1
|
Ferreri LM, Seibert B, Caceres CJ, Patatanian K, Holmes KE, Gay LC, Cargnin Faccin F, Cardenas M, Carnaccini S, Shetty N, Rajao D, Koelle K, Marr LC, Perez DR, Lowen AC. Dispersal of influenza virus populations within the respiratory tract shapes their evolutionary potential. Proc Natl Acad Sci U S A 2025; 122:e2419985122. [PMID: 39835898 PMCID: PMC11789087 DOI: 10.1073/pnas.2419985122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 12/06/2024] [Indexed: 01/22/2025] Open
Abstract
Viral infections are characterized by dispersal from an initial site to secondary locations within the host. How the resultant spatial heterogeneity shapes within-host genetic diversity and viral evolutionary pathways is poorly understood. Here, we show that virus dispersal within and between the nasal cavity and trachea maintains diversity and is therefore conducive to adaptive evolution, whereas dispersal to the lungs gives rise to population heterogeneity. We infected ferrets either intranasally or by aerosol with a barcoded influenza A/California/07/2009 (H1N1) virus. At 1, 2, or 4 days postinfection, dispersal was assessed by collecting 52 samples from throughout the respiratory tract of each animal. Irrespective of inoculation route, barcode compositions across the nasal turbinates and trachea were similar and highly diverse, revealing little constraint on the establishment of infection in the nasal cavity and descent through the trachea. Conversely, infection of the lungs produced genetically distinct viral populations. Lung populations were pauci-clonal, suggesting that each seeded location received relatively few viral genotypes. While aerosol inoculation gave distinct populations at every lung site sampled, within-host dispersal after intranasal inoculation produced larger patches, indicative of local expansion following seeding of the lungs. Throughout the respiratory tract, barcode diversity declined over time, but new diversity was generated through mutation. De novo variants were often unique to a given location, indicating that localized replication following dispersal resulted in population divergence. In summary, dispersal within the respiratory tract operates differently between regions and contributes to the potential for viral evolution to proceed independently in multiple within-host subpopulations.
Collapse
Affiliation(s)
- Lucas M. Ferreri
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA30322
| | - Brittany Seibert
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA30602
| | - C. Joaquin Caceres
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA30602
| | - Kayle Patatanian
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA30322
| | - Katie E. Holmes
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA30322
| | - L. Claire Gay
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA30602
| | - Flavio Cargnin Faccin
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA30602
| | - Matias Cardenas
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA30602
| | - Silvia Carnaccini
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA30602
| | - Nishit Shetty
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA24061
| | - Daniela Rajao
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA30602
| | - Katia Koelle
- Department of Biology, College of Arts and Sciences, Emory University, Atlanta, GA30322
- Emory Center of Excellence for Influenza Research and Response, Atlanta, GA30322
| | - Linsey C. Marr
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA24061
| | - Daniel R. Perez
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA30602
| | - Anice C. Lowen
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA30322
- Emory Center of Excellence for Influenza Research and Response, Atlanta, GA30322
| |
Collapse
|
2
|
Mushegian A, Kreitman A, Nelson MI, Chung M, Mederos C, Roder A, Banakis S, Desormeaux AM, Jean Charles NL, Grant-Greene Y, Marseille S, Pierre K, Lafontant D, Boncy J, Journel I, Buteau J, Juin S, Ghedin E. Genomic analysis of the early COVID-19 pandemic in Haiti reveals Caribbean-specific variant dynamics. PLOS GLOBAL PUBLIC HEALTH 2024; 4:e0003536. [PMID: 39565753 PMCID: PMC11578445 DOI: 10.1371/journal.pgph.0003536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 09/16/2024] [Indexed: 11/22/2024]
Abstract
Pathogen sequencing during the COVID-19 pandemic has generated more whole genome sequencing data than for any other epidemic, allowing epidemiologists to monitor the transmission and evolution of SARS-CoV-2. However, large parts of the world are heavily underrepresented in sequencing efforts, including the Caribbean islands. We performed genome sequencing of SARS-CoV-2 from upper respiratory tract samples collected in Haiti during the spring of 2020. We used phylogenetic analysis to assess the pandemic dynamics in the Caribbean region and observed that the epidemic in Haiti was seeded by multiple introductions, primarily from the United States. We identified the emergence of a SARS-CoV-2 lineage (B.1.478) from Haiti that spread into North America, as well as evidence of the undocumented spread of SARS-CoV-2 within the Caribbean. We demonstrate that the genomic analysis of a relatively modest number of samples from a severely under-sampled region can provide new insight on a previously unobserved spread of a specific lineage, demonstrating the importance of geographically widespread genomic epidemiology.
