1
|
Zadra N, Rizzoli A, Rota-Stabelli O. Comprehensive phylogenomic analysis of Zika virus: Insights into its origin, past evolutionary dynamics, and global spread. Virus Res 2024; 350:199490. [PMID: 39489463 PMCID: PMC11583807 DOI: 10.1016/j.virusres.2024.199490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/25/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Zika virus (ZIKV), a Flaviviridae family member, has been linked to severe neurological disorders. Despite detailed studies on recent outbreaks, the early evolutionary history of ZIKV remains partially unclear. This study elucidates ZIKV origin and evolutionary dynamics, focusing on recombination events, early lineage diversification, and virus spread across continents. METHODS We assessed recombination using multiple methods. We conducted Bayesian phylogenetic analyses to understand the evolutionary relationships and timing of key diversification events. Model selection was carried out to determine the most appropriate evolutionary model for our dataset. RESULTS Our phylogenies revealed recent recombination between Singaporean and African lineages, indicating the co-circulation of diverse lineages during outbreaks. Thailand was identified as a crucial hub in the spread across Asia. The phylogenetic analysis suggests that the ZIKV lineage dates back to the eleventh century, with the first significant diversification occurring in the nineteenth century. The timing of the re-introduction of the Asian lineage into Africa and the delay between probable introduction and outbreak onset were also determined. CONCLUSIONS This study provides novel insights into ZIKV's origin and early evolutionary dynamics, highlighting Thailand's role in the spread of the virus in Asia and recent recombination events between distant lineages. These findings emphasize the need for continuous surveillance and a better understanding of ZIKV biology to forecast and mitigate future outbreaks.
Collapse
Affiliation(s)
- Nicola Zadra
- Conservation Genomics Research Unit, Research and Innovation Centre, Fondazione Edmund Mach, San Michele All'Adige, Trento, Italy; NBFC, National Biodiversity Future Center, Palermo 90133, Italy.
| | - Annapaola Rizzoli
- Applied Ecology Research Unit, Research and Innovation Centre, Fondazione Edmund Mach, San Michele All'Adige, Trento, Italy; NBFC, National Biodiversity Future Center, Palermo 90133, Italy
| | - Omar Rota-Stabelli
- Center Agriculture Food Environment (C3A), University of Trento, 38010, San Michele all'Adige, TN, Italy
| |
Collapse
|
2
|
Lefèvre C, Cook GM, Dinan AM, Torii S, Stewart H, Gibbons G, Nicholson AS, Echavarría-Consuegra L, Meredith LW, Lulla V, McGovern N, Kenyon JC, Goodfellow I, Deane JE, Graham SC, Lakatos A, Lambrechts L, Brierley I, Irigoyen N. Zika viruses encode 5' upstream open reading frames affecting infection of human brain cells. Nat Commun 2024; 15:8822. [PMID: 39394194 PMCID: PMC11470053 DOI: 10.1038/s41467-024-53085-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/30/2024] [Indexed: 10/13/2024] Open
Abstract
Zika virus (ZIKV), an emerging mosquito-borne flavivirus, is associated with congenital neurological complications. Here, we investigate potential pathological correlates of virus gene expression in representative ZIKV strains through RNA sequencing and ribosome profiling. In addition to the single long polyprotein found in all flaviviruses, we identify the translation of unrecognised upstream open reading frames (uORFs) in the genomic 5' region. In Asian/American strains, ribosomes translate uORF1 and uORF2, whereas in African strains, the two uORFs are fused into one (African uORF). We use reverse genetics to examine the impact on ZIKV fitness of different uORFs mutant viruses. We find that expression of the African uORF and the Asian/American uORF1 modulates virus growth and tropism in human cortical neurons and cerebral organoids, suggesting a potential role in neurotropism. Although the uORFs are expressed in mosquito cells, we do not see a measurable effect on transmission by the mosquito vector in vivo. The discovery of ZIKV uORFs sheds new light on the infection of the human brain cells by this virus and raises the question of their existence in other neurotropic flaviviruses.
Collapse
Affiliation(s)
- Charlotte Lefèvre
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Georgia M Cook
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Adam M Dinan
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, UK
- Department of Medicine, MRC Laboratory of Molecular Biology, University of Cambridge, Cambridge, UK
| | - Shiho Torii
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Insect-Virus Interactions Unit, Paris, France
| | - Hazel Stewart
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - George Gibbons
- John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK
| | - Alex S Nicholson
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | | | - Luke W Meredith
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Valeria Lulla
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Naomi McGovern
- Division of Immunology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Julia C Kenyon
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Ian Goodfellow
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Janet E Deane
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Stephen C Graham
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - András Lakatos
- John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK
- Cambridge Stem Cell Institute, Cambridge, UK
| | - Louis Lambrechts
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Insect-Virus Interactions Unit, Paris, France
| | - Ian Brierley
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Nerea Irigoyen
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
3
|
Bird IM, Cavener V, Surendran Nair M, Nissly RH, Chothe SK, Jacob J, Kuchipudi SV. Distinct Replication Kinetics, Cytopathogenicity, and Immune Gene Regulation in Human Microglia Cells Infected with Asian and African Lineages of Zika Virus. Microorganisms 2024; 12:1840. [PMID: 39338514 PMCID: PMC11433722 DOI: 10.3390/microorganisms12091840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 08/31/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
Zika virus (ZIKV), a mosquito-borne flavivirus, is a significant global health concern due to its association with neurodevelopmental disorders such as congenital Zika syndrome (CZS). This study aimed to compare the replication kinetics, viral persistence, cytopathogenic effects, and immune gene expression in human microglia cells (CHME-3) infected with an Asian lineage ZIKV (PRVABC59, referred to as ZIKV-PRV) and an African lineage ZIKV (IBH30656, referred to as ZIKV-IBH). We found that ZIKV-PRV replicated more efficiently and persisted longer while inducing lower levels of cell death and inflammatory gene activation compared with ZIKV-IBH. These findings suggest that the enhanced replication and persistence of ZIKV-PRV, along with its ability to evade innate immune responses, may underlie its increased neuropathogenic potential, especially in the context of CZS. In contrast, ZIKV-IBH, with its stronger immune gene activation and higher cytopathogenicity, may lead to more acute infections with faster viral clearance, thereby reducing the likelihood of chronic central nervous system (CNS) infection. This study provides crucial insights into the molecular and cellular mechanisms driving the differential pathogenicity of ZIKV lineages and highlights the need for further research to pinpoint the viral factors responsible for these distinct clinical outcomes.
Collapse
Affiliation(s)
- Ian M. Bird
- Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA 16802, USA; (I.M.B.); (V.C.); (M.S.N.); (R.H.N.)
| | - Victoria Cavener
- Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA 16802, USA; (I.M.B.); (V.C.); (M.S.N.); (R.H.N.)
| | - Meera Surendran Nair
- Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA 16802, USA; (I.M.B.); (V.C.); (M.S.N.); (R.H.N.)
| | - Ruth H. Nissly
- Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA 16802, USA; (I.M.B.); (V.C.); (M.S.N.); (R.H.N.)
| | - Shubhada K. Chothe
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15213, USA;
| | - Joshy Jacob
- Department of Microbiology and Immunology, School of Medicine, Emory University, Atlanta, GA 30329, USA;
| | - Suresh V. Kuchipudi
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15213, USA;
| |
Collapse
|
4
|
Bailly S, Machault V, Beneteau S, Palany P, Fritzell C, Girod R, Lacaux JP, Quénel P, Flamand C. Spatiotemporal Modeling of Aedes aegypti Risk: Enhancing Dengue Virus Control through Meteorological and Remote Sensing Data in French Guiana. Pathogens 2024; 13:738. [PMID: 39338929 PMCID: PMC11435255 DOI: 10.3390/pathogens13090738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/16/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
French Guiana lacks a dedicated model for developing an early warning system tailored to its entomological contexts. We employed a spatiotemporal modeling approach to predict the risk of Aedes aegypti larvae presence in local households in French Guiana. The model integrated field data on larvae, environmental data obtained from very high-spatial-resolution Pleiades imagery, and meteorological data collected from September 2011 to February 2013 in an urban area of French Guiana. The identified environmental and meteorological factors were used to generate dynamic maps with high spatial and temporal resolution. The study collected larval data from 261 different surveyed houses, with each house being surveyed between one and three times. Of the observations, 41% were positive for the presence of Aedes aegypti larvae. We modeled the Aedes larvae risk within a radius of 50 to 200 m around houses using six explanatory variables and extrapolated the findings to other urban municipalities during the 2020 dengue epidemic in French Guiana. This study highlights the potential of spatiotemporal modeling approaches to predict and monitor the evolution of vector-borne disease transmission risk, representing a major opportunity to monitor the evolution of vector risk and provide valuable information for public health authorities.
Collapse
Affiliation(s)
- Sarah Bailly
- Epidemiology Unit, Institut Pasteur in French Guiana, Cayenne 97306, French Guiana
| | - Vanessa Machault
- Aerology Laboratory, Observatoire Midi-Pyrénées (OMP), Université Paul Sabatier, 31062 Toulouse, France
| | - Samuel Beneteau
- Epidemiology Unit, Institut Pasteur in French Guiana, Cayenne 97306, French Guiana
| | - Philippe Palany
- Météo-France, Direction Antilles-Guyane, Fort-de-France 97262, Martinique
| | - Camille Fritzell
- Epidemiology Unit, Institut Pasteur in French Guiana, Cayenne 97306, French Guiana
| | - Romain Girod
- Medical Entomology Unit, Institut Pasteur in French Guiana, Cayenne 97306, French Guiana
| | - Jean-Pierre Lacaux
- Aerology Laboratory, Observatoire Midi-Pyrénées (OMP), Université Paul Sabatier, 31062 Toulouse, France
| | - Philippe Quénel
- Epidemiology Unit, Institut Pasteur in French Guiana, Cayenne 97306, French Guiana
- University Rennes, Inserm, EHESP, Irset (Institut de Recherche En Santé, Environnement et Travail)-UMR-S 1085, 35000 Rennes, France
| | - Claude Flamand
- Epidemiology Unit, Institut Pasteur in French Guiana, Cayenne 97306, French Guiana
- Epidemiology and Public Health Unit, Institut Pasteur in Cambodia, Phnom Penh 12201, Cambodia
- Mathematical Modelling of Infectious Diseases Unit, Institut Pasteur, UMR2000, CNRS, 75015 Paris, France
| |
Collapse
|
5
|
Kuno G. Mechanisms of Yellow Fever Transmission: Gleaning the Overlooked Records of Importance and Identifying Problems, Puzzles, Serious Issues, Surprises and Research Questions. Viruses 2024; 16:84. [PMID: 38257784 PMCID: PMC10820296 DOI: 10.3390/v16010084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/12/2023] [Accepted: 12/29/2023] [Indexed: 01/24/2024] Open
Abstract
In viral disease research, few diseases can compete with yellow fever for the volume of literature, historical significance, richness of the topics and the amount of strong interest among both scientists and laypersons. While the major foci of viral disease research shifted to other more pressing new diseases in recent decades, many critically important basic tasks still remain unfinished for yellow fever. Some of the examples include the mechanisms of transmission, the process leading to outbreak occurrence, environmental factors, dispersal, and viral persistence in nature. In this review, these subjects are analyzed in depth, based on information not only in old but in modern literatures, to fill in blanks and to update the current understanding on these topics. As a result, many valuable facts, ideas, and other types of information that complement the present knowledge were discovered. Very serious questions about the validity of the arbovirus concept and some research practices were also identified. The characteristics of YFV and its pattern of transmission that make this virus unique among viruses transmitted by Ae. aegypti were also explored. Another emphasis was identification of research questions. The discovery of a few historical surprises was an unexpected benefit.
Collapse
Affiliation(s)
- Goro Kuno
- Formerly at the Division of Vector-Borne Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521, USA
| |
Collapse
|
6
|
Molina BF, Marques NN, Bittar C, Batista MN, Rahal P. African ZIKV lineage fails to sustain infectivity in an in vitro mimetic urban cycle. Braz J Microbiol 2023; 54:1421-1431. [PMID: 37458982 PMCID: PMC10484821 DOI: 10.1007/s42770-023-01053-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 06/27/2023] [Indexed: 09/10/2023] Open
Abstract
Zika virus (ZIKV) is an arbovirus maintained in nature in two distinct cycles of transmission: urban and sylvatic. Each cycle includes specific vertebrate and invertebrate hosts, and through alternate infections, a conserved consensus sequence is maintained that might vary depending on the cycle. The current study aimed to investigate the ability of ZIKVAF and ZIKVBR to maintain an infectious cycle by alternating passages in cells mimicking the urban (UC) and semi-sylvatic (SC) cycles. The complete genome of the original inoculum and the last passages for each cycle were sequenced by Sanger. Ten passages were performed, as planned, for ZIKVBR UC, ZIKVAF SC, and ZIKVBR SC. ZIKVBR SC showed significant variation in viral titers along the passages, suggesting that the virus is not well adapted to the non-human primate host. ZIKVAF passage in UC was abrogated in the third passage, showing the inability of the African lineage to sustain cycles in human cells, suggesting a low capacity to establish an urban cycle. Several mutations were found in both strains along the passages, but not occurring at equivalent positions. Further studies are needed to elucidate whether any of these specific mutations affect viral fitness. ZIKV strains behave differently in artificial transmission cycles in vitro: Brazilian ZIKV was able to establish urban and semi-sylvatic cycles in vitro. African ZIKV proved unable to cycle among human and mosquito cells and is compatible only with the semi-sylvatic cycle. The main mutations arose in the NS2A region after artificial transmission cycles for both ZIKV strains but not at equivalent positions.
Collapse
Affiliation(s)
- Bárbara Floriano Molina
- Laboratório de Estudos Genômicos, Departamento de Biologia, Instituto de Biociências Letras E Ciências Exatas (IBILCE), Universidade Estadual Paulista (Unesp), São José Do Rio Preto, Brazil
| | - Nayara Nathiê Marques
- Laboratório de Estudos Genômicos, Departamento de Biologia, Instituto de Biociências Letras E Ciências Exatas (IBILCE), Universidade Estadual Paulista (Unesp), São José Do Rio Preto, Brazil
| | - Cíntia Bittar
- Laboratório de Estudos Genômicos, Departamento de Biologia, Instituto de Biociências Letras E Ciências Exatas (IBILCE), Universidade Estadual Paulista (Unesp), São José Do Rio Preto, Brazil
- The Rockefeller University, 1230 York Ave, Manhattan, New York, NY 10065 USA
| | | | - Paula Rahal
- Laboratório de Estudos Genômicos, Departamento de Biologia, Instituto de Biociências Letras E Ciências Exatas (IBILCE), Universidade Estadual Paulista (Unesp), São José Do Rio Preto, Brazil
| |
Collapse
|
7
|
Lambrechts L. Does arbovirus emergence in humans require adaptation to domestic mosquitoes? Curr Opin Virol 2023; 60:101315. [PMID: 36996522 DOI: 10.1016/j.coviro.2023.101315] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/01/2023] [Accepted: 02/23/2023] [Indexed: 03/30/2023]
Abstract
In the last few decades, several mosquito-borne arboviruses of zoonotic origin have established large-scale epidemic transmission cycles in the human population. It is often considered that arbovirus emergence is driven by adaptive evolution, such as virus adaptation for transmission by 'domestic' mosquito vector species that live in close association with humans. Here, I argue that although arbovirus adaptation to domestic mosquito vectors has been observed for several emerging arboviruses, it was generally not directly responsible for their initial emergence. Secondary adaptation to domestic mosquitoes often amplified epidemic transmission, however, this was more likely a consequence than a cause of arbovirus emergence. Considering that emerging arboviruses are generally 'preadapted' for transmission by domestic mosquito vectors may help to enhance preparedness toward future arbovirus emergence events.
