1
|
Pal A, Ghosh D, Thakur P, Nagpal P, Irulappan M, Maruthan K, Mukherjee S, Patil N, Dutta T, Veeraraghavan B, Vivekanandan P. Clinically relevant mutations in regulatory regions of metabolic genes facilitate early adaptation to ciprofloxacin in Escherichia coli. Nucleic Acids Res 2024; 52:10385-10399. [PMID: 39180403 PMCID: PMC11417348 DOI: 10.1093/nar/gkae719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 07/31/2024] [Accepted: 08/09/2024] [Indexed: 08/26/2024] Open
Abstract
The genomic landscape associated with early adaptation to ciprofloxacin is poorly understood. Although the interplay between core metabolism and antimicrobial resistance is being increasingly recognized, mutations in metabolic genes and their biological role remain elusive. Here, we exposed Escherichia coli to increasing gradients of ciprofloxacin with intermittent transfer-bottlenecking and identified mutations in three non-canonical targets linked to metabolism including a deletion (tRNA-ArgΔ414-bp) and point mutations in the regulatory regions of argI (ARG box) and narU. Our findings suggest that these mutations modulate arginine and carbohydrate metabolism, facilitate anaerobiosis and increased ATP production during ciprofloxacin stress. Furthermore, mutations in the regulatory regions of argI and narU were detected in over 70% of sequences from clinical E. coli isolates and were overrepresented among ciprofloxacin-resistant isolates. In sum, we have identified clinically relevant mutations in the regulatory regions of metabolic genes as a central theme that drives physiological changes necessary for adaptation to ciprofloxacin stress.
Collapse
Affiliation(s)
- Arijit Pal
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
- Department of Zoology, Raiganj Surendranath Mahavidyalaya, Sudarshanpur, Raiganj, Uttar Dinajpur, West Bengal733134, India
| | - Dipannita Ghosh
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Pratyusha Thakur
- RNA Biology Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Priya Nagpal
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Madhumathi Irulappan
- Department of Clinical Microbiology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Karthik Maruthan
- Department of Clinical Microbiology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Sanket Mukherjee
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Nikita G Patil
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
- Amity Institute of Virology and Immunology, Amity University, Noida, Uttar Pradesh, India
| | - Tanmay Dutta
- RNA Biology Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Balaji Veeraraghavan
- Department of Clinical Microbiology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Perumal Vivekanandan
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
2
|
Xia L, Li Y, Wang Y, Zhou H, Dandekar AA, Wang M, Xu F. Quorum-sensing regulation of phenazine production heightens Pseudomonas aeruginosa resistance to ciprofloxacin. Antimicrob Agents Chemother 2024; 68:e0011824. [PMID: 38526048 PMCID: PMC11064481 DOI: 10.1128/aac.00118-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 03/07/2024] [Indexed: 03/26/2024] Open
Abstract
Quorum sensing is a type of cell-cell communication that modulates various biological activities of bacteria. Previous studies indicate that quorum sensing contributes to the evolution of bacterial resistance to antibiotics, but the underlying mechanisms are not fully understood. In this study, we grew Pseudomonas aeruginosa in the presence of sub-lethal concentrations of ciprofloxacin, resulting in a large increase in ciprofloxacin minimal inhibitory concentration. We discovered that quorum sensing-mediated phenazine biosynthesis was significantly enhanced in the resistant isolates, where the quinolone circuit was the predominant contributor to this phenomenon. We found that production of pyocyanin changed carbon flux and showed that the effect can be partially inhibited by the addition of pyruvate to cultures. This study illustrates the role of quorum sensing-mediated phenotypic resistance and suggests a strategy for its prevention.