Collapse
Affiliation(s)
- Alexandra Mushegian
- Systems Genomics Section, Laboratory of Parasitic Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Allie Kreitman
- Systems Genomics Section, Laboratory of Parasitic Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Martha I. Nelson
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, NIH, Bethesda, Maryland, United States of America
| | - Matthew Chung
- Systems Genomics Section, Laboratory of Parasitic Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Christopher Mederos
- Systems Genomics Section, Laboratory of Parasitic Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Allison Roder
- Systems Genomics Section, Laboratory of Parasitic Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Stephanie Banakis
- Systems Genomics Section, Laboratory of Parasitic Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | | | | | | | - Samson Marseille
- Direction d’Epidémiologie de Laboratoire et de Recherche, Port-au-Prince, Haiti
| | - Katilla Pierre
- Direction d’Epidémiologie de Laboratoire et de Recherche, Port-au-Prince, Haiti
| | - Donald Lafontant
- Direction d’Epidémiologie de Laboratoire et de Recherche, Port-au-Prince, Haiti
| | - Jacques Boncy
- Laboratoire National de Santé Publique, Port-au-Prince, Haiti
| | - Ito Journel
- Laboratoire National de Santé Publique, Port-au-Prince, Haiti
| | - Josiane Buteau
- Laboratoire National de Santé Publique, Port-au-Prince, Haiti
| | - Stanley Juin
- Direction d’Epidémiologie de Laboratoire et de Recherche, Port-au-Prince, Haiti
| | - Elodie Ghedin
- Systems Genomics Section, Laboratory of Parasitic Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
3
|
Septer KM, Heinly TA, Sim DG, Patel DR, Roder AE, Wang W, Chung M, Johnson KEE, Ghedin E, Sutton TC. Vaccine-induced NA immunity decreases viral shedding, but does not disrupt chains of airborne transmission for the 2009 pandemic H1N1 virus in ferrets. mBio 2024; 15:e0216124. [PMID: 39248566 PMCID: PMC11481891 DOI: 10.1128/mbio.02161-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 08/19/2024] [Indexed: 09/10/2024] Open
Abstract
Split-virion-inactivated influenza vaccines are formulated based on viral hemagglutinin content. These vaccines also contain the viral neuraminidase (NA) protein, but NA content is not standardized and varies between manufacturers. In clinical studies and animal models, antibodies directed toward NA reduced disease severity and viral load; however, the impact of vaccine-induced NA immunity on airborne transmission of influenza A viruses is not well characterized. Therefore, we evaluated if vaccination against NA could disrupt chains of airborne transmission for the 2009 pandemic H1N1 virus in ferrets. Immunologically naïve donor ferrets were infected with the 2009 pandemic H1N1 virus and then paired in transmission cages with mock- or NA-vaccinated respiratory contacts. The mock- and NA-vaccinated animals were then monitored daily for infection, and once infected, these animals were paired with a naive secondary respiratory contact. In these studies, all mock- and NA-vaccinated animals became infected; however, NA-vaccinated animals shed significantly less virus for fewer days relative to mock-vaccinated animals. For the secondary contacts, 6/6 and 5/6 animals became infected after exposure to mock- and NA-vaccinated animals, respectively. To determine if vaccine-induced immune pressure selected for escape variants, we sequenced viruses recovered from ferrets. No mutations in NA became enriched during transmission. These findings indicate that despite reducing viral load, vaccine-induced NA immunity does not prevent infection during continuous airborne exposure and subsequent onward airborne transmission of the 2009 pandemic H1N1 virus. IMPORTANCE In humans and animal models, immunity against neuraminidase (NA) reduces disease severity and viral replication during influenza infection. However, we have a limited understanding of the impact of NA immunity on viral transmission. Using chains of airborne transmission in ferrets as a strategy to simulate a more natural route of infection, we assessed if vaccine-induced NA immunity could disrupt transmission of the 2009 pandemic H1N1 virus. The 2009 pandemic H1N1 virus transmitted efficiently through chains of transmission in the presence of NA immunity, but NA-vaccinated animals shed significantly less virus and had accelerated viral clearance. To determine if immune pressure led to the generation of escape variants, viruses in ferret nasal wash samples were sequenced, and no mutations in NA were identified. These findings demonstrate that vaccine-induced NA immunity is not sufficient to prevent infection via airborne exposure and onward airborne transmission of the 2009 pandemic H1N1 virus.