Collapse
|
8
|
Chan KWK, Bifani AM, Watanabe S, Choy MM, Ooi EE, Vasudevan SG. Tissue-specific expansion of Zika virus isogenic variants drive disease pathogenesis. EBioMedicine 2023; 91:104570. [PMID: 37068347 PMCID: PMC10130475 DOI: 10.1016/j.ebiom.2023.104570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/09/2023] [Accepted: 03/30/2023] [Indexed: 04/19/2023] Open
Abstract
BACKGROUND The Asian lineage Zika virus (ZIKV) emerged as a public health emergency in 2016 causing severe neurological pathologies with no apparent historical correlate to the mild, disease-causing innocuous member of the mosquito-borne flavivirus genus that was discovered in Africa in 1947. Replication error rate of RNA viruses combined with viral protein/RNA structural plasticity can lead to evolution of virus-induced pathogenicity that is critical to identify and validate. METHODS Infection studies in cells and A129 interferon alpha/beta receptor deficient mice with ZIKV French Polynesian H/PF/2013 clinical isolate, plaque-purified isogenic clone derivatives as well as infectious cDNA clone derived wild-type and site-specific mutant viruses, were employed together with Next-Generation Sequencing (NGS) to pin-point the contributions of specific viral variants in neurovirulence recapitulated in our ZIKV mouse model. FINDINGS NGS analysis of the low-passage inoculum virus as well as mouse serum, brain and testis derived virus, revealed specific enrichment in the mouse brain that were not found in the other tissues. Specifically, non-structural (NS) protein 2A variant at position 117 along with changes in NS1 and NS4B were uniquely associated with the mouse brain isolate. Mutational analysis of these variants in cDNA infectious clones identified the NS2A A117V as the lethal pathogenic determinant with potential epistatic contribution of NS1 and NS4B variants in ZIKV brain penetrance. INTERPRETATION Our findings confirm that viral subpopulations drive ZIKV neuropathogenicity and identify specific sequence variants that expand in the mouse brain that associates with this phenotype which can serve as predictors of severe epidemics. FUNDING Duke-NUS Khoo Post-doctoral Fellowship Award 2020 (KWKC) and National Medical Research Council of Singapore grants MOH-000524 (OFIRG) (SW) and MOH-OFIRG20nov-0002 (SGV).
Collapse
Affiliation(s)
- Kitti Wing Ki Chan
- Program in Emerging Infectious Disease, Duke-NUS Medical School, 8 College Road, 169857, Singapore
| | - Amanda Makha Bifani
- Program in Emerging Infectious Disease, Duke-NUS Medical School, 8 College Road, 169857, Singapore
| | - Satoru Watanabe
- Program in Emerging Infectious Disease, Duke-NUS Medical School, 8 College Road, 169857, Singapore
| | - Milly M Choy
- Program in Emerging Infectious Disease, Duke-NUS Medical School, 8 College Road, 169857, Singapore
| | - Eng Eong Ooi
- Program in Emerging Infectious Disease, Duke-NUS Medical School, 8 College Road, 169857, Singapore; Department of Microbiology and Immunology, National University of Singapore, 5 Science Drive 2, 117545, Singapore.
| | - Subhash G Vasudevan
- Program in Emerging Infectious Disease, Duke-NUS Medical School, 8 College Road, 169857, Singapore; Department of Microbiology and Immunology, National University of Singapore, 5 Science Drive 2, 117545, Singapore; Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, Queensland, 4222, Australia.
| |
Collapse
|
9
|
He MJ, Wang HJ, Yan XL, Lou YN, Song GY, Li RT, Zhu Z, Zhang RR, Qin CF, Li XF. Key Residue in the Precursor Region of M Protein Contributes to the Neurovirulence and Neuroinvasiveness of the African Lineage of Zika Virus. J Virol 2023; 97:e0180122. [PMID: 36840584 PMCID: PMC10062131 DOI: 10.1128/jvi.01801-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/31/2023] [Indexed: 02/24/2023] Open
Abstract
The Zika virus (ZIKV) represents an important global health threat due to its unusual association with congenital Zika syndrome. ZIKV strains are phylogenetically grouped into the African and Asian lineages. However, the viral determinants underlying the phenotypic differences between the lineages remain unknown. Here, multiple sequence alignment revealed a highly conserved residue at position 21 of the premembrane (prM) protein, which is glutamic acid and lysine in the Asian and African lineages, respectively. Using reverse genetics, we generated a recombinant virus carrying an E21K mutation based on the genomic backbone of the Asian lineage strain FSS13025 (termed E21K). The E21K mutation significantly increased viral replication in multiple neural cell lines with a higher ratio of M to prM production. Animal studies showed E21K exhibited increased neurovirulence in suckling mice, leading to more severe defects in mouse brains by causing more neural cell death and destruction of hippocampus integrity. Moreover, the E21K substitution enhanced neuroinvasiveness in interferon alpha/beta (IFN-α/β) receptor knockout mice, as indicated by the increased mortality, and enhanced replication in mouse brains. The global transcriptional analysis showed E21K infection profoundly altered neuron development networks and induced stronger antiviral immune response than wild type (WT) in both neural cells and mouse brains. More importantly, the reverse K21E mutation based on the genomic backbone of the African strain MR766 caused less mouse neurovirulence. Overall, our findings support the 21st residue of prM functions as a determinant for neurovirulence and neuroinvasiveness of the African lineage of ZIKV. IMPORTANCE The suspected link of Zika virus (ZIKV) to birth defects led the World Health Organization to declare ZIKV a Public Health Emergency of International Concern. ZIKV has been identified to have two dominant phylogenetic lineages, African and Asian. Significant differences exist between the two lineages in terms of neurovirulence and neuroinvasiveness in mice. However, the viral determinants underlying the phenotypic differences are still unknown. Here, combining reverse genetics, animal studies, and global transcriptional analysis, we provide evidence that a single E21K mutation of prM confers to the Asian lineage strain FSS130125 significantly enhanced replication in neural cell lines and more neurovirulent and neuroinvasiveness phenotypes in mice. Our findings support that the highly conserved residue at position 21 of prM functions as a determinant of neurovirulence and neuroinvasiveness of the African lineage of ZIKV in mice.
Collapse
Affiliation(s)
- Meng-Jiao He
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Hong-Jiang Wang
- Department of Research, The Chinese People’s Liberation Army Strategic Support Force Medical Center, Beijing, China
| | - Xiu-Li Yan
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Ya-Nan Lou
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Guang-Yuan Song
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Rui-Ting Li
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Zhu Zhu
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
- School of Medicine, Tsinghua University, Beijing, China
| | - Rong-Rong Zhang
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Cheng-Feng Qin
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Xiao-Feng Li
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| |
Collapse
|
10
|
Gaspar-Castillo C, Rodríguez MH, Ortiz-Navarrete V, Alpuche-Aranda CM, Martinez-Barnetche J. Structural and immunological basis of cross-reactivity between dengue and Zika infections: Implications in serosurveillance in endemic regions. Front Microbiol 2023; 14:1107496. [PMID: 37007463 PMCID: PMC10063793 DOI: 10.3389/fmicb.2023.1107496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/24/2023] [Indexed: 03/19/2023] Open
Abstract
Dengue and Zika are arthropod-borne viral diseases present in more than 100 countries around the world. In the past decade, Zika emerged causing widespread outbreaks in new regions, where dengue has been endemic-epidemic for a long period. The wide and extensive dissemination of the mosquito vectors, Aedes aegypti, and Ae. albopictus, favor the co-existence of both infections in the same regions. Together with an important proportion of asymptomatic infections, similar clinical manifestations, and a short time window for acute infection confirmatory tests, it is difficult to differentially estimate both dengue and Zika incidence and prevalence. DENV and ZIKV flavivirus share high structural similarity, inducing a cross-reactive immune response that leads to false positives in serological tests particularly in secondary infections. This results in overestimation of recent Zika outbreaks seroprevalence in dengue endemic regions. In this review, we address the biological basis underlying DENV and ZIKV structural homology; the structural and cellular basis of immunological cross reactivity; and the resulting difficulties in measuring dengue and Zika seroprevalence. Finally, we offer a perspective about the need for more research to improve serological tests performance.
Collapse
Affiliation(s)
- Carlos Gaspar-Castillo
- Center for Infectious Diseases Research, National Institute of Public Health, Cuernavaca, Mexico
| | - Mario H. Rodríguez
- Center for Infectious Diseases Research, National Institute of Public Health, Cuernavaca, Mexico
| | - Vianney Ortiz-Navarrete
- Department of Molecular Biomedicine, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City, Mexico
| | - Celia M. Alpuche-Aranda
- Center for Infectious Diseases Research, National Institute of Public Health, Cuernavaca, Mexico
- Celia M. Alpuche-Aranda,
| | - Jesus Martinez-Barnetche
- Center for Infectious Diseases Research, National Institute of Public Health, Cuernavaca, Mexico
- *Correspondence: Jesus Martinez-Barnetche,
| |
Collapse
|
11
|
Gilbert RK, Petersen LR, Honein MA, Moore CA, Rasmussen SA. Zika virus as a cause of birth defects: Were the teratogenic effects of Zika virus missed for decades? Birth Defects Res 2023; 115:265-274. [PMID: 36513609 PMCID: PMC10552063 DOI: 10.1002/bdr2.2134] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/19/2022] [Accepted: 11/23/2022] [Indexed: 12/15/2022]
Abstract
Zika virus (ZIKV) was identified as a teratogen in 2016 when an increase in severe microcephaly and other brain defects was observed in fetuses and newborns following outbreaks in French Polynesia (2013-2014) and Brazil (2015-2016) and among travelers to other countries experiencing outbreaks. Some have questioned why ZIKV was not recognized as a teratogen before these outbreaks: whether novel genetic changes in ZIKV had increased its teratogenicity or whether its association with birth defects had previously been undetected. Here we examine the evidence for these two possibilities. We describe evidence for specific mutations that arose before the French Polynesia outbreak that might have increased ZIKV teratogenicity. We also present information on children born with findings consistent with congenital Zika syndrome (CZS) as early as 2009 and epidemiological evidence that suggests increases in CZS-type birth defects before 2013. We also explore reasons why a link between ZIKV and birth defects might have been missed, including issues with surveillance of ZIKV infections and of birth defects, challenges to ZIKV diagnostic testing, and the susceptibility of different populations to ZIKV infection at the time of pregnancy. Although it is not possible to prove definitively that ZIKV had teratogenic properties before 2013, several pieces of evidence support the hypothesis that its teratogenicity had been missed in the past. These findings emphasize the need for further investments in global surveillance for emerging infections and for birth defects so that infectious teratogens can be identified more expeditiously in the future.
Collapse
Affiliation(s)
- Rachel K. Gilbert
- University of Florida College of Medicine, Gainesville, Florida, USA
| | - Lyle R. Petersen
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| | - Margaret A. Honein
- Division of Preparedness and Emerging Infections, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Cynthia A. Moore
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- Goldbelt Professional Services, LLC, Chesapeake, Virginia, USA
| | - Sonja A. Rasmussen
- Departments of Pediatrics and Obstetrics and Gynecology, College of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Epidemiology, College of Medicine and College of Public Health and Health Professions, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
12
|
Aziz A, Suleman M, Shah A, Ullah A, Rashid F, Khan S, Iqbal A, Luo S, Xie L, Xie Z. Comparative mutational analysis of the Zika virus genome from different geographical locations and its effect on the efficacy of Zika virus-specific neutralizing antibodies. Front Microbiol 2023; 14:1098323. [PMID: 36910181 PMCID: PMC9992208 DOI: 10.3389/fmicb.2023.1098323] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/03/2023] [Indexed: 02/25/2023] Open
Abstract
The Zika virus (ZIKV), which originated in Africa, has become a significant global health threat. It is an RNA virus that continues to mutate and accumulate multiple mutations in its genome. These genetic changes can impact the virus's ability to infect, cause disease, spread, evade the immune system, and drug resistance. In this study genome-wide analysis of 175 ZIKV isolates deposited at the National Center for Biotechnology Information (NCBI), was carried out. The comprehensive mutational analysis of these isolates was carried out by DNASTAR and Clustal W software, which revealed 257 different substitutions at the proteome level in different proteins when compared to the reference sequence (KX369547.1). The substitutions were capsid (17/257), preM (17/257), envelope (44/257), NS1 (34/257), NS2A (30/257), NS2B (11/257), NS3 (37/257), NS4A (6/257), 2K (1/257), NS4B (15/257), and NS5 (56/257). Based on the coexisting mutational analysis, the MN025403.1 isolate from Guinea was identified as having 111 substitutions in proteins and 6 deletions. The effect of coexisting/reoccurring mutations on the structural stability of each protein was also determined by I-mutant and MUpro online servers. Furthermore, molecular docking and simulation results showed that the coexisting mutations (I317V and E393D) in Domain III (DIII) of the envelope protein enhanced the bonding network with ZIKV-specific neutralizing antibodies. This study, therefore, highlighted the rapid accumulation of different substitutions in various ZIKV proteins circulating in different geographical regions of the world. Surveillance of such mutations in the respective proteins will be helpful in the development of effective ZIKV vaccines and neutralizing antibody engineering.
Collapse
Affiliation(s)
- Abdul Aziz
- Molecular Biology Research Center, School of Life Sciences, Central South University, Changsha, China
| | - Muhammad Suleman
- Centre for Biotechnology and Microbiology, University of Swat, Mingora, Pakistan
| | - Abdullah Shah
- Department of Biotechnology, Shaheed Benazir Bhutto University, Upper Dir, Pakistan
| | - Ata Ullah
- New Cross Hospital, The Royal Wolverhampton NHS Trust, Wolverhampton, United Kingdom
| | - Farooq Rashid
- Division of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| | - Sikandar Khan
- Department of Biotechnology, Shaheed Benazir Bhutto University, Upper Dir, Pakistan
| | - Arshad Iqbal
- Centre for Biotechnology and Microbiology, University of Swat, Mingora, Pakistan
| | - Sisi Luo
- Department of Biotechnology, Guangxi Veterinary Research Institute, Nanning, China.,Guangxi Key Laboratory of Veterinary Biotechnology, Nanning, China.,Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, China
| | - Liji Xie
- Department of Biotechnology, Guangxi Veterinary Research Institute, Nanning, China.,Guangxi Key Laboratory of Veterinary Biotechnology, Nanning, China.,Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, China
| | - Zhixun Xie
- Department of Biotechnology, Guangxi Veterinary Research Institute, Nanning, China.,Guangxi Key Laboratory of Veterinary Biotechnology, Nanning, China.,Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, China
| |
Collapse
|
13
|
Muthuraj PG, Krishnamoorthy C, Anderson-Berry A, Hanson C, Natarajan SK. Novel Therapeutic Nutrients Molecules That Protect against Zika Virus Infection with a Special Note on Palmitoleate. Nutrients 2022; 15:124. [PMID: 36615782 PMCID: PMC9823984 DOI: 10.3390/nu15010124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/11/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
Zika virus (ZIKV) is a Flavivirus from the Flaviviridae family and a positive-sense single strand RNA virus. ZIKV infection can cause a mild infection to the mother but can be vertically transmitted to the developing fetus, causing congenital anomalies. The prevalence of ZIKV infections was relatively insignificant with sporadic outbreaks in the Asian and African continents until 2006. However, recent epidemic in the Caribbean showed significant increased incidence of Congenital Zika Syndrome. ZIKV infection results in placental pathology which plays a crucial role in disease transmission from mother to fetus. Currently, there is no Food and Drug Administration (FDA) approved vaccine or therapeutic drug against ZIKV. This review article summarizes the recent advances on ZIKV transmission and diagnosis and reviews nutraceuticals which can protect against the ZIKV infection. Further, we have reviewed recent advances related to the novel therapeutic nutrient molecules that have been shown to possess activity against Zika virus infected cells. We also review the mechanism of ZIKV-induced endoplasmic reticulum and apoptosis and the protective role of palmitoleate (nutrient molecule) against ZIKV-induced ER stress and apoptosis in the placental trophoblasts.
Collapse
Affiliation(s)
- Philma Glora Muthuraj
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Chandan Krishnamoorthy
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Ann Anderson-Berry
- Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Corrine Hanson
- Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Medical Nutrition Education, College of Allied Health Profession, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Sathish Kumar Natarajan
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
- Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Medical Nutrition Education, College of Allied Health Profession, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
14
|
Molecular surveillance of arboviruses circulation and co-infection during a large chikungunya virus outbreak in Thailand, October 2018 to February 2020. Sci Rep 2022; 12:22323. [PMID: 36566236 PMCID: PMC9789961 DOI: 10.1038/s41598-022-27028-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/23/2022] [Indexed: 12/25/2022] Open
Abstract
A large national outbreak of chikungunya virus (CHIKV) was recently reported in Thailand. While dengue virus (DENV) infection tends to occur year-round with an upsurge in the rainy season, Zika virus (ZIKV) also circulates in the country. The overlap in the distribution of these viruses increased the probability of co-infections during the heightened CHIKV activity. By examining 1806 patient serum samples submitted for CHIKV diagnostics from October 2018-February 2020 (511 CHIKV-negatives and 1295 CHIKV-positives), we used real-time reverse transcription-polymerase chain reaction to identify DENV and ZIKV individually. A total of 29 ZIKV and 36 DENV single-infections were identified. Interestingly, 13 co-infection cases were observed, of which 8 were CHIKV/DENV, 3 were CHIKV/ZIKV, and 2 were DENV/ZIKV. There were six DENV genotypes (13 DENV-1 genotype I, 10 DENV-2 Asian I, 10 DENV-2 Cosmopolitan, 6 DENV-3 genotype I, 2 DENV-3 genotype III, and 5 DENV-4 genotype I). Additionally, ZIKV strains identified in this study either clustered with strains previously circulating in Thailand and Singapore, or with strains previously reported in China, French Polynesia, and the Americas. Our findings reveal the co-infection and genetic diversity patterns of mosquito-borne viruses circulating in Thailand.