Collapse
Affiliation(s)
- Lexin Xia
- Department of Infectious Diseases, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yue Li
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang, China
| | - Yufan Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang, China
| | - Hui Zhou
- Department of Infectious Diseases, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ajai A. Dandekar
- Department of Microbiology, University of Washington, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Meizhen Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang, China
| | - Feng Xu
- Department of Infectious Diseases, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
3
|
Zampaloni C, Mattei P, Bleicher K, Winther L, Thäte C, Bucher C, Adam JM, Alanine A, Amrein KE, Baidin V, Bieniossek C, Bissantz C, Boess F, Cantrill C, Clairfeuille T, Dey F, Di Giorgio P, du Castel P, Dylus D, Dzygiel P, Felici A, García-Alcalde F, Haldimann A, Leipner M, Leyn S, Louvel S, Misson P, Osterman A, Pahil K, Rigo S, Schäublin A, Scharf S, Schmitz P, Stoll T, Trauner A, Zoffmann S, Kahne D, Young JAT, Lobritz MA, Bradley KA. A novel antibiotic class targeting the lipopolysaccharide transporter. Nature 2024; 625:566-571. [PMID: 38172634 PMCID: PMC10794144 DOI: 10.1038/s41586-023-06873-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 11/16/2023] [Indexed: 01/05/2024]
Abstract
Carbapenem-resistant Acinetobacter baumannii (CRAB) has emerged as a major global pathogen with limited treatment options1. No new antibiotic chemical class with activity against A. baumannii has reached patients in over 50 years1. Here we report the identification and optimization of tethered macrocyclic peptide (MCP) antibiotics with potent antibacterial activity against CRAB. The mechanism of action of this molecule class involves blocking the transport of bacterial lipopolysaccharide from the inner membrane to its destination on the outer membrane, through inhibition of the LptB2FGC complex. A clinical candidate derived from the MCP class, zosurabalpin (RG6006), effectively treats highly drug-resistant contemporary isolates of CRAB both in vitro and in mouse models of infection, overcoming existing antibiotic resistance mechanisms. This chemical class represents a promising treatment paradigm for patients with invasive infections due to CRAB, for whom current treatment options are inadequate, and additionally identifies LptB2FGC as a tractable target for antimicrobial drug development.
Collapse
Affiliation(s)
- Claudia Zampaloni
- Roche Pharma Research and Early Development, Immunology, Infectious Disease and Ophthalmology, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland
| | - Patrizio Mattei
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland
| | - Konrad Bleicher
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland
- SixPeaks Bio, Basel, Switzerland
| | - Lotte Winther
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland
| | - Claudia Thäte
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland
- Preclinical Sciences and Translational Safety, Janssen Pharmaceutica, Beerse, Belgium
| | - Christian Bucher
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland
| | - Jean-Michel Adam
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland
- AutoChem R&D, Mettler-Toledo International, Greifensee, Switzerland
| | - Alexander Alanine
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland
- Independent consultant, Cambridge, Great Britain
| | - Kurt E Amrein
- Roche Pharma Research and Early Development, Immunology, Infectious Disease and Ophthalmology, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland
| | - Vadim Baidin
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Christoph Bieniossek
- Roche Pharma Research and Early Development, Immunology, Infectious Disease and Ophthalmology, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland
| | - Caterina Bissantz
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland
| | - Franziska Boess
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland
| | - Carina Cantrill
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland
| | - Thomas Clairfeuille
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland
| | - Fabian Dey
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland
| | - Patrick Di Giorgio
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland
| | - Pauline du Castel
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland
| | - David Dylus
- Roche Pharma Research and Early Development, Immunology, Infectious Disease and Ophthalmology, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland
| | - Pawel Dzygiel
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland
| | - Antonio Felici
- Discovery Microbiology, Aptuit (Verona) Srl, an Evotec Company, Verona, Italy
| | - Fernando García-Alcalde
- Roche Pharma Research and Early Development, Immunology, Infectious Disease and Ophthalmology, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland
| | - Andreas Haldimann
- Roche Pharma Research and Early Development, Immunology, Infectious Disease and Ophthalmology, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland
| | - Matthew Leipner
- Roche Pharma Research and Early Development, Immunology, Infectious Disease and Ophthalmology, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland
| | - Semen Leyn
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Séverine Louvel
- Roche Pharma Research and Early Development, Immunology, Infectious Disease and Ophthalmology, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland
| | - Pauline Misson
- Roche Pharma Research and Early Development, Immunology, Infectious Disease and Ophthalmology, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland
| | - Andrei Osterman
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Karanbir Pahil
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Sébastien Rigo
- Roche Pharma Research and Early Development, Immunology, Infectious Disease and Ophthalmology, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland
| | - Adrian Schäublin
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland
- SixPeaks Bio, Basel, Switzerland
| | - Sebastian Scharf
- Roche Pharma Research and Early Development, Informatics, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland
| | - Petra Schmitz
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland
| | - Theodor Stoll
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland
| | - Andrej Trauner
- Roche Pharma Research and Early Development, Immunology, Infectious Disease and Ophthalmology, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland
| | - Sannah Zoffmann
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland
- Therapeutics Discovery, Janssen Pharmaceutica, Beerse, Belgium
| | - Daniel Kahne
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - John A T Young
- Roche Pharma Research and Early Development, Immunology, Infectious Disease and Ophthalmology, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland
| | - Michael A Lobritz
- Roche Pharma Research and Early Development, Immunology, Infectious Disease and Ophthalmology, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland.
