens that cause nosocomial infections with high morbidity and mortality. Our prior and current work using a murine model of polymicrobial intra-abdominal infection (IAI) uncovered synergistic lethality that was driven by Candida -induced upregulation of functional S. aureus ⍺-toxin leading to polymicrobial sepsis and organ damage. In order to determine the candidal effector(s) mediating enhanced virulence, an unbiased screen of C. albicans transcription factor mutants was undertaken and revealed that zcf13 Δ/Δ failed to drive augmented ⍺-toxin or lethal synergism during co-infection. Using a combination of transcriptional and phenotypic profiling approaches, ZCF13 was shown to regulate genes involved in pentose metabolism, including RBK1 and HGT7 that contribute to fungal ribose catabolism and uptake, respectively. Subsequent experiments revealed that ribose inhibited the staphylococcal agr quorum sensing system and concomitantly repressed toxicity. Unlike wild-type C. albicans , zcf13 Δ/Δ was unable to effectively utilize ribose during co-culture or co-infection leading to exogenous ribose accumulation and agr repression. Forced expression of RBK1 and HGT7 in the zcf13 Δ/Δ mutant fully restored pathogenicity during co-infection. Collectively, our results detail the interwoven complexities of cross-kingdom interactions and highlight how intermicrobial metabolism impacts polymicrobial disease pathogenesis with devastating consequences for the host.
Collapse
|
3
|
Pan S, Mou C, Chen Z. Red recombination enables a wide variety of markerless manipulation of porcine epidemic diarrhea virus genome to generate recombinant virus. Front Cell Infect Microbiol 2024; 13:1338740. [PMID: 38317792 PMCID: PMC10839022 DOI: 10.3389/fcimb.2023.1338740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 12/27/2023] [Indexed: 02/07/2024] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is a member of the genera Alphacoronavirus that has been associated with acute watery diarrhea and vomiting in swine. Unfortunately, no effective vaccines and antiviral drugs for PEDV are currently available. Reverse genetics systems are crucial tools for these researches. Here, a PEDV full-length cDNA clone was constructed. Furtherly, three PEDV reporter virus plasmids containing red fluorescent protein (RFP), Nano luciferase (Nluc), or green fluorescence protein (GFP) were generated using Red recombination with the GS1783 E. coli strain. These reporter-expressing recombinant (r) PEDVs showed similar growth properties to the rPEDV, and the foreign genes were stable to culture up to P9 in Vero cells. Using the Nluc-expressing rPEDV, the replication of PEDV was easily quantified, and a platform for rapid anti-PEDV drug screening was constructed. Among the three drugs, Bergenin, Umifenovir hydrochloride (Arbidol), and Ganoderma lucidum triterpenoids (GLTs), we found that GLTs inhibited PEDV replication mainly after the stage of virus "Entry". Overall, this study will broaden insight into the method for manipulating the PEDV genome and provide a powerful tool for screening anti-PEDV agents.
Collapse
Affiliation(s)
- Shuonan Pan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Chunxiao Mou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Zhenhai Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
| |
Collapse
|
4
|
Davies KA, Welch SR, Jain S, Sorvillo TE, Coleman-McCray JD, Montgomery JM, Spiropoulou CF, Albariño C, Spengler JR. Fluorescent and Bioluminescent Reporter Mouse-Adapted Ebola Viruses Maintain Pathogenicity and Can Be Visualized in Vivo. J Infect Dis 2023; 228:S536-S547. [PMID: 37145895 PMCID: PMC11014640 DOI: 10.1093/infdis/jiad136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/26/2023] [Accepted: 04/29/2023] [Indexed: 05/07/2023] Open
Abstract
Ebola virus (EBOV) causes lethal disease in humans but not in mice. Here, we generated recombinant mouse-adapted (MA) EBOVs, including 1 based on the previously reported serially adapted strain (rMA-EBOV), along with single-reporter rMA-EBOVs expressing either fluorescent (ZsGreen1 [ZsG]) or bioluminescent (nano-luciferase [nLuc]) reporters, and dual-reporter rMA-EBOVs expressing both ZsG and nLuc. No detriment to viral growth in vitro was seen with inclusion of MA-associated mutations or reporter proteins. In CD-1 mice, infection with MA-EBOV, rMA-EBOV, and single-reporter rMA-EBOVs conferred 100% lethality; infection with dual-reporter rMA-EBOV resulted in 73% lethality. Bioluminescent signal from rMA-EBOV expressing nLuc was detected in vivo and ex vivo using the IVIS Spectrum CT. Fluorescent signal from rMA-EBOV expressing ZsG was detected in situ using handheld blue-light transillumination and ex vivo through epi-illumination with the IVIS Spectrum CT. These data support the use of reporter MA-EBOV for studies of Ebola virus in animal disease models.
Collapse
Affiliation(s)
- Katherine A Davies
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Stephen R Welch
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Shilpi Jain
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Teresa E Sorvillo
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - JoAnn D Coleman-McCray
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Joel M Montgomery
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Christina F Spiropoulou
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - César Albariño
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Jessica R Spengler
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
5
|
Zhuo W, Zhao Y, Zhao X, Yao Z, Qiu X, Huang Y, Li H, Shen J, Zhu Z, Li T, Li S, Huang Q, Zhou R. Enteropathogenic Escherichia coli is a predominant pathotype in healthy pigs in Hubei Province of China. J Appl Microbiol 2023; 134:lxad260. [PMID: 37962953 DOI: 10.1093/jambio/lxad260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/29/2023] [Accepted: 11/13/2023] [Indexed: 11/16/2023]
Abstract
AIM This study aims to investigate the prevalence of intestinal pathogenic Escherichia coli (InPEC) in healthy pig-related samples and evaluate the potential virulence of the InPEC strains. METHODS AND RESULTS A multiplex PCR method was established to identify different pathotypes of InPEC. A total of 800 rectal swab samples and 296 pork samples were collected from pig farms and slaughterhouses in Hubei province, China. From these samples, a total of 21 InPEC strains were isolated, including 19 enteropathogenic E. coli (EPEC) and 2 shiga toxin-producing E. coli (STEC) strains. By whole-genome sequencing and in silico typing, it was shown that the sequence types and serotypes were diverse among the strains. Antimicrobial susceptibility assays showed that 90.48% of the strains were multi-drug resistant. The virulence of the strains was first evaluated using the Galleria mellonella larvae model, which showed that most of the strains possessed medium to high pathogenicity. A moderately virulent EPEC isolate was further selected to characterize its pathogenicity using a mouse model, which suggested that it could cause significant diarrhea. Bioluminescence imaging (BLI) was then used to investigate the colonization dynamics of this EPEC isolate, which showed that the EPEC strain could colonize the mouse cecum for up to 5 days.
Collapse
Affiliation(s)
- Wenxiao Zhuo
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Yang Zhao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Xianglin Zhao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhiming Yao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiuxiu Qiu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Yaxue Huang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Huaixia Li
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Jing Shen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhihao Zhu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Tingting Li
- Hubei Animal Disease Prevention and Control Center, Wuhan 430070, China
| | - Shaowen Li
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Qi Huang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Cooperative Innovation Center of Sustainable Pig Production, College of Veterinary Medicine, Wuhan 430070, China
- International Research Center for Animal Disease (Ministry of Science & Technology of China), College of Veterinary Medicine, Wuhan 430070, China
| | - Rui Zhou
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Cooperative Innovation Center of Sustainable Pig Production, College of Veterinary Medicine, Wuhan 430070, China
- International Research Center for Animal Disease (Ministry of Science & Technology of China), College of Veterinary Medicine, Wuhan 430070, China
- The HZAU-HVSEN Research Institute, Wuhan 430042, China
| |
Collapse
|
6
|
Yamamoto K, Tsujimura Y, Ato M. Catheter-associated Mycobacterium intracellulare biofilm infection in C3HeB/FeJ mice. Sci Rep 2023; 13:17148. [PMID: 37816786 PMCID: PMC10564925 DOI: 10.1038/s41598-023-44403-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 10/07/2023] [Indexed: 10/12/2023] Open
Abstract
Non-tuberculosis mycobacterial (NTM) diseases are steadily increasing in prevalence and mortality worldwide. Mycobacterium avium and M. intracellulare, the two major pathogens of NTM diseases, are resistant to antibiotics, and chlorine, necessitating their capacity to survive in natural environments (e.g. soil and rivers) and disinfected municipal water. They can also form biofilms on artificial surfaces to provide a protective barrier and habitat for bacilli, which can cause refractory systemic disseminated NTM disease. Therefore, preventing biofilm formation by these pathogens is crucial; however, not many in vivo experimental systems and studies on NTM biofilm infection are available. This study develops a mouse model of catheter-associated systemic disseminated disease caused by M. intracellulare that reproduces the pathophysiology of catheter-associated infections observed in patients undergoing peritoneal dialysis. In addition, the bioluminescence system enabled noninvasive visualization of the amount and distribution of bacilli in vivo and conveniently examine the efficacy of antimicrobials. Furthermore, the cellulose-based biofilms, which were extensively formed in the tissue surrounding the catheter insertion site, reduced drug therapy effectiveness. Overall, this study provides insights into the cause of the drug resistance of NTM and may guide the development of new therapies for NTM diseases.