Collapse
|
15
|
Jung HG, Cho H, Kim M, Jung H, Bak Y, Lee SY, Seo HY, Son YM, Woo H, Yoon G, Kim SJ, Oh JW. Influence of Zika virus 3'-end sequence and nonstructural protein evolution on the viral replication competence and virulence. Emerg Microbes Infect 2022; 11:2447-2465. [PMID: 36149812 PMCID: PMC9621255 DOI: 10.1080/22221751.2022.2128433] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 09/20/2022] [Indexed: 11/09/2022]
Abstract
Zika virus (ZIKV) has been circulating in human networks over 70 years since its first appearance in Africa, yet little is known about whether the viral 3'-terminal sequence and nonstructural (NS) protein diverged genetically from ancient ZIKV have different effects on viral replication and virulence in currently prevailing Asian lineage ZIKV. Here we show, by a reverse genetics approach using an infectious cDNA clone for a consensus sequence (Con1) of ZIKV, which represents Asian ZIKV strains, and another clone derived from the MR766 strain isolated in Uganda, Africa in 1947, that the 3'-end sequence -UUUCU-3' homogeneously present in MR766 genome and the -GUCU-3' sequence strictly conserved in Asian ZIKV isolates are functionally equivalent in viral replication and gene expression. By gene swapping experiments using the two infectious cDNA clones, we show that the NS1-5 proteins of MR766 enhance replication competence of ZIKV Con1. The Con1, which was less virulent than MR766, acquired severe bilateral hindlimb paralysis when its NS1-5 genes were replaced by the counterparts of MR766 in type I interferon receptor (IFNAR1)-deficient A129 mice. Moreover, MR766 NS5 RNA-dependent RNA polymerase (RdRp) alone also rendered the Con1 virulent, despite there being no difference in RdRp activity between MR766 and Con1 NS5 proteins. By contrast, the Con1 derivatives expressing MR766 Nsps, like Con1, did not develop severe disease in wild-type mice treated with an IFNAR1 blocking antibody. Together, our findings uncover an unprecedented role for ZIKV NS proteins in determining viral pathogenicity in immunocompromised hosts.
Collapse
Affiliation(s)
- Hae-Gwang Jung
- Department of Biotechnology, Yonsei University, Seoul, South Korea
| | - Hee Cho
- Department of Biotechnology, Yonsei University, Seoul, South Korea
| | - Minwoo Kim
- Department of Biotechnology, Yonsei University, Seoul, South Korea
| | - Haewon Jung
- Department of Biotechnology, Yonsei University, Seoul, South Korea
| | - Yeonju Bak
- Department of Biotechnology, Yonsei University, Seoul, South Korea
| | - Se-Young Lee
- Department of Biotechnology, Yonsei University, Seoul, South Korea
| | - Han Young Seo
- Department of Biotechnology, Yonsei University, Seoul, South Korea
| | - Yu-Min Son
- Department of Biotechnology, Yonsei University, Seoul, South Korea
| | - Hawon Woo
- Department of Biotechnology, Yonsei University, Seoul, South Korea
| | - Gone Yoon
- Department of Biotechnology, Yonsei University, Seoul, South Korea
| | - Seong-Jun Kim
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, South Korea
| | - Jong-Won Oh
- Department of Biotechnology, Yonsei University, Seoul, South Korea
| |
Collapse
|
16
|
Rochman ND, Wolf YI, Koonin EV. Molecular adaptations during viral epidemics. EMBO Rep 2022; 23:e55393. [PMID: 35848484 PMCID: PMC9346483 DOI: 10.15252/embr.202255393] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/18/2022] [Accepted: 06/27/2022] [Indexed: 07/20/2023] Open
Abstract
In 1977, the world witnessed both the eradication of smallpox and the beginning of the modern age of genomics. Over the following half-century, 7 epidemic viruses of international concern galvanized virologists across the globe and led to increasingly extensive virus genome sequencing. These sequencing efforts exerted over periods of rapid adaptation of viruses to new hosts, in particular, humans provide insight into the molecular mechanisms underpinning virus evolution. Investment in virus genome sequencing was dramatically increased by the unprecedented support for phylogenomic analyses during the COVID-19 pandemic. In this review, we attempt to piece together comprehensive molecular histories of the adaptation of variola virus, HIV-1 M, SARS, H1N1-SIV, MERS, Ebola, Zika, and SARS-CoV-2 to the human host. Disruption of genes involved in virus-host interaction in animal hosts, recombination including genome segment reassortment, and adaptive mutations leading to amino acid replacements in virus proteins involved in host receptor binding and membrane fusion are identified as the key factors in the evolution of epidemic viruses.
Collapse
Affiliation(s)
- Nash D Rochman
- National Center for Biotechnology InformationNational Library of MedicineBethesdaMDUSA
| | - Yuri I Wolf
- National Center for Biotechnology InformationNational Library of MedicineBethesdaMDUSA
| | - Eugene V Koonin
- National Center for Biotechnology InformationNational Library of MedicineBethesdaMDUSA
| |
Collapse
|
17
|
Peng NYG, Amarilla AA, Hugo LE, Modhiran N, Sng JDJ, Slonchak A, Watterson D, Setoh YX, Khromykh AA. The distinguishing NS5-M114V mutation in American Zika virus isolates has negligible impacts on virus replication and transmission potential. PLoS Negl Trop Dis 2022; 16:e0010426. [PMID: 35536870 PMCID: PMC9122223 DOI: 10.1371/journal.pntd.0010426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 05/20/2022] [Accepted: 04/18/2022] [Indexed: 11/18/2022] Open
Abstract
During 2015–2016, outbreaks of Zika virus (ZIKV) occurred in Southeast Asia and the Americas. Most ZIKV infections in humans are asymptomatic, while clinical manifestation is usually a self-limiting febrile disease with maculopapular rash. However, ZIKV is capable of inducing a range of severe neurological complications collectively described as congenital Zika syndrome (CZS). Notably, the scale and magnitude of outbreaks in Southeast Asia were significantly smaller compared to those in the Americas. Sequence comparison between epidemic-associated ZIKV strains from Southeast Asia with those from the Americas revealed a methionine to valine substitution at residue position 114 of the NS5 protein (NS5-M114V) in all the American isolates. Using an American isolate of ZIKV (Natal), we investigated the impact of NS5-M114V mutation on virus replication in cells, virulence in interferon (IFN) α/β receptor knockout (Ifnar-/-) mice, as well as replication and transmission potential in Aedes aegypti mosquitoes. We demonstrated that NS5-M114V mutation had insignificant effect on ZIKV replication efficiency in cells, its ability to degrade STAT2, and virulence in vivo, albeit viremia was slightly prolonged in mice. Furthermore, NS5-M114V mutation decreased mosquito infection and dissemination rates but had no effect on virus secretion into the saliva. Taken together, our findings support the notion that NS5-M114V mutation is unlikely to be a major determinant for virus replication and transmission potential. Zika virus (ZIKV) emerged to cause outbreaks in Southeast Asia and the Americas during 2015–2016. However, the scale of outbreaks in Southeast Asia were significantly smaller compared to epidemic in the Americas. A methionine to valine amino acid mutation at residue position 114 of the NS5 protein (NS5-M114V) is hypothesized to influence the epidemic outcomes of ZIKV, which led to the large-scale epidemic that occurred in the Americas. By analyzing infection of mammalian and mosquito cells, IFNα/β receptor knockout (Ifnar-/-) mice and Aedes aegypti mosquitoes with engineered ZIKV isolates containing either methionine or valine at residue position 114 of the NS5 protein, we demonstrated that the NS5-M114V mutation did not affect virus replication efficiency and STAT2 degradation in cells, virulence in mice, or virus secretion into the mosquito saliva. The NS5-M114V mutation slightly prolonged viremia in Ifnar-/- mice and reduced mosquito infection rate. Collectively, our findings suggest that the NS5-M114V mutation is unlikely to have significantly influenced the ZIKV epidemic in the Americas.
Collapse
Affiliation(s)
- Nias Y. G. Peng
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Alberto A. Amarilla
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Leon E. Hugo
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Queensland, Brisbane, Australia
| | - Naphak Modhiran
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Julian D. J. Sng
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Andrii Slonchak
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Daniel Watterson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Queensland, Brisbane, Australia
- * E-mail: (DW); (YXS); (AAK)
| | - Yin Xiang Setoh
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia
- * E-mail: (DW); (YXS); (AAK)
| | - Alexander A. Khromykh
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Queensland, Brisbane, Australia
- * E-mail: (DW); (YXS); (AAK)
| |
Collapse
|
18
|
Raphael LMS, de Mello IS, Gómez MM, Ribeiro IP, Furtado ND, Lima NS, Dos Santos AAC, Fernandes DR, da Cruz SOD, Damasceno LS, Brasil P, Bonaldo MC. Phenotypic and Genetic Variability of Isolates of ZIKV-2016 in Brazil. Microorganisms 2022; 10:microorganisms10050854. [PMID: 35630300 PMCID: PMC9146765 DOI: 10.3390/microorganisms10050854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/07/2022] [Accepted: 01/14/2022] [Indexed: 11/16/2022] Open
Abstract
The possibility of a Zika virus epidemic resurgence requires studies to understand its mechanisms of pathogenicity. Here, we describe the isolation of the Zika virus from breast milk (Rio-BM1) and compare its genetic and virological properties with two other isolates (Rio-U1 and Rio-S1) obtained during the same epidemic period. Complete genomic analysis of these three viral isolates showed that they carry characteristics of the American isolates and belong to the Asian genotype. Furthermore, we detected eight non-synonymous single nucleotide variants and multiple nucleotide polymorphisms that reflect phenotypic changes. The new isolate, Rio-BM1, showed the lowest replication rates in mammalian cells, induced lower cell death rates, was more susceptible to treatment with type I IFN, and was less pathogenic than Rio-U1 in a murine model. In conclusion, the present study shows evidence that the isolate Rio-BM1 is more attenuated than Rio-U1, probably due to the impact of genetic alterations in the modulation of virulence. The results obtained in our in vitro model were consistent with the pathogenicity observed in the animal model, indicating that this method can be used to assess the virulence level of other isolates or to predict the pathogenicity of reverse genetic constructs containing other polymorphisms.
Collapse
Affiliation(s)
- Lidiane Menezes Souza Raphael
- Laboratory of Molecular Biology of Flavivirus, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro 21040-900, Brazil; (L.M.S.R.); (I.S.d.M.); (I.P.R.); (N.D.F.); (N.S.L.); (A.A.C.D.S.); (D.R.F.); (S.O.D.d.C.)
| | - Iasmim Silva de Mello
- Laboratory of Molecular Biology of Flavivirus, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro 21040-900, Brazil; (L.M.S.R.); (I.S.d.M.); (I.P.R.); (N.D.F.); (N.S.L.); (A.A.C.D.S.); (D.R.F.); (S.O.D.d.C.)
| | - Mariela Martínez Gómez
- Molecular Biology and Genetics Division, Molecular Biology Department, Clemente Estable Biological Research Institute, Montevideo 11600, Uruguay;
| | - Ieda Pereira Ribeiro
- Laboratory of Molecular Biology of Flavivirus, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro 21040-900, Brazil; (L.M.S.R.); (I.S.d.M.); (I.P.R.); (N.D.F.); (N.S.L.); (A.A.C.D.S.); (D.R.F.); (S.O.D.d.C.)
| | - Nathália Dias Furtado
- Laboratory of Molecular Biology of Flavivirus, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro 21040-900, Brazil; (L.M.S.R.); (I.S.d.M.); (I.P.R.); (N.D.F.); (N.S.L.); (A.A.C.D.S.); (D.R.F.); (S.O.D.d.C.)
| | - Noemia Santana Lima
- Laboratory of Molecular Biology of Flavivirus, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro 21040-900, Brazil; (L.M.S.R.); (I.S.d.M.); (I.P.R.); (N.D.F.); (N.S.L.); (A.A.C.D.S.); (D.R.F.); (S.O.D.d.C.)
| | - Alexandre Araújo Cunha Dos Santos
- Laboratory of Molecular Biology of Flavivirus, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro 21040-900, Brazil; (L.M.S.R.); (I.S.d.M.); (I.P.R.); (N.D.F.); (N.S.L.); (A.A.C.D.S.); (D.R.F.); (S.O.D.d.C.)
| | - Déberli Ruiz Fernandes
- Laboratory of Molecular Biology of Flavivirus, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro 21040-900, Brazil; (L.M.S.R.); (I.S.d.M.); (I.P.R.); (N.D.F.); (N.S.L.); (A.A.C.D.S.); (D.R.F.); (S.O.D.d.C.)
| | - Stephanie Oliveira Diaz da Cruz
- Laboratory of Molecular Biology of Flavivirus, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro 21040-900, Brazil; (L.M.S.R.); (I.S.d.M.); (I.P.R.); (N.D.F.); (N.S.L.); (A.A.C.D.S.); (D.R.F.); (S.O.D.d.C.)
| | - Luana Santana Damasceno
- Laboratory of Acute Febrile Diseases, National Institute of Infectious Diseases Evandro Chagas, Fiocruz, Rio de Janeiro 21040-900, Brazil; (L.S.D.); (P.B.)
| | - Patrícia Brasil
- Laboratory of Acute Febrile Diseases, National Institute of Infectious Diseases Evandro Chagas, Fiocruz, Rio de Janeiro 21040-900, Brazil; (L.S.D.); (P.B.)
| | - Myrna Cristina Bonaldo
- Laboratory of Molecular Biology of Flavivirus, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro 21040-900, Brazil; (L.M.S.R.); (I.S.d.M.); (I.P.R.); (N.D.F.); (N.S.L.); (A.A.C.D.S.); (D.R.F.); (S.O.D.d.C.)
- Correspondence:
| |
Collapse
|
19
|
King EL, Irigoyen N. Zika Virus and Neuropathogenesis: The Unanswered Question of Which Strain Is More Prone to Causing Microcephaly and Other Neurological Defects. Front Cell Neurosci 2021; 15:695106. [PMID: 34658789 PMCID: PMC8514627 DOI: 10.3389/fncel.2021.695106] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 08/25/2021] [Indexed: 12/14/2022] Open
Abstract
Despite being perceived to be a relatively innocuous pathogen during its circulation in Africa in the 20th century, consequent outbreaks in French Polynesia and Latin America revealed the Zika virus (ZIKV) to be capable of causing severe neurological defects. Foetuses infected with the virus during pregnancy developed a range of pathologies including microcephaly, cerebral calcifications and macular scarring. These are now collectively known as Congenital Zika syndrome (CZS). It has been established that the neuropathogenesis of ZIKV results from infection of neural progenitor cells in the developing cerebral cortex. Following this, two main hypotheses have emerged: the virus causes either apoptosis or premature differentiation of neural progenitor cells, reducing the final number of mature neurons in the cerebral cortex. This review describes the cellular processes which could potentially cause virus induced apoptosis or premature differentiation, leading to speculation that a combination of the two may be responsible for the pathologies associated with ZIKV. The review also discusses which specific lineages of the ZIKV can employ these mechanisms. It has been unclear in the past whether the virus evolved its neurotropic capability following circulation in Africa, or if the virus has always caused microcephaly but public health surveillance in Africa had failed to detect it. Understanding the true neuropathogenesis of ZIKV is key to being prepared for further outbreaks in the future, and it will also provide insight into how neurotropic viruses can cause profound and life-long neurological defects.
Collapse
Affiliation(s)
- Emily Louise King
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Nerea Irigoyen
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
20
|
Yu X, Shan C, Zhu Y, Ma E, Wang J, Wang P, Shi PY, Cheng G. A mutation-mediated evolutionary adaptation of Zika virus in mosquito and mammalian host. Proc Natl Acad Sci U S A 2021; 118:e2113015118. [PMID: 34620704 PMCID: PMC8545446 DOI: 10.1073/pnas.2113015118] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2021] [Indexed: 01/18/2023] Open
Abstract
Zika virus (ZIKV) caused millions of infections during its rapid and expansive spread from Asia to the Americas from 2015 to 2017. Here, we compared the infectivity of ZIKV mutants with individual stable substitutions which emerged throughout the Asian ZIKV lineage and were responsible for the explosive outbreaks in the Americas. A threonine (T) to alanine (A) mutation at the 106th residue of the ZIKV capsid (C) protein facilitated the transmission by its mosquito vector, as well as infection in both human cells and immunodeficient mice. A mechanistic study showed that the T106A substitution rendered the C a preferred substrate for the NS2B-NS3 protease, thereby facilitating the maturation of structural proteins and the formation of infectious viral particles. Over a complete "mosquito-mouse-mosquito" cycle, the ZIKV C-T106A mutant showed a higher prevalence of mosquito infection than did the preepidemic strain, thus promoting ZIKV dissemination. Our results support the contribution of this evolutionary adaptation to the occasional widespread reemergence of ZIKV in nature.