| | - Kenneth A Bradley
- Roche Pharma Research and Early Development, Immunology, Infectious Disease and Ophthalmology, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland.
| |
Collapse
|
4
|
Zhou Z, Lian Y, Zhu L, Zhang H, Li Z, Wang M. Platinum Nanoparticles Prevent the Resistance of Pseudomonas aeruginosa to Ciprofloxacin and Imipenem: Mechanism Insights. ACS NANO 2023; 17:24685-24695. [PMID: 38048441 DOI: 10.1021/acsnano.3c04167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Metal nanoparticles (MNPs) have recently gained extensive attention due to their broad-spectrum prospect, particularly in biomedical application. Here, we reveal that long-term exposure to platinum nanoparticles (Pt NPs) increases the susceptibility of Pseudomonas aeruginosa PAO1 to imipenem and ciprofloxacin. We exposed PAO1 to Pt NPs (a series of doses, varying from 0.125 to 35 μg/mL) for 60 days and characterized the evolved strains (ES) and compared with wild type (WT) to understand the mechanism of heightened sensitivity. We found that overexpression of oprD and downregulation of mexEF-oprN facilitate the intracellular accumulation of antibiotic, thus increasing susceptibility. Furthermore, loss-of-function mutations were discovered in regulators lasR and mexT. Cloning intact lasR from wild-type (WT) into ES slightly improves imipenem resistance. Strikingly, cloning mexT from WT into ES reverts the imipenem and ciprofloxacin resistance to the original level. Briefly, the increase of membrane permeability controlled by mexT made PAO1 greatly susceptible to imipenem and ciprofloxacin, and the decrease of quorum sensing mediated by lasR made PAO1 slightly susceptible to imipenem. Overall, these results reveal an antibiotic susceptibility mechanism from prolonged exposure to MNPs, which provides a promising approach to prevent antibiotic resistance.
Collapse
Affiliation(s)
- Zhiruo Zhou
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Yulu Lian
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Lin Zhu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Haibo Zhang
- China National Demonstration Center for Experimental Chemistry, Wuhan University, Wuhan 430072, China
| | - Zhangqiang Li
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Meizhen Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, China
| |
Collapse
|
5
|
Leyn SA, Kent JE, Zlamal JE, Elane ML, Vercruysse M, Osterman AL. Two Classes of DNA Gyrase Inhibitors Elicit Distinct Evolutionary Trajectories Toward Resistance in Gram-Negative Pathogens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.26.546596. [PMID: 37425702 PMCID: PMC10327078 DOI: 10.1101/2023.06.26.546596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Comprehensive knowledge of mechanisms driving the acquisition of antimicrobial resistance is essential for the development of new drugs with minimized resistibility. To gain this knowledge, we combine experimental evolution in a continuous culturing device, the morbidostat, with whole genome sequencing of evolving cultures followed by characterization of drug-resistant isolates. Here, this approach was used to assess evolutionary dynamics of resistance acquisition against DNA gyrase/topoisomerase TriBE inhibitor GP6 in Escherichia coli and Acinetobacter baumannii. The evolution of GP6 resistance in both species was driven by a combination of two classes of mutational events: (i) amino acid substitutions near the ATP-binding site of the GyrB subunit of the DNA gyrase target; and (ii) various mutations and genomic rearrangements leading to upregulation of efflux pumps, species-specific (AcrAB/TolC in E. coli and AdeIJK in A. baumannii) and shared by both species (MdtK). A comparison with the experimental evolution of resistance to ciprofloxacin (CIP), previously performed using the same workflow and strains, revealed fundamental differences between these two distinct classes of compounds. Most notable were non-overlapping spectra of target mutations and distinct evolutionary trajectories that, in the case of GP6, were dominated by upregulation of efflux machinery prior to (or even in lieu) of target modification. Most of efflux-driven GP6-resistant isolates of both species displayed a robust cross-resistance to CIP, while CIP-resistant clones showed no appreciable increase in GP6-resistance.