Collapse
Affiliation(s)
- K. M. Septer
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
- Huck Institutes of Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
- Emory-UGA Center of Excellence of Influenza Research and Response (CEIRR), University Park, Pennsylvania, USA
| | - T. A. Heinly
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
- Huck Institutes of Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
- Emory-UGA Center of Excellence of Influenza Research and Response (CEIRR), University Park, Pennsylvania, USA
| | - D. G. Sim
- Huck Institutes of Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - D. R. Patel
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
- Huck Institutes of Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
- Emory-UGA Center of Excellence of Influenza Research and Response (CEIRR), University Park, Pennsylvania, USA
| | - A. E. Roder
- Systems Genomics Section, Laboratory of Parasitic Diseases, NIAID, NIH, Bethesda, Maryland, USA
| | - W. Wang
- Systems Genomics Section, Laboratory of Parasitic Diseases, NIAID, NIH, Bethesda, Maryland, USA
| | - M. Chung
- Systems Genomics Section, Laboratory of Parasitic Diseases, NIAID, NIH, Bethesda, Maryland, USA
| | - K. E. E. Johnson
- Systems Genomics Section, Laboratory of Parasitic Diseases, NIAID, NIH, Bethesda, Maryland, USA
| | - E. Ghedin
- Systems Genomics Section, Laboratory of Parasitic Diseases, NIAID, NIH, Bethesda, Maryland, USA
| | - T. C. Sutton
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
- Huck Institutes of Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
- Emory-UGA Center of Excellence of Influenza Research and Response (CEIRR), University Park, Pennsylvania, USA
| |
Collapse
|
4
|
Nooruzzaman M, Johnson KEE, Rani R, Finkelsztein EJ, Caserta LC, Kodiyanplakkal RP, Wang W, Hsu J, Salpietro MT, Banakis S, Albert J, Westblade LF, Zanettini C, Marchionni L, Soave R, Ghedin E, Diel DG, Salvatore M. Emergence of transmissible SARS-CoV-2 variants with decreased sensitivity to antivirals in immunocompromised patients with persistent infections. Nat Commun 2024; 15:7999. [PMID: 39294134 PMCID: PMC11411086 DOI: 10.1038/s41467-024-51924-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/21/2024] [Indexed: 09/20/2024] Open
Abstract
We investigated the impact of antiviral treatment on the emergence of SARS-CoV-2 resistance during persistent infections in immunocompromised patients (n = 15). All patients received remdesivir and some also received nirmatrelvir-ritonavir (n = 3) or therapeutic monoclonal antibodies (n = 4). Sequence analysis showed that nine patients carried viruses with mutations in the nsp12 (RNA dependent RNA polymerase), while four had viruses with nsp5 (3C protease) mutations. Infectious SARS-CoV-2 with a double mutation in nsp5 (T169I) and nsp12 (V792I) was recovered from respiratory secretions 77 days after initial COVID-19 diagnosis from a patient sequentially treated with nirmatrelvir-ritonavir and remdesivir. In vitro characterization confirmed its decreased sensitivity to remdesivir and nirmatrelvir, which was overcome by combined antiviral treatment. Studies in golden Syrian hamsters demonstrated efficient transmission to contact animals. This study documents the isolation of SARS-CoV-2 carrying resistance mutations to both nirmatrelvir and remdesivir from a patient and demonstrates its transmissibility in vivo.