Collapse
Affiliation(s)
- Xi Yu
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
- Shenzhen Bay Laboratory, Institute of Infectious Diseases, Shenzhen 518000, China
- Shenzhen Center for Disease Control and Prevention, Institute of Pathogenic Organisms, Shenzhen 518055, China
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Chao Shan
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555
| | - Yibin Zhu
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
- Shenzhen Bay Laboratory, Institute of Infectious Diseases, Shenzhen 518000, China
- Shenzhen Center for Disease Control and Prevention, Institute of Pathogenic Organisms, Shenzhen 518055, China
| | - Enhao Ma
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Jinglin Wang
- Yunnan Tropical and Subtropical Animal Viral Disease Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming 650224, China
| | - Penghua Wang
- Department of Immunology, School of Medicine, the University of Connecticut Health Center, Farmington, CT 06030
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555
| | - Gong Cheng
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China;
- Shenzhen Bay Laboratory, Institute of Infectious Diseases, Shenzhen 518000, China
- Shenzhen Center for Disease Control and Prevention, Institute of Pathogenic Organisms, Shenzhen 518055, China
| |
Collapse
|
21
|
Leu-to-Phe substitution at prM 146 decreases the growth ability of Zika virus and partially reduces its pathogenicity in mice. Sci Rep 2021; 11:19635. [PMID: 34608212 PMCID: PMC8490429 DOI: 10.1038/s41598-021-99086-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/16/2021] [Indexed: 12/24/2022] Open
Abstract
Zika virus (ZIKV) is a mosquito-borne flavivirus that causes febrile illness. The recent spread of ZIKV from Asia to the Americas via the Pacific region has revealed unprecedented features of ZIKV, including transplacental congenital infection causing microcephaly. Amino acid changes have been hypothesized to underlie the spread and novel features of American ZIKV strains; however, the relationship between genetic changes and the epidemic remains controversial. A comparison of the characteristics of a Southeast Asian strain (NIID123) and an American strain (PRVABC59) revealed that the latter had a higher replication ability in cultured cells and higher virulence in mice. In this study, we aimed to identify the genetic region of ZIKV responsible for these different characteristics using reverse genetics. A chimeric NIID123 strain in which the E protein was replaced with that of PRVABC59 showed a lower growth ability than the recombinant wild-type strain. Adaptation of the chimeric NIID123 to Vero cells induced a Phe-to-Leu amino acid substitution at position 146 of the prM protein; PRVABC59 also has Leu at this position. Leu at this position was found to be responsible for the viral replication ability and partially, for the pathogenicity in mouse testes.
Collapse
|
22
|
Shi H, Yin J. Kinetics of Asian and African Zika virus lineages over single-cycle and multi-cycle growth in culture: Gene expression, cell killing, virus production, and mathematical modeling. Biotechnol Bioeng 2021; 118:4231-4245. [PMID: 34270089 DOI: 10.1002/bit.27892] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/22/2021] [Accepted: 07/01/2021] [Indexed: 11/07/2022]
Abstract
Since 2014, an Asian lineage of Zika virus has caused outbreaks, and it has been associated with neurological disorders in adults and congenital defects in newborns. The resulting threat of the Zika virus to human health has prompted the development of new vaccines, which have yet to be approved for human use. Vaccines based on the attenuated or chemically inactivated virus will require large-scale production of the intact virus to meet potential global demands. Intact viruses are produced by infecting cultures of susceptible cells, a dynamic process that spans from hours to days and has yet to be optimized. Here, we infected Vero cells adhesively cultured in well-plates with two Zika virus strains: a recently isolated strain from the Asian lineage, and a cell-culture-adapted strain from the African lineage. At different time points post-infection, virus particles in the supernatant were quantified; further, microscopy images were used to quantify cell density and the proportion of cells expressing viral protein. These measurements were performed across multiple replicate samples of one-step infections every four hours over 60 h and for multi-step infections every four to 24 h over 144 h, generating a rich data set. For each set of data, mathematical models were developed to estimate parameters associated with cell infection and virus production. The African-lineage strain was found to produce a 14-fold higher yield than the Asian-lineage strain in one-step growth and a sevenfold higher titer in multi-step growth, suggesting a benefit of cell-culture adaptation for developing a vaccine strain. We found that image-based measurements were critical for discriminating among different models, and different parameters for the two strains could account for the experimentally observed differences. An exponential-distributed delay model performed best in accounting for multi-step infection of the Asian strain, and it highlighted the significant sensitivity of virus titer to the rate of viral degradation, with implications for optimization of vaccine production. More broadly, this study highlights how image-based measurements can contribute to the discrimination of virus-culture models for the optimal production of inactivated and attenuated whole-virus vaccines.
Collapse
Affiliation(s)
- Huicheng Shi
- Department of Chemical and Biological Engineering, Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - John Yin
- Department of Chemical and Biological Engineering, Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
23
|
Lambrechts L. Did Zika virus attenuation or increased virulence lead to the emergence of congenital Zika syndrome? J Travel Med 2021; 28:6183327. [PMID: 33758931 DOI: 10.1093/jtm/taab041] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 01/14/2023]
Abstract
The global emergence of Zika revealed the unprecedented ability of a mosquito-borne virus to cause severe congenital abnormalities. Recent studies indicate that the ability to harm fetuses is not a novel feature of Zika virus. Counter-intuitively, it may have in fact recently ‘attenuated’ from killing embryos to causing birth defects.
Collapse
Affiliation(s)
- Louis Lambrechts
- Insect-Virus Interactions Unit, Institut Pasteur, CNRS UMR2000, Paris, France
| |
Collapse
|
24
|
Spatial Distribution and Burden of Emerging Arboviruses in French Guiana. Viruses 2021; 13:v13071299. [PMID: 34372505 PMCID: PMC8310293 DOI: 10.3390/v13071299] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 01/18/2023] Open
Abstract
Despite the health, social and economic impact of arboviruses in French Guiana, very little is known about the extent to which infection burden is shared between individuals. We conducted a large multiplexed serological survey among 2697 individuals from June to October 2017. All serum samples were tested for IgG antibodies against DENV, CHIKV, ZIKV and MAYV using a recombinant antigen-based microsphere immunoassay with a subset further evaluated through anti-ZIKV microneutralization tests. The overall DENV seroprevalence was estimated at 73.1% (70.6–75.4) in the whole territory with estimations by serotype at 68.9% for DENV-1, 38.8% for DENV-2, 42.3% for DENV-3, and 56.1% for DENV-4. The overall seroprevalence of CHIKV, ZIKV and MAYV antibodies was 20.3% (17.7–23.1), 23.3% (20.9–25.9) and 3.3% (2.7–4.1), respectively. We provide a consistent overview of the burden of emerging arboviruses in French Guiana, with useful findings for risk mapping, future prevention and control programs. The majority of the population remains susceptible to CHIKV and ZIKV, which could potentially facilitate the risk of further re-emergences. Our results underscore the need to strengthen MAYV surveillance in order to rapidly detect any substantial changes in MAYV circulation patterns.
Collapse
|
25
|
Mohammadi E, Shafiee F, Shahzamani K, Ranjbar MM, Alibakhshi A, Ahangarzadeh S, Beikmohammadi L, Shariati L, Hooshmandi S, Ataei B, Javanmard SH. Novel and emerging mutations of SARS-CoV-2: Biomedical implications. Biomed Pharmacother 2021; 139:111599. [PMID: 33915502 PMCID: PMC8062574 DOI: 10.1016/j.biopha.2021.111599] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/18/2021] [Accepted: 03/27/2021] [Indexed: 12/31/2022] Open
Abstract
Coronavirus disease-19 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The SARS-CoV-2 virus strains has geographical diversity associated with diverse severity, mortality rate, and response to treatment that were characterized using phylogenetic network analysis of SARS-CoV-2 genomes. Although, there is no explicit and integrative explanation for these variations, the genetic arrangement, and stability of SARS-CoV-2 are basic contributing factors to its virulence and pathogenesis. Hence, understanding these features can be used to predict the future transmission dynamics of SARS-CoV-2 infection, drug development, and vaccine. In this review, we discuss the most recent findings on the mutations in the SARS-CoV-2, which provide valuable information on the genetic diversity of SARS-CoV-2, especially for DNA-based diagnosis, antivirals, and vaccine development for COVID-19.
Collapse
Affiliation(s)
- Elmira Mohammadi
- Applied Physiology Research Center, Cardiovascular Research Institute, Department of Physiology, Isfahan University of Medical Sciences, Isfahan, Iran; Core Research Facilities, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatemeh Shafiee
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Kiana Shahzamani
- Isfahan Gastroenterology and Hepatology Research Center (lGHRC), Isfahan University of medical sciences, Isfahan, Iran
| | - Mohammad Mehdi Ranjbar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education, and Extension Organization (AREEO), Karaj, Iran
| | - Abbas Alibakhshi
- Molecular Medicine Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Shahrzad Ahangarzadeh
- Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Leila Beikmohammadi
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Laleh Shariati
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, The Netherlands; Stem Cell and Regenerative Medicine Center of Excellence, Tehran University of Medical Sciences, 14155-6559 Tehran, Iran
| | - Soodeh Hooshmandi
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Behrooz Ataei
- Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | | |
Collapse
|
26
|
Grant R, Nguyen TTT, Dao MH, Pham HTT, Piorkowski G, Pham TDT, Cao TM, Huynh LTK, Nguyen QH, Vien LDK, Lemoine F, Zhukova A, Hoang DTN, Nguyen HT, Nguyen NT, Le LB, Ngo MNQ, Tran TC, Le NNT, Nguyen MN, Pham HT, Hoang TTD, Dang TV, Vu AT, Nguyen QNT, de Lamballerie X, Pham QD, Luong QC, Fontanet A. Maternal and neonatal outcomes related to Zika virus in pregnant women in Southern Vietnam: An epidemiological and virological prospective analysis. LANCET REGIONAL HEALTH-WESTERN PACIFIC 2021; 11:100163. [PMID: 34327365 PMCID: PMC8315393 DOI: 10.1016/j.lanwpc.2021.100163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 01/18/2023]
Abstract
Background In 2016-2017, 68 women in Southern Vietnam had RT-PCR confirmed Zika virus (ZIKV) infection during pregnancy. We report here the outcomes of the pregnancies and the virological analyses related to this outbreak. Methods We collected clinical and epidemiological information from the women who were enrolled in the study. Medical records related to the pregnancy in 2016-2017 were retrieved for those who were not able to be enrolled in the study. Children born to women with ZIKV infection during pregnancy were also enrolled. Serum samples were evaluated for presence of ZIKV antibodies. Phylogenetic analyses were performed on Zika virus genomes sequenced from the 2016-2017 serum samples. Findings Of the 68 pregnancies, 58 were livebirths and 10 were medically terminated. Four of the medical records from cases of fetal demise were able to be retrieved, of which one was consistent with congenital ZIKV infection. Of the 58 women with a livebirth, 21 participated in the follow-up investigation. All but two women had serologic evidence of ZIKV infection. Of the 21 children included in the study (mean age: 30.3 months), 3 had microcephaly at birth. No other clinical abnormalities were reported and no differences in neurodevelopment were observed compared to a control group. Phylogenetic analysis revealed a clade within the ZIKV Asian lineage and branch at the root of samples from the 2013-2014 French Polynesian outbreak. The prM S139N mutation was not observed. Interpretation We have been able to demonstrate a clade within the ZIKV Asian lineage implicated in adverse pregnancy outcomes in Southern Vietnam. Funding INCEPTION project (PIA/ANR-16-CONV-0005) and a grant received from BNP Paribas Simplidon.
Collapse
Affiliation(s)
- Rebecca Grant
- Institut Pasteur, Paris, France.,Sorbonne Université, Paris, France
| | | | | | | | - Géraldine Piorkowski
- Unité des Virus Emergents, UVE: Aix Marseille Université, IRD 190, INSERM 1207, IHU Méditerranée Infection, Marseille, France
| | | | | | | | | | | | | | | | | | | | | | - Lien Bich Le
- Children's Hospital Number 1, Ho Chi Minh City, Vietnam
| | | | | | | | | | | | | | - Thach Van Dang
- Centre of Educational Development, Psychological Intervention and Languages Nang Mai, Ho Chi Minh City, Vietnam.,Mental Health Hospital in Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Anh Thi Vu
- Centre of Educational Development, Psychological Intervention and Languages Nang Mai, Ho Chi Minh City, Vietnam
| | - Quyen Ngoc Truc Nguyen
- Centre of Educational Development, Psychological Intervention and Languages Nang Mai, Ho Chi Minh City, Vietnam
| | - Xavier de Lamballerie
- Unité des Virus Emergents, UVE: Aix Marseille Université, IRD 190, INSERM 1207, IHU Méditerranée Infection, Marseille, France
| | | | | | - Arnaud Fontanet
- Institut Pasteur, Paris, France.,Conservatoire National des Arts et Métiers, Paris, France
| |
Collapse
|
27
|
Zika Virus Pathogenesis: A Battle for Immune Evasion. Vaccines (Basel) 2021; 9:vaccines9030294. [PMID: 33810028 PMCID: PMC8005041 DOI: 10.3390/vaccines9030294] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/12/2021] [Accepted: 03/13/2021] [Indexed: 12/13/2022] Open
Abstract
Zika virus (ZIKV) infection and its associated congenital and other neurological disorders, particularly microcephaly and other fetal developmental abnormalities, constitute a World Health Organization (WHO) Zika Virus Research Agenda within the WHO’s R&D Blueprint for Action to Prevent Epidemics, and continue to be a Public Health Emergency of International Concern (PHEIC) today. ZIKV pathogenicity is initiated by viral infection and propagation across multiple placental and fetal tissue barriers, and is critically strengthened by subverting host immunity. ZIKV immune evasion involves viral non-structural proteins, genomic and non-coding RNA and microRNA (miRNA) to modulate interferon (IFN) signaling and production, interfering with intracellular signal pathways and autophagy, and promoting cellular environment changes together with secretion of cellular components to escape innate and adaptive immunity and further infect privileged immune organs/tissues such as the placenta and eyes. This review includes a description of recent advances in the understanding of the mechanisms underlying ZIKV immune modulation and evasion that strongly condition viral pathogenesis, which would certainly contribute to the development of anti-ZIKV strategies, drugs, and vaccines.
Collapse
|
28
|
Aubry F, Jacobs S, Darmuzey M, Lequime S, Delang L, Fontaine A, Jupatanakul N, Miot EF, Dabo S, Manet C, Montagutelli X, Baidaliuk A, Gámbaro F, Simon-Lorière E, Gilsoul M, Romero-Vivas CM, Cao-Lormeau VM, Jarman RG, Diagne CT, Faye O, Faye O, Sall AA, Neyts J, Nguyen L, Kaptein SJF, Lambrechts L. Recent African strains of Zika virus display higher transmissibility and fetal pathogenicity than Asian strains. Nat Commun 2021; 12:916. [PMID: 33568638 PMCID: PMC7876148 DOI: 10.1038/s41467-021-21199-z] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 01/16/2021] [Indexed: 11/09/2022] Open
Abstract
The global emergence of Zika virus (ZIKV) revealed the unprecedented ability for a mosquito-borne virus to cause congenital birth defects. A puzzling aspect of ZIKV emergence is that all human outbreaks and birth defects to date have been exclusively associated with the Asian ZIKV lineage, despite a growing body of laboratory evidence pointing towards higher transmissibility and pathogenicity of the African ZIKV lineage. Whether this apparent paradox reflects the use of relatively old African ZIKV strains in most laboratory studies is unclear. Here, we experimentally compare seven low-passage ZIKV strains representing the recently circulating viral genetic diversity. We find that recent African ZIKV strains display higher transmissibility in mosquitoes and higher lethality in both adult and fetal mice than their Asian counterparts. We emphasize the high epidemic potential of African ZIKV strains and suggest that they could more easily go unnoticed by public health surveillance systems than Asian strains due to their propensity to cause fetal loss rather than birth defects. Here, the authors compare seven low passage Zika virus (ZIKV) strains representing the recently circulating viral genetic diversity of African and Asian strains and find that African ZIKV strains have higher transmissibility in mosquitoes and higher lethality in both adult and fetal mice.
