1
|
Rasmussen AN, Tolar BB, Bargar JR, Boye K, Francis CA. Diverse and unconventional methanogens, methanotrophs, and methylotrophs in metagenome-assembled genomes from subsurface sediments of the Slate River floodplain, Crested Butte, CO, USA. mSystems 2024; 9:e0031424. [PMID: 38940520 PMCID: PMC11264602 DOI: 10.1128/msystems.00314-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/06/2024] [Indexed: 06/29/2024] Open
Abstract
We use metagenome-assembled genomes (MAGs) to understand single-carbon (C1) compound-cycling-particularly methane-cycling-microorganisms in montane riparian floodplain sediments. We generated 1,233 MAGs (>50% completeness and <10% contamination) from 50- to 150-cm depth below the sediment surface capturing the transition between oxic, unsaturated sediments and anoxic, saturated sediments in the Slate River (SR) floodplain (Crested Butte, CO, USA). We recovered genomes of putative methanogens, methanotrophs, and methylotrophs (n = 57). Methanogens, found only in deep, anoxic depths at SR, originate from three different clades (Methanoregulaceae, Methanotrichaceae, and Methanomassiliicoccales), each with a different methanogenesis pathway; putative methanotrophic MAGs originate from within the Archaea (Candidatus Methanoperedens) in anoxic depths and uncultured bacteria (Ca. Binatia) in oxic depths. Genomes for canonical aerobic methanotrophs were not recovered. Ca. Methanoperedens were exceptionally abundant (~1,400× coverage, >50% abundance in the MAG library) in one sample that also contained aceticlastic methanogens, indicating a potential C1/methane-cycling hotspot. Ca. Methylomirabilis MAGs from SR encode pathways for methylotrophy but do not harbor methane monooxygenase or nitrogen reduction genes. Comparative genomic analysis supports that one clade within the Ca. Methylomirabilis genus is not methanotrophic. The genetic potential for methylotrophy was widespread, with over 10% and 19% of SR MAGs encoding a methanol dehydrogenase or substrate-specific methyltransferase, respectively. MAGs from uncultured Thermoplasmata archaea in the Ca. Gimiplasmatales (UBA10834) contain pathways that may allow for anaerobic methylotrophic acetogenesis. Overall, MAGs from SR floodplain sediments reveal a potential for methane production and consumption in the system and a robust potential for methylotrophy.IMPORTANCEThe cycling of carbon by microorganisms in subsurface environments is of particular relevance in the face of global climate change. Riparian floodplain sediments contain high organic carbon that can be degraded into C1 compounds such as methane, methanol, and methylamines, the fate of which depends on the microbial metabolisms present as well as the hydrological conditions and availability of oxygen. In the present study, we generated over 1,000 MAGs from subsurface sediments from a montane river floodplain and recovered genomes for microorganisms that are capable of producing and consuming methane and other C1 compounds, highlighting a robust potential for C1 cycling in subsurface sediments both with and without oxygen. Archaea from the Ca. Methanoperedens genus were exceptionally abundant in one sample, indicating a potential C1/methane-cycling hotspot in the Slate River floodplain system.
Collapse
Affiliation(s)
- Anna N. Rasmussen
- Department of Earth System Science, Stanford University, Stanford, California, USA
- SLAC National Accelerator Laboratory, Menlo Park, California, USA
| | - Bradley B. Tolar
- Department of Earth System Science, Stanford University, Stanford, California, USA
| | - John R. Bargar
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Kristin Boye
- SLAC National Accelerator Laboratory, Menlo Park, California, USA
| | - Christopher A. Francis
- Department of Earth System Science, Stanford University, Stanford, California, USA
- Oceans Department, Stanford University, Stanford, California, USA
| |
Collapse
|
2
|
Gontijo JB, Paula FS, Bieluczyk W, França AG, Navroski D, Mandro JA, Venturini AM, Asselta FO, Mendes LW, Moura JMS, Moreira MZ, Nüsslein K, Bohannan BJM, Bodelier PLE, Rodrigues JLM, Tsai SM. Methane-cycling microbial communities from Amazon floodplains and upland forests respond differently to simulated climate change scenarios. ENVIRONMENTAL MICROBIOME 2024; 19:48. [PMID: 39020395 PMCID: PMC11256501 DOI: 10.1186/s40793-024-00596-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/10/2024] [Indexed: 07/19/2024]
Abstract
Seasonal floodplains in the Amazon basin are important sources of methane (CH4), while upland forests are known for their sink capacity. Climate change effects, including shifts in rainfall patterns and rising temperatures, may alter the functionality of soil microbial communities, leading to uncertain changes in CH4 cycling dynamics. To investigate the microbial feedback under climate change scenarios, we performed a microcosm experiment using soils from two floodplains (i.e., Amazonas and Tapajós rivers) and one upland forest. We employed a two-factorial experimental design comprising flooding (with non-flooded control) and temperature (at 27 °C and 30 °C, representing a 3 °C increase) as variables. We assessed prokaryotic community dynamics over 30 days using 16S rRNA gene sequencing and qPCR. These data were integrated with chemical properties, CH4 fluxes, and isotopic values and signatures. In the floodplains, temperature changes did not significantly affect the overall microbial composition and CH4 fluxes. CH4 emissions and uptake in response to flooding and non-flooding conditions, respectively, were observed in the floodplain soils. By contrast, in the upland forest, the higher temperature caused a sink-to-source shift under flooding conditions and reduced CH4 sink capability under dry conditions. The upland soil microbial communities also changed in response to increased temperature, with a higher percentage of specialist microbes observed. Floodplains showed higher total and relative abundances of methanogenic and methanotrophic microbes compared to forest soils. Isotopic data from some flooded samples from the Amazonas river floodplain indicated CH4 oxidation metabolism. This floodplain also showed a high relative abundance of aerobic and anaerobic CH4 oxidizing Bacteria and Archaea. Taken together, our data indicate that CH4 cycle dynamics and microbial communities in Amazonian floodplain and upland forest soils may respond differently to climate change effects. We also highlight the potential role of CH4 oxidation pathways in mitigating CH4 emissions in Amazonian floodplains.