Collapse
Affiliation(s)
- Mohammed Nooruzzaman
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | | | - Ruchi Rani
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | | | - Leonardo C Caserta
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | | | - Wei Wang
- Systems Genomics Section, NIH/NIAID/DIR/LPD, Bethesda, MD, USA
| | - Jingmei Hsu
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Transplantation and Cellular Therapy Program, Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Maria T Salpietro
- Institutional Biorepository Core, Weill Cornell Medicine, New York, NY, USA
| | | | - Joshua Albert
- Systems Genomics Section, NIH/NIAID/DIR/LPD, Bethesda, MD, USA
| | - Lars F Westblade
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Claudio Zanettini
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Luigi Marchionni
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Rosemary Soave
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Elodie Ghedin
- Systems Genomics Section, NIH/NIAID/DIR/LPD, Bethesda, MD, USA.
| | - Diego G Diel
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
| | - Mirella Salvatore
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
- Department of Population Health Science, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
5
|
Mostefai F, Grenier JC, Poujol R, Hussin J. Refining SARS-CoV-2 intra-host variation by leveraging large-scale sequencing data. NAR Genom Bioinform 2024; 6:lqae145. [PMID: 39534500 PMCID: PMC11555433 DOI: 10.1093/nargab/lqae145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/13/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
Understanding viral genome evolution during host infection is crucial for grasping viral diversity and evolution. Analyzing intra-host single nucleotide variants (iSNVs) offers insights into new lineage emergence, which is important for predicting and mitigating future viral threats. Despite next-generation sequencing's potential, challenges persist, notably sequencing artifacts leading to false iSNVs. We developed a workflow to enhance iSNV detection in large NGS libraries, using over 130 000 SARS-CoV-2 libraries to distinguish mutations from errors. Our approach integrates bioinformatics protocols, stringent quality control, and dimensionality reduction to tackle batch effects and improve mutation detection reliability. Additionally, we pioneer the application of the PHATE visualization approach to genomic data and introduce a methodology that quantifies how related groups of data points are represented within a two-dimensional space, enhancing clustering structure explanation based on genetic similarities. This workflow advances accurate intra-host mutation detection, facilitating a deeper understanding of viral diversity and evolution.
Collapse
Affiliation(s)
- Fatima Mostefai
- Département de Biochimie et de Médecine Moléculaire, Université de Montréal, Québec, Canada
- Research Center, Montreal Heart Institute, Québec, Canada
- Mila - Quebec AI Institute, Université de Montréal, Québec, Canada
| | | | - Raphaël Poujol
- Research Center, Montreal Heart Institute, Québec, Canada
| | - Julie Hussin
- Département de Biochimie et de Médecine Moléculaire, Université de Montréal, Québec, Canada
- Research Center, Montreal Heart Institute, Québec, Canada
- Mila - Quebec AI Institute, Université de Montréal, Québec, Canada
- Département de Médecine, Université de Montréal, Québec, Canada
| |
Collapse
|
6
|
Kar M, Johnson KEE, Vanderheiden A, Elrod EJ, Floyd K, Geerling E, Stone ET, Salinas E, Banakis S, Wang W, Sathish S, Shrihari S, Davis-Gardner ME, Kohlmeier J, Pinto A, Klein R, Grakoui A, Ghedin E, Suthar MS. CD4 + and CD8 + T cells are required to prevent SARS-CoV-2 persistence in the nasal compartment. SCIENCE ADVANCES 2024; 10:eadp2636. [PMID: 39178263 PMCID: PMC11343035 DOI: 10.1126/sciadv.adp2636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/19/2024] [Indexed: 08/25/2024]
Abstract
SARS-CoV-2 infection induces the generation of virus-specific CD4+ and CD8+ effector and memory T cells. However, the contribution of T cells in controlling SARS-CoV-2 during infection is not well understood. Following infection of C57BL/6 mice, SARS-CoV-2-specific CD4+ and CD8+ T cells are recruited to the respiratory tract, and a vast proportion secrete the cytotoxic molecule granzyme B. Using depleting antibodies, we found that T cells within the lungs play a minimal role in viral control, and viral clearance occurs in the absence of both CD4+ and CD8+ T cells through 28 days postinfection. In the nasal compartment, depletion of both CD4+ and CD8+ T cells, but not individually, results in persistent, culturable virus replicating in the nasal epithelial layer through 28 days postinfection. Viral sequencing analysis revealed adapted mutations across the SARS-CoV-2 genome, including a large deletion in ORF6. Overall, our findings highlight the importance of T cells in controlling virus replication within the respiratory tract during SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Meenakshi Kar
