1
|
Kiseleva E, Mikhailopulo K, Sviridov O. Detection of Salmonella by competitive ELISA of lipopolysaccharide secreted into the culture medium. Anal Biochem 2025; 697:115695. [PMID: 39455039 DOI: 10.1016/j.ab.2024.115695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/30/2024] [Accepted: 10/19/2024] [Indexed: 10/28/2024]
Abstract
Detection of Salmonella in food is topical due to known cases of salmonellosis epidemics. Immunochemical methods including ELISA are widely used for Salmonella detection. Traditionally, commercial ELISA kits are based on sandwich technique and detect lipopolysaccharide (LPS), which is considered to be the component of the outer membrane of Gram-negative bacteria. Our aim was elaboration of competitive ELISA test for Salmonella detection in food with improved parameters. It was shown that in the Salmonella culture after the standard sample preparation procedure LPS is present mainly outside cells as a component of outer membrane vesicles. Improved sample preparation procedure includes separation of bacteria from the medium and analysis of the medium, which increases analytical sensitivity. Immobilization of the bovine serum albumin (BSA)-LPS conjugate in microplate wells allows to obtain a more homogeneous coating than immobilization of LPS itself. Thus, we have developed test system for Salmonella detection in food by competitive ELISA of LPS secreted into the culture medium with the immobilized BSA-LPS conjugate and monoclonal antibodies (mAb) to LPS core in the liquid phase. New competitive ELISA test is high sensitive, give reproducible results, allows the detection of any Salmonella serotype and is important for the protection of human health.
Collapse
Affiliation(s)
- Elena Kiseleva
- Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus, Acad. Kuprevicha, 5/2, 220141, Minsk, Belarus.
| | - Konstantin Mikhailopulo
- Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus, Acad. Kuprevicha, 5/2, 220141, Minsk, Belarus
| | - Oleg Sviridov
- Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus, Acad. Kuprevicha, 5/2, 220141, Minsk, Belarus
| |
Collapse
|
2
|
Dehinwal R, Gopinath T, Smith RD, Ernst RK, Schifferli DM, Waldor MK, Marassi FM. A pH-sensitive motif in an outer membrane protein activates bacterial membrane vesicle production. Nat Commun 2024; 15:6958. [PMID: 39138228 PMCID: PMC11322160 DOI: 10.1038/s41467-024-51364-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 08/02/2024] [Indexed: 08/15/2024] Open
Abstract
Outer membrane vesicles (OMVs) produced by Gram-negative bacteria have key roles in cell envelope homeostasis, secretion, interbacterial communication, and pathogenesis. The facultative intracellular pathogen Salmonella Typhimurium increases OMV production inside the acidic vacuoles of host cells by changing expression of its outer membrane proteins and modifying the composition of lipid A. However, the molecular mechanisms that translate pH changes into OMV production are not completely understood. Here, we show that the outer membrane protein PagC promotes OMV production through pH-dependent interactions between its extracellular loops and surrounding lipopolysaccharide (LPS). Structural comparisons and mutational studies indicate that a pH-responsive amino acid motif in PagC extracellular loops, containing PagC-specific histidine residues, is crucial for OMV formation. Molecular dynamics simulations suggest that protonation of histidine residues leads to changes in the structure and flexibility of PagC extracellular loops and their interactions with the surrounding LPS, altering membrane curvature. Consistent with that hypothesis, mimicking acidic pH by mutating those histidine residues to lysine increases OMV production. Thus, our findings reveal a mechanism for sensing and responding to environmental pH and for control of membrane dynamics by outer membrane proteins.
Collapse
Affiliation(s)
- Ruchika Dehinwal
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, USA
- Department of Microbiology, Harvard Medical School, Howard Hughes Medical Institute, Boston, MA, USA
| | - Tata Gopinath
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Richard D Smith
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, MD, USA
| | - Robert K Ernst
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, MD, USA
| | - Dieter M Schifferli
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Matthew K Waldor
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, USA.