Collapse
Affiliation(s)
- Kentaro Yamamoto
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Aoba-cho, Higashimurayama, Tokyo, Japan.
| | - Yusuke Tsujimura
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Aoba-cho, Higashimurayama, Tokyo, Japan
| | - Manabu Ato
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Aoba-cho, Higashimurayama, Tokyo, Japan
| |
Collapse
|
7
|
Hamele CE, Spurrier MA, Leonard RA, Heaton NS. Segmented, Negative-Sense RNA Viruses of Humans: Genetic Systems and Experimental Uses of Reporter Strains. Annu Rev Virol 2023; 10:261-282. [PMID: 37774125 PMCID: PMC10795101 DOI: 10.1146/annurev-virology-111821-120445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
Negative-stranded RNA viruses are a large group of viruses that encode their genomes in RNA across multiple segments in an orientation antisense to messenger RNA. Their members infect broad ranges of hosts, and there are a number of notable human pathogens. Here, we examine the development of reverse genetic systems as applied to these virus families, emphasizing conserved approaches illustrated by some of the prominent members that cause significant human disease. We also describe the utility of their genetic systems in the development of reporter strains of the viruses and some biological insights made possible by their use. To conclude the review, we highlight some possible future uses of reporter viruses that not only will increase our basic understanding of how these viruses replicate and cause disease but also could inform the development of new approaches to therapeutically intervene.
Collapse
Affiliation(s)
- Cait E Hamele
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA;
| | - M Ariel Spurrier
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA;
| | - Rebecca A Leonard
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA;
| | - Nicholas S Heaton
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA;
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
8
|
Eriksson M, Nylén S, Grönvik KO. T cell kinetics reveal expansion of distinct lung T cell subsets in acute versus in resolved influenza virus infection. Front Immunol 2022; 13:949299. [PMID: 36275685 PMCID: PMC9582761 DOI: 10.3389/fimmu.2022.949299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/23/2022] [Indexed: 11/13/2022] Open
Abstract
Influenza virus infection is restricted to airway-associated tissues and elicits both cellular and humoral responses ultimately resulting in generation of memory cells able to initiate a rapid immune response against re-infections. Resident memory T cells confer protection at the site of infection where lung-resident memory T cells are important for protecting the host against homologous and heterologous influenza virus infections. Mapping kinetics of local and systemic T cell memory formation is needed to better understand the role different T cells have in viral control and protection. After infecting BALB/c mice with influenza virus strain A/Puerto Rico/8/1934 H1N1 the main proportion of activated T cells and B cells expressing the early activation marker CD69 was detected in lungs and lung-draining mediastinal lymph nodes. Increased frequencies of activated cells were also observed in the peripheral lymphoid organs spleen, inguinal lymph nodes and mesenteric lymph nodes. Likewise, antigen-specific T cells were most abundant in lungs and mediastinal lymph nodes but present in all organs studied. CD8+CD103-CD49a+ lung-resident T cells expanded simultaneously with timing of viral clearance whereas CD8+CD103+CD49a+ lung-resident T cells was the most abundant subset after resolution of infection and antigen-specific, lung-resident T cells were detected up to seven months after infection. In conclusion, the results in this detailed kinetic study demonstrate that influenza virus infection elicits adaptive immune responses mainly in respiratory tract-associated tissues and that distinct subsets of lung-resident T cells expand at different time points during infection. These findings contribute to the understanding of the adaptive immune response locally and systemically following influenza virus infection and call for further studies on the roles of the lung-resident T cell subsets.
Collapse
Affiliation(s)
- Malin Eriksson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Department of Microbiology, National Veterinary Institute, Uppsala, Sweden
- *Correspondence: Malin Eriksson,
| | - Susanne Nylén
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
9
|
Lao G, Ma K, Qiu Z, Qi W, Liao M, Li H. Real-Time Visualization of the Infection and Replication of a Mouse-Lethal Recombinant H9N2 Avian Influenza Virus. Front Vet Sci 2022; 9:849178. [PMID: 35280146 PMCID: PMC8907971 DOI: 10.3389/fvets.2022.849178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 01/31/2022] [Indexed: 11/25/2022] Open
Abstract
H9N2 avian influenza viruses (AIVs) continuously cross the species barrier to infect mammalians and are repeatedly transmitted to humans, posing a significant threat to public health. Importantly, some H9N2 AIVs were found to cause lethal infection in mice, but little is known about the viral infection dynamics in vivo. To analyze the real-time infection dynamics, we described the generation of a mouse-lethal recombinant H9N2 AIV, an influenza reporter virus (VK627-NanoLuc virus) carrying a NanoLuc gene in the non-structural (NS) segment, which was available for in vivo imaging. Although attenuated for replication in MDCK cells, VK627-NanoLuc virus showed similar pathogenicity and replicative capacity in mice to its parental virus. Bioluminescent imaging of the VK627-NanoLuc virus permitted successive observations of viral infection and replication in infected mice, even following the viral clearance of a sublethal infection. Moreover, VK627-NanoLuc virus was severely restricted by the K627E mutation in PB2, as infected mice showed little weight loss and a low level of bioluminescence. In summary, we have preliminarily established a visualized tool that enables real-time observation of the infection and replication dynamics of H9N2 AIV in mice, which contributes to further understanding the mechanisms underlying the pathogenic enhancement of H9N2 AIV to mice.
Collapse
Affiliation(s)
- Guangjie Lao
- National Avian Influenza Para-Reference Laboratory (Guangzhou), South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Kaixiong Ma
- National Avian Influenza Para-Reference Laboratory (Guangzhou), South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Ziwen Qiu
- National Avian Influenza Para-Reference Laboratory (Guangzhou), South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Wenbao Qi
- National Avian Influenza Para-Reference Laboratory (Guangzhou), South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Ming Liao
- National Avian Influenza Para-Reference Laboratory (Guangzhou), South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
- *Correspondence: Ming Liao
| | - Huanan Li
- National Avian Influenza Para-Reference Laboratory (Guangzhou), South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
- Huanan Li
| |
Collapse
|
10
|
Kim JH, Bryant H, Fiedler E, Cao T, Rayner JO. Real-time tracking of bioluminescent influenza A virus infection in mice. Sci Rep 2022; 12:3152. [PMID: 35210462 PMCID: PMC8873407 DOI: 10.1038/s41598-022-06667-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/04/2022] [Indexed: 01/13/2023] Open
Abstract
Despite the availability of vaccines and antiviral therapies, seasonal influenza infections cause 400,000 human deaths on average per year. Low vaccine coverage and the occurrence of drug-resistant viral strains highlight the need for new and improved countermeasures. While influenza A virus (IAV) engineered to express a reporter gene may serve as a valuable tool for real-time tracking of viral infection, reporter gene insertion into IAV typically attenuates viral pathogenicity, hindering its application to research. Here, we demonstrate that lethal or even sublethal doses of bioluminescent IAV carrying the NanoLuc gene in the C-terminus of PB2 can be tracked in real-time in live mice without compromising pathogenicity. Real-time tracking of this bioluminescent IAV enables spatiotemporal viral replication tracking in animals that will facilitate the development of countermeasures by enhancing the interpretation of clinical signs and prognosis while also allowing less animal usage.