- Center for Childhood Infections and Vaccines of Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
- Emory National Primate Research Center, Atlanta, GA, USA
| | - Katherine E. E. Johnson
- Systems Genomics Section, Laboratory of Parasitic Diseases, DIR, NIAID, NIH, Bethesda, MD, USA
| | - Abigail Vanderheiden
- Center for Neuroimmunology and Neuroinfectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Elizabeth J. Elrod
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
- Emory National Primate Research Center, Atlanta, GA, USA
- Department of Medicine, Emory University School of Medicine, Emory University, Atlanta, GA, USA
| | - Katharine Floyd
- Center for Childhood Infections and Vaccines of Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
- Emory National Primate Research Center, Atlanta, GA, USA
| | - Elizabeth Geerling
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, MO, USA
| | - E. Taylor Stone
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, MO, USA
| | - Eduardo Salinas
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
- Emory National Primate Research Center, Atlanta, GA, USA
- Department of Medicine, Emory University School of Medicine, Emory University, Atlanta, GA, USA
| | - Stephanie Banakis
- Systems Genomics Section, Laboratory of Parasitic Diseases, DIR, NIAID, NIH, Bethesda, MD, USA
| | - Wei Wang
- Systems Genomics Section, Laboratory of Parasitic Diseases, DIR, NIAID, NIH, Bethesda, MD, USA
| | - Shruti Sathish
- Systems Genomics Section, Laboratory of Parasitic Diseases, DIR, NIAID, NIH, Bethesda, MD, USA
| | - Swathi Shrihari
- Center for Childhood Infections and Vaccines of Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
- Emory National Primate Research Center, Atlanta, GA, USA
| | - Meredith E. Davis-Gardner
- Center for Childhood Infections and Vaccines of Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
- Emory National Primate Research Center, Atlanta, GA, USA
| | - Jacob Kohlmeier
- Department of Microbiology and Immunology, Emory University, Atlanta, GA, USA
| | - Amelia Pinto
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, MO, USA
| | - Robyn Klein
- Schulich School of Medicine and Dentistry, Department of Microbiology and Immunology, Western University, London, Ontario, Canada
- Schulich School of Medicine and Dentistry, Western Institute of Neuroscience, Western University, London, Ontario, Canada
| | - Arash Grakoui
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
- Emory National Primate Research Center, Atlanta, GA, USA
- Department of Medicine, Emory University School of Medicine, Emory University, Atlanta, GA, USA
| | - Elodie Ghedin
- Systems Genomics Section, Laboratory of Parasitic Diseases, DIR, NIAID, NIH, Bethesda, MD, USA
| | - Mehul S. Suthar
- Center for Childhood Infections and Vaccines of Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
- Emory National Primate Research Center, Atlanta, GA, USA
- Department of Microbiology and Immunology, Emory University, Atlanta, GA, USA
| |
Collapse
|
7
|
Nooruzzaman M, Johnson KEE, Rani R, Finkelsztein EJ, Caserta LC, Kodiyanplakkal RP, Wang W, Hsu J, Salpietro MT, Banakis S, Albert J, Westblade L, Zanettini C, Marchionni L, Soave R, Ghedin E, Diel DG, Salvatore M. Emergence of transmissible SARS-CoV-2 variants with decreased sensitivity to antivirals in immunocompromised patients with persistent infections. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.14.24308523. [PMID: 38946967 PMCID: PMC11213110 DOI: 10.1101/2024.06.14.24308523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
We investigated the impact of antiviral treatment on the emergence of SARS-CoV-2 resistance during persistent infections in immunocompromised patients (n=15). All patients received remdesivir and some also received nirmatrelvir-ritonavir or monoclonal antibodies. Sequence analysis showed that nine patients carried viruses with mutations in the nsp12 (RNA dependent RNA polymerase), while four had viruses with nsp5 (3C protease) mutations. Infectious SARS-CoV-2 with a double mutation in nsp5 (T169I) and nsp12 (V792I) was recovered from respiratory secretions 77 days after initial COVID-19 diagnosis from a patient treated with remdesivir and nirmatrelvir-ritonavir. In vitro characterization confirmed its decreased sensitivity to remdesivir and nirmatrelvir, which was overcome by combined antiviral treatment. Studies in golden Syrian hamsters demonstrated efficient transmission to contact animals. This study documents the isolation of SARS-CoV-2 carrying resistance mutations to both nirmatrelvir and remdesivir from a patient and demonstrates its transmissibility in vivo.