- Department of Microbiology, Harvard Medical School, Howard Hughes Medical Institute, Boston, MA, USA.
| | | |
Collapse
|
3
|
Peregrino ES, Castañeda-Casimiro J, Vázquez-Flores L, Estrada-Parra S, Wong-Baeza C, Serafín-López J, Wong-Baeza I. The Role of Bacterial Extracellular Vesicles in the Immune Response to Pathogens, and Therapeutic Opportunities. Int J Mol Sci 2024; 25:6210. [PMID: 38892397 PMCID: PMC11172497 DOI: 10.3390/ijms25116210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
Pathogenic bacteria have several mechanisms to evade the host's immune response and achieve an efficient infection. Bacterial extracellular vesicles (EVs) are a relevant cellular communication mechanism, since they can interact with other bacterial cells and with host cells. In this review, we focus on the EVs produced by some World Health Organization (WHO) priority Gram-negative and Gram-positive pathogenic bacteria; by spore-producing bacteria; by Mycobacterium tuberculosis (a bacteria with a complex cell wall); and by Treponema pallidum (a bacteria without lipopolysaccharide). We describe the classification and the general properties of bacterial EVs, their role during bacterial infections and their effects on the host immune response. Bacterial EVs contain pathogen-associated molecular patterns that activate innate immune receptors, which leads to cytokine production and inflammation, but they also contain antigens that induce the activation of B and T cell responses. Understanding the many effects of bacterial EVs on the host's immune response can yield new insights on the pathogenesis of clinically important infections, but it can also lead to the development of EV-based diagnostic and therapeutic strategies. In addition, since EVs are efficient activators of both the innate and the adaptive immune responses, they constitute a promising platform for vaccine development.
Collapse
Affiliation(s)
- Eliud S. Peregrino
- Posgrado en Inmunología, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), Mexico City 11340, Mexico; (E.S.P.); (J.C.-C.)
| | - Jessica Castañeda-Casimiro
- Posgrado en Inmunología, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), Mexico City 11340, Mexico; (E.S.P.); (J.C.-C.)
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), Mexico City 11340, Mexico; (S.E.-P.); (J.S.-L.)
| | - Luis Vázquez-Flores
- Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), Mexico City 11340, Mexico; (L.V.-F.); (C.W.-B.)
| | - Sergio Estrada-Parra
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), Mexico City 11340, Mexico; (S.E.-P.); (J.S.-L.)
| | - Carlos Wong-Baeza
- Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), Mexico City 11340, Mexico; (L.V.-F.); (C.W.-B.)
| | - Jeanet Serafín-López
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), Mexico City 11340, Mexico; (S.E.-P.); (J.S.-L.)
| | - Isabel Wong-Baeza
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), Mexico City 11340, Mexico; (S.E.-P.); (J.S.-L.)
| |
Collapse
|
4
|
Luo M, Li S, Yang Y, Sun J, Su Y, Huang D, Feng X, Zhang H, Qi Q. Effects of Salmonella Outer Membrane Vesicles on Intestinal Microbiota and Intestinal Barrier Function. Foodborne Pathog Dis 2024; 21:257-267. [PMID: 38215267 DOI: 10.1089/fpd.2023.0096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2024] Open
Abstract
Salmonella enterica is one of the most important zoonotic pathogens causing foodborne gastroenteritis worldwide. Outer membrane vesicles (OMVs) are lipid-bilayer vesicles produced by Gram-negative bacteria, which contain biologically active components. We hypothesized that OMVs are an important weapon of S. enterica to initiate enteric diseases pathologies. In this study, the effects of S. enterica OMVs (SeOMVs) on intestinal microbiota and intestinal barrier function were investigated. In vitro fecal culture experiments showed that alpha diversity indexes and microbiota composition were altered by SeOMV supplementation. SeOMV supplementation showed an increase of pH, a decrease of OD630 and total short chain fatty acid (SCFA) concentrations. In vitro IPEC-J2 cells culture experiments showed that SeOMV supplementation did not affect the IPEC-J2 cell viability and the indicated genes expression. In vivo experiments in mice showed that SeOMVs had adverse effects on average daily gain (p < 0.05) and feed:gain ratio (p < 0.05), and had a tendency to decrease the final body weight (p = 0.073) in mice. SeOMV administration decreased serum interleukin-10 level (p < 0.05), decreased the relative abundance of bacteria belonging to the genera BacC-u-018 and Akkermansia (p < 0.05). Furthermore, SeOMV administration damaged the ileum mucosa (p < 0.05). These findings suggest that SeOMVs play an important role in the activation of intestinal inflammatory response induced by S. enterica, and downregulation of SCFA-producing bacteria is a possible mechanism.