Collapse
Affiliation(s)
- Jin H Kim
- Department of Microbiology and Immunology, College of Medicine, University of South Alabama, Mobile, AL, 36688, USA. .,Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, AL, 36688, USA.
| | - Hannah Bryant
- Department of Comparative Medicine, College of Medicine, University of South Alabama, Mobile, AL, 36688, USA
| | - Edward Fiedler
- Department of Microbiology and Immunology, College of Medicine, University of South Alabama, Mobile, AL, 36688, USA
| | - TuAnh Cao
- Department of Microbiology and Immunology, College of Medicine, University of South Alabama, Mobile, AL, 36688, USA
| | - Jonathan O Rayner
- Department of Microbiology and Immunology, College of Medicine, University of South Alabama, Mobile, AL, 36688, USA
| |
Collapse
|
11
|
Liu J, Su M, Chen X, Li Z, Fang Z, Yi L. Lipid-mediated biosynthetic labeling strategy for in vivo dynamic tracing of avian influenza virus infection. J Biomater Appl 2022; 36:1689-1699. [PMID: 34996310 DOI: 10.1177/08853282211063298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Monitoring the infection behavior of avian influenza viruses is crucial for understanding viral pathogenesis and preventing its epidemics among people. A number of viral labeling methods have been utilized for tracking viral infection process, but most of them are laborious or decreasing viral activity. Herein we explored a lipid biosynthetic labeling strategy for dynamical tracking the infection of H5N1 pseudotype virus (H5N1p) in host. Biotinylated lipids (biotinyl Cap-PE) were successfully incorporated into viral envelope when it underwent budding process by taking advantage of host cell-derived lipid metabolism. Biotin-H5N1p virus was effectively in situ-labeled with streptavidin-modified near-infrared quantum dots (NIR SA-QDs) using streptavidin-biotin conjugation with well-preserved virus activities. Dual-labeled imaging obviously shows that H5N1p viruses are primarily taken up in host cells via clathrin-mediated endocytosis. In animal models, Virus-conjugated NIR QDs displayed extraordinary photoluminescence, superior stability, and tissue penetration in lung, allowing us to long-term monitor respiratory viral infection in a noninvasive manner. Importantly, the co-localization of viral hemagglutinin protein and QDs in infected lung further conformed the dynamic infection process of virus in vivo. Hence, this in situ QD-labeling strategy based on cell natural biosynthesis provides a brand-new and reliable tool for noninvasion visualizing viral infection in body in a real-time manner.
Collapse
Affiliation(s)
- Junfang Liu
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, 70570Southern Medical University, Guangzhou, China
| | - Minhong Su
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, 70570Southern Medical University, Guangzhou, China
| | - Xin Chen
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, 70570Southern Medical University, Guangzhou, China
| | - Zhongli Li
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, 70570Southern Medical University, Guangzhou, China
| | - Zekui Fang
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, 70570Southern Medical University, Guangzhou, China
| | - Li Yi
- Special Medical Service Center, Zhujiang Hospital, 70570Southern Medical University, Guangzhou, China
| |
Collapse
|
12
|
Chiem K, Nogales A, Martinez-Sobrido L. Generation, Characterization, and Applications of Influenza A Reporter Viruses. Methods Mol Biol 2022; 2524:249-268. [PMID: 35821477 DOI: 10.1007/978-1-0716-2453-1_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Secondary experimental procedures such as immunostaining have been utilized to study wild-type influenza A viruses (IAV) but are inadequate to rapidly determine the virus in infected cells or for the high-throughput screening (HTS) of antivirals or neutralizing antibodies. Reverse genetics approaches have allowed the generation of recombinant IAV expressing bioluminescent (BL) reporters or fluorescent proteins (FPs). These approaches can easily track viral infections in cultured cells and in validated animal models of infection using in vivo imaging systems (IVIS). Here, we describe the experimental procedures to generate recombinant monomeric (m)Cherry-expressing influenza A/Puerto Rico/8/34 (PR8-mCherry) H1N1 by altering the non-structural (NS) vRNA segment and its use in mCherry-based microneutralization assays to assess antivirals and neutralizing antibodies. The experimental procedures could be used for the generation of other recombinant influenza virus types (e.g., influenza B) or IAV subtypes (e.g., H3N2) expressing mCherry or other BL reporters or FPs from the NS or other vRNA segment. These recombinant reporter-expressing viruses represent an excellent toolbox for the identification of prophylactics or therapeutics for the treatment of influenza viral infections in HTS settings as well as to study different aspects related with the biology of influenza viruses and/or its interaction with the host.
Collapse
Affiliation(s)
- Kevin Chiem
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Aitor Nogales
- Center for Animal Health Research, INIA-CISA/CSIC, Madrid, Spain.
| | - Luis Martinez-Sobrido
- Texas Biomedical Research Institute, San Antonio, TX, USA.
- Department of Internal Research, Texas Biomedical Research Institute, San Antonio, TX, USA.
| |
Collapse
|
13
|
Yamada K, Nishizono A. In Vivo Bioluminescent Imaging of Rabies Virus Infection and Evaluation of Antiviral Drug. Methods Mol Biol 2022; 2524:347-352. [PMID: 35821486 DOI: 10.1007/978-1-0716-2453-1_28] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In vivo bioluminescence imaging (BLI) methods enable the longitudinal and semi-quantitative monitoring of viral replication dynamics in small animal models and, thus, are useful for examining viral pathogenesis and the effect of antiviral drugs. Here, we describe an in vivo BLI method to evaluate the efficacy of antiviral drugs against rabies virus (RABV) infection in mice. We exemplify mice inoculated with recombinant RABV expressing red firefly luciferase and administered orally with the antiviral drug, favipiravir. For the imaging, mice are intraperitoneally administered with D-luciferin and placed in the dark chamber of an imaging system. The BL images are captured using a highly sensitive charge-coupled device camera. Image data are processed and analyzed using image analysis software.
Collapse
Affiliation(s)
- Kentaro Yamada
- Department of Microbiology, Faculty of Medicine, Oita University, Oita, Japan
- Laboratory of Veterinary Public Health, Department of Veterinary Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Akira Nishizono
- Department of Microbiology, Faculty of Medicine, Oita University, Oita, Japan.
| |
Collapse
|
14
|
Chiem K, Lorenzo MM, Rangel-Moreno J, Garcia-Hernandez MDLL, Park JG, Nogales A, Blasco R, Martínez-Sobrido L. Bi-Reporter Vaccinia Virus for Tracking Viral Infections In Vitro and In Vivo. Microbiol Spectr 2021; 9:e0160121. [PMID: 34817228 PMCID: PMC8612144 DOI: 10.1128/spectrum.01601-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 10/27/2021] [Indexed: 12/17/2022] Open
Abstract
Recombinant viruses expressing reporter genes allow visualization and quantification of viral infections and can be used as valid surrogates to identify the presence of the virus in infected cells and animal models. However, one of the limitations of recombinant viruses expressing reporter genes is the use of either fluorescent or luciferase proteins that are used alternatively for different purposes. Vaccinia virus (VV) is widely used as a viral vector, including recombinant (r)VV singly expressing either fluorescent or luciferase reporter genes that are useful for specific purposes. In this report, we engineered two novel rVV stably expressing both fluorescent (Scarlet or GFP) and luciferase (Nluc) reporter genes from different loci in the viral genome. In vitro, these bi-reporter-expressing rVV have similar growth kinetics and plaque phenotype than those of the parental WR VV isolate. In vivo, rVV Nluc/Scarlet and rVV Nluc/GFP effectively infected mice and were easily detected using in vivo imaging systems (IVIS) and ex vivo in the lungs from infected mice. Importantly, we used these bi-reporter-expressing rVV to assess viral pathogenesis, infiltration of immune cells in the lungs, and to directly identify the different subsets of cells infected by VV in the absence of antibody staining. Collectively, these rVV expressing two reporter genes open the feasibility to study the biology of viral infections in vitro and in vivo, including host-pathogen interactions and dynamics or tropism of viral infections. IMPORTANCE Despite the eradication of variola virus (VARV), the causative agent of smallpox, poxviruses still represent an important threat to human health due to their possible use as bioterrorism agents and the emergence of zoonotic poxvirus diseases. Recombinant vaccinia viruses (rVV) expressing easily traceable fluorescent or luciferase reporter genes have significantly contributed to the progress of poxvirus research. However, rVV expressing one marker gene have several constraints for in vitro and in vivo studies, since both fluorescent and luciferase proteins impose certain limitations for specific applications. To overcome these limitations, we generated optimized rVV stably expressing both fluorescent (Scarlet or GFP) and luciferase (Nluc) reporter genes to easily track viral infection in vitro and in vivo. This new generation of double reporter-expressing rVV represent an excellent option to study viral infection dynamics in cultured cells and validated animal models of infection.