Collapse
Affiliation(s)
- Júlia B Gontijo
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, Brazil.
- Department of Land, Air and Water Resources, University of California, Davis, CA, USA.
| | - Fabiana S Paula
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, Brazil
| | - Wanderlei Bieluczyk
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, Brazil
| | - Aline G França
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, Brazil
| | - Deisi Navroski
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, Brazil
| | - Jéssica A Mandro
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, Brazil
| | | | - Fernanda O Asselta
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, Brazil
| | - Lucas W Mendes
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, Brazil
| | - José M S Moura
- Instituto de Formação Interdisciplinar e Intercultural, Universidade Federal do Oeste do Pará, Santarém, PA, Brazil
| | - Marcelo Z Moreira
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, Brazil
| | - Klaus Nüsslein
- Department of Microbiology, University of Massachusetts, Amherst, MA, USA
| | - Brendan J M Bohannan
- Department of Biology, Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA
| | - Paul L E Bodelier
- Netherlands Institute of Ecology, NIOO-KNAW, Wageningen, GE, The Netherlands
| | - Jorge L Mazza Rodrigues
- Department of Land, Air and Water Resources, University of California, Davis, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Siu M Tsai
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, Brazil
| |
Collapse
|
3
|
Liu Q, Peng Y, Liao J, Liu X, Peng J, Wang JH, Shao Z. Broad-spectrum hydrocarbon-degrading microbes in the global ocean metagenomes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171746. [PMID: 38521276 DOI: 10.1016/j.scitotenv.2024.171746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/14/2024] [Accepted: 03/14/2024] [Indexed: 03/25/2024]
Abstract
Understanding the diversity and functions of hydrocarbon-degrading microorganisms in marine environments is crucial for both advancing knowledge of biogeochemical processes and improving bioremediation methods. In this study, we leveraged nearly 20,000 metagenome-assembled genomes (MAGs), recovered from a wide array of marine samples across the global oceans, to map the diversity of aerobic hydrocarbon-degrading microorganisms. A broad bacterial diversity was uncovered, with a notable preference for degrading aliphatic hydrocarbons over aromatic ones, primarily within Proteobacteria and Actinobacteriota. Three types of broad-spectrum hydrocarbon-degrading bacteria were identified for their ability to degrade various hydrocarbons and possession of multiple copies of hydrocarbon biodegradation genes. These bacteria demonstrate extensive metabolic versatility, aiding their survival and adaptability in diverse environmental conditions. Evidence of gene duplication and horizontal gene transfer in these microbes suggested a potential enhancement in the diversity of hydrocarbon-degrading bacteria. Positive correlations were observed between the abundances of hydrocarbon-degrading genes and environmental parameters such as temperature (-5 to 35 °C) and salinity (20 to 42 PSU). Overall, our findings offer valuable insights into marine hydrocarbon-degrading microorganisms and suggest considerations for selecting microbial strains for oil pollution remediation.