Collapse
Affiliation(s)
- Meiying Luo
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Suqian Li
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Yang Yang
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Junhang Sun
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Yuman Su
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Dechun Huang
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Xin Feng
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Huihua Zhang
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Qien Qi
- School of Life Science and Engineering, Foshan University, Foshan, China
| |
Collapse
|
5
|
Lei EK, Azmat A, Henry KA, Hussack G. Outer membrane vesicles as a platform for the discovery of antibodies to bacterial pathogens. Appl Microbiol Biotechnol 2024; 108:232. [PMID: 38396192 PMCID: PMC10891261 DOI: 10.1007/s00253-024-13033-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024]
Abstract
Bacterial outer membrane vesicles (OMVs) are nanosized spheroidal particles shed by gram-negative bacteria that contain biomolecules derived from the periplasmic space, the bacterial outer membrane, and possibly other compartments. OMVs can be purified from bacterial culture supernatants, and by genetically manipulating the bacterial cells that produce them, they can be engineered to harbor cargoes and/or display molecules of interest on their surfaces including antigens that are immunogenic in mammals. Since OMV bilayer-embedded components presumably maintain their native structures, OMVs may represent highly useful tools for generating antibodies to bacterial outer membrane targets. OMVs have historically been utilized as vaccines or vaccine constituents. Antibodies that target bacterial surfaces are increasingly being explored as antimicrobial agents either in unmodified form or as targeting moieties for bactericidal compounds. Here, we review the properties of OMVs, their use as immunogens, and their ability to elicit antibody responses against bacterial antigens. We highlight antigens from bacterial pathogens that have been successfully targeted using antibodies derived from OMV-based immunization and describe opportunities and limitations for OMVs as a platform for antimicrobial antibody development. KEY POINTS: • Outer membrane vesicles (OMVs) of gram-negative bacteria bear cell-surface molecules • OMV immunization allows rapid antibody (Ab) isolation to bacterial membrane targets • Review and analysis of OMV-based immunogens for antimicrobial Ab development.
Collapse
Affiliation(s)
- Eric K Lei
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada
| | - Aruba Azmat
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada
| | - Kevin A Henry
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Greg Hussack
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada.
| |
Collapse
|
6
|
Sadeghi L, Mohit E, Moallemi S, Ahmadi FM, Bolhassani A. Recent advances in various bio-applications of bacteria-derived outer membrane vesicles. Microb Pathog 2023; 185:106440. [PMID: 37931826 DOI: 10.1016/j.micpath.2023.106440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 10/12/2023] [Accepted: 11/02/2023] [Indexed: 11/08/2023]
Abstract
Outer membrane vesicles (OMVs) are spherical nanoparticles released from gram-negative bacteria. OMVs were originally classified into native 'nOMVs' (produced naturally from budding of bacteria) and non-native (produced by mechanical means). nOMVs and detergent (dOMVs) are isolated from cell supernatant without any detergent cell disruption techniques and through detergent extraction, respectively. Growth stages and conditions e.g. different stress factors, including temperature, nutrition deficiency, and exposure to hazardous chemical agents can affect the yield of OMVs production and OMVs content. Because of the presence of bacterial antigens, pathogen-associated molecular patterns (PAMPs), various proteins and the vesicle structure, OMVs have been developed in many biomedical applications. OMVs due to their size can be phagocytized by APCs, enter lymph vessels, transport antigens efficiently, and induce both T and B cells immune responses. Non-engineered OMVs have been frequently used as vaccines against different bacterial and viral infections, and various cancers. OMVs can also be used in combination with different antigens as an attractive vaccine adjuvant. Indeed, foreign antigens from target microorganisms can be trapped in the lumen of nonpathogenic vesicles or can be displayed on the surface through bacterial membrane protein to increase the immunogenicity of the antigens. In this review, different factors affecting OMV production including time of cultivation, growth media, stress conditions and genetic manipulations to enhance vesiculation will be described. Furthermore, recent advances in various biological applications of OMVs such as vaccine, drug delivery, cancer therapy, and enzyme carrier are discussed. Generally, the application of OMVs as vaccine carrier in three categories (i.e., non-engineered OMVs, OMVs as an adjuvant, recombinant OMVs (rOMVs)), as delivery system for small interfering RNA and therapeutic agents, and as enzymes carrier will be discussed.