Collapse
Affiliation(s)
- Kevin Chiem
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, USA
- Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Maria M. Lorenzo
- Departamento de Biotecnología, Centro Nacional Instituto de Investigación y Tecnología Agraria y Alimentaria (INIA CSIC), Madrid, Spain
| | - Javier Rangel-Moreno
- Division of Allergy/Immunology and Rheumatology, Department of Medicine, University of Rochester, Rochester, New York, USA
| | | | - Jun-Gyu Park
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, USA
- Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Aitor Nogales
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, USA
- Animal Health Research Centre (CISA), Centro Nacional Instituto de Investigación y Tecnología Agraria y Alimentaria (INIA, CSIC), Madrid, Spain
| | - Rafael Blasco
- Departamento de Biotecnología, Centro Nacional Instituto de Investigación y Tecnología Agraria y Alimentaria (INIA CSIC), Madrid, Spain
| | - Luis Martínez-Sobrido
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, USA
- Texas Biomedical Research Institute, San Antonio, Texas, USA
| |
Collapse
|
15
|
Fang P, Zhang H, Sun H, Wang G, Xia S, Ren J, Zhang J, Tian L, Fang L, Xiao S. Construction, Characterization and Application of Recombinant Porcine Deltacoronavirus Expressing Nanoluciferase. Viruses 2021; 13:v13101991. [PMID: 34696421 PMCID: PMC8541611 DOI: 10.3390/v13101991] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/28/2021] [Accepted: 10/02/2021] [Indexed: 02/07/2023] Open
Abstract
Porcine deltacoronavirus (PDCoV), an emerging enteropathogenic coronavirus, causes diarrhoea in suckling piglets and has the potential for cross-species transmission. No effective PDCoV vaccines or antiviral drugs are currently available. Here, we successfully generated an infectious clone of PDCoV strain CHN-HN-2014 using a combination of bacterial artificial chromosome (BAC)-based reverse genetics system with a one-step homologous recombination. The recued virus (rCHN-HN-2014) possesses similar growth characteristics to the parental virus in vitro. Based on the established infectious clone and CRISPR/Cas9 technology, a PDCoV reporter virus expressing nanoluciferase (Nluc) was constructed by replacing the NS6 gene. Using two drugs, lycorine and resveratrol, we found that the Nluc reporter virus exhibited high sensibility and easy quantification to rapid antiviral screening. We further used the Nluc reporter virus to test the susceptibility of different cell lines to PDCoV and found that cell lines derived from various host species, including human, swine, cattle and monkey enables PDCoV replication, broadening our understanding of the PDCoV cell tropism range. Taken together, our reporter viruses are available to high throughput screening for antiviral drugs and uncover the infectivity of PDCoV in various cells, which will accelerate our understanding of PDCoV.
Collapse
Affiliation(s)
- Puxian Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (P.F.); (H.Z.); (H.S.); (G.W.); (S.X.); (J.R.); (J.Z.); (L.T.); (L.F.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Huichang Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (P.F.); (H.Z.); (H.S.); (G.W.); (S.X.); (J.R.); (J.Z.); (L.T.); (L.F.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - He Sun
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (P.F.); (H.Z.); (H.S.); (G.W.); (S.X.); (J.R.); (J.Z.); (L.T.); (L.F.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Gang Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (P.F.); (H.Z.); (H.S.); (G.W.); (S.X.); (J.R.); (J.Z.); (L.T.); (L.F.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Sijin Xia
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (P.F.); (H.Z.); (H.S.); (G.W.); (S.X.); (J.R.); (J.Z.); (L.T.); (L.F.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Jie Ren
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (P.F.); (H.Z.); (H.S.); (G.W.); (S.X.); (J.R.); (J.Z.); (L.T.); (L.F.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Jiansong Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (P.F.); (H.Z.); (H.S.); (G.W.); (S.X.); (J.R.); (J.Z.); (L.T.); (L.F.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Liyuan Tian
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (P.F.); (H.Z.); (H.S.); (G.W.); (S.X.); (J.R.); (J.Z.); (L.T.); (L.F.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (P.F.); (H.Z.); (H.S.); (G.W.); (S.X.); (J.R.); (J.Z.); (L.T.); (L.F.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (P.F.); (H.Z.); (H.S.); (G.W.); (S.X.); (J.R.); (J.Z.); (L.T.); (L.F.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, 1 Shi-zi-shan Street, Wuhan 430070, China
- Correspondence: ; Tel.: +86-27-8728-6884; Fax: +86-27-8728-2608
| |
Collapse
|
16
|
Uyar O, Plante PL, Piret J, Venable MC, Carbonneau J, Corbeil J, Boivin G. A novel bioluminescent herpes simplex virus 1 for in vivo monitoring of herpes simplex encephalitis. Sci Rep 2021; 11:18688. [PMID: 34548521 PMCID: PMC8455621 DOI: 10.1038/s41598-021-98047-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/26/2021] [Indexed: 11/22/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) is responsible for herpes simplex virus encephalitis (HSE), associated with a 70% mortality rate in the absence of treatment. Despite intravenous treatment with acyclovir, mortality remains significant, highlighting the need for new anti-herpetic agents. Herein, we describe a novel neurovirulent recombinant HSV-1 (rHSV-1), expressing the fluorescent tdTomato and Gaussia luciferase (Gluc) enzyme, generated by the Clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) (CRISPR-Cas9) system. The Gluc activity measured in the cell culture supernatant was correlated (P = 0.0001) with infectious particles, allowing in vitro monitoring of viral replication kinetics. A significant correlation was also found between brain viral titers and Gluc activity in plasma (R2 = 0.8510, P < 0.0001) collected from BALB/c mice infected intranasally with rHSV-1. Furthermore, evaluation of valacyclovir (VACV) treatment of HSE could also be performed by analyzing Gluc activity in mouse plasma samples. Finally, it was also possible to study rHSV-1 dissemination and additionally to estimate brain viral titers by in vivo imaging system (IVIS). The new rHSV-1 with reporter proteins is not only as a powerful tool for in vitro and in vivo antiviral screening, but can also be used for studying different aspects of HSE pathogenesis.