Collapse
Affiliation(s)
- Qing Liu
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China
| | - Yongyi Peng
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China
| | - Jing Liao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Xinyue Liu
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Jiaxue Peng
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Jiang-Hai Wang
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China.
| | - Zongze Shao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519099, China.
| |
Collapse
|
4
|
Mara P, Geller-McGrath D, Suter E, Taylor GT, Pachiadaki MG, Edgcomb VP. Plasmid-Borne Biosynthetic Gene Clusters within a Permanently Stratified Marine Water Column. Microorganisms 2024; 12:929. [PMID: 38792759 PMCID: PMC11123730 DOI: 10.3390/microorganisms12050929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/22/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
Plasmids are mobile genetic elements known to carry secondary metabolic genes that affect the fitness and survival of microbes in the environment. Well-studied cases of plasmid-encoded secondary metabolic genes in marine habitats include toxin/antitoxin and antibiotic biosynthesis/resistance genes. Here, we examine metagenome-assembled genomes (MAGs) from the permanently-stratified water column of the Cariaco Basin for integrated plasmids that encode biosynthetic gene clusters of secondary metabolites (smBGCs). We identify 16 plasmid-borne smBGCs in MAGs associated primarily with Planctomycetota and Pseudomonadota that encode terpene-synthesizing genes, and genes for production of ribosomal and non-ribosomal peptides. These identified genes encode for secondary metabolites that are mainly antimicrobial agents, and hence, their uptake via plasmids may increase the competitive advantage of those host taxa that acquire them. The ecological and evolutionary significance of smBGCs carried by prokaryotes in oxygen-depleted water columns is yet to be fully elucidated.
Collapse
Affiliation(s)
- Paraskevi Mara
- Geology & Geophysics Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA;
| | - David Geller-McGrath
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA; (D.G.-M.); (M.G.P.)
| | - Elizabeth Suter
- Biology, Chemistry and Environmental Science Department, Molloy University, New York, NY 11570, USA;
| | - Gordon T. Taylor
- School of Marine, Atmospheric and Sustainability Sciences, Stony Brook University, New York, NY 11794, USA;
| | - Maria G. Pachiadaki
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA; (D.G.-M.); (M.G.P.)
| | - Virginia P. Edgcomb
- Geology & Geophysics Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA;
| |
Collapse
|
5
|
Pavia MJ, Finn D, Macedo-Tafur F, Tello-Espinoza R, Penaccio C, Bouskill N, Cadillo-Quiroz H. Genes and genome-resolved metagenomics reveal the microbial functional make up of Amazon peatlands under geochemical gradients. Environ Microbiol 2023; 25:2388-2403. [PMID: 37501535 DOI: 10.1111/1462-2920.16469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 07/12/2023] [Indexed: 07/29/2023]
Abstract
The Pastaza-Marañón Foreland Basin (PMFB) holds the most extensive tropical peatland area in South America. PMFB peatlands store ~7.07 Gt of organic carbon interacting with multiple microbial heterotrophic, methanogenic, and other aerobic/anaerobic respirations. Little is understood about the contribution of distinct microbial community members inhabiting tropical peatlands. Here, we studied the metagenomes of three geochemically distinct peatlands spanning minerotrophic, mixed, and ombrotrophic conditions. Using gene- and genome-centric approaches, we evaluate the functional potential of the underlying microbial communities. Abundance analyses show significant differences in C, N, P, and S acquisition genes. Furthermore, community interactions mediated by toxin-antitoxin and CRISPR-Cas systems were enriched in oligotrophic soils, suggesting that non-metabolic interactions may exert additional controls in low-nutrient environments. Additionally, we reconstructed 519 metagenome-assembled genomes spanning 28 phyla. Our analyses detail key differences across the geochemical gradient in the predicted microbial populations involved in degradation of organic matter, and the cycling of N and S. Notably, we observed differences in the nitric oxide (NO) reduction strategies between sites with high and low N2 O fluxes and found phyla putatively capable of both NO and sulfate reduction. Our findings detail how gene abundances and microbial populations are influenced by geochemical differences in tropical peatlands.
Collapse
Affiliation(s)
- Michael J Pavia
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
- Swette Center for Environmental Biotechnology, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Damien Finn
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Franco Macedo-Tafur
- Laboratory of Soil Research, Research Institute of Amazonia's Natural Resources, National University of the Peruvian Amazon, Iquitos, Loreto, Peru
| | - Rodil Tello-Espinoza
- Laboratory of Soil Research, Research Institute of Amazonia's Natural Resources, National University of the Peruvian Amazon, Iquitos, Loreto, Peru
- School of Forestry, National University of the Peruvian Amazon, Iquitos, Loreto, Peru
| | - Christa Penaccio
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Nicholas Bouskill
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Hinsby Cadillo-Quiroz
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
- Swette Center for Environmental Biotechnology, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
6
|
Bai X, Dinkla IJT, Muyzer G. Shedding light on the total and active core microbiomes in slow sand filters for drinking water production. WATER RESEARCH 2023; 243:120404. [PMID: 37586176 DOI: 10.1016/j.watres.2023.120404] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 07/01/2023] [Accepted: 07/23/2023] [Indexed: 08/18/2023]
Abstract