Collapse
Affiliation(s)
- Semen A. Leyn
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - James E. Kent
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Jaime E. Zlamal
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Marinela L. Elane
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Maarten Vercruysse
- Roche Pharma Research and Early Development, Immunology, Inflammation, and Infectious Diseases, Basel, Switzerland
| | - Andrei L. Osterman
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| |
Collapse
|
6
|
Ambrose SJ, Hamidian M, Hall RM. The extensively antibiotic resistant ST111 Acinetobacter baumannii isolate RBH2 carries an extensive mobile element complement of plasmids, transposons and insertion sequences. Plasmid 2023; 128:102707. [PMID: 37678515 DOI: 10.1016/j.plasmid.2023.102707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023]
Abstract
The complete genome of RBH2, a sporadic, carbapenem resistant ST111 Acinetobacter baumannii isolate from Brisbane, Australia was determined and analysed. RBH2 is extensively resistant and the chromosome includes two transposons carrying antibiotic resistance genes, AbaR4 (oxa23 in Tn2006) and Tn7::Tn2006 (dfrA1, sat2, aadA1, oxa23). The chromosome also includes two copies of Tn6175, a transposon carrying putative copper resistance genes, and 1-17 copies of six different insertion sequences. RBH2 has six plasmids ranging in size from 6 kb - 141 kb, four carrying antibiotic resistance genes. Plasmids pRBH2-1 (aadB) and pRBH2-2 (aphA6 in TnaphA6) were found to be essentially identical to known plasmids pRAY*-v1 and pS21-1, respectively. The largest plasmids, pRBH2-5 (oxa23 in AbaR4) and pRBH2-6 (oxa23 in AbaR4::ISAba11 and sul2, tet(B), strA and strB in Tn6172) have known transfer-proficient relatives. pRBH2-5, an RP-T1 (RepAci6) plasmid, also carries a different putative copper resistance transposon related to Tn6177 found in pS21-2. The backbone of pRBH2-5 is related to those of previously described RepAci6 plasmids pAb-G7-2 and pA85-3 but has some distinctive features. Three different RepAci6 backbone types were distinguished, Type 1 (pAb-G7-2), Type 2 (pA85-3) and Type 3 (pRBH2-5 and pS21-2). pRBH2-6 is closely related to pAB3 and their backbones differ by only 5 SNPs. Plasmids pRBH2-3 and pRBH2-4 do not carry antibiotic resistance genes. pRBH2-3 does not include an identifiable rep gene and is a novel plasmid type. pRBH2-4 is of the R3-T3 type and includes segments of the larger pABTJ2 that heads this group. Other ST111 genomes carry different plasmids.
Collapse
Affiliation(s)
- Stephanie J Ambrose
- School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia.
| | - Mehrad Hamidian
- School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia; Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Ruth M Hall
- School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
| |
Collapse
|
7
|
Tong C, Liang Y, Zhang Z, Wang S, Zheng X, Liu Q, Song B. Review of knockout technology approaches in bacterial drug resistance research. PeerJ 2023; 11:e15790. [PMID: 37605748 PMCID: PMC10440060 DOI: 10.7717/peerj.15790] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/04/2023] [Indexed: 08/23/2023] Open
Abstract
Gene knockout is a widely used method in biology for investigating gene function. Several technologies are available for gene knockout, including zinc-finger nuclease technology (ZFN), suicide plasmid vector systems, transcription activator-like effector protein nuclease technology (TALEN), Red homologous recombination technology, CRISPR/Cas, and others. Of these, Red homologous recombination technology, CRISPR/Cas9 technology, and suicide plasmid vector systems have been the most extensively used for knocking out bacterial drug resistance genes. These three technologies have been shown to yield significant results in researching bacterial gene functions in numerous studies. This study provides an overview of current gene knockout methods that are effective for genetic drug resistance testing in bacteria. The study aims to serve as a reference for selecting appropriate techniques.