Collapse
Affiliation(s)
- Fabien Aubry
- Insect-Virus Interactions Unit, Institut Pasteur, UMR2000, CNRS, Paris, France
| | - Sofie Jacobs
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Maïlis Darmuzey
- GIGA-Stem Cells/GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), C.H.U. Sart Tilman, University of Liège, Liège, Belgium
| | - Sebastian Lequime
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Clinical and Epidemiological Virology, Leuven, Belgium.,Cluster of Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Leen Delang
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Albin Fontaine
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées (IRBA), Marseille, France.,IRD, SSA, AP-HM, UMR Vecteurs-Infections Tropicales et Méditerranéennes (VITROME), Aix Marseille University, Marseille, France.,IHU Méditerranée Infection, Marseille, France
| | - Natapong Jupatanakul
- Insect-Virus Interactions Unit, Institut Pasteur, UMR2000, CNRS, Paris, France.,National Center for Genetic Engineering and Biotechnology (BIOTEC), Pathum Thani, Thailand
| | - Elliott F Miot
- Insect-Virus Interactions Unit, Institut Pasteur, UMR2000, CNRS, Paris, France
| | - Stéphanie Dabo
- Insect-Virus Interactions Unit, Institut Pasteur, UMR2000, CNRS, Paris, France
| | - Caroline Manet
- Mouse Genetics Laboratory, Institut Pasteur, Paris, France
| | | | - Artem Baidaliuk
- Insect-Virus Interactions Unit, Institut Pasteur, UMR2000, CNRS, Paris, France.,Evolutionary Genomics of RNA Viruses Group, Institut Pasteur, Paris, France
| | - Fabiana Gámbaro
- Evolutionary Genomics of RNA Viruses Group, Institut Pasteur, Paris, France
| | | | - Maxime Gilsoul
- GIGA-Stem Cells/GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), C.H.U. Sart Tilman, University of Liège, Liège, Belgium
| | - Claudia M Romero-Vivas
- Laboratorio de Enfermedades Tropicales, Departamento de Medicina, Fundación Universidad del Norte, Barranquilla, Colombia
| | | | - Richard G Jarman
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Cheikh T Diagne
- Arbovirus and Viral Hemorrhagic Fevers Unit, Institut Pasteur Dakar, Dakar, Senegal
| | - Oumar Faye
- Arbovirus and Viral Hemorrhagic Fevers Unit, Institut Pasteur Dakar, Dakar, Senegal
| | - Ousmane Faye
- Arbovirus and Viral Hemorrhagic Fevers Unit, Institut Pasteur Dakar, Dakar, Senegal
| | - Amadou A Sall
- Arbovirus and Viral Hemorrhagic Fevers Unit, Institut Pasteur Dakar, Dakar, Senegal
| | - Johan Neyts
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Laurent Nguyen
- GIGA-Stem Cells/GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), C.H.U. Sart Tilman, University of Liège, Liège, Belgium
| | - Suzanne J F Kaptein
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Leuven, Belgium.
| | - Louis Lambrechts
- Insect-Virus Interactions Unit, Institut Pasteur, UMR2000, CNRS, Paris, France.
| |
Collapse
|
29
|
Liu J, Liu Y, Shan C, Nunes BTD, Yun R, Haller SL, Rafael GH, Azar SR, Andersen CR, Plante K, Vasilakis N, Shi PY, Weaver SC. Role of mutational reversions and fitness restoration in Zika virus spread to the Americas. Nat Commun 2021; 12:595. [PMID: 33500409 PMCID: PMC7838395 DOI: 10.1038/s41467-020-20747-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 12/15/2020] [Indexed: 01/30/2023] Open
Abstract
Zika virus (ZIKV) emerged from obscurity in 2013 to spread from Asia to the South Pacific and the Americas, where millions of people were infected, accompanied by severe disease including microcephaly following congenital infections. Phylogenetic studies have shown that ZIKV evolved in Africa and later spread to Asia, and that the Asian lineage is responsible for the recent epidemics in the South Pacific and Americas. However, the reasons for the sudden emergence of ZIKV remain enigmatic. Here we report evolutionary analyses that revealed four mutations, which occurred just before ZIKV introduction to the Americas, represent direct reversions of previous mutations that accompanied earlier spread from Africa to Asia and early circulation there. Our experimental infections of Aedes aegypti mosquitoes, human cells, and mice using ZIKV strains with and without these mutations demonstrate that the original mutations reduced fitness for urban, human-amplifed transmission, while the reversions restored fitness, increasing epidemic risk. These findings include characterization of three transmission-adaptive ZIKV mutations, and demonstration that these and one identified previously restored fitness for epidemic transmission soon before introduction into the Americas. The initial mutations may have followed founder effects and/or drift when the virus was introduced decades ago into Asia.
Collapse
Affiliation(s)
- Jianying Liu
- World Reference Center for Emerging Viruses and Arboviruses, Institute for Human Infections and Immunity, and Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Yang Liu
- Department of Biochemistry and Molecular Biology and Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Chao Shan
- Department of Biochemistry and Molecular Biology and Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Bruno T D Nunes
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ministry of Health, Ananindeua, Pará State, Brazil
| | - Ruimei Yun
- World Reference Center for Emerging Viruses and Arboviruses, Institute for Human Infections and Immunity, and Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Sherry L Haller
- World Reference Center for Emerging Viruses and Arboviruses, Institute for Human Infections and Immunity, and Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Grace H Rafael
- World Reference Center for Emerging Viruses and Arboviruses, Institute for Human Infections and Immunity, and Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Sasha R Azar
- World Reference Center for Emerging Viruses and Arboviruses, Institute for Human Infections and Immunity, and Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Clark R Andersen
- Department of Preventive Medicine and Community Health, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Kenneth Plante
- World Reference Center for Emerging Viruses and Arboviruses, Institute for Human Infections and Immunity, and Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Nikos Vasilakis
- Department of Pathology, Center for Biodefense and Emerging Infectious Diseases, World Reference Center for Emerging Viruses and Arboviruses, and Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology and Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, 77555, USA.
| | - Scott C Weaver
- World Reference Center for Emerging Viruses and Arboviruses, Institute for Human Infections and Immunity, and Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA.
| |
Collapse
|
30
|
New Insights on the Zika Virus Arrival in the Americas and Spatiotemporal Reconstruction of the Epidemic Dynamics in Brazil. Viruses 2020; 13:v13010012. [PMID: 33374816 PMCID: PMC7824532 DOI: 10.3390/v13010012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/19/2020] [Accepted: 12/19/2020] [Indexed: 12/20/2022] Open
Abstract
Zika virus (ZIKV) became a worldwide public health emergency after its introduction in the Americas. Brazil was implicated as central in the ZIKV dispersion, however, a better understanding of the pathways the virus took to arrive in Brazil and the dispersion within the country is needed. An updated genome dataset was assembled with publicly available data. Bayesian phylogeography methods were applied to reconstruct the spatiotemporal history of ZIKV in the Americas and with more detail inside Brazil. Our analyses reconstructed the Brazilian state of Pernambuco as the likely point of introduction of ZIKV in Brazil, possibly during the 2013 Confederations Cup. Pernambuco played an important role in spreading the virus to other Brazilian states. Our results also underscore the long cryptic circulation of ZIKV in all analyzed locations in Brazil. Conclusions: This study brings new insights about the early moments of ZIKV in the Americas, especially regarding the Brazil-Haiti cluster at the base of the American clade and describing for the first time migration patterns within Brazil.
Collapse
|
31
|
Gasco S, Muñoz-Fernández MÁ. A Review on the Current Knowledge on ZIKV Infection and the Interest of Organoids and Nanotechnology on Development of Effective Therapies against Zika Infection. Int J Mol Sci 2020; 22:ijms22010035. [PMID: 33375140 PMCID: PMC7792973 DOI: 10.3390/ijms22010035] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/18/2020] [Accepted: 12/18/2020] [Indexed: 12/11/2022] Open
Abstract
Zika virus (ZIKV) acquired a special relevance due to the pandemic that occurred in the Americas in 2015, when an important number of fetal microcephaly cases occurred. Since then, numerous studies have tried to elucidate the pathogenic mechanisms and the potential therapeutic approaches to combat the virus. Cellular and animal models have proved to be a basic resource for this research, with the more recent addition of organoids as a more realistic and physiological 3D culture for the study of ZIKV. Nanotechnology can also offer a promising therapeutic tool, as the nanoparticles developed by this field can penetrate cells and deliver a wide array of drugs in a very specific and controlled way inside the cells. These two state-of-the-art scientific tools clearly provide a very relevant resource for the study of ZIKV, and will help researchers find an effective treatment or vaccine against the virus.
Collapse
Affiliation(s)
- Samanta Gasco
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), 28001 Madrid, Spain;
- Laboratorio InmunoBiología Molecular (HGUGM), 28001 Madrid, Spain
| | - María Ángeles Muñoz-Fernández
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), 28001 Madrid, Spain;
- Laboratorio InmunoBiología Molecular (HGUGM), 28001 Madrid, Spain
- Spanish HIV-HGM BioBank, 28001 Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28001 Madrid, Spain
- Correspondence: or ; Tel.: +34-91-462-4684
| |
Collapse
|
32
|
Brugueras S, Fernández-Martínez B, Martínez-de la Puente J, Figuerola J, Porro TM, Rius C, Larrauri A, Gómez-Barroso D. Environmental drivers, climate change and emergent diseases transmitted by mosquitoes and their vectors in southern Europe: A systematic review. ENVIRONMENTAL RESEARCH 2020; 191:110038. [PMID: 32810503 DOI: 10.1016/j.envres.2020.110038] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 07/02/2020] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Abstract
Mosquito borne diseases are a group of infections that affect humans. Emerging or reemerging diseases are those that (re)occur in regions, groups or hosts that were previously free from these diseases: dengue virus; chikungunya virus; Zika virus; West Nile fever and malaria. In Europe, these infections are mostly imported; however, due to the presence of competent mosquitoes and the number of trips both to and from endemic areas, these pathogens are potentially emergent or re-emergent. Present and future climatic conditions, as well as meteorological, environmental and demographic aspects are risk factors for the distribution of different vectors and/or diseases. This review aimed to identify and analyze the existing literature on the transmission of mosquito borne diseases and those factors potentially affecting their transmission risk of them in six southern European countries with similar environmental conditions: Croatia, France, Greece, Italy, Portugal and Spain. In addition, we would identify those factors potentially affecting the (re)introduction or spread of mosquito vectors. This task has been undertaken with a focus on the environmental and climatic factors, including the effects of climate change. We undertook a systematic review of the vectors, diseases and their associations with climactic and environmental factors in European countries of the Mediterranean region. We followed the PRISMA guidelines and used explicit and systematic methods to identify, select and critically evaluate the studies which were relevant to the topic. We identified 1302 articles in the first search of the databases. Of those, 160 were selected for full-text review. The final data set included 61 articles published between 2000 and 2017.39.3% of the papers were related with dengue, chikungunya and Zika virus or their vectors. Temperature, precipitation and population density were key factors among others. 32.8% studied West Nile virus and its vectors, being temperature, precipitation and NDVI the most frequently used variables. Malaria have been studied in 23% of the articles, with temperature, precipitation and presence of water indexes as the most used variables. The number of publications focused on mosquito borne diseases is increasing in recent years, reflecting the increased interest in that diseases in southern European countries. Climatic and environmental variables are key factors on mosquitoes' distribution and to show the risk of emergence and/or spread of emergent diseases and to study the spatial changes in that distributions.
Collapse
Affiliation(s)
- Silvia Brugueras
- Agencia de Salud Pública de Barcelona, Pl. Lesseps, 1, 08023, Barcelona, Spain; CIBER de Epidemiología y Salud Pública, Calle Monforte de Lemos 5, 28029, Madrid, Spain
| | - Beatriz Fernández-Martínez
- Centro Nacional de Epidemiología, Instituto de Salud Carlos III, Calle Monforte de Lemos 5, 28029, Madrid, Spain; CIBER de Epidemiología y Salud Pública, Calle Monforte de Lemos 5, 28029, Madrid, Spain
| | - Josué Martínez-de la Puente
- Estación Biológica de Doñana (EBD-CSIC), Calle Américo Vespucio, 26, E-41092, Sevilla, Spain; CIBER de Epidemiología y Salud Pública, Calle Monforte de Lemos 5, 28029, Madrid, Spain
| | - Jordi Figuerola
- Estación Biológica de Doñana (EBD-CSIC), Calle Américo Vespucio, 26, E-41092, Sevilla, Spain; CIBER de Epidemiología y Salud Pública, Calle Monforte de Lemos 5, 28029, Madrid, Spain
| | - Tomas Montalvo Porro
- Agencia de Salud Pública de Barcelona, Pl. Lesseps, 1, 08023, Barcelona, Spain; CIBER de Epidemiología y Salud Pública, Calle Monforte de Lemos 5, 28029, Madrid, Spain
| | - Cristina Rius
- Agencia de Salud Pública de Barcelona, Pl. Lesseps, 1, 08023, Barcelona, Spain; CIBER de Epidemiología y Salud Pública, Calle Monforte de Lemos 5, 28029, Madrid, Spain
| | - Amparo Larrauri
- Centro Nacional de Epidemiología, Instituto de Salud Carlos III, Calle Monforte de Lemos 5, 28029, Madrid, Spain; CIBER de Epidemiología y Salud Pública, Calle Monforte de Lemos 5, 28029, Madrid, Spain
| | - Diana Gómez-Barroso
- Centro Nacional de Epidemiología, Instituto de Salud Carlos III, Calle Monforte de Lemos 5, 28029, Madrid, Spain; CIBER de Epidemiología y Salud Pública, Calle Monforte de Lemos 5, 28029, Madrid, Spain.
| |
Collapse
|
33
|
Biological Characteristics and Patterns of Codon Usage Evolution for the African Genotype Zika Virus. Viruses 2020; 12:v12111306. [PMID: 33202554 PMCID: PMC7696518 DOI: 10.3390/v12111306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/11/2020] [Accepted: 10/12/2020] [Indexed: 11/17/2022] Open
Abstract
We investigated temporal trends of codon usage changes for different host species to determine their importance in Zika virus (ZIKV) evolution. Viral spillover resulting from the potential of codon adaptation to host genome was also assessed for the African genotype ZIKV in comparison to the Asian genotype. To improve our understanding on its zoonotic maintenance, we evaluated in vitro the biological properties of the African genotype ZIKV in vertebrate and mosquito cell lines. Analyses were performed in comparison to Yellow fever virus (YFV). Despite significantly lower codon adaptation index trends than YFV, ZIKV showed evident codon adaptation to vertebrate hosts, particularly for the green African monkey Chlorocebus aethiops. PCA and CAI analyses at the individual ZIKV gene level for both human and Aedes aegypti indicated a clear distinction between the two genotypes. African ZIKV isolates showed higher virulence in mosquito cells than in vertebrate cells. Their higher replication in mosquito cells than African YFV confirmed the role of mosquitoes in the natural maintenance of the African genotype ZIKV. An analysis of individual strain growth characteristics indicated that the widely used reference strain MR766 replicates poorly in comparison to African ZIKV isolates. The recombinant African Zika virus strain ArD128000*E/NS5 may be a good model to include in studies on the mechanism of host tropism, as it cannot replicate in the tested vertebrate cell line.
Collapse
|
34
|
Animal models of congenital zika syndrome provide mechanistic insight into viral pathogenesis during pregnancy. PLoS Negl Trop Dis 2020; 14:e0008707. [PMID: 33091001 PMCID: PMC7580937 DOI: 10.1371/journal.pntd.0008707] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In utero Zika virus (ZIKV; family Flaviviridae) infection causes a distinct pattern of birth defects and disabilities in the developing fetus and neonate that has been termed congenital zika syndrome (CZS). Over 8,000 children were affected by the 2016 to 2017 ZIKV outbreak in the Americas, many of whom developed CZS as a result of in utero exposure. To date, there is no consensus about how ZIKV causes CZS; animal models, however, are providing mechanistic insights. Using nonhuman primates, immunocompromised mice, immunocompetent mice, and other animal models (e.g., pigs, sheep, guinea pigs, and hamsters), studies are showing that maternal immunological responses, placental infection and inflammation, as well as viral genetic factors play significant roles in predicting the downstream consequences of in utero ZIKV infection on the development of CZS in offspring. There are thousands of children suffering from adverse consequences of CZS. Therefore, the animal models developed to study ZIKV-induced adverse outcomes in offspring could provide mechanistic insights into how other viruses, including influenza and hepatitis C viruses, impact placental viability and fetal growth to cause long-term adverse outcomes in an effort to identify therapeutic treatments.