Collapse
Affiliation(s)
- Leila Sadeghi
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Elham Mohit
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Samaneh Moallemi
- School of Biomedical Sciences, Faculty of Medicine, UNSW Sydney, NSW, 2052, Australia
| | | | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
7
|
Sun D, Chen P, Xi Y, Sheng J. From trash to treasure: the role of bacterial extracellular vesicles in gut health and disease. Front Immunol 2023; 14:1274295. [PMID: 37841244 PMCID: PMC10570811 DOI: 10.3389/fimmu.2023.1274295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/14/2023] [Indexed: 10/17/2023] Open
Abstract
Bacterial extracellular vesicles (BEVs) have emerged as critical factors involved in gut health regulation, transcending their traditional roles as byproducts of bacterial metabolism. These vesicles function as cargo carriers and contribute to various aspects of intestinal homeostasis, including microbial balance, antimicrobial peptide secretion, physical barrier integrity, and immune system activation. Therefore, any imbalance in BEV production can cause several gut-related issues including intestinal infection, inflammatory bowel disease, metabolic dysregulation, and even cancer. BEVs derived from beneficial or commensal bacteria can act as potent immune regulators and have been implicated in maintaining gut health. They also show promise for future clinical applications in vaccine development and tumor immunotherapy. This review examines the multifaceted role of BEVs in gut health and disease, and also delves into future research directions and potential applications.
Collapse
Affiliation(s)
- Desen Sun
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, China
| | - Pan Chen
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, China
| | - Yang Xi
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, China
| | - Jinghao Sheng
- Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
8
|
ARIBAM SD, NAKAYAMA M, OGAWA Y, SHIMOJI Y, EGUCHI M. Outer membrane protein BamA-based ELISA differentiates Salmonella-vaccinated chickens from naturally infected chickens. J Vet Med Sci 2023; 85:809-812. [PMID: 37316287 PMCID: PMC10466062 DOI: 10.1292/jvms.23-0133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 06/06/2023] [Indexed: 06/16/2023] Open
Abstract
Salmonella often causes subclinical infection in chickens, but antibody tests can find infected individuals and control the spread of infection. In this study, the S. Typhimurium-specific outer membrane, β-barrel assembly machinery protein A (BamA), was overexpressed in Escherichia coli and purified as a coating antigen to develop a BamA-based enzyme-linked immuno sorbent assay for detecting Salmonella infection. The presence of anti-BamA IgG was detected in the sera of infected BALB/c mice, but not in that of heat-killed Salmonella-vaccinated mice. The assay was validated using White Leghorn chickens and showed similar results. The detection of BamA antibodies in the sera can differentiate infected chickens from vaccinated chickens. This assay will be useful for monitoring Salmonella infection in chickens and possibly in other animals.