Collapse
Affiliation(s)
- Mohammed Nooruzzaman
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University
| | | | - Ruchi Rani
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University
| | | | - Leonardo C Caserta
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University
| | | | - Wei Wang
- Systems Genomics Section, NIH/NIAID/DIR/LPD
| | - Jingmei Hsu
- Department of Medicine, Weill Cornell Medicine
| | | | | | | | - Lars Westblade
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine
| | - Claudio Zanettini
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine
| | - Luigi Marchionni
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine
| | | | | | - Diego G Diel
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University
| | - Mirella Salvatore
- Department of Medicine, Weill Cornell Medicine
- Department of Population Health Science, Weill Cornell Medicine
| |
Collapse
|
8
|
Knoll M, Honce R, Meliopoulos V, Segredo-Otero EA, Johnson KE, Schultz-Cherry S, Ghedin E, Gresham D. Host obesity impacts genetic variation in influenza A viral populations. J Virol 2024; 98:e0177823. [PMID: 38785423 PMCID: PMC11237528 DOI: 10.1128/jvi.01778-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 04/21/2024] [Indexed: 05/25/2024] Open
Abstract
Obesity is well established as a risk factor for many noncommunicable diseases; however, its consequences for infectious disease are poorly understood. Here, we investigated the impact of host obesity on influenza A virus (IAV) genetic variation using a diet-induced obesity ferret model and the A/Hong Kong/1073/1999 (H9N2) strain. Using a co-caging study design, we investigated the maintenance, generation, and transmission of intrahost IAV genetic variation by sequencing viral genomic RNA obtained from nasal wash samples over multiple days of infection. We found evidence for an enhanced role of positive selection acting on de novo mutations in obese hosts that led to nonsynonymous changes that rose to high frequency. In addition, we identified numerous cases of mutations throughout the genome that were specific to obese hosts and that were preserved during transmission between hosts. Despite detection of obese-specific variants, the overall viral genetic diversity did not differ significantly between obese and lean hosts. This is likely due to the high supply rate of de novo variation and common evolutionary adaptations to the ferret host regardless of obesity status, which we show are mediated by variation in the hemagglutinin and polymerase genes (PB2 and PB1). We also identified defective viral genomes (DVGs) that were found uniquely in either obese or lean hosts, but the overall DVG diversity and dynamics did not differ between the two groups. Our study suggests that obesity may result in a unique selective environment impacting intrahost IAV evolution, highlighting the need for additional genetic and functional studies to confirm these effects.IMPORTANCEObesity is a chronic health condition characterized by excess adiposity leading to a systemic increase in inflammation and dysregulation of metabolic hormones and immune cell populations. Influenza A virus (IAV) is a highly infectious pathogen responsible for seasonal and pandemic influenza. Host risk factors, including compromised immunity and pre-existing health conditions, can contribute to increased infection susceptibility and disease severity. During viral replication in a host, the negative-sense single-stranded RNA genome of IAV accumulates genetic diversity that may have important consequences for viral evolution and transmission. Our study provides the first insight into the consequences of host obesity on viral genetic diversity and adaptation, suggesting that host factors associated with obesity alter the selective environment experienced by a viral population, thereby impacting the spectrum of genetic variation.