Collapse
Affiliation(s)
- Chunyu Tong
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Yimin Liang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Zhelin Zhang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Sen Wang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Xiaohui Zheng
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Qi Liu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Bocui Song
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| |
Collapse
|
8
|
Heithoff DM, Mahan SP, Barnes V L, Leyn SA, George CX, Zlamal JE, Limwongyut J, Bazan GC, Fried JC, Fitzgibbons LN, House JK, Samuel CE, Osterman AL, Low DA, Mahan MJ. A broad-spectrum synthetic antibiotic that does not evoke bacterial resistance. EBioMedicine 2023; 89:104461. [PMID: 36801104 PMCID: PMC10025758 DOI: 10.1016/j.ebiom.2023.104461] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 02/17/2023] Open
Abstract
BACKGROUND Antimicrobial resistance (AMR) poses a critical threat to public health and disproportionately affects the health and well-being of persons in low-income and middle-income countries. Our aim was to identify synthetic antimicrobials termed conjugated oligoelectrolytes (COEs) that effectively treated AMR infections and whose structures could be readily modified to address current and anticipated patient needs. METHODS Fifteen chemical variants were synthesized that contain specific alterations to the COE modular structure, and each variant was evaluated for broad-spectrum antibacterial activity and for in vitro cytotoxicity in cultured mammalian cells. Antibiotic efficacy was analyzed in murine models of sepsis; in vivo toxicity was evaluated via a blinded study of mouse clinical signs as an outcome of drug treatment. FINDINGS We identified a compound, COE2-2hexyl, that displayed broad-spectrum antibacterial activity. This compound cured mice infected with clinical bacterial isolates derived from patients with refractory bacteremia and did not evoke bacterial resistance. COE2-2hexyl has specific effects on multiple membrane-associated functions (e.g., septation, motility, ATP synthesis, respiration, membrane permeability to small molecules) that may act together to negate bacterial cell viability and the evolution of drug-resistance. Disruption of these bacterial properties may occur through alteration of critical protein-protein or protein-lipid membrane interfaces-a mechanism of action distinct from many membrane disrupting antimicrobials or detergents that destabilize membranes to induce bacterial cell lysis. INTERPRETATION The ease of molecular design, synthesis and modular nature of COEs offer many advantages over conventional antimicrobials, making synthesis simple, scalable and affordable. These COE features enable the construction of a spectrum of compounds with the potential for development as a new versatile therapy for an imminent global health crisis. FUNDING U.S. Army Research Office, National Institute of Allergy and Infectious Diseases, and National Heart, Lung, and Blood Institute.
Collapse
Affiliation(s)
- Douglas M Heithoff
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, 93106, USA; Institute for Collaborative Biotechnologies, University of California, Santa Barbara, CA, 93106, USA
| | - Scott P Mahan
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, 93106, USA; Institute for Collaborative Biotechnologies, University of California, Santa Barbara, CA, 93106, USA; Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA, 95616, USA
| | - Lucien Barnes V
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, 93106, USA; Institute for Collaborative Biotechnologies, University of California, Santa Barbara, CA, 93106, USA
| | - Semen A Leyn
- Infectious and Inflammatory Diseases Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Cyril X George
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, 93106, USA; Institute for Collaborative Biotechnologies, University of California, Santa Barbara, CA, 93106, USA
| | - Jaime E Zlamal
- Infectious and Inflammatory Diseases Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Jakkarin Limwongyut
- Institute for Collaborative Biotechnologies, University of California, Santa Barbara, CA, 93106, USA; Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| | - Guillermo C Bazan
- Institute for Collaborative Biotechnologies, University of California, Santa Barbara, CA, 93106, USA; Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA; Department of Chemistry, National University of Singapore, 117543, Singapore
| | - Jeffrey C Fried
- Department of Medical Education, Santa Barbara Cottage Hospital, Santa Barbara, CA, 93105, USA; Department of Pulmonary and Critical Care Medicine, Santa Barbara Cottage Hospital, Santa Barbara, CA, 93105, USA
| | - Lynn N Fitzgibbons
- Department of Medical Education, Santa Barbara Cottage Hospital, Santa Barbara, CA, 93105, USA; Division of Infectious Diseases, Santa Barbara Cottage Hospital, Santa Barbara, CA, 93105, USA
| | - John K House
- Faculty of Science, Sydney School of Veterinary Science, The University of Sydney, Camden, New South Wales, 2570, Australia
| | - Charles E Samuel
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, 93106, USA; Institute for Collaborative Biotechnologies, University of California, Santa Barbara, CA, 93106, USA
| | - Andrei L Osterman
- Infectious and Inflammatory Diseases Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - David A Low
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, 93106, USA; Institute for Collaborative Biotechnologies, University of California, Santa Barbara, CA, 93106, USA.