Collapse
Affiliation(s)
- Swarmistha Devi ARIBAM
- Division of Infectious Animal Disease Research, National Institute of Animal Health, NARO, Ibaraki, Japan
| | - Momoko NAKAYAMA
- Division of Infectious Animal Disease Research, National Institute of Animal Health, NARO, Ibaraki, Japan
| | - Yohsuke OGAWA
- Division of Infectious Animal Disease Research, National Institute of Animal Health, NARO, Ibaraki, Japan
| | - Yoshihiro SHIMOJI
- Division of Infectious Animal Disease Research, National Institute of Animal Health, NARO, Ibaraki, Japan
| | - Masahiro EGUCHI
- Division of Infectious Animal Disease Research, National Institute of Animal Health, NARO, Ibaraki, Japan
| |
Collapse
|
9
|
Thapa HB, Ebenberger SP, Schild S. The Two Faces of Bacterial Membrane Vesicles: Pathophysiological Roles and Therapeutic Opportunities. Antibiotics (Basel) 2023; 12:1045. [PMID: 37370364 PMCID: PMC10295235 DOI: 10.3390/antibiotics12061045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/07/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Bacterial membrane vesicles (MVs) are nanosized lipid particles secreted by lysis or blebbing mechanisms from Gram-negative and -positive bacteria. It is becoming increasingly evident that MVs can promote antimicrobial resistance but also provide versatile opportunities for therapeutic exploitation. As non-living facsimiles of parent bacteria, MVs can carry multiple bioactive molecules such as proteins, lipids, nucleic acids, and metabolites, which enable them to participate in intra- and interspecific communication. Although energetically costly, the release of MVs seems beneficial for bacterial fitness, especially for pathogens. In this review, we briefly discuss the current understanding of diverse MV biogenesis routes affecting MV cargo. We comprehensively highlight the physiological functions of MVs derived from human pathogens covering in vivo adaptation, colonization fitness, and effector delivery. Emphasis is given to recent findings suggesting a vicious cycle of MV biogenesis, pathophysiological function, and antibiotic therapy. We also summarize potential therapeutical applications, such as immunotherapy, vaccination, targeted delivery, and antimicrobial potency, including their experimental validation. This comparative overview identifies common and unique strategies for MV modification used along diverse applications. Thus, the review summarizes timely aspects of MV biology in a so far unprecedented combination ranging from beneficial function for bacterial pathogen survival to future medical applications.
Collapse
Affiliation(s)
- Himadri B. Thapa
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria
| | - Stephan P. Ebenberger
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria
| | - Stefan Schild
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria
- BioTechMed Graz, 8010 Graz, Austria
- Field of Excellence Biohealth, University of Graz, 8010 Graz, Austria
| |
Collapse
|
10
|
Zhao G, Jones MK. Role of Bacterial Extracellular Vesicles in Manipulating Infection. Infect Immun 2023; 91:e0043922. [PMID: 37097158 PMCID: PMC10187128 DOI: 10.1128/iai.00439-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023] Open
Abstract
Mammalian-cell-derived extracellular vesicles, such as exosomes, have been a key focal point for investigating host-pathogen interactions and are major facilitators in modulating both bacterial and viral infection. However, in recent years, increasing attention has been given to extracellular vesicles produced by bacteria and the role they play in regulating infection and disease. Extracellular vesicles produced by pathogenic bacteria employ a myriad of strategies to assist in bacterial virulence or divert antibacterial responses away from the parental bacterium to promote infection by and survival of the parental bacterium. Commensal bacteria also produce extracellular vesicles. These vesicles can play a variety of roles during infection, depending on the bacterium, but have been primarily shown to aid the host by stimulating innate immune responses to control infection by both bacteria and viruses. This article will review the activities of bacterial extracellular vesicles known to modulate infection by bacterial and viral pathogens.