Slow sand filters (SSF) are widely used in the production of drinking water as a last barrier in the removal of pathogens. This removal mainly depends on the 'Schmutzdecke', a biofilm-like layer on the surface of the sand bed. Most previous studies focused on the total community as revealed by DNA analysis rather than on the active community, which may lead to an incorrect understanding of the SSF ecology. In the current study, we determined and compared the DNA- (total) and RNA-displayed (active) communities in the Schmutzdecke layer from 10 full-scale slow sand filters and further explored the SSF core microbiome in terms of both presence (DNA) and activity (RNA). Discrepancies were observed between the total and the active community, although there was a consistent grouping in the PCoA analysis. The DNA-displayed community may be somewhat inflated, while the RNA-displayed community could reveal low abundance (or rare) but active community members. The overall results imply that both DNA (presence) and RNA (activity) data should be considered to prevent the underestimation of organisms of functional importance but lower abundance. Microbial communities of studied mature Schmutzdecke were shaped by the influent water. Nevertheless, a core microbiome was shared by the mature Schmutzdeckes from independent filters, representing the dominant and consistent microbial community composition in slow sand filters. In the DNA samples, a total of 33 VSC families ('very strict core', with a relative abundance >0.1% and 100% prevalence) were observed across all filters. Among the RNA samples, there were 18 VSC families, including 16 families that overlapped with the DNA VSC families and 2 unique RNA VSC families. The core microbial community structure was influenced by the operational parameters, including the Schmutzdecke age and the sand size, and was less influenced by water flow. In addition, indicator organisms ('biomarkers') for the Schmutzdecke age, which show the longest duration that SSF can maintain a good operation, were observed in our study. The abundant presence of bacteria belonging to bacteriap25 and Caldilineaceae was associated with older Schmutzdeckes, revealing longer periods of stable operation performance of the filter, while the high abundance of bacteria belonging to Bdellovibrionaceae and Bryobacteraceae related to short periods of stable operation performance.
Collapse
Affiliation(s)
- Xi Bai
- Microbial Systems Ecology, Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098, XH Amsterdam, the Netherlands
| | - Inez J T Dinkla
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911, MA Leeuwarden, the Netherlands
| | - Gerard Muyzer
- Microbial Systems Ecology, Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098, XH Amsterdam, the Netherlands.
| |
Collapse
|
7
|
Riley R, Bowers RM, Camargo AP, Campbell A, Egan R, Eloe-Fadrosh EA, Foster B, Hofmeyr S, Huntemann M, Kellom M, Kimbrel JA, Oliker L, Yelick K, Pett-Ridge J, Salamov A, Varghese NJ, Clum A. Terabase-Scale Coassembly of a Tropical Soil Microbiome. Microbiol Spectr 2023; 11:e0020023. [PMID: 37310219 PMCID: PMC10434106 DOI: 10.1128/spectrum.00200-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/24/2023] [Indexed: 06/14/2023] Open
Abstract
Petabases of environmental metagenomic data are publicly available, presenting an opportunity to characterize complex environments and discover novel lineages of life. Metagenome coassembly, in which many metagenomic samples from an environment are simultaneously analyzed to infer the underlying genomes' sequences, is an essential tool for achieving this goal. We applied MetaHipMer2, a distributed metagenome assembler that runs on supercomputing clusters, to coassemble 3.4 terabases (Tbp) of metagenome data from a tropical soil in the Luquillo Experimental Forest (LEF), Puerto Rico. The resulting coassembly yielded 39 high-quality (>90% complete, <5% contaminated, with predicted 23S, 16S, and 5S rRNA genes and ≥18 tRNAs) metagenome-assembled genomes (MAGs), including two from the candidate phylum Eremiobacterota. Another 268 medium-quality (≥50% complete, <10% contaminated) MAGs were extracted, including the candidate phyla Dependentiae, Dormibacterota, and Methylomirabilota. In total, 307 medium- or higher-quality MAGs were assigned to 23 phyla, compared to 294 MAGs assigned to nine phyla in the same samples individually assembled. The low-quality (<50% complete, <10% contaminated) MAGs from the coassembly revealed a 49% complete rare biosphere microbe from the candidate phylum FCPU426 among other low-abundance microbes, an 81% complete fungal genome from the phylum Ascomycota, and 30 partial eukaryotic MAGs with ≥10% completeness, possibly representing protist lineages. A total of 22,254 viruses, many of them low abundance, were identified. Estimation of metagenome coverage and diversity indicates that we may have characterized ≥87.5% of the sequence diversity in this humid tropical soil and indicates the value of future terabase-scale sequencing and coassembly of complex environments. IMPORTANCE Petabases of reads are being produced by environmental metagenome sequencing. An essential step in analyzing these data is metagenome assembly, the computational reconstruction of genome sequences from microbial communities. "Coassembly" of metagenomic sequence data, in which multiple samples are assembled together, enables more complete detection of microbial genomes in an environment than "multiassembly," in which samples are assembled individually. To demonstrate the potential for coassembling terabases of metagenome data to drive biological discovery, we applied MetaHipMer2, a distributed metagenome assembler that runs on supercomputing clusters, to coassemble 3.4 Tbp of reads from a humid tropical soil environment. The resulting coassembly, its functional annotation, and analysis are presented here. The coassembly yielded more, and phylogenetically more diverse, microbial, eukaryotic, and viral genomes than the multiassembly of the same data. Our resource may facilitate the discovery of novel microbial biology in tropical soils and demonstrates the value of terabase-scale metagenome sequencing.