Collapse
Affiliation(s)
- Olus Uyar
- Research Center in Infectious Diseases, CHU de Québec-Laval University Research Center and Department of Pediatrics and Microbiology, Faculty of Medicine, Laval University, Quebec City, QC, Canada
| | - Pier-Luc Plante
- Research Center in Infectious Diseases, CHU de Québec-Laval University Research Center and Department of Molecular Medicine and Big Data Research Centre, Faculty of Medicine, Laval University, Quebec City, QC, Canada
| | - Jocelyne Piret
- Research Center in Infectious Diseases, CHU de Québec-Laval University Research Center and Department of Pediatrics and Microbiology, Faculty of Medicine, Laval University, Quebec City, QC, Canada
| | - Marie-Christine Venable
- Research Center in Infectious Diseases, CHU de Québec-Laval University Research Center and Department of Pediatrics and Microbiology, Faculty of Medicine, Laval University, Quebec City, QC, Canada
| | - Julie Carbonneau
- Research Center in Infectious Diseases, CHU de Québec-Laval University Research Center and Department of Pediatrics and Microbiology, Faculty of Medicine, Laval University, Quebec City, QC, Canada
| | - Jacques Corbeil
- Research Center in Infectious Diseases, CHU de Québec-Laval University Research Center and Department of Molecular Medicine and Big Data Research Centre, Faculty of Medicine, Laval University, Quebec City, QC, Canada
| | - Guy Boivin
- Research Center in Infectious Diseases, CHU de Québec-Laval University Research Center and Department of Pediatrics and Microbiology, Faculty of Medicine, Laval University, Quebec City, QC, Canada.
| |
Collapse
|
17
|
Dong HL, Wang HJ, Liu ZY, Ye Q, Qin XL, Li D, Deng YQ, Jiang T, Li XF, Qin CF. Visualization of yellow fever virus infection in mice using a bioluminescent reporter virus. Emerg Microbes Infect 2021; 10:1739-1750. [PMID: 34379047 PMCID: PMC8425728 DOI: 10.1080/22221751.2021.1967705] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Yellow fever virus (YFV) is a re-emerging flavivirus, which can lead to severe clinical manifestations and high mortality, with no specific antiviral therapies available. The live-attenuated yellow fever vaccine 17D (YF17D) has been widely used for over eighty years. However, the emergence of yellow fever vaccine-associated viscerotropic disease (YFL-AVD) and yellow fever vaccine-associated neurotropic disease (YFL-AND) raised non-negligible concerns. Additionally, the attenuation mechanism of YF17D is still unclear. Thus, the development of convenient models is crucial to understand the mechanisms behind YF17D attenuation and its adverse effects. In this work, we generated a reporter YF17D expressing nano-luciferase (NLuc). In vitro and in vivo characterization demonstrated that the NLuc-YF17D shared similar biological properties with its parental strain and the NLuc activity can reflect viral infectivity reliably. Combined with in vivo bioluminescence imaging, a series of mice models of YF17D infection was established, which will be useful for the evaluation of antiviral medicines and novel vaccine candidates. Especially, we demonstrated that intraperitoneally (i.p.) infection of NLuc-YF17D in type I interferon receptor-deficient mice A129 resulted in outcomes resembling YEL-AVD and YEL-AND, evidenced by viral replication in multiple organs and invasion of the central neuronal system. Finally, in vitro and in vivo assays based on this reporter virus were established to evaluate the antiviral activities of validated antiviral agents. In conclusion, the bioluminescent reporter virus described herein provides a powerful platform to study YF17D attenuation and vaccine-associated diseases as well as to develop novel countermeasures against YFV.
Collapse
Affiliation(s)
- Hao-Long Dong
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, People's Republic of China
| | - Hong-Jiang Wang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, People's Republic of China.,Department of Comprehensive Basic Experiment, The Chinese People's Liberation Army Strategic Support Force Characteristic Medical Center, Beijing, People's Republic of China
| | - Zhong-Yu Liu
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, People's Republic of China.,The Center for Infection and Immunity Studies, School of Medicine, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Qing Ye
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, People's Republic of China
| | - Xiao-Ling Qin
- Research Unit of Discovery and Tracing of Natural Focus Diseases, Chinese Academy of Medical Sciences, Beijing, People's Republic of China.,Department of Medicine and Health, Guangxi Vocational and Technical Institute of industry, Nanning, People's Republic of China
| | - Dan Li
- The Center for Infection and Immunity Studies, School of Medicine, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yong-Qiang Deng
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, People's Republic of China
| | - Tao Jiang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, People's Republic of China
| | - Xiao-Feng Li
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, People's Republic of China.,Department of Pharmacology, Chinese Academy of Medical Sciences, Beijing, Republic of China
| | - Cheng-Feng Qin
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, People's Republic of China.,Research Unit of Discovery and Tracing of Natural Focus Diseases, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| |
Collapse
|
18
|
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the pathogen responsible of coronavirus disease 2019 (COVID-19), has devastated public health services and economies worldwide. Despite global efforts to contain the COVID-19 pandemic, SARS-CoV-2 is now found in over 200 countries and has caused an upward death toll of over 1 million human lives as of November 2020. To date, only one Food and Drug Administration (FDA)-approved therapeutic drug (Remdesivir) and a monoclonal antibody, MAb (Bamlanivimab) are available for the treatment of SARS-CoV-2. As with other viruses, studying SARS-CoV-2 requires the use of secondary approaches to detect the presence of the virus in infected cells. To overcome this limitation, we have generated replication-competent recombinant (r)SARS-CoV-2 expressing fluorescent (Venus or mCherry) or bioluminescent (Nluc) reporter genes. Vero E6 cells infected with reporter-expressing rSARS-CoV-2 can be easily detected via fluorescence or luciferase expression and display a good correlation between reporter gene expression and viral replication. Moreover, rSARS-CoV-2 expressing reporter genes have comparable plaque sizes and growth kinetics to those of wild-type virus, rSARS-CoV-2/WT. We used these reporter-expressing rSARS-CoV-2 to demonstrate their feasibility to identify neutralizing antibodies (NAbs) or antiviral drugs. Our results demonstrate that reporter-expressing rSARS-CoV-2 represent an excellent option to identify therapeutics for the treatment of SARS-CoV-2, where reporter gene expression can be used as valid surrogates to track viral infection. Moreover, the ability to manipulate the viral genome opens the feasibility of generating viruses expressing foreign genes for their use as vaccines for the treatment of SARS-CoV-2 infection.IMPORTANCE Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the pathogen that causes coronavirus disease 2019 (COVID-19), has significantly impacted the human health and economic status worldwide. There is an urgent need to identify effective prophylactics and therapeutics for the treatment of SARS-CoV-2 infection and associated COVID-19 disease. The use of fluorescent- or luciferase-expressing reporter expressing viruses has significantly advanced viral research. Here, we generated recombinant (r)SARS-CoV-2 expressing fluorescent (Venus and mCherry) or luciferase (Nluc) reporter genes and demonstrate that they represent an excellent option to track viral infections in vitro. Importantly, reporter-expressing rSARS-CoV-2 display similar growth kinetics and plaque phenotype that their wild-type counterpart (rSARS-CoV-2/WT), demonstrating their feasibility to identify drugs and/or neutralizing antibodies (NAbs) for the therapeutic treatment of SARS-CoV-2. Henceforth, these reporter-expressing rSARS-CoV-2 can be used to interrogate large libraries of compounds and/or monoclonal antibodies (MAb), in high-throughput screening settings, to identify those with therapeutic potential against SARS-CoV-2.
Collapse
|
19
|
Ryan LK, Hise AG, Hossain CM, Ruddick W, Parveen R, Freeman KB, Weaver DG, Narra HP, Scott RW, Diamond G. A Novel Immunocompetent Mouse Model for Testing Antifungal Drugs Against Invasive Candida albicans Infection. J Fungi (Basel) 2020; 6:E197. [PMID: 33007818 PMCID: PMC7712810 DOI: 10.3390/jof6040197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/22/2020] [Accepted: 09/28/2020] [Indexed: 12/12/2022] Open
Abstract
Disseminated infection by Candida species represents a common, often life-threatening condition. Increased resistance to current antifungal drugs has led to an urgent need to develop new antifungal drugs to treat this pathogen. However, in vivo screening of candidate antifungal compounds requires large numbers of animals and using immunosuppressive agents to allow for fungal dissemination. To increase the efficiency of screening, to use fewer mice, and to remove the need for immunosuppressive agents, which may interfere with the drug candidates, we tested the potential for a novel approach using in vivo imaging of a fluorescent strain of Candida albicans, in a mouse strain deficient in the host defense peptide, murine β-defensin 1 (mBD-1). We developed a strain of C. albicans that expresses red fluorescent protein (RFP), which exhibits similar infectivity to the non-fluorescent parent strain. When this strain was injected into immunocompetent mBD-1-deficient mice, we observed a non-lethal disseminated infection. Further, we could quantify its dissemination in real time, and observe the activity of an antifungal peptide mimetic drug by in vivo imaging. This novel method will allow for the rapid in vivo screening of antifungal drugs, using fewer mice, and increase the efficiency of testing new antifungal agents.