Collapse
Affiliation(s)
- Guanqi Zhao
- Microbiology and Cell Science Department, IFAS, University of Florida, Gainesville, Florida, USA
| | - Melissa K. Jones
- Microbiology and Cell Science Department, IFAS, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
11
|
Gopallawa I, Dehinwal R, Bhatia V, Gujar V, Chirmule N. A four-part guide to lung immunology: Invasion, inflammation, immunity, and intervention. Front Immunol 2023; 14:1119564. [PMID: 37063828 PMCID: PMC10102582 DOI: 10.3389/fimmu.2023.1119564] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/09/2023] [Indexed: 04/03/2023] Open
Abstract
Lungs are important respiratory organs primarily involved in gas exchange. Lungs interact directly with the environment and their primary function is affected by several inflammatory responses caused by allergens, inflammatory mediators, and pathogens, eventually leading to disease. The immune architecture of the lung consists of an extensive network of innate immune cells, which induce adaptive immune responses based on the nature of the pathogen(s). The balance of immune responses is critical for maintaining immune homeostasis in the lung. Infection by pathogens and physical or genetic dysregulation of immune homeostasis result in inflammatory diseases. These responses culminate in the production of a plethora of cytokines such as TSLP, IL-9, IL-25, and IL-33, which have been implicated in the pathogenesis of several inflammatory and autoimmune diseases. Shifting the balance of Th1, Th2, Th9, and Th17 responses have been the targets of therapeutic interventions in the treatment of these diseases. Here, we have briefly reviewed the innate and adaptive i3mmune responses in the lung. Genetic and environmental factors, and infection are the major causes of dysregulation of various functions of the lung. We have elaborated on the impact of inflammatory and infectious diseases, advances in therapies, and drug delivery devices on this critical organ. Finally, we have provided a comprehensive compilation of different inflammatory and infectious diseases of the lungs and commented on the pros and cons of different inhalation devices for the management of lung diseases. The review is intended to provide a summary of the immunology of the lung, with an emphasis on drug and device development.
Collapse
Affiliation(s)
- Indiwari Gopallawa
- Clinical Pharmacology & Safety Sciences, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States
| | - Ruchika Dehinwal
- Department of Microbiology, Division of Infectious Disease, Brigham Women’s Hospital, Harvard Medical School, Howard Hughes Medical Institute, Boston, MA, United States
| | | | - Vikramsingh Gujar
- Department of Anatomy and Cell Biology, Oklahoma State University Center for Health Sciences, Tulsa, OK, United States
| | - Narendra Chirmule
- R&D Department, SymphonyTech Biologics, Philadelphia, PA, United States
- *Correspondence: Narendra Chirmule,
| |
Collapse
|
12
|
Zhang Y, Liao X, Feng J, Liu D, Chen S, Ding T. Induction of viable but nonculturable Salmonella spp. in liquid eggs by mild heat and subsequent resuscitation. Food Microbiol 2023; 109:104127. [DOI: 10.1016/j.fm.2022.104127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 08/16/2022] [Accepted: 08/31/2022] [Indexed: 11/28/2022]
|
13
|
Bjanes E, Zhou J, Qayum T, Krishnan N, Zurich RH, Menon ND, Hoffman A, Fang RH, Zhang L, Nizet V. Outer Membrane Vesicle-Coated Nanoparticle Vaccine Protects Against Acinetobacter baumannii Pneumonia and Sepsis. ADVANCED NANOBIOMED RESEARCH 2023; 3:2200130. [PMID: 37151210 PMCID: PMC10156090 DOI: 10.1002/anbr.202200130] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The highly multidrug-resistant (MDR) Gram-negative bacterial pathogen Acinetobacter baumannii is a top global health priority where an effective vaccine could protect susceptible populations and limit resistance acquisition. Outer membrane vesicles (OMVs) shed from Gram-negative bacteria are enriched with virulence factors and membrane lipids but heterogeneous in size and cargo. We report a vaccine platform combining precise and replicable nanoparticle technology with immunogenic A. baumannii OMVs (Ab-OMVs). Gold nanoparticle cores coated with Ab-OMVs (Ab-NPs) induced robust IgG titers in rabbits that enhanced human neutrophil opsonophagocytic killing and passively protected against lethal A. baumannii sepsis in mice. Active Ab-NP immunization in mice protected against sepsis and pneumonia, accompanied by B cell recruitment to draining lymph nodes, activation of dendritic cell markers, improved splenic neutrophil responses, and mitigation of proinflammatory cytokine storm. Nanoparticles are an efficient and efficacious platform for OMV vaccine delivery against A. baumannii and perhaps other high-priority MDR pathogens.