Collapse
Affiliation(s)
- Robert Riley
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley California, USA
| | - Robert M. Bowers
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley California, USA
| | - Antonio Pedro Camargo
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley California, USA
| | - Ashley Campbell
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Rob Egan
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley California, USA
| | | | - Brian Foster
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley California, USA
| | - Steven Hofmeyr
- Applied Math and Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Marcel Huntemann
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley California, USA
| | - Matthew Kellom
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley California, USA
| | - Jeffrey A. Kimbrel
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Leonid Oliker
- Applied Math and Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Katherine Yelick
- Applied Math and Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California, USA
| | - Jennifer Pett-Ridge
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
- Life & Environmental Sciences Department, University of California Merced, Merced, California, USA
| | - Asaf Salamov
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley California, USA
| | - Neha J. Varghese
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley California, USA
| | - Alicia Clum
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley California, USA
| |
Collapse
|
8
|
Konrad R, Vergara-Barros P, Alcorta J, Alcamán-Arias ME, Levicán G, Ridley C, Díez B. Distribution and Activity of Sulfur-Metabolizing Bacteria along the Temperature Gradient in Phototrophic Mats of the Chilean Hot Spring Porcelana. Microorganisms 2023; 11:1803. [PMID: 37512975 PMCID: PMC10385741 DOI: 10.3390/microorganisms11071803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/06/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
In terrestrial hot springs, some members of the microbial mat community utilize sulfur chemical species for reduction and oxidization metabolism. In this study, the diversity and activity of sulfur-metabolizing bacteria were evaluated along a temperature gradient (48-69 °C) in non-acidic phototrophic mats of the Porcelana hot spring (Northern Patagonia, Chile) using complementary meta-omic methodologies and specific amplification of the aprA (APS reductase) and soxB (thiosulfohydrolase) genes. Overall, the key players in sulfur metabolism varied mostly in abundance along the temperature gradient, which is relevant for evaluating the possible implications of microorganisms associated with sulfur cycling under the current global climate change scenario. Our results strongly suggest that sulfate reduction occurs throughout the whole temperature gradient, being supported by different taxa depending on temperature. Assimilative sulfate reduction is the most relevant pathway in terms of taxonomic abundance and activity, whereas the sulfur-oxidizing system (Sox) is likely to be more diverse at low rather than at high temperatures. Members of the phylum Chloroflexota showed higher sulfur cycle-related transcriptional activity at 66 °C, with a potential contribution to sulfate reduction and oxidation to thiosulfate. In contrast, at the lowest temperature (48 °C), Burkholderiales and Acetobacterales (both Pseudomonadota, also known as Proteobacteria) showed a higher contribution to dissimilative sulfate reduction/oxidation as well as to thiosulfate metabolism. Cyanobacteriota and Planctomycetota were especially active in assimilatory sulfate reduction. Analysis of the aprA and soxB genes pointed to members of the order Burkholderiales (Gammaproteobacteria) as the most dominant and active along the temperature gradient for these genes. Changes in the diversity and activity of different sulfur-metabolizing bacteria in photoautotrophic microbial mats along a temperature gradient revealed their important role in hot spring environments, especially the main primary producers (Chloroflexota/Cyanobacteriota) and diazotrophs (Cyanobacteriota), showing that carbon, nitrogen, and sulfur cycles are highly linked in these extreme systems.