Collapse
|
35
|
A Zika virus envelope mutation preceding the 2015 epidemic enhances virulence and fitness for transmission. Proc Natl Acad Sci U S A 2020; 117:20190-20197. [PMID: 32747564 DOI: 10.1073/pnas.2005722117] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Arboviruses maintain high mutation rates due to lack of proofreading ability of their viral polymerases, in some cases facilitating adaptive evolution and emergence. Here we show that, just before its 2013 spread to the Americas, Zika virus (ZIKV) underwent an envelope protein V473M substitution (E-V473M) that increased neurovirulence, maternal-to-fetal transmission, and viremia to facilitate urban transmission. A preepidemic Asian ZIKV strain (FSS13025 isolated in Cambodia in 2010) engineered with the V473M substitution significantly increased neurovirulence in neonatal mice and produced higher viral loads in the placenta and fetal heads in pregnant mice. Conversely, an epidemic ZIKV strain (PRVABC59 isolated in Puerto Rico in 2015) engineered with the inverse M473V substitution reversed the pathogenic phenotypes. Although E-V473M did not affect oral infection of Aedes aegypti mosquitoes, competition experiments in cynomolgus macaques showed that this mutation increased its fitness for viremia generation, suggesting adaptive evolution for human viremia and hence transmission. Mechanistically, the V473M mutation, located at the second transmembrane helix of the E protein, enhances virion morphogenesis. Overall, our study revealed E-V473M as a critical determinant for enhanced ZIKV virulence, intrauterine transmission during pregnancy, and viremia to facilitate urban transmission.
Collapse
|
36
|
Stromberg ZR, Fischer W, Bradfute SB, Kubicek-Sutherland JZ, Hraber P. Vaccine Advances against Venezuelan, Eastern, and Western Equine Encephalitis Viruses. Vaccines (Basel) 2020; 8:vaccines8020273. [PMID: 32503232 PMCID: PMC7350001 DOI: 10.3390/vaccines8020273] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/29/2020] [Accepted: 05/31/2020] [Indexed: 01/21/2023] Open
Abstract
Vaccinations are a crucial intervention in combating infectious diseases. The three neurotropic Alphaviruses, Eastern (EEEV), Venezuelan (VEEV), and Western (WEEV) equine encephalitis viruses, are pathogens of interest for animal health, public health, and biological defense. In both equines and humans, these viruses can cause febrile illness that may progress to encephalitis. Currently, there are no licensed treatments or vaccines available for these viruses in humans. Experimental vaccines have shown variable efficacy and may cause severe adverse effects. Here, we outline recent strategies used to generate vaccines against EEEV, VEEV, and WEEV with an emphasis on virus-vectored and plasmid DNA delivery. Despite candidate vaccines protecting against one of the three viruses, few studies have demonstrated an effective trivalent vaccine. We evaluated the potential of published vaccines to generate cross-reactive protective responses by comparing DNA vaccine sequences to a set of EEEV, VEEV, and WEEV genomes and determining the vaccine coverages of potential epitopes. Finally, we discuss future directions in the development of vaccines to combat EEEV, VEEV, and WEEV.
Collapse
Affiliation(s)
- Zachary R. Stromberg
- Physical Chemistry and Applied Spectroscopy, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 505, USA; (Z.R.S.); (J.Z.K.-S.)
| | - Will Fischer
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 505, USA;
| | - Steven B. Bradfute
- Center for Global Health, Division of Infectious Diseases, Department of Internal Medicine, University of New Mexico, Albuquerque, NM 505, USA;
| | - Jessica Z. Kubicek-Sutherland
- Physical Chemistry and Applied Spectroscopy, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 505, USA; (Z.R.S.); (J.Z.K.-S.)
| | - Peter Hraber
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 505, USA;
- Correspondence:
| |
Collapse
|
37
|
Flamand C, Bailly S, Fritzell C, Berthelot L, Vanhomwegen J, Salje H, Paireau J, Matheus S, Enfissi A, Fernandes-Pellerin S, Djossou F, Linares S, Carod JF, Kazanji M, Manuguerra JC, Cauchemez S, Rousset D. Impact of Zika Virus Emergence in French Guiana: A Large General Population Seroprevalence Survey. J Infect Dis 2020; 220:1915-1925. [PMID: 31418012 PMCID: PMC6834069 DOI: 10.1093/infdis/jiz396] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 08/01/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Since the identification of Zika virus (ZIKV) in Brazil in May 2015, the virus has spread throughout the Americas. However, ZIKV burden in the general population in affected countries remains unknown. METHODS We conducted a general population survey in the different communities of French Guiana through individual interviews and serologic survey during June-October 2017. All serum samples were tested for anti-ZIKV immunoglobulin G antibodies using a recombinant antigen-based SGERPAxMap microsphere immunoassay, and some of them were further evaluated through anti-ZIKV microneutralization tests. RESULTS The overall seroprevalence was estimated at 23.3% (95% confidence interval [CI], 20.9%-25.9%) among 2697 participants, varying from 0% to 45.6% according to municipalities. ZIKV circulated in a large majority of French Guiana but not in the most isolated forest areas. The proportion of reported symptomatic Zika infection was estimated at 25.5% (95% CI, 20.3%-31.4%) in individuals who tested positive for ZIKV. CONCLUSIONS This study described a large-scale representative ZIKV seroprevalence study in South America from the recent 2015-2016 Zika epidemic. Our findings reveal that the majority of the population remains susceptible to ZIKV, which could potentially allow future reintroductions of the virus.
Collapse
Affiliation(s)
| | | | | | - Léna Berthelot
- Arbovirus National Reference Center, Institut Pasteur, Cayenne, French Guiana
| | - Jessica Vanhomwegen
- Environment and Infectious Risks Unit, Unité Mixte de Recherche 2000, Centre National de la Recherche Scientifique, Paris, France
| | - Henrik Salje
- Mathematical Modelling of Infectious Diseases Unit, Unité Mixte de Recherche 2000, Centre National de la Recherche Scientifique, Paris, France
| | - Juliette Paireau
- Mathematical Modelling of Infectious Diseases Unit, Unité Mixte de Recherche 2000, Centre National de la Recherche Scientifique, Paris, France
| | - Séverine Matheus
- Arbovirus National Reference Center, Institut Pasteur, Cayenne, French Guiana.,Environment and Infectious Risks Unit, Unité Mixte de Recherche 2000, Centre National de la Recherche Scientifique, Paris, France
| | - Antoine Enfissi
- Arbovirus National Reference Center, Institut Pasteur, Cayenne, French Guiana
| | | | - Félix Djossou
- Infectious and Tropical Diseases Unit, Centre Hospitalier Andrée Rosemon, Cayenne, French Guiana
| | - Sébastien Linares
- Geographic Information and Knowledge Dissemination Unit, Direction de l'Environnement, de l'Aménagement et du Logement Guyane, Cayenne, French Guiana
| | - Jean-François Carod
- Medical Laboratory, Centre Hospitalier de l'Ouest Guyanais, Saint-Laurent du Maroni, French Guiana
| | | | - Jean-Claude Manuguerra
- Environment and Infectious Risks Unit, Unité Mixte de Recherche 2000, Centre National de la Recherche Scientifique, Paris, France
| | - Simon Cauchemez
- Mathematical Modelling of Infectious Diseases Unit, Unité Mixte de Recherche 2000, Centre National de la Recherche Scientifique, Paris, France
| | - Dominique Rousset
- Arbovirus National Reference Center, Institut Pasteur, Cayenne, French Guiana
| |
Collapse
|
38
|
Durand GA, Piorkowski G, Thirion L, Ninove L, Giron S, Zandotti C, Denis J, Badaut C, Failloux AB, Grard G, Leparc-Goffart I, de Lamballerie X. Vector-Borne Transmission of the Zika Virus Asian Genotype in Europe. Viruses 2020; 12:v12030296. [PMID: 32182748 PMCID: PMC7150815 DOI: 10.3390/v12030296] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/04/2020] [Accepted: 03/07/2020] [Indexed: 12/18/2022] Open
Abstract
Three autochthonous cases of Zika virus occurred in southern France in August 2019. Diagnosis relied on serology and transcription-mediated amplification. Attempts for virus isolation and ZIKV genome RT-PCR detection remained negative. Since the index case was not identified, we addressed the issue of genotyping and geographical origin by performing hemi-nested PCR and sequencing in the Pr gene. Analysis of 16 genotype-specific Single Nucleotides Polymorphisms identified the Asian genotype and suggested a Southeast Asia origin.
Collapse
Affiliation(s)
- Guillaume A. Durand
- National Reference Laboratory for Arboviruses, Institut de Recherche Biomédicale des Armées, 13010 Marseille, France; (J.D.); (C.B.); (G.G.); (I.L.-G.)
- Unité des Virus Emergents (UVE: Aix-Marseille Univ–IRD 190–Inserm 1207–IHU Méditerranée Infection), 13010 Marseille, France; (G.P.); (L.T.); (L.N.); (C.Z.); (X.d.L.)
- Correspondence:
| | - Géraldine Piorkowski
- Unité des Virus Emergents (UVE: Aix-Marseille Univ–IRD 190–Inserm 1207–IHU Méditerranée Infection), 13010 Marseille, France; (G.P.); (L.T.); (L.N.); (C.Z.); (X.d.L.)
| | - Laurence Thirion
- Unité des Virus Emergents (UVE: Aix-Marseille Univ–IRD 190–Inserm 1207–IHU Méditerranée Infection), 13010 Marseille, France; (G.P.); (L.T.); (L.N.); (C.Z.); (X.d.L.)
| | - Laetitia Ninove
- Unité des Virus Emergents (UVE: Aix-Marseille Univ–IRD 190–Inserm 1207–IHU Méditerranée Infection), 13010 Marseille, France; (G.P.); (L.T.); (L.N.); (C.Z.); (X.d.L.)
| | - Sandra Giron
- French National Public Health Agency (Santé publique France), 13002 Marseille, France;
| | - Christine Zandotti
- Unité des Virus Emergents (UVE: Aix-Marseille Univ–IRD 190–Inserm 1207–IHU Méditerranée Infection), 13010 Marseille, France; (G.P.); (L.T.); (L.N.); (C.Z.); (X.d.L.)
| | - Jessica Denis
- National Reference Laboratory for Arboviruses, Institut de Recherche Biomédicale des Armées, 13010 Marseille, France; (J.D.); (C.B.); (G.G.); (I.L.-G.)
- Unité de Biothérapies anti-Infectieuses et Immunité, Institut de Recherche Biomédicale des Armées, 91220 Bretigny sur Orge, France
| | - Cyril Badaut
- National Reference Laboratory for Arboviruses, Institut de Recherche Biomédicale des Armées, 13010 Marseille, France; (J.D.); (C.B.); (G.G.); (I.L.-G.)
- Unité de Biothérapies anti-Infectieuses et Immunité, Institut de Recherche Biomédicale des Armées, 91220 Bretigny sur Orge, France
| | - Anna-Bella Failloux
- Department of Virology, Arboviruses and Insect Vectors, Institut Pasteur, 75015 Paris, France;
| | - Gilda Grard
- National Reference Laboratory for Arboviruses, Institut de Recherche Biomédicale des Armées, 13010 Marseille, France; (J.D.); (C.B.); (G.G.); (I.L.-G.)
- Unité des Virus Emergents (UVE: Aix-Marseille Univ–IRD 190–Inserm 1207–IHU Méditerranée Infection), 13010 Marseille, France; (G.P.); (L.T.); (L.N.); (C.Z.); (X.d.L.)
| | - Isabelle Leparc-Goffart
- National Reference Laboratory for Arboviruses, Institut de Recherche Biomédicale des Armées, 13010 Marseille, France; (J.D.); (C.B.); (G.G.); (I.L.-G.)
- Unité des Virus Emergents (UVE: Aix-Marseille Univ–IRD 190–Inserm 1207–IHU Méditerranée Infection), 13010 Marseille, France; (G.P.); (L.T.); (L.N.); (C.Z.); (X.d.L.)
| | - Xavier de Lamballerie
- Unité des Virus Emergents (UVE: Aix-Marseille Univ–IRD 190–Inserm 1207–IHU Méditerranée Infection), 13010 Marseille, France; (G.P.); (L.T.); (L.N.); (C.Z.); (X.d.L.)
| |
Collapse
|
39
|
Wilder-Smith A, Preet R, Brickley EB, Ximenes RADA, Miranda-Filho DDB, Turchi Martelli CM, Araújo TVBD, Montarroyos UR, Moreira ME, Turchi MD, Solomon T, Jacobs BC, Villamizar CP, Osorio L, de Filipps AMB, Neyts J, Kaptein S, Huits R, Ariën KK, Willison HJ, Edgar JM, Barnett SC, Peeling R, Boeras D, Guzman MG, de Silva AM, Falconar AK, Romero-Vivas C, Gaunt MW, Sette A, Weiskopf D, Lambrechts L, Dolk H, Morris JK, Orioli IM, O'Reilly KM, Yakob L, Rocklöv J, Soares C, Ferreira MLB, Franca RFDO, Precioso AR, Logan J, Lang T, Jamieson N, Massad E. ZikaPLAN: addressing the knowledge gaps and working towards a research preparedness network in the Americas. Glob Health Action 2020; 12:1666566. [PMID: 31640505 PMCID: PMC6818126 DOI: 10.1080/16549716.2019.1666566] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Zika Preparedness Latin American Network (ZikaPLAN) is a research consortium funded by the European Commission to address the research gaps in combating Zika and to establish a sustainable network with research capacity building in the Americas. Here we present a report on ZikaPLAN`s mid-term achievements since its initiation in October 2016 to June 2019, illustrating the research objectives of the 15 work packages ranging from virology, diagnostics, entomology and vector control, modelling to clinical cohort studies in pregnant women and neonates, as well as studies on the neurological complications of Zika infections in adolescents and adults. For example, the Neuroviruses Emerging in the Americas Study (NEAS) has set up more than 10 clinical sites in Colombia. Through the Butantan Phase 3 dengue vaccine trial, we have access to samples of 17,000 subjects in 14 different geographic locations in Brazil. To address the lack of access to clinical samples for diagnostic evaluation, ZikaPLAN set up a network of quality sites with access to well-characterized clinical specimens and capacity for independent evaluations. The International Committee for Congenital Anomaly Surveillance Tools was formed with global representation from regional networks conducting birth defects surveillance. We have collated a comprehensive inventory of resources and tools for birth defects surveillance, and developed an App for low resource regions facilitating the coding and description of all major externally visible congenital anomalies including congenital Zika syndrome. Research Capacity Network (REDe) is a shared and open resource centre where researchers and health workers can access tools, resources and support, enabling better and more research in the region. Addressing the gap in research capacity in LMICs is pivotal in ensuring broad-based systems to be prepared for the next outbreak. Our shared and open research space through REDe will be used to maximize the transfer of research into practice by summarizing the research output and by hosting the tools, resources, guidance and recommendations generated by these studies. Leveraging on the research from this consortium, we are working towards a research preparedness network.