Collapse
Affiliation(s)
- Elisabet Bjanes
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, California 92093, USA
| | - Jiarong Zhou
- Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, USA
| | - Tariq Qayum
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, California 92093, USA
| | - Nishta Krishnan
- Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, USA
| | - Raymond H. Zurich
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, California 92093, USA
| | - Nitasha D. Menon
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, California 92093, USA
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, India
| | - Alexandria Hoffman
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, California 92093, USA
| | - Ronnie H. Fang
- Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, USA
| | - Liangfang Zhang
- Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, USA
| | - Victor Nizet
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, California 92093, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, USA
| |
Collapse
|
14
|
Krzyżewska-Dudek E, Kotimaa J, Kapczyńska K, Rybka J, Meri S. Lipopolysaccharides and outer membrane proteins as main structures involved in complement evasion strategies of non-typhoidal Salmonella strains. Mol Immunol 2022; 150:67-77. [PMID: 35998438 DOI: 10.1016/j.molimm.2022.08.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/10/2022] [Accepted: 08/15/2022] [Indexed: 11/27/2022]
Abstract
Non-typhoidal Salmonella (NTS) infections pose a serious public health problem. In addition to the typical course of salmonellosis, an infection with Salmonella bacteria can often lead to parenteral infections and sepsis, which are particularly dangerous for children, the elderly and immunocompromised. Bacterial resistance to serum is a key virulence factor for the development of systemic infections. Salmonella, as an enterobacterial pathogen, has developed several mechanisms to escape and block the antibacterial effects of the complement system. In this review, we discuss the relevance of outer membrane polysaccharides to the complement evasion mechanisms of NTS strains. These include the influence of the overall length and density of the lipopolysaccharide molecules, modifications of the O-antigen lipopolysaccharide composition and the role of capsular polysaccharides in opsonization and protection of the outer membrane from the lytic action of complement. Additionally, we discuss specific outer membrane protein complement evasion mechanisms, such as recruitment of complement regulatory proteins, blocking assembly of late complement components to form the membrane attack complex and the proteolytic cleavage of complement proteins.
Collapse
Affiliation(s)
- E Krzyżewska-Dudek
- Department of Bacteriology and Immunology, Translational Immunology Research Program, University of Helsinki, and Diagnostic Center (HUSLAB), Helsinki University Hospital, 00290 Helsinki, Finland; Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
| | - J Kotimaa
- Department of Bacteriology and Immunology, Translational Immunology Research Program, University of Helsinki, and Diagnostic Center (HUSLAB), Helsinki University Hospital, 00290 Helsinki, Finland
| | - K Kapczyńska
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
| | - J Rybka
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
| | - S Meri
- Department of Bacteriology and Immunology, Translational Immunology Research Program, University of Helsinki, and Diagnostic Center (HUSLAB), Helsinki University Hospital, 00290 Helsinki, Finland.
| |
Collapse
|
15
|
Zou C, Zhang Y, Liu H, Wu Y, Zhou X. Extracellular Vesicles: Recent Insights Into the Interaction Between Host and Pathogenic Bacteria. Front Immunol 2022; 13:840550. [PMID: 35693784 PMCID: PMC9174424 DOI: 10.3389/fimmu.2022.840550] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/27/2022] [Indexed: 02/05/2023] Open
Abstract
Extracellular vesicles (EVs) are nanosized lipid particles released by virtually every living cell. EVs carry bioactive molecules, shuttle from cells to cells and transduce signals, regulating cell growth and metabolism. Pathogenic bacteria can cause serious infections via a wide range of strategies, and host immune systems also develop extremely complex adaptations to counteract bacterial infections. As notable carriers, EVs take part in the interaction between the host and bacteria in several approaches. For host cells, several strategies have been developed to resist bacteria via EVs, including expelling damaged membranes and bacteria, neutralizing toxins, triggering innate immune responses and provoking adaptive immune responses in nearly the whole body. For bacteria, EVs function as vehicles to deliver toxins and contribute to immune escape. Due to their crucial functions, EVs have great application potential in vaccines, diagnosis and treatments. In the present review, we highlight the most recent advances, application potential and remaining challenges in understanding EVs in the interaction between the host and bacteria.
Collapse
Affiliation(s)
- Chaoyu Zou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
- Department of Hematology and Hematology Research Laboratory, West China Hospital, Sichuan University, Chengdu, China
| | - Yige Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Huan Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yu Wu
- Department of Hematology and Hematology Research Laboratory, West China Hospital, Sichuan University, Chengdu, China
| | - Xikun Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| |
Collapse
|