Collapse
Affiliation(s)
- Lisa K. Ryan
- Division of Infectious Disease and Global Medicine, Department of Medicine, University of Florida College of Medicine, Gainesville, FL 32610, USA;
| | - Amy G Hise
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA;
- Medicine Service, Louis Stokes Cleveland VA Medical Center, Cleveland, OH 44106, USA
| | - Chowdhury Mobaswar Hossain
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL 32610, USA; (C.M.H.); (W.R.); (R.P.)
| | - William Ruddick
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL 32610, USA; (C.M.H.); (W.R.); (R.P.)
| | - Rezwana Parveen
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL 32610, USA; (C.M.H.); (W.R.); (R.P.)
| | - Katie B. Freeman
- Fox Chase Chemical Diversity Center, Inc., Pennsylvania Biotechnology Center, Doylestown, PA 18902, USA; (K.B.F.); (D.G.W.); (R.W.S.)
| | - Damian G. Weaver
- Fox Chase Chemical Diversity Center, Inc., Pennsylvania Biotechnology Center, Doylestown, PA 18902, USA; (K.B.F.); (D.G.W.); (R.W.S.)
| | - Hema P. Narra
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA;
| | - Richard W. Scott
- Fox Chase Chemical Diversity Center, Inc., Pennsylvania Biotechnology Center, Doylestown, PA 18902, USA; (K.B.F.); (D.G.W.); (R.W.S.)
| | - Gill Diamond
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL 32610, USA; (C.M.H.); (W.R.); (R.P.)
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40902, USA
| |
Collapse
|
20
|
Wang T, Li P, Zhang Y, Liu Y, Tan Z, Sun J, Ke X, Miao Y, Luo D, Hu Q, Xu F, Wang H, Zheng Z. In vivo imaging of Zika virus reveals dynamics of viral invasion in immune-sheltered tissues and vertical propagation during pregnancy. Am J Cancer Res 2020; 10:6430-6447. [PMID: 32483462 PMCID: PMC7255039 DOI: 10.7150/thno.43177] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 05/01/2020] [Indexed: 12/11/2022] Open
Abstract
Rationale: Zika virus (ZIKV) is a pathogenic virus known to cause a wide range of congenital abnormalities, including microcephaly, Guillain-Barre syndrome, meningoencephalitis, and other neurological complications, in humans. This study investigated the noninvasive detection of ZIKV infection in vivo, which is necessary for elucidating the virus's mechanisms of viral replication and pathogenesis, as well as to accelerate the development of anti-ZIKV therapeutic strategies. Methods: In this study, a recombinant ZIKV harbouring Nluc gene (ZIKV-Nluc) was designed, recovered, and purified. The levels of bioluminescence were directly correlated with viral loads in vitro and in vivo. The dynamics of ZIKV infection in A129 (interferon (IFN)-α/β receptor deficient), AG6 (IFN-α/β and IFN-γ receptor deficient), and C57BL/6 mice were characterized. Pregnant dams were infected with ZIKV-Nluc at E10 via intra footpad injection. Then, the pooled immune sera (anti-ZIKV neutralizing antibodies) #22-1 in ZIKV-Nluc virus-infected mice were visualized. Results: ZIKV-Nluc showed a high genetic stability and replicated well in cells with similar properties to the wild-type ZIKV (ZIKVwt). Striking bioluminescence signals were consistently observed in animal organs, including spleen, intestine, testis, uterus/ovary, and kidney. The ileocecal junction was found to be the crucial visceral target. Infection of pregnant dams with ZIKV-Nluc showed that ZIKV was capable of crossing the maternal-fetal barrier to infect the fetuses via vertical transmission. Furthermore, it was visualized that treatment with the pooled immune sera was found to greatly restrict the spread of the ZIKV-Nluc virus in mice. Conclusions: This study is the first to report the real-time noninvasive tracking of the progression of ZIKV invading immune-sheltered tissues and propagating vertically during pregnancy. The results demonstrate that ZIKV-Nluc represents a powerful tool for the study of the replication, dissemination, pathogenesis, and treatment of ZIKV in vitro and in vivo.
Collapse
|
21
|
Fluorescent Crimean-Congo hemorrhagic fever virus illuminates tissue tropism patterns and identifies early mononuclear phagocytic cell targets in Ifnar-/- mice. PLoS Pathog 2019; 15:e1008183. [PMID: 31790513 PMCID: PMC6984736 DOI: 10.1371/journal.ppat.1008183] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 01/27/2020] [Accepted: 11/01/2019] [Indexed: 12/14/2022] Open
Abstract
Crimean-Congo hemorrhagic fever virus (CCHFV, order Bunyavirales, family Nairoviridae, genus Orthonairovirus) is the tick-borne etiological agent of Crimean-Congo hemorrhagic fever (CCHF) in humans. Animals are generally susceptible to CCHFV infection but refractory to disease. Small animal models are limited to interferon-deficient mice, that develop acute fatal disease following infection. Here, using a ZsGreen1- (ZsG) expressing reporter virus (CCHFV/ZsG), we examine tissue tropism and dissemination of virus in interferon-α/β receptor knock-out (Ifnar-/-) mice. We demonstrate that CCHFV/ZsG retains in vivo pathogenicity comparable to wild-type virus. Interestingly, despite high levels of viral RNA in all organs assessed, 2 distribution patterns of infection were observed by both fluorescence and immunohistochemistry (IHC), corresponding to the permissiveness of organ tissues. To further investigate viral dissemination and to temporally define cellular targets of CCHFV in vivo, mice were serially euthanized at different stages of disease. Flow cytometry was used to characterize CCHFV-associated alterations in hematopoietic cell populations and to classify infected cells in the blood, lymph node, spleen, and liver. ZsG signal indicated that mononuclear phagocytic cells in the lymphatic tissues were early targets of infection; in late-stage infection, overall, the highest levels of signal were detected in the liver, and ZsG was found in both antigen-presenting and lymphocyte cell populations. Human infection by tick-borne Crimean-Congo hemorrhagic fever virus (CCHFV) can result in severe disease with up to 30% case fatality rates. While CCHFV is known to be hepatotropic, the presence and implications of virus in other tissues are less clear. Furthermore, to date, early cellular targets of infection in a CCHFV disease model have not been investigated in detail. Here, using a recombinant reporter CCHFV expressing the fluorescent protein ZsGreen1 (ZsG; CCHFV/ZsG) in interferon-α/β receptor knock-out (Ifnar-/-) mice, which develop acute fatal disease following infection, we investigate both cellular and tissue targets of infection. Importantly, we find that CCHFV/ZsG infection demonstrated comparable pathogenicity to wild-type virus in Ifnar-/- mice. We used in situ visualization of fluorescent signal in tissues to assess viral dissemination throughout the course of infection, and found robust viral signal in reproductive tissues, previously unrecognized as sites of CCHFV infection. We also used flow cytometry to detect intracellular fluorescent signal, and identified initial target cells of CCHFV infection as macrophage and monocyte populations in lymphatic tissues. These findings support a central role of immune cells in early virus dissemination, and a need for further investigations into reproductive tract involvement in human CCHFV infection.