Collapse
Affiliation(s)
| | - Raman Preet
- Department of Epidemiology and Global Health, Umeå University , Umeå , Sweden
| | | | - Ricardo Arraes de Alencar Ximenes
- Departamento de Medicina Tropical, Universidade Federal de Pernambuco , Recife , Brasil.,Departamento de Medicina Interna, Universidade de Pernambuco , Recife , Brasil
| | | | | | | | | | | | - Marília Dalva Turchi
- Instituto de Patologia Tropical e Saúde Publica, Universidade Federal de Goiás , Goiânia , Brasil
| | - Tom Solomon
- Institute of Infection and Global Health, The University of Liverpool , Liverpool , UK
| | - Bart C Jacobs
- Departments of Neurology and Immunology, Erasmus Universitair Medisch Centrum Rotterdam , The Netherlands
| | | | | | | | - Johan Neyts
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Rega Institute of Medical Research , Leuven , Belgium
| | - Suzanne Kaptein
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Rega Institute of Medical Research , Leuven , Belgium
| | - Ralph Huits
- Institute of Tropical Medicine , Antwerp , Belgium
| | | | - Hugh J Willison
- Institute of Infection, Immunity & Inflammation, University of Glasgow , Glasgow , UK
| | - Julia M Edgar
- Institute of Infection, Immunity & Inflammation, University of Glasgow , Glasgow , UK
| | - Susan C Barnett
- Institute of Infection, Immunity & Inflammation, University of Glasgow , Glasgow , UK
| | | | - Debi Boeras
- London School of Hygiene & Tropical Medicine , London , UK
| | | | - Aravinda M de Silva
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill , NC , USA
| | - Andrew K Falconar
- London School of Hygiene & Tropical Medicine , London , UK.,Departmento del Medicina, Fundacion Universidad del Norte , Barranquilla , Colombia
| | - Claudia Romero-Vivas
- Departmento del Medicina, Fundacion Universidad del Norte , Barranquilla , Colombia
| | | | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology , La Jolla , CA , USA.,Department of Medicine, University of California San Diego , La Jolla , CA , USA
| | - Daniela Weiskopf
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology , La Jolla , CA , USA
| | - Louis Lambrechts
- Insect-Virus Interactions Unit, Institut Pasteur, UMR2000, CNRS , Paris , France
| | - Helen Dolk
- Maternal Fetal and Infant Research Centre, Institute of Nursing and Health Research, Ulster University , Newtownabbey , UK
| | - Joan K Morris
- Population Health Research Institute, St George's, University of London , London , UK
| | - Ieda M Orioli
- Associação Técnico-Científica Estudo Colaborativo Latino Americano de Malformações Congênitas (ECLAMC) no Departmento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro , Rio de Janeiro , Brazil
| | | | - Laith Yakob
- London School of Hygiene & Tropical Medicine , London , UK
| | - Joacim Rocklöv
- Department of Epidemiology and Global Health, Umeå University , Umeå , Sweden
| | - Cristiane Soares
- Hospital Federal dos Servidores do Estado , Rio de Janeiro , Brazil
| | | | | | - Alexander R Precioso
- Instituto Butantan , Brazil.,Pediatrics Department, Medical School of University of Sao Paulo , Sao Paulo , Brazil
| | - James Logan
- London School of Hygiene & Tropical Medicine , London , UK
| | - Trudie Lang
- The Global Health Network, Masters and Scholars of the University of Oxford , Oxford , UK
| | - Nina Jamieson
- The Global Health Network, Masters and Scholars of the University of Oxford , Oxford , UK
| | - Eduardo Massad
- Fundacao de Apoio a Universidade de Sao Paulo , Sao Paulo , Brazil.,School of Applied Mathematics, Fundacao Getulio Vargas , Rio de Janeiro , Brazil
| |
Collapse
|
40
|
Pastorino B, Sengvilaipaseuth O, Chanthongthip A, Vongsouvath M, Souksakhone C, Mayxay M, Thirion L, Newton PN, de Lamballerie X, Dubot-Pérès A. Low Zika Virus Seroprevalence in Vientiane, Laos, 2003-2015. Am J Trop Med Hyg 2020; 100:639-642. [PMID: 30693859 PMCID: PMC6402904 DOI: 10.4269/ajtmh.18-0439] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Zika virus (ZIKV) has been presumed to be endemic in Southeast Asia (SEA), with a low rate of human infections. Although the first ZIKV evidence was obtained in the 1950s through serosurveys, the first laboratory-confirmed case was only detected in 2010 in Cambodia. The epidemiology of ZIKV in SEA remains uncertain because of the scarcity of available data. From 2016, subsequent to the large outbreaks in the Pacific and Latin America, several Asian countries started reporting increasing numbers of confirmed ZIKV patients, but no global epidemiological assessment is available to date. Here, with the aim of providing information on ZIKV circulation and population immunity, we conducted a seroprevalence study among blood donors in Vientiane, Laos. Sera from 359 asymptomatic consenting adult donors in 2003–2004 and 687 in 2015 were screened for anti-ZIKV IgG using NS1 ELISA assay (Euroimmun, Luebeck, Germany). Positive and equivocal samples were confirmed for anti-ZIKV–neutralizing antibodies by virus neutralization tests. Our findings suggest that ZIKV has been circulating in Vientiane over at least the last decade. Zika virus seroprevalence observed in the studied blood donors was low, 4.5% in 2003–2004 with an increase in 2015 to 9.9% (P = 0.002), possibly reflecting the increase of ZIKV incident cases reported over this period. We did not observe any significant difference in seroprevalence according to gender. With a low herd immunity in the Vientiane population, ZIKV represents a risk for future large-scale outbreaks. Implementation of a nationwide ZIKV surveillance network and epidemiological studies throughout the country is needed.
Collapse
Affiliation(s)
- Boris Pastorino
- Unité des Virus Émergents (UVE: Aix-Marseille Univ-IRD 190-Inserm 1207-IHU Méditerranée Infection), Marseille, France
| | - Onanong Sengvilaipaseuth
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit (LOMWRU), Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao PDR
| | - Anisone Chanthongthip
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit (LOMWRU), Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao PDR
| | - Manivanh Vongsouvath
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit (LOMWRU), Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao PDR
| | | | - Mayfong Mayxay
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Churchill Hospital, University of Oxford, Oxford, United Kingdom.,Institute of Research and Education Development, University of Health Sciences, Vientiane, Lao PDR.,Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit (LOMWRU), Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao PDR
| | - Laurence Thirion
- Unité des Virus Émergents (UVE: Aix-Marseille Univ-IRD 190-Inserm 1207-IHU Méditerranée Infection), Marseille, France
| | - Paul N Newton
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Churchill Hospital, University of Oxford, Oxford, United Kingdom.,Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit (LOMWRU), Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao PDR
| | - Xavier de Lamballerie
- Unité des Virus Émergents (UVE: Aix-Marseille Univ-IRD 190-Inserm 1207-IHU Méditerranée Infection), Marseille, France
| | - Audrey Dubot-Pérès
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit (LOMWRU), Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao PDR.,Unité des Virus Émergents (UVE: Aix-Marseille Univ-IRD 190-Inserm 1207-IHU Méditerranée Infection), Marseille, France.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Churchill Hospital, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
41
|
Abstract
Zika virus (ZIKV) was once considered an obscure member of the large and diverse family of mosquito-borne flaviviruses, and human infections with ZIKV were thought to be sporadic, with mild and self-limiting symptoms. The large-scale ZIKV epidemics in the Americas and the unexpected uncovering of a link to congenital birth defects escalated ZIKV infections to the status of a global public health emergency. Recent studies that combined reverse genetics with modelling in multiple systems have provided evidence that ZIKV has acquired additional amino acid substitutions at the same time as congenital Zika syndrome and other birth defects were detected. In this Progress article, we summarize the evolution of ZIKV during its spread from Asia to the Americas and discuss potential links to pathogenesis.
Collapse
|
42
|
Gaunt MW, Gubler DJ, Pettersson JHO, Kuno G, Wilder-Smith A, de Lamballerie X, Gould EA, Falconar AK. Recombination of B- and T-cell epitope-rich loci from Aedes- and Culex-borne flaviviruses shapes Zika virus epidemiology. Antiviral Res 2019; 174:104676. [PMID: 31837392 DOI: 10.1016/j.antiviral.2019.104676] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 12/06/2019] [Accepted: 12/08/2019] [Indexed: 02/07/2023]
Abstract
Sporadic human Zika virus (ZIKV) infections have been recorded in Africa and Asia since the 1950s. Major epidemics occurred only after ZIKV emerged in the Pacific islands and spread to the Americas. Specific biological determinants of the explosive epidemic nature of ZIKV have not been identified. Phylogenetic studies revealed incongruence in ZIKV placement in relation to Aedes-borne dengue viruses (DENV) and Culex-borne flaviviruses. We hypothesized that this incongruence reflects interspecies recombination resulting in ZIKV evasion of cross-protective T-cell immunity. We investigated ZIKV phylogenetic incongruence in relation to: DENV T-cell epitope maps experimentally identified ex vivo, published B-cell epitope loci, and CD8+ T-cell epitopes predicted in silico for mosquito-borne flaviviruses. Our findings demonstrate that the ZIKV proteome is a hybrid of Aedes-borne DENV proteins interspersed amongst Culex-borne flavivirus proteins derived through independent interspecies recombination events. These analyses infer that DENV-associated proteins in the ZIKV hybrid proteome generated immunodominant human B-cell responses, whereas ZIKV recombinant derived Culex-borne flavivirus-associated proteins generated immunodominant CD8+ and/or CD4+ T-cell responses. In silico CD8+ T-cell epitope ZIKV cross-reactive prediction analyses verified this observation. We propose that by acquiring cytotoxic T-cell epitope-rich regions from Culex-borne flaviviruses, ZIKV evaded DENV-generated T-cell immune cross-protection. Thus, Culex-borne flaviviruses, including West Nile virus and Japanese encephalitis virus, might induce cross-protective T-cell responses against ZIKV. This would explain why explosive ZIKV epidemics occurred in DENV-endemic regions of Micronesia, Polynesia and the Americas where Culex-borne flavivirus outbreaks are infrequent and why ZIKV did not cause major epidemics in Asia where Culex-borne flaviviruses are widespread.
Collapse
Affiliation(s)
- Michael W Gaunt
- London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK.
| | - Duane J Gubler
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Rd, 169857, Singapore
| | - John H-O Pettersson
- Department of Medical Biochemistry and Microbiology, Zoonosis Science Center, Uppsala University, Uppsala, Sweden; Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Goro Kuno
- 1648 Collindale Dr, Fort Collins, CO, 80525, USA
| | - Annelies Wilder-Smith
- London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK; Department of Public Health and Clinical Medicine, Epidemiology and Public Health, Umeå University, Umeå, Sweden; Heidelberg Institute of Global Health, University of Heidelberg, Germany
| | - Xavier de Lamballerie
- UMR "Unité des Virus Emergents", Aix-Marseille Université-IRD 190, Inserm, 1207-IHU Méditerranée Infection, Marseille, France
| | - Ernest A Gould
- UMR "Unité des Virus Emergents", Aix-Marseille Université-IRD 190, Inserm, 1207-IHU Méditerranée Infection, Marseille, France
| | - Andrew K Falconar
- Departmento de Medicina, Universidad del Norte, Barranquilla, Colombia
| |
Collapse
|
43
|
Collins ND, Widen SG, Li L, Swetnam DM, Shi PY, Tesh RB, Sarathy VV. Inter- and intra-lineage genetic diversity of wild-type Zika viruses reveals both common and distinctive nucleotide variants and clusters of genomic diversity. Emerg Microbes Infect 2019; 8:1126-1138. [PMID: 31355708 PMCID: PMC6711133 DOI: 10.1080/22221751.2019.1645572] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Zika virus (ZIKV) strains belong to the East African, West African, and Asian/American phylogenetic lineages. RNA viruses, like ZIKV, exist as populations of genetically-related sequences whose heterogeneity may impact viral fitness, evolution, and virulence. Genetic diversity of representative ZIKVs from each lineage was examined using next generation sequencing (NGS) paired with downstream entropy and single nucleotide variant (SNV) analysis. Comparisons showed that inter-lineage diversity was statistically supported, while intra-lineage diversity. Intra-lineage diversity was significant for East but not West Africa strains. Furthermore, intra-lineage diversity for the Asian/American lineage was not supported for human serum isolates; however, a placenta isolate differed significantly. Relative in the pre-membrane/membrane (prM/M) gene of several ZIKV strains. Additionally, the East African lineage contained a greater number of synonymous SNVs, while a greater number of non-synonymous SNVs were identified for American strains. Further, inter-lineage SNVs were dispersed throughout the genome, whereas intra-lineage non-synonymous SNVs for Asian/American strains clustered within prM/M and NS1 gene. This comprehensive analysis of ZIKV genetic diversity provides a repository of SNV positions across lineages. We posit that increased non-synonymous SNV populations and increased relative genetic diversity of the prM/M and NS1 proteins provides more evidence for their role in ZIKV virulence and fitness.
Collapse
Affiliation(s)
- Natalie D Collins
- a Department of Microbiology and Immunology, University of Texas Medical Branch , Galveston , USA
| | - Steven G Widen
- b Department of Biochemistry and Molecular Biology, University of Texas Medical Branch , Galveston , USA
| | - Li Li
- c Department of Pathology, University of Texas Medical Branch , Galveston , USA
| | - Daniele M Swetnam
- d Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine at University of California , Davis , USA
| | - Pei-Yong Shi
- b Department of Biochemistry and Molecular Biology, University of Texas Medical Branch , Galveston , USA
| | - Robert B Tesh
- c Department of Pathology, University of Texas Medical Branch , Galveston , USA
| | - Vanessa V Sarathy
- c Department of Pathology, University of Texas Medical Branch , Galveston , USA.,e Sealy Institute for Vaccine Sciences, Institute for Human Infections and Immunity, University of Texas Medical Branch , Galveston , USA
| |
Collapse
|
44
|
Aragão CF, Pinheiro VCS, Nunes Neto JP, da Silva EVP, Pereira GJG, do Nascimento BLS, Castro KDS, Maia AM, Catete CP, Martins LC, Tadei WP, da Silva SP, Cruz ACR. Natural Infection of Aedes aegypti by Chikungunya and Dengue type 2 Virus in a Transition Area of North-Northeast Brazil. Viruses 2019; 11:E1126. [PMID: 31817553 PMCID: PMC6949906 DOI: 10.3390/v11121126] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 01/16/2023] Open
Abstract
Dengue fever, chikungunya, and Zika are diseases caused by viruses transmitted by Aedes aegypti and Aedes albopictus. In Brazil, the number of human infections is high, but few studies are performed in mosquito vectors. This study aimed to investigate the presence of Zika, Dengue and Chikungunya viruses in Ae. aegypti and Ae. albopictus from the municipalities of Alto Alegre, Caxias, Codó, and São Mateus do Maranhão, located in the state of Maranhão, Northeast Brazil. The mosquitoes were collected with a mechanical aspirator, identified, triturated, and then submitted to RNA extraction and RT-qPCR. The positive samples were confirmed by virus isolation and genome sequencing. Three hundred and forty-eight Ae. aegypti (176 males and 172 females) and 12 Ae. albopictus (eight males and four females) were collected and tested. Ae. aegypti was the only vector positive in two municipalities-Codó, with detection of Chikungunya virus (CHIKV) belonging to the East-Central-South African genotype, and in Caxias, with detection of Dengue virus (DENV)-2 belonging to the Asian/American genotype. The detection of CHIKV and DENV-2 is evidence that those viruses are maintained in arthropod vectors, and shows the epidemiological risk in the area for chikungunya cases and a possible increase of severe dengue cases, associated with the occurrence of dengue hemorrhagic fever.
Collapse
Affiliation(s)
- Carine Fortes Aragão
- Programa de Pós-Graduação em Biologia dos Agentes Infecciosos e Parasitários, Universidade Federal do Pará, Belém, PA 66075-110, Brazil;
| | - Valéria Cristina Soares Pinheiro
- Laboratório de Entomologia Médica, Centro de Estudos Superiores de Caxias, Universidade Estadual do Maranhão, Caxias, MA 65604-380, Brazil;
| | - Joaquim Pinto Nunes Neto
- Seção de Arbovirologia e Febres Hemorrágicas, Instituto Evandro Chagas, Secretaria de Vigilância e Saúde, Ministério da Saúde, Ananindeua, PA 67030-000, Brazil; (J.P.N.N.); (E.V.P.d.S.); (G.J.G.P.); (B.L.S.d.N.); (L.C.M.); (S.P.d.S.)
| | - Eliana Vieira Pinto da Silva
- Seção de Arbovirologia e Febres Hemorrágicas, Instituto Evandro Chagas, Secretaria de Vigilância e Saúde, Ministério da Saúde, Ananindeua, PA 67030-000, Brazil; (J.P.N.N.); (E.V.P.d.S.); (G.J.G.P.); (B.L.S.d.N.); (L.C.M.); (S.P.d.S.)
| | - Glennda Juscely Galvão Pereira
- Seção de Arbovirologia e Febres Hemorrágicas, Instituto Evandro Chagas, Secretaria de Vigilância e Saúde, Ministério da Saúde, Ananindeua, PA 67030-000, Brazil; (J.P.N.N.); (E.V.P.d.S.); (G.J.G.P.); (B.L.S.d.N.); (L.C.M.); (S.P.d.S.)
| | - Bruna Laís Sena do Nascimento
- Seção de Arbovirologia e Febres Hemorrágicas, Instituto Evandro Chagas, Secretaria de Vigilância e Saúde, Ministério da Saúde, Ananindeua, PA 67030-000, Brazil; (J.P.N.N.); (E.V.P.d.S.); (G.J.G.P.); (B.L.S.d.N.); (L.C.M.); (S.P.d.S.)
| | - Karoline da Silva Castro
- Programa de Pós-Graduação em Biologia Parasitária na Amazônia, Universidade do Estado do Pará, Belém, PA 66087-670, Brazil; (K.d.S.C.); (A.M.M.)
| | - Ariadne Mendonça Maia
- Programa de Pós-Graduação em Biologia Parasitária na Amazônia, Universidade do Estado do Pará, Belém, PA 66087-670, Brazil; (K.d.S.C.); (A.M.M.)
| | - Clistenes Pamplona Catete
- Instituto Evandro Chagas, Secretaria de Vigilância e Saúde, Ministério da Saúde, Ananindeua, PA 67030-000, Brazil;
| | - Lívia Carício Martins
- Seção de Arbovirologia e Febres Hemorrágicas, Instituto Evandro Chagas, Secretaria de Vigilância e Saúde, Ministério da Saúde, Ananindeua, PA 67030-000, Brazil; (J.P.N.N.); (E.V.P.d.S.); (G.J.G.P.); (B.L.S.d.N.); (L.C.M.); (S.P.d.S.)