Collapse
Affiliation(s)
- Ricardo Konrad
- Department of Molecular Genetics and Microbiology, Biological Sciences Faculty, Pontifical Catholic University of Chile, Santiago 8331150, Chile
| | - Pablo Vergara-Barros
- Department of Molecular Genetics and Microbiology, Biological Sciences Faculty, Pontifical Catholic University of Chile, Santiago 8331150, Chile
- Millennium Institute Center for Genome Regulation (CGR), Santiago 8370186, Chile
| | - Jaime Alcorta
- Department of Molecular Genetics and Microbiology, Biological Sciences Faculty, Pontifical Catholic University of Chile, Santiago 8331150, Chile
- Millennium Institute Center for Genome Regulation (CGR), Santiago 8370186, Chile
| | - María E Alcamán-Arias
- Department of Oceanography, University of Concepcion, Concepcion 4030000, Chile
- Center for Climate and Resilience Research (CR)2, Santiago 8370449, Chile
- Escuela de Medicina, Universidad Espíritu Santo, Guayaquil 0901952, Ecuador
| | - Gloria Levicán
- Biology Department, Chemistry and Biology Faculty, University of Santiago of Chile, Santiago 9170022, Chile
| | - Christina Ridley
- Department of Molecular Genetics and Microbiology, Biological Sciences Faculty, Pontifical Catholic University of Chile, Santiago 8331150, Chile
| | - Beatriz Díez
- Department of Molecular Genetics and Microbiology, Biological Sciences Faculty, Pontifical Catholic University of Chile, Santiago 8331150, Chile
- Millennium Institute Center for Genome Regulation (CGR), Santiago 8370186, Chile
- Center for Climate and Resilience Research (CR)2, Santiago 8370449, Chile
| |
Collapse
|
9
|
Goswami A, Adkins-Jablonsky SJ, Barreto Filho MM, Shilling MD, Dawson A, Heiser S, O’Connor A, Walker M, Roberts Q, Morris JJ. Heavy Metal Pollution Impacts Soil Bacterial Community Structure and Antimicrobial Resistance at the Birmingham 35th Avenue Superfund Site. Microbiol Spectr 2023; 11:e0242622. [PMID: 36951567 PMCID: PMC10101053 DOI: 10.1128/spectrum.02426-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 02/23/2023] [Indexed: 03/24/2023] Open
Abstract
Heavy metals (HMs) are known to modify bacterial communities both in the laboratory and in situ. Consequently, soils in HM-contaminated sites such as the U.S. Environmental Protection Agency (EPA) Superfund sites are predicted to have altered ecosystem functioning, with potential ramifications for the health of organisms, including humans, that live nearby. Further, several studies have shown that heavy metal-resistant (HMR) bacteria often also display antimicrobial resistance (AMR), and therefore HM-contaminated soils could potentially act as reservoirs that could disseminate AMR genes into human-associated pathogenic bacteria. To explore this possibility, topsoil samples were collected from six public locations in the zip code 35207 (the home of the North Birmingham 35th Avenue Superfund Site) and in six public areas in the neighboring zip code, 35214. 35027 soils had significantly elevated levels of the HMs As, Mn, Pb, and Zn, and sequencing of the V4 region of the bacterial 16S rRNA gene revealed that elevated HM concentrations correlated with reduced microbial diversity and altered community structure. While there was no difference between zip codes in the proportion of total culturable HMR bacteria, bacterial isolates with HMR almost always also exhibited AMR. Metagenomes inferred using PICRUSt2 also predicted significantly higher mean relative frequencies in 35207 for several AMR genes related to both specific and broad-spectrum AMR phenotypes. Together, these results support the hypothesis that chronic HM pollution alters the soil bacterial community structure in ecologically meaningful ways and may also select for bacteria with increased potential to contribute to AMR in human disease. IMPORTANCE Heavy metals cross-select for antimicrobial resistance in laboratory experiments, but few studies have documented this effect in polluted soils. Moreover, despite decades of awareness of heavy metal contamination at the EPA Superfund site in North Birmingham, Alabama, this is the first analysis of the impact of this pollution on the soil microbiome. Specifically, this work advances the understanding of the relationship between heavy metals, microbial diversity, and patterns of antibiotic resistance in North Birmingham soils. Our results suggest that polluted soils carry a risk of increased exposure to antibiotic-resistant infections in addition to the direct health consequences of heavy metals. Our work provides important information relevant to both political and scientific efforts to advance environmental justice for the communities that call Superfund neighborhoods home.
Collapse
Affiliation(s)
- Anuradha Goswami
- Department of Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sarah J. Adkins-Jablonsky
- Department of Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Alabama College of Osteopathic Medicine, Dothan, Alabama, USA
| | | | - Michelle D. Shilling
- Department of Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Alex Dawson
- Department of Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sabrina Heiser
- Department of Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Aisha O’Connor
- Department of Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Melissa Walker
- Department of Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Qutia Roberts
- Department of Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - J. Jeffrey Morris
- Department of Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
10
|
Ramírez GA, Bar-Shalom R, Furlan A, Romeo R, Gavagnin M, Calabrese G, Garber AI, Steindler L. Bacterial aerobic methane cycling by the marine sponge-associated microbiome. MICROBIOME 2023; 11:49. [PMID: 36899421 PMCID: PMC9999580 DOI: 10.1186/s40168-023-01467-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Methanotrophy by the sponge-hosted microbiome has been mainly reported in the ecological context of deep-sea hydrocarbon seep niches where methane is either produced geothermically or via anaerobic methanogenic archaea inhabiting the sulfate-depleted sediments. However, methane-oxidizing bacteria from the candidate phylum Binatota have recently been described and shown to be present in oxic shallow-water marine sponges, where sources of methane remain undescribed. RESULTS Here, using an integrative -omics approach, we provide evidence for sponge-hosted bacterial methane synthesis occurring in fully oxygenated shallow-water habitats. Specifically, we suggest methane generation occurs via at least two independent pathways involving methylamine and methylphosphonate transformations that, concomitantly to aerobic methane production, generate bioavailable nitrogen and phosphate, respectively. Methylphosphonate may be sourced from seawater continuously filtered by the sponge host. Methylamines may also be externally sourced or, alternatively, generated by a multi-step metabolic process where carnitine, derived from sponge cell debris, is transformed to methylamine by different sponge-hosted microbial lineages. Finally, methanotrophs specialized in pigment production, affiliated to the phylum Binatota, may provide a photoprotective function, closing a previously undescribed C1-metabolic loop that involves both the sponge host and specific members of the associated microbial community. CONCLUSION Given the global distribution of this ancient animal lineage and their remarkable water filtration activity, sponge-hosted methane cycling may affect methane supersaturation in oxic coastal environments. Depending on the net balance between methane production and consumption, sponges may serve as marine sources or sinks of this potent greenhouse gas. Video Abstract.