Collapse
Affiliation(s)
- Marissa Knoll
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, New York, USA
| | - Rebekah Honce
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Victoria Meliopoulos
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | | | - Katherine E.E. Johnson
- Systems Genomics Section, Laboratory of Parasitic Diseases, NIAID, NIH, Bethesda, Maryland, USA
| | - Stacey Schultz-Cherry
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Elodie Ghedin
- Systems Genomics Section, Laboratory of Parasitic Diseases, NIAID, NIH, Bethesda, Maryland, USA
| | - David Gresham
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, New York, USA
| |
Collapse
|
9
|
Liu Y, Sapoval N, Gallego-García P, Tomás L, Posada D, Treangen TJ, Stadler LB. Crykey: Rapid identification of SARS-CoV-2 cryptic mutations in wastewater. Nat Commun 2024; 15:4545. [PMID: 38806450 PMCID: PMC11133379 DOI: 10.1038/s41467-024-48334-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/29/2024] [Indexed: 05/30/2024] Open
Abstract
Wastewater surveillance for SARS-CoV-2 provides early warnings of emerging variants of concerns and can be used to screen for novel cryptic linked-read mutations, which are co-occurring single nucleotide mutations that are rare, or entirely missing, in existing SARS-CoV-2 databases. While previous approaches have focused on specific regions of the SARS-CoV-2 genome, there is a need for computational tools capable of efficiently tracking cryptic mutations across the entire genome and investigating their potential origin. We present Crykey, a tool for rapidly identifying rare linked-read mutations across the genome of SARS-CoV-2. We evaluated the utility of Crykey on over 3,000 wastewater and over 22,000 clinical samples; our findings are three-fold: i) we identify hundreds of cryptic mutations that cover the entire SARS-CoV-2 genome, ii) we track the presence of these cryptic mutations across multiple wastewater treatment plants and over three years of sampling in Houston, and iii) we find a handful of cryptic mutations in wastewater mirror cryptic mutations in clinical samples and investigate their potential to represent real cryptic lineages. In summary, Crykey enables large-scale detection of cryptic mutations in wastewater that represent potential circulating cryptic lineages, serving as a new computational tool for wastewater surveillance of SARS-CoV-2.
Collapse
Affiliation(s)
- Yunxi Liu
- Department of Computer Science, Rice University, Houston, TX, 77005, USA
| | - Nicolae Sapoval
- Department of Computer Science, Rice University, Houston, TX, 77005, USA
| | - Pilar Gallego-García
- CINBIO, Universidade de Vigo, 36310, Vigo, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - Laura Tomás
- CINBIO, Universidade de Vigo, 36310, Vigo, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - David Posada
- CINBIO, Universidade de Vigo, 36310, Vigo, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
- Department of Biochemistry, Genetics, and Immunology, Universidade de Vigo, 36310, Vigo, Spain
| | - Todd J Treangen
- Department of Computer Science, Rice University, Houston, TX, 77005, USA.
| | - Lauren B Stadler
- Department of Civil and Environmental Engineering, Rice University, Houston, TX, 77005, USA.