| | - Michael J Mahan
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, 93106, USA; Institute for Collaborative Biotechnologies, University of California, Santa Barbara, CA, 93106, USA.
| |
Collapse
|
9
|
Wang D, Ning Q, Deng Z, Zhang M, You J. Role of environmental stresses in elevating resistance mutations in bacteria: Phenomena and mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119603. [PMID: 35691443 DOI: 10.1016/j.envpol.2022.119603] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 05/28/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
Mutations are an important origin of antibiotic resistance in bacteria. While there is increasing evidence showing promoted resistance mutations by environmental stresses, no retrospective research has yet been conducted on this phenomenon and its mechanisms. Herein, we summarized the phenomena of stress-elevated resistance mutations in bacteria, generalized the regulatory mechanisms and discussed the environmental and human health implications. It is shown that both chemical pollutants, such as antibiotics and other pharmaceuticals, biocides, metals, nanoparticles and disinfection byproducts, and non-chemical stressors, such as ultraviolet radiation, electrical stimulation and starvation, are capable of elevating resistance mutations in bacteria. Notably, resistance mutations are more likely to occur under sublethal or subinhibitory levels of these stresses, suggesting a considerable environmental concern. Further, mechanisms for stress-induced mutations are summarized in several points, namely oxidative stress, SOS response, DNA replication and repair systems, RpoS regulon and biofilm formation, all of which are readily provoked by common environmental stresses. Given bacteria in the environment are confronted with a variety of unfavorable conditions, we propose that the stress-elevated resistance mutations are a universal phenomenon in the environment and represent a nonnegligible risk factor for ecosystems and human health. The present review identifies a need for taking into account the pollutants' ability to elevate resistance mutations when assessing their environmental and human health risks and highlights the necessity of including resistance mutations as a target to prevent antibiotic resistance evolution.
Collapse
Affiliation(s)
- Dali Wang
- Guangdong Provincial Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
| | - Qing Ning
- Guangdong Provincial Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
| | | | - Meng Zhang
- Shenzhen Dapeng New District Center for Disease Control and Prevention, Shenzhen, 518000, China
| | - Jing You
- Guangdong Provincial Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China.
| |
Collapse
|
10
|
Fedarko MW, Kolmogorov M, Pevzner PA. Analyzing rare mutations in metagenomes assembled using long and accurate reads. Genome Res 2022; 32:2119-2133. [PMID: 36418060 PMCID: PMC9808630 DOI: 10.1101/gr.276917.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 11/16/2022] [Indexed: 11/25/2022]
Abstract
The advent of long and accurate "HiFi" reads has greatly improved our ability to generate complete metagenome-assembled genomes (MAGs), enabling "complete metagenomics" studies that were nearly impossible to conduct with short reads. In particular, HiFi reads simplify the identification and phasing of mutations in MAGs: It is increasingly feasible to distinguish between positions that are prone to mutations and positions that rarely ever mutate, and to identify co-occurring groups of mutations. However, the problems of identifying rare mutations in MAGs, estimating the false-discovery rate (FDR) of these identifications, and phasing identified mutations remain open in the context of HiFi data. We present strainFlye, a pipeline for the FDR-controlled identification and analysis of rare mutations in MAGs assembled using HiFi reads. We show that deep HiFi sequencing has the potential to reveal and phase tens of thousands of rare mutations in a single MAG, identify hotspots and coldspots of these mutations, and detail MAGs' growth dynamics.
Collapse
Affiliation(s)
- Marcus W. Fedarko
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, California 92093, USA;,Center for Microbiome Innovation, University of California San Diego, La Jolla, California 92093, USA
| | - Mikhail Kolmogorov
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, California 92093, USA;,Center for Microbiome Innovation, University of California San Diego, La Jolla, California 92093, USA;,UC Santa Cruz Genomics Institute, Santa Cruz, California 95064, USA
| | - Pavel A. Pevzner
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, California 92093, USA;,Center for Microbiome Innovation, University of California San Diego, La Jolla, California 92093, USA
| |
Collapse
|