Collapse
Affiliation(s)
- Gustavo A Ramírez
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, 199 Aba Khoushy Ave., Mount Carmel, Haifa, Israel
- Present address: Department of Biological Sciences, California State University, Los Angeles, CA, USA
| | - Rinat Bar-Shalom
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, 199 Aba Khoushy Ave., Mount Carmel, Haifa, Israel
| | - Andrea Furlan
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, 199 Aba Khoushy Ave., Mount Carmel, Haifa, Israel
| | - Roberto Romeo
- Istituto Nazionale di Oceanografia e di Geofisica Sperimentale, Trieste, Italy
| | - Michelle Gavagnin
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, 199 Aba Khoushy Ave., Mount Carmel, Haifa, Israel
| | - Gianluca Calabrese
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, 199 Aba Khoushy Ave., Mount Carmel, Haifa, Israel
| | - Arkadiy I Garber
- School of Life Science, Arizona State University, Tempe, AZ, USA
| | - Laura Steindler
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, 199 Aba Khoushy Ave., Mount Carmel, Haifa, Israel.
| |
Collapse
|
11
|
Somee MR, Amoozegar MA, Dastgheib SMM, Shavandi M, Maman LG, Bertilsson S, Mehrshad M. Genome-resolved analyses show an extensive diversification in key aerobic hydrocarbon-degrading enzymes across bacteria and archaea. BMC Genomics 2022; 23:690. [PMID: 36203131 PMCID: PMC9535955 DOI: 10.1186/s12864-022-08906-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/26/2022] [Indexed: 12/04/2022] Open
Abstract
Background Hydrocarbons (HCs) are organic compounds composed solely of carbon and hydrogen that are mainly accumulated in oil reservoirs. As the introduction of all classes of hydrocarbons including crude oil and oil products into the environment has increased significantly, oil pollution has become a global ecological problem. However, our perception of pathways for biotic degradation of major HCs and key enzymes in these bioconversion processes has mainly been based on cultured microbes and is biased by uneven taxonomic representation. Here we used Annotree to provide a gene-centric view of the aerobic degradation ability of aliphatic and aromatic HCs in 23,446 genomes from 123 bacterial and 14 archaeal phyla. Results Apart from the widespread genetic potential for HC degradation in Proteobacteria, Actinobacteriota, Bacteroidota, and Firmicutes, genomes from an additional 18 bacterial and 3 archaeal phyla also hosted key HC degrading enzymes. Among these, such degradation potential has not been previously reported for representatives in the phyla UBA8248, Tectomicrobia, SAR324, and Eremiobacterota. Genomes containing whole pathways for complete degradation of HCs were only detected in Proteobacteria and Actinobacteriota. Except for several members of Crenarchaeota, Halobacterota, and Nanoarchaeota that have tmoA, ladA, and alkB/M key genes, respectively, representatives of archaeal genomes made a small contribution to HC degradation. None of the screened archaeal genomes coded for complete HC degradation pathways studied here; however, they contribute significantly to peripheral routes of HC degradation with bacteria. Conclusion Phylogeny reconstruction showed that the reservoir of key aerobic hydrocarbon-degrading enzymes in Bacteria and Archaea undergoes extensive diversification via gene duplication and horizontal gene transfer. This diversification could potentially enable microbes to rapidly adapt to novel and manufactured HCs that reach the environment. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08906-w.