| |
Collapse
|
10
|
Kar M, Johnson KEE, Vanderheiden A, Elrod EJ, Floyd K, Geerling E, Stone ET, Salinas E, Banakis S, Wang W, Sathish S, Shrihari S, Davis-Gardner ME, Kohlmeier J, Pinto A, Klein R, Grakoui A, Ghedin E, Suthar MS. CD4+ and CD8+ T cells are required to prevent SARS-CoV-2 persistence in the nasal compartment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.23.576505. [PMID: 38410446 PMCID: PMC10896337 DOI: 10.1101/2024.01.23.576505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
SARS-CoV-2 is the causative agent of COVID-19 and continues to pose a significant public health threat throughout the world. Following SARS-CoV-2 infection, virus-specific CD4+ and CD8+ T cells are rapidly generated to form effector and memory cells and persist in the blood for several months. However, the contribution of T cells in controlling SARS-CoV-2 infection within the respiratory tract are not well understood. Using C57BL/6 mice infected with a naturally occurring SARS-CoV-2 variant (B.1.351), we evaluated the role of T cells in the upper and lower respiratory tract. Following infection, SARS-CoV-2-specific CD4+ and CD8+ T cells are recruited to the respiratory tract and a vast proportion secrete the cytotoxic molecule Granzyme B. Using antibodies to deplete T cells prior to infection, we found that CD4+ and CD8+ T cells play distinct roles in the upper and lower respiratory tract. In the lungs, T cells play a minimal role in viral control with viral clearance occurring in the absence of both CD4+ and CD8+ T cells through 28 days post-infection. In the nasal compartment, depletion of both CD4+ and CD8+ T cells, but not individually, results in persistent and culturable virus replicating in the nasal compartment through 28 days post-infection. Using in situ hybridization, we found that SARS-CoV-2 infection persisted in the nasal epithelial layer of tandem CD4+ and CD8+ T cell-depleted mice. Sequence analysis of virus isolates from persistently infected mice revealed mutations spanning across the genome, including a deletion in ORF6. Overall, our findings highlight the importance of T cells in controlling virus replication within the respiratory tract during SARS-CoV-2 infection.
Collapse
|
11
|
Knoll M, Honce R, Meliopoulos V, Schultz-Cherry S, Ghedin E, Gresham D. Host obesity impacts genetic variation in influenza A viral populations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.12.548715. [PMID: 37503024 PMCID: PMC10369978 DOI: 10.1101/2023.07.12.548715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Obesity is a chronic health condition characterized by excess adiposity leading to a systemic increase in inflammation and dysregulation of metabolic hormones and immune cell populations. Obesity is well established as a risk factor for many noncommunicable diseases; however, its consequences for infectious disease are poorly understood. Influenza A virus (IAV) is a highly infectious pathogen responsible for seasonal and pandemic influenza. Host risk factors, including compromised immunity and pre-existing health conditions, can contribute to increased infection susceptibility and disease severity. During viral replication in a host, the negative sense single stranded RNA genome of IAV accumulates genetic diversity that may have important consequences for viral evolution and transmission. Here, we investigated the impact of host obesity on IAV genetic variation using a diet induced obesity ferret model. We infected obese and lean male ferrets with the A/Hong Kong/1073/1999 (H9N2) IAV strain. Using a co-caging study design, we investigated the maintenance, generation, and transmission of intrahost IAV genetic variation by sequencing viral genomic RNA obtained from nasal wash samples over multiple days of infection. We found evidence for an enhanced role of positive selection acting on de novo mutations in obese hosts that led to nonsynonymous changes that rose to high frequency. In addition, we identified numerous cases of recurrent low-frequency mutations throughout the genome that were specific to obese hosts. Despite these obese-specific variants, overall viral genetic diversity did not differ significantly between obese and lean hosts. This is likely due to the high supply rate of de novo variation and common evolutionary adaptations to the ferret host regardless of obesity status, which we show are mediated by variation in the hemagglutinin (HA) and polymerase genes (PB2 and PB1). As with single nucleotide variants, we identified a class of defective viral genomes (DVGs) that were found uniquely in either obese or lean hosts, but overall DVG diversity and dynamics did not differ between the two groups. Our study provides the first insight into the consequences of host obesity on viral genetic diversity and adaptation, suggesting that host factors associated with obesity alter the selective environment experienced by a viral population, thereby impacting the spectrum of genetic variation.
Collapse
Affiliation(s)
- Marissa Knoll
- Center for Genomics and Systems Biology, Department of Biology, New York University
| | - Rebekah Honce
- Department of Infectious Diseases, St. Jude Children’s Research Hospital
| | | | | | - Elodie Ghedin
- Systems Genomics Section, Laboratory of Parasitic Diseases, NIAID, NIH, Bethesda, MD 20894, USA
| | - David Gresham
- Center for Genomics and Systems Biology, Department of Biology, New York University
| |
Collapse
|