Collapse
|
22
|
Abstract
Viruses are causative agents for many diseases and infect all living organisms on the planet. Development of effective therapies has relied on our ability to isolate and culture viruses in vitro, allowing mechanistic studies and strategic interventions. While this reductionist approach is necessary, testing the relevance of in vitro findings often takes a very long time. New developments in imaging technologies are transforming our experimental approach where viral pathogenesis can be studied in vivo at multiple spatial and temporal resolutions. Here, we outline a vision of a top-down approach using noninvasive whole-body imaging as a guide for in-depth characterization of key tissues, physiologically relevant cell types, and pathways of spread to elucidate mechanisms of virus spread and pathogenesis. Tool development toward imaging of infectious diseases is expected to transform clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Pradeep D Uchil
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut 06510, USA; , , ,
| | - Kelsey A Haugh
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut 06510, USA; , , ,
| | - Ruoxi Pi
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut 06510, USA; , , ,
| | - Walther Mothes
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut 06510, USA; , , ,
| |
Collapse
|
23
|
Nogales A, Ávila-Pérez G, Rangel-Moreno J, Chiem K, DeDiego ML, Martínez-Sobrido L. A Novel Fluorescent and Bioluminescent Bireporter Influenza A Virus To Evaluate Viral Infections. J Virol 2019; 93:e00032-19. [PMID: 30867298 PMCID: PMC6498038 DOI: 10.1128/jvi.00032-19] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/04/2019] [Indexed: 11/20/2022] Open
Abstract
Studying influenza A virus (IAV) requires the use of secondary approaches to detect the presence of virus in infected cells. To overcome this problem, we and others have generated recombinant IAV expressing fluorescent or luciferase reporter genes. These foreign reporter genes can be used as valid surrogates to track the presence of virus. However, the limited capacity for incorporating foreign sequences in the viral genome forced researchers to select a fluorescent or a luciferase reporter gene, depending on the type of study. To circumvent this limitation, we engineered a novel recombinant replication-competent bireporter IAV (BIRFLU) expressing both fluorescent and luciferase reporter genes. In cultured cells, BIRFLU displayed growth kinetics comparable to those of wild-type (WT) virus and was used to screen neutralizing antibodies or compounds with antiviral activity. The expression of two reporter genes allows monitoring of viral inhibition by fluorescence or bioluminescence, overcoming the limitations associated with the use of one reporter gene as a readout. In vivo, BIRFLU effectively infected mice, and both reporter genes were detected using in vivo imaging systems (IVIS). The ability to generate recombinant IAV harboring multiple foreign genes opens unique possibilities for studying virus-host interactions and for using IAV in high-throughput screenings (HTS) to identify novel antivirals that can be incorporated into the therapeutic armamentarium to control IAV infections. Moreover, the ability to genetically manipulate the viral genome to express two foreign genes offers the possibility of developing novel influenza vaccines and the feasibility for using recombinant IAV as vaccine vectors to treat other pathogen infections.IMPORTANCE Influenza A virus (IAV) causes a human respiratory disease that is associated with significant health and economic consequences. In recent years, the use of replication-competent IAV expressing an easily traceable fluorescent or luciferase reporter protein has significantly contributed to progress in influenza research. However, researchers have been forced to select a fluorescent or a luciferase reporter gene due to the restricted capacity of the influenza viral genome for including foreign sequences. To overcome this limitation, we generated, for the first time, a recombinant replication-competent bireporter IAV (BIRFLU) that stably expresses two reporter genes (one fluorescent and one luciferase) to track IAV infections in vitro and in vivo The combination of cutting-edge techniques from molecular biology, animal research, and imaging technologies brings researchers the unique opportunity to use this new generation of reporter-expressing IAV to study viral infection dynamics in both cultured cells and animal models of viral infection.
Collapse
Affiliation(s)
- Aitor Nogales
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, USA
- Center for Animal Health Research, INIA-CISA, Madrid, Spain
| | - Gines Ávila-Pérez
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, USA
| | - Javier Rangel-Moreno
- Division of Allergy/Immunology and Rheumatology, Department of Medicine, University of Rochester, Rochester, New York, USA
| | - Kevin Chiem
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, USA
| | - Marta L DeDiego
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Luis Martínez-Sobrido
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, USA
| |
Collapse
|
24
|
Bhide Y, Dong W, Gribonika I, Voshart D, Meijerhof T, de Vries-Idema J, Norley S, Guilfoyle K, Skeldon S, Engelhardt OG, Boon L, Christensen D, Lycke N, Huckriede A. Cross-Protective Potential and Protection-Relevant Immune Mechanisms of Whole Inactivated Influenza Virus Vaccines Are Determined by Adjuvants and Route of Immunization. Front Immunol 2019; 10:646. [PMID: 30984200 PMCID: PMC6450434 DOI: 10.3389/fimmu.2019.00646] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 03/11/2019] [Indexed: 12/27/2022] Open
Abstract
Adjuvanted whole inactivated virus (WIV) influenza vaccines show promise as broadly protective influenza vaccine candidates. Using WIV as basis we assessed the relative efficacy of different adjuvants by carrying out a head-to-head comparison of the liposome-based adjuvants CAF01 and CAF09 and the protein-based adjuvants CTA1-DD and CTA1-3M2e-DD and evaluated whether one or more of the adjuvants could induce broadly protective immunity. Mice were immunized with WIV prepared from A/Puerto Rico/8/34 (H1N1) virus intramuscularly with or without CAF01 or intranasally with or without CAF09, CTA1-DD, or CTA1-3M2e-DD, followed by challenge with homologous, heterologous or heterosubtypic virus. In general, intranasal immunizations were significantly more effective than intramuscular immunizations in inducing virus-specific serum-IgG, mucosal-IgA, and splenic IFNγ-producing CD4 T cells. Intranasal immunizations with adjuvanted vaccines afforded strong cross-protection with milder clinical symptoms and better control of virus load in lungs. Mechanistic studies indicated that non-neutralizing IgG antibodies and CD4 T cells were responsible for the improved cross-protection while IgA antibodies were dispensable. The role of CD4 T cells was particularly pronounced for CTA1-3M2e-DD adjuvanted vaccine as evidenced by CD4 T cell-dependent reduction of lung virus titers and clinical symptoms. Thus, intranasally administered WIV in combination with effective mucosal adjuvants appears to be a promising broadly protective influenza vaccine candidate.
Collapse
Affiliation(s)
- Yoshita Bhide
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Wei Dong
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Inta Gribonika
- Department of Microbiology and Immunology, Institute of Biomedicine, Gothenburg University, Gothenburg, Sweden
| | - Daniëlle Voshart
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Tjarko Meijerhof
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Jacqueline de Vries-Idema
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Stephen Norley
- Department of Infectious Diseases, Robert Koch Institute, Berlin, Germany
| | - Kate Guilfoyle
- Division of Virology, National Institute for Biological Standards and Control (NIBSC), Medicines and Healthcare products Regulatory Agency (MHRA), Potters Bar, United Kingdom
| | - Sarah Skeldon
- Division of Virology, National Institute for Biological Standards and Control (NIBSC), Medicines and Healthcare products Regulatory Agency (MHRA), Potters Bar, United Kingdom
| | - Othmar G Engelhardt
- Division of Virology, National Institute for Biological Standards and Control (NIBSC), Medicines and Healthcare products Regulatory Agency (MHRA), Potters Bar, United Kingdom
| | | | - Dennis Christensen
- Adjuvant Research, Department of Infectious Diseases Immunology, Statens Serum Institut (SSI), Copenhagen, Denmark
| | - Nils Lycke
- Department of Microbiology and Immunology, Institute of Biomedicine, Gothenburg University, Gothenburg, Sweden
| | - Anke Huckriede
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
25
|
A Mechanism Underlying Attenuation of Recombinant Influenza A Viruses Carrying Reporter Genes. Viruses 2018; 10:v10120679. [PMID: 30513620 PMCID: PMC6316390 DOI: 10.3390/v10120679] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/27/2018] [Accepted: 11/27/2018] [Indexed: 12/29/2022] Open
Abstract
Influenza A viruses (IAV) carrying reporter genes provide a powerful tool to study viral infection and pathogenesis in vivo, however, incorporating a non-essential gene into the IAV genome often results in virus attenuation and genetic instability. Very few studies have systematically compared different reporter IAVs, and most optimization attempts seem to lack authentic directions. In this study, we evaluated the ratio of genome copies to the number of infectious unit of two reporter IAVs, PR8-NS1-Gluc and PR8-PB2-Gluc. As a result, PR8-NS1-Gluc and PR8-PB2-Gluc produced 41.4 and 3.8 genomes containing noninfectious particles respectively for every such particle produced by parental PR8 virus. RdRp assay demonstrated that modification of segment NS by inserting reporter genes can interfere with the replication competitive property of the corresponding vRNAs, and the balance of the 8 segments of the reporter IAVs were drastically impaired in infected cells. As a consequence, large amounts of NS-null noninfectious particles were produced during the PR8-NS1-Gluc packaging. In summary, we unravel a mechanism underlying attenuation of reporter IAVs, which suggests a new approach to restore infectivity and virulence by introducing extra mutations compensating for the impaired replication property of corresponding segments.