Collapse
Affiliation(s)
- Maryam Rezaei Somee
- Extremophile Laboratory, Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Mohammad Ali Amoozegar
- Extremophile Laboratory, Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | | | - Mahmoud Shavandi
- Biotechnology Research Group, Research Institute of Petroleum Industry, Tehran, Iran
| | - Leila Ghanbari Maman
- Laboratory of Complex Biological Systems and Bioinformatics (CBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Stefan Bertilsson
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Box 7050, 75007, Uppsala, Sweden
| | - Maliheh Mehrshad
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Box 7050, 75007, Uppsala, Sweden.
| |
Collapse
|
12
|
Genome-Resolved Metaproteomics Decodes the Microbial and Viral Contributions to Coupled Carbon and Nitrogen Cycling in River Sediments. mSystems 2022; 7:e0051622. [PMID: 35861508 PMCID: PMC9426555 DOI: 10.1128/msystems.00516-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Rivers have a significant role in global carbon and nitrogen cycles, serving as a nexus for nutrient transport between terrestrial and marine ecosystems. Although rivers have a small global surface area, they contribute substantially to worldwide greenhouse gas emissions through microbially mediated processes within the river hyporheic zone. Despite this importance, research linking microbial and viral communities to specific biogeochemical reactions is still nascent in these sediment environments. To survey the metabolic potential and gene expression underpinning carbon and nitrogen biogeochemical cycling in river sediments, we collected an integrated data set of 33 metagenomes, metaproteomes, and paired metabolomes. We reconstructed over 500 microbial metagenome-assembled genomes (MAGs), which we dereplicated into 55 unique, nearly complete medium- and high-quality MAGs spanning 12 bacterial and archaeal phyla. We also reconstructed 2,482 viral genomic contigs, which were dereplicated into 111 viral MAGs (vMAGs) of >10 kb in size. As a result of integrating gene expression data with geochemical and metabolite data, we created a conceptual model that uncovered new roles for microorganisms in organic matter decomposition, carbon sequestration, nitrogen mineralization, nitrification, and denitrification. We show how these metabolic pathways, integrated through shared resource pools of ammonium, carbon dioxide, and inorganic nitrogen, could ultimately contribute to carbon dioxide and nitrous oxide fluxes from hyporheic sediments. Further, by linking viral MAGs to these active microbial hosts, we provide some of the first insights into viral modulation of river sediment carbon and nitrogen cycling. IMPORTANCE Here we created HUM-V (hyporheic uncultured microbial and viral), an annotated microbial and viral MAG catalog that captures strain and functional diversity encoded in these Columbia River sediment samples. Demonstrating its utility, this genomic inventory encompasses multiple representatives of dominant microbial and archaeal phyla reported in other river sediments and provides novel viral MAGs that can putatively infect these. Furthermore, we used HUM-V to recruit gene expression data to decipher the functional activities of these MAGs and reconstruct their active roles in Columbia River sediment biogeochemical cycling. Ultimately, we show the power of MAG-resolved multi-omics to uncover interactions and chemical handoffs in river sediments that shape an intertwined carbon and nitrogen metabolic network. The accessible microbial and viral MAGs in HUM-V will serve as a community resource to further advance more untargeted, activity-based measurements in these, and related, freshwater terrestrial-aquatic ecosystems.
Collapse
|
13
|
Venturini AM, Gontijo JB, Mandro JA, Paula FS, Yoshiura CA, da França AG, Tsai SM. Genome-resolved metagenomics reveals novel archaeal and bacterial genomes from Amazonian forest and pasture soils. Microb Genom 2022; 8. [PMID: 35894927 PMCID: PMC9455692 DOI: 10.1099/mgen.0.000853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Amazonian soil microbial communities are known to be affected by the forest-to-pasture conversion, but the identity and metabolic potential of most of their organisms remain poorly characterized. To contribute to the understanding of these communities, here we describe metagenome-assembled genomes (MAGs) recovered from 12 forest and pasture soil metagenomes of the Brazilian Eastern Amazon. We obtained 11 forest and 30 pasture MAGs (≥50% of completeness and ≤10 % of contamination), distributed among two archaeal and 11 bacterial phyla. The taxonomic classification results suggest that most MAGs may represent potential novel microbial taxa. MAGs selected for further evaluation included members of Acidobacteriota, Actinobacteriota, Desulfobacterota_B, Desulfobacterota_F, Dormibacterota, Eremiobacterota, Halobacteriota, Proteobacteria, and Thermoproteota, thus revealing their roles in carbohydrate degradation and mercury detoxification as well as in the sulphur, nitrogen, and methane cycles. A methane-producing Archaea of the genus Methanosarcina was almost exclusively recovered from pasture soils, which can be linked to a sink-to-source shift after the forest-to-pasture conversion. The novel MAGs constitute an important resource to help us unravel the yet-unknown microbial diversity in Amazonian soils and its functional potential and, consequently, the responses of these microorganisms to land-use change.
Collapse
Affiliation(s)
- Andressa M Venturini
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP, Brazil.,Princeton Institute for International and Regional Studies, Princeton University, Princeton, NJ, USA
| | - Júlia B Gontijo
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP, Brazil
| | - Jéssica A Mandro
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP, Brazil
| | - Fabiana S Paula
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP, Brazil.,Department of Biological Oceanography, Oceanographic Institute, University of São Paulo, São Paulo, SP, Brazil
| | - Caio A Yoshiura
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP, Brazil
| | - Aline G da França
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP, Brazil
| | - Siu M Tsai
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP, Brazil
| |
Collapse
|