Collapse
|
26
|
Gallagher ME, Brooke CB, Ke R, Koelle K. Causes and Consequences of Spatial Within-Host Viral Spread. Viruses 2018; 10:E627. [PMID: 30428545 PMCID: PMC6267451 DOI: 10.3390/v10110627] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/08/2018] [Accepted: 11/10/2018] [Indexed: 02/07/2023] Open
Abstract
The spread of viral pathogens both between and within hosts is inherently a spatial process. While the spatial aspects of viral spread at the epidemiological level have been increasingly well characterized, the spatial aspects of viral spread within infected hosts are still understudied. Here, with a focus on influenza A viruses (IAVs), we first review experimental studies that have shed light on the mechanisms and spatial dynamics of viral spread within hosts. These studies provide strong empirical evidence for highly localized IAV spread within hosts. Since mathematical and computational within-host models have been increasingly used to gain a quantitative understanding of observed viral dynamic patterns, we then review the (relatively few) computational modeling studies that have shed light on possible factors that structure the dynamics of spatial within-host IAV spread. These factors include the dispersal distance of virions, the localization of the immune response, and heterogeneity in host cell phenotypes across the respiratory tract. While informative, we find in these studies a striking absence of theoretical expectations of how spatial dynamics may impact the dynamics of viral populations. To mitigate this, we turn to the extensive ecological and evolutionary literature on range expansions to provide informed theoretical expectations. We find that factors such as the type of density dependence, the frequency of long-distance dispersal, specific life history characteristics, and the extent of spatial heterogeneity are critical factors affecting the speed of population spread and the genetic composition of spatially expanding populations. For each factor that we identified in the theoretical literature, we draw parallels to its analog in viral populations. We end by discussing current knowledge gaps related to the spatial component of within-host IAV spread and the potential for within-host spatial considerations to inform the development of disease control strategies.
Collapse
Affiliation(s)
| | - Christopher B Brooke
- Department of Microbiology, University of Illinois at Urbana-Champaign, Champaign, IL 61801, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, IL 61801, USA.
| | - Ruian Ke
- T-6, Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | - Katia Koelle
- Department of Biology, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
27
|
Lin G, Li L, Panwar N, Wang J, Tjin SC, Wang X, Yong KT. Non-viral gene therapy using multifunctional nanoparticles: Status, challenges, and opportunities. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.07.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
28
|
Directed Evolution of an Influenza Reporter Virus To Restore Replication and Virulence and Enhance Noninvasive Bioluminescence Imaging in Mice. J Virol 2018; 92:JVI.00593-18. [PMID: 29899096 DOI: 10.1128/jvi.00593-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 06/06/2018] [Indexed: 02/06/2023] Open
Abstract
Reporter viruses provide a powerful tool to study infection, yet incorporating a nonessential gene often results in virus attenuation and genetic instability. Here, we used directed evolution of a luciferase-expressing pandemic H1N1 (pH1N1) 2009 influenza A virus in mice to restore replication kinetics and virulence, increase the bioluminescence signal, and maintain reporter gene expression. An unadapted pH1N1 virus with NanoLuc luciferase inserted into the 5' end of the PA gene segment grew to titers 10-fold less than those of the wild type in MDCK cells and in DBA/2 mice and was less virulent. For 12 rounds, we propagated DBA/2 lung samples with the highest bioluminescence-to-titer ratios. Every three rounds, we compared in vivo replication, weight loss, mortality, and bioluminescence. Mouse-adapted virus after 9 rounds (MA-9) had the highest relative bioluminescence signal and had wild-type-like fitness and virulence in DBA/2 mice. Using reverse genetics, we discovered fitness was restored in virus rPB2-MA9/PA-D479N by a combination of PA-D479N and PB2-E158G amino acid mutations and PB2 noncoding mutations C1161T and C1977T. rPB2-MA9/PA-D479N has increased mRNA transcription, which helps restore wild-type-like phenotypes in DBA/2 and BALB/c mice. Overall, the results demonstrate that directed evolution that maximizes foreign-gene expression while maintaining genetic stability is an effective method to restore wild-type-like in vivo fitness of a reporter virus. Virus rPB2-MA9/PA-D479N is expected to be a useful tool for noninvasive imaging of pH1N1 influenza virus infection and clearance while analyzing virus-host interactions and developing new therapeutics and vaccines.IMPORTANCE Influenza viruses contribute to 290,000 to 650,000 deaths globally each year. Infection is studied in mice to learn how the virus causes sickness and to develop new drugs and vaccines. During experiments, scientists have needed to euthanize groups of mice at different times to measure the amount of infectious virus in mouse tissues. By inserting a foreign gene that causes infected cells to light up, scientists could see infection spread in living mice. Unfortunately, adding an extra gene not needed by the virus slowed it down and made it weaker. Here, we used a new strategy to restore the fitness and lethality of an influenza reporter virus; we adapted it to mouse lungs and selected for variants that had the greatest light signal. The adapted virus can be used to study influenza virus infection, immunology, and disease in living mice. The strategy can also be used to adapt other viruses.
Collapse
|
29
|
Rudraraju R, Subbarao K. Passive immunization with influenza haemagglutinin specific monoclonal antibodies. Hum Vaccin Immunother 2018; 14:2728-2736. [PMID: 29985756 DOI: 10.1080/21645515.2018.1489947] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The isolation of broadly neutralising antibodies against the influenza haemagglutinin has spurred investigation into their clinical potential, and has led to advances in influenza virus biology and universal influenza vaccine development. Studies in animal models have been invaluable for demonstrating the prophylactic and therapeutic efficacy of broadly neutralising antibodies, for comparisons with antiviral drugs used as the standard of care, and for defining their mechanism of action and potential role in providing protection from airborne infection.
Collapse
Affiliation(s)
- Rajeev Rudraraju
- a WHO Collaborating Centre for Reference and Research on Influenza and the Department of Microbiology and Immunology , The Peter Doherty Institute for Infection and Immunity , Melbourne , Australia
| | - Kanta Subbarao
- a WHO Collaborating Centre for Reference and Research on Influenza and the Department of Microbiology and Immunology , The Peter Doherty Institute for Infection and Immunity , Melbourne , Australia
| |
Collapse
|
30
|
A Simple and Robust Approach for Evaluation of Antivirals Using a Recombinant Influenza Virus Expressing Gaussia Luciferase. Viruses 2018; 10:v10060325. [PMID: 29899269 PMCID: PMC6024319 DOI: 10.3390/v10060325] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/09/2018] [Accepted: 06/11/2018] [Indexed: 01/21/2023] Open
Abstract
Influenza A virus (IAV) causes seasonal epidemics and occasional but devastating pandemics, which are major public health concerns. Because the effectiveness of seasonal vaccines is highly variable and the currently available drugs are limited in their efficacy because of the emergence of drug resistance, there is an urgent need to develop novel antivirals. In this study, we characterized a recombinant IAV-carrying Gaussia luciferase (Gluc) gene and determined its potential as a tool for evaluating therapeutics. We demonstrated that this recombinant IAV is replication-competent in tissue culture and pathogenic in mice, although it is slightly attenuated compared to the parental virus. Luciferase expression correlated well with virus propagation both in vitro and in vivo, providing a simple measure for viral replication in tissue culture and in mouse lungs. To demonstrate the utility of this virus, ribavirin and oseltamivir phosphate were used to treat the IAV-infected cells and mice, and we observed the dose-dependent inhibition of viral replication by a luciferase assay. Moreover, the decreased luciferase expression in the infected lungs could predict the protective efficacy of antiviral interventions as early as day 2 post virus challenge. In summary, this study provides a new and quantitative approach to evaluate antivirals against IAV.
Collapse
|