| | - Wanderli Pedro Tadei
- Laboratório de Malária e Dengue, Instituto Nacional de Pesquisas da Amazônia, Manaus, CEP 69060-001, Manaus - AM, Brazil;
| | - Sandro Patroca da Silva
- Seção de Arbovirologia e Febres Hemorrágicas, Instituto Evandro Chagas, Secretaria de Vigilância e Saúde, Ministério da Saúde, Ananindeua, PA 67030-000, Brazil; (J.P.N.N.); (E.V.P.d.S.); (G.J.G.P.); (B.L.S.d.N.); (L.C.M.); (S.P.d.S.)
| | - Ana Cecília Ribeiro Cruz
- Seção de Arbovirologia e Febres Hemorrágicas, Instituto Evandro Chagas, Secretaria de Vigilância e Saúde, Ministério da Saúde, Ananindeua, PA 67030-000, Brazil; (J.P.N.N.); (E.V.P.d.S.); (G.J.G.P.); (B.L.S.d.N.); (L.C.M.); (S.P.d.S.)
| |
Collapse
|
45
|
Black A, Moncla LH, Laiton-Donato K, Potter B, Pardo L, Rico A, Tovar C, Rojas DP, Longini IM, Halloran ME, Peláez-Carvajal D, Ramírez JD, Mercado-Reyes M, Bedford T. Genomic epidemiology supports multiple introductions and cryptic transmission of Zika virus in Colombia. BMC Infect Dis 2019; 19:963. [PMID: 31718580 PMCID: PMC6852897 DOI: 10.1186/s12879-019-4566-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 10/16/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Colombia was the second most affected country during the American Zika virus (ZIKV) epidemic, with over 109,000 reported cases. Despite the scale of the outbreak, limited genomic sequence data were available from Colombia. We sought to sequence additional samples and use genomic epidemiology to describe ZIKV dynamics in Colombia. METHODS We sequenced ZIKV genomes directly from clinical diagnostic specimens and infected Aedes aegypti samples selected to cover the temporal and geographic breadth of the Colombian outbreak. We performed phylogeographic analysis of these genomes, along with other publicly-available ZIKV genomes from the Americas, to estimate the frequency and timing of ZIKV introductions to Colombia. RESULTS We attempted PCR amplification on 184 samples; 19 samples amplified sufficiently to perform sequencing. Of these, 8 samples yielded sequences with at least 50% coverage. Our phylogeographic reconstruction indicates two separate introductions of ZIKV to Colombia, one of which was previously unrecognized. We find that ZIKV was first introduced to Colombia in February 2015 (95%CI: Jan 2015 - Apr 2015), corresponding to 5 to 8 months of cryptic ZIKV transmission prior to confirmation in September 2015. Despite the presence of multiple introductions, we find that the majority of Colombian ZIKV diversity descends from a single introduction. We find evidence for movement of ZIKV from Colombia into bordering countries, including Peru, Ecuador, Panama, and Venezuela. CONCLUSIONS Similarly to genomic epidemiological studies of ZIKV dynamics in other countries, we find that ZIKV circulated cryptically in Colombia. More accurately dating when ZIKV was circulating refines our definition of the population at risk. Additionally, our finding that the majority of ZIKV transmission within Colombia was attributable to transmission between individuals, rather than repeated travel-related importations, indicates that improved detection and control might have succeeded in limiting the scale of the outbreak within Colombia.
Collapse
Affiliation(s)
- Allison Black
- Department of Epidemiology, University of Washington, Seattle, Washington, United States.,Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States
| | - Louise H Moncla
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States
| | - Katherine Laiton-Donato
- Laboratorio de Virología, Subdirección de Laboratorio Nacional de Referencia, Dirección de Redes en Salud Pública, Instituto Nacional de Salud, Bogotá, Colombia
| | - Barney Potter
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States
| | - Lissethe Pardo
- Laboratorio de Virología, Subdirección de Laboratorio Nacional de Referencia, Dirección de Redes en Salud Pública, Instituto Nacional de Salud, Bogotá, Colombia
| | - Angelica Rico
- Laboratorio de Virología, Subdirección de Laboratorio Nacional de Referencia, Dirección de Redes en Salud Pública, Instituto Nacional de Salud, Bogotá, Colombia
| | - Catalina Tovar
- Grupo de Enfermedades Tropicales y Resistencia Bacteriana, Facultad de Ciencias de la Salud, Universidad del Sinú, Montería, Córdoba, Colombia
| | - Diana P Rojas
- Department of Biostatistics, University of Florida, Gainesville, Florida, United States
| | - Ira M Longini
- Department of Biostatistics, University of Florida, Gainesville, Florida, United States
| | - M Elizabeth Halloran
- Department of Epidemiology, University of Washington, Seattle, Washington, United States.,Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States.,Department of Biostatistics, University of Washington, Seattle, Washington, United States
| | - Dioselina Peláez-Carvajal
- Laboratorio de Virología, Subdirección de Laboratorio Nacional de Referencia, Dirección de Redes en Salud Pública, Instituto Nacional de Salud, Bogotá, Colombia
| | - Juan D Ramírez
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Departamento de Biología,Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Bogotá, Colombia
| | - Marcela Mercado-Reyes
- Laboratorio de Virología, Subdirección de Laboratorio Nacional de Referencia, Dirección de Redes en Salud Pública, Instituto Nacional de Salud, Bogotá, Colombia
| | - Trevor Bedford
- Department of Epidemiology, University of Washington, Seattle, Washington, United States. .,Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States.
| |
Collapse
|
46
|
Le Hingrat Q, Perrier M, Charpentier C, Jacquot A, Houhou-Fidouh N, Descamps D, Visseaux B. Was Zika introduced to Brazil by participants at the 2013 Beach Soccer World Cup held in Tahiti: A phylogeographical analysis. Travel Med Infect Dis 2019; 32:101512. [PMID: 31704483 DOI: 10.1016/j.tmaid.2019.101512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 10/31/2019] [Accepted: 11/04/2019] [Indexed: 11/16/2022]
Abstract
BACKGROUND Zika virus (ZIKV) was initially responsible for a limited number of punctual epidemics throughout Africa and Asia. Recently, large epidemics occurred in French Polynesia, Brazil and Pan-America. These outbreaks were associated with severe outcomes such as Guillain-Barré Syndrome and microcephaly of in-utero infected newborns. Previous studies demonstrated that ZIKV was introduced in Brazil from French Polynesia but failed to identify a founding event. METHOD All publicly available ZIKV full-genome sequences (n = 182) were phylogenetically analyzed, using Bayesian method, to estimate the introduction date of ZIKV into Brazil. RESULTS Introduction date into Brazil was estimated between 8th of July 2013 and 4th of November 2013, encompassing the Beach Soccer World Cup held in French Polynesia, in September 2013, which gathered Brazilian athletes and supporters. We also observed that ZIKV sequences from travelers infected in South-East Asia or in Pacific islands were closely related to viruses identified prior to the French Polynesian epidemic, underlining an endemic circulation of ZIKV in those countries since 2007, at least. CONCLUSION This work provides a narrower estimation of ZIKV introduction into Brazil and illustrates the need for a better exploration of ZIKV circulation and endemicity in South-East Asia, while epidemiological and prevention efforts have been mainly focused on the Pan-American epidemic.
Collapse
Affiliation(s)
- Quentin Le Hingrat
- Université de Paris, INSERM UMR 1137 IAME, F-75018, Paris, France; Laboratoire de Virologie, AP-HP, Hôpital Bichat-Claude Bernard, F-75018, Paris, France.
| | - Marine Perrier
- Université de Paris, INSERM UMR 1137 IAME, F-75018, Paris, France; Laboratoire de Virologie, AP-HP, Hôpital Bichat-Claude Bernard, F-75018, Paris, France
| | - Charlotte Charpentier
- Université de Paris, INSERM UMR 1137 IAME, F-75018, Paris, France; Laboratoire de Virologie, AP-HP, Hôpital Bichat-Claude Bernard, F-75018, Paris, France
| | - Alaric Jacquot
- Laboratoire de Virologie, AP-HP, Hôpital Bichat-Claude Bernard, F-75018, Paris, France
| | - Nadhira Houhou-Fidouh
- Université de Paris, INSERM UMR 1137 IAME, F-75018, Paris, France; Laboratoire de Virologie, AP-HP, Hôpital Bichat-Claude Bernard, F-75018, Paris, France
| | - Diane Descamps
- Université de Paris, INSERM UMR 1137 IAME, F-75018, Paris, France; Laboratoire de Virologie, AP-HP, Hôpital Bichat-Claude Bernard, F-75018, Paris, France
| | - Benoit Visseaux
- Université de Paris, INSERM UMR 1137 IAME, F-75018, Paris, France; Laboratoire de Virologie, AP-HP, Hôpital Bichat-Claude Bernard, F-75018, Paris, France
| |
Collapse
|
47
|
Hayashida E, Ling ZL, Ashhurst TM, Viengkhou B, Jung SR, Songkhunawej P, West PK, King NJC, Hofer MJ. Zika virus encephalitis in immunocompetent mice is dominated by innate immune cells and does not require T or B cells. J Neuroinflammation 2019; 16:177. [PMID: 31511023 PMCID: PMC6740023 DOI: 10.1186/s12974-019-1566-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 08/28/2019] [Indexed: 12/13/2022] Open
Abstract
Background Until the end of the twentieth century, Zika virus (ZIKV) was thought to cause a mostly mild, self-limiting disease in humans. However, as the geographic distribution of ZIKV has shifted, so too has its pathogenicity. Modern-day ZIKV infection is now known to cause encephalitis, acute disseminated encephalomyelitis, and Guillain-Barré syndrome in otherwise healthy adults. Nevertheless, the underlying pathogenetic mechanisms responsible for this shift in virulence remain unclear. Methods Here, we investigated the contribution of the innate versus the adaptive immune response using a new mouse model involving intracranial infection of adult immunocompetent mice with a moderately low dose of ZIKV MR766. To determine the contribution of type I interferons (IFN-Is) and adaptive immune cells, we also studied mice deficient for the IFN-I receptor 1 (Ifnar1−/−) and recombination-activating gene 1 (Rag1−/−). Results We show that intracranial infection with ZIKV resulted in lethal encephalitis. In wild-type mice, ZIKV remained restricted predominantly to the central nervous system (CNS) and infected neurons, whereas astrocytes and microglia were spared. Histological and molecular analysis revealed prominent activation of resident microglia and infiltrating monocytes that were accompanied by an expression of pro-inflammatory cytokines. The disease was independent of T and B cells. Importantly, unlike peripheral infection, IFN-Is modulated but did not protect from infection and lethal disease. Lack of IFN-I signaling resulted in spread of the virus, generalized inflammatory changes, and accelerated disease onset. Conclusions Using intracranial infection of immunocompetent wild-type mice with ZIKV, we demonstrate that in contrast to the peripheral immune system, the CNS is susceptible to infection and responds to ZIKV by initiating an antiviral immune response. This response is dominated by resident microglia and infiltrating monocytes and macrophages but does not require T or B cells. Unlike in the periphery, IFN-Is in the CNS cannot prevent the establishment of infection. Our findings show that ZIKV encephalitis in mice is dependent on the innate immune response, and adaptive immune cells play at most a minor role in disease pathogenesis. Electronic supplementary material The online version of this article (10.1186/s12974-019-1566-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Emina Hayashida
- School of Life and Environmental Sciences, the Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, and the Bosch Institute, The University of Sydney, Sydney, Australia
| | - Zheng Lung Ling
- Discipline of Pathology, the Marie Bashir Institute for Infectious Diseases and Biosecurity, the Bosch Institute, Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Thomas M Ashhurst
- Discipline of Pathology, the Marie Bashir Institute for Infectious Diseases and Biosecurity, the Bosch Institute, Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia.,Sydney Cytometry Facility, The University of Sydney and the Centenary Institute, Sydney, Australia
| | - Barney Viengkhou
- School of Life and Environmental Sciences, the Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, and the Bosch Institute, The University of Sydney, Sydney, Australia
| | - So Ri Jung
- School of Life and Environmental Sciences, the Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, and the Bosch Institute, The University of Sydney, Sydney, Australia
| | - Pattama Songkhunawej
- School of Life and Environmental Sciences, the Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, and the Bosch Institute, The University of Sydney, Sydney, Australia
| | - Phillip K West
- School of Life and Environmental Sciences, the Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, and the Bosch Institute, The University of Sydney, Sydney, Australia
| | - Nicholas J C King
- Discipline of Pathology, the Marie Bashir Institute for Infectious Diseases and Biosecurity, the Bosch Institute, Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia.,Sydney Cytometry Facility, The University of Sydney and the Centenary Institute, Sydney, Australia
| | - Markus J Hofer
- School of Life and Environmental Sciences, the Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, and the Bosch Institute, The University of Sydney, Sydney, Australia. .,School of Life and Environmental Sciences, The University of Sydney, Molecular Bioscience Bldg., Maze Crescent G08, Sydney, NSW, 2006, Australia.
| |
Collapse
|
48
|
Nurtop E, Moyen N, Dzia-Lepfoundzou A, Dimi Y, Ninove L, Drexler JF, Gallian P, de Lamballerie X, Priet S. A Report of Zika Virus Seroprevalence in Republic of the Congo. Vector Borne Zoonotic Dis 2019; 20:40-42. [PMID: 31448988 DOI: 10.1089/vbz.2019.2466] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Zika virus (ZIKV) is an arthropod-borne RNA virus (arbovirus), belonging to the Spondweni serogroup. ZIKV was first described in Africa in 1947 and remained sporadic until Micronesia outbreak in 2007, which was followed by outbreaks in the Pacific Islands, Latin America, and the Caribbean. Subsequent to the epidemics, ZIKV revealed its severity as virus was sexually transmissible, and it was associated with serious fetal and neurological complications. ZIKV originated from Africa; however, little is known about the epidemiology of the virus in African populations. Following a recent study in Cameroon that evidenced low ZIKV epidemiology associated with a presumptive (peri-)sylvatic transmission, we performed a seroepidemiological study in Republic of the Congo, neighbor of Cameroon. To accomplish this, 386 serum specimens from volunteer blood donors collected in 2011 from rural and urban areas of Republic of the Congo were tested with ZIKV-specific methodology; primary screening with anti-NS1 ZIKV IgG ELISA followed by confirmation with cytopathic effect (CPE)-based virus neutralization test (VNT). ZIKV seropositivity was determined as low as 1.8%, varying slightly between urban and rural areas (1.7% and 3.6%). These results demonstrate that the majority of the population of Republic of the Congo is immunologically naïve against ZIKV with a presumptive (peri-)sylvatic transmission cycle, which emphasizes the importance of surveillance studies in Africa.
Collapse
Affiliation(s)
- Elif Nurtop
- Unité des Virus Émergents (UVE: Aix-Marseille Univ-IRD 190-Inserm 1207-IHU Méditerranée Infection), Marseille, France
| | - Nanikaly Moyen
- Unité des Virus Émergents (UVE: Aix-Marseille Univ-IRD 190-Inserm 1207-IHU Méditerranée Infection), Marseille, France
| | | | - Yannick Dimi
- Centre National de Transfusion Sanguine, Brazzaville, Republic of the Congo
| | - Laetitia Ninove
- Unité des Virus Émergents (UVE: Aix-Marseille Univ-IRD 190-Inserm 1207-IHU Méditerranée Infection), Marseille, France
| | - Jan Felix Drexler
- Institute of Virology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Pierre Gallian
- Unité des Virus Émergents (UVE: Aix-Marseille Univ-IRD 190-Inserm 1207-IHU Méditerranée Infection), Marseille, France.,Laboratoire de Virologie, Établissement Français du Sang Provence-Alpes Côte-d'Azur et Corse (EFS), Marseille, France
| | - Xavier de Lamballerie
- Unité des Virus Émergents (UVE: Aix-Marseille Univ-IRD 190-Inserm 1207-IHU Méditerranée Infection), Marseille, France
| | - Stéphane Priet
- Unité des Virus Émergents (UVE: Aix-Marseille Univ-IRD 190-Inserm 1207-IHU Méditerranée Infection), Marseille, France
| |
Collapse
|
49
|
Esser-Nobis K, Aarreberg LD, Roby JA, Fairgrieve MR, Green R, Gale M. Comparative Analysis of African and Asian Lineage-Derived Zika Virus Strains Reveals Differences in Activation of and Sensitivity to Antiviral Innate Immunity. J Virol 2019; 93:e00640-19. [PMID: 31019057 PMCID: PMC6580957 DOI: 10.1128/jvi.00640-19] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 04/18/2019] [Indexed: 12/24/2022] Open
Abstract
In recent years, Asian lineage Zika virus (ZIKV) strains emerged to cause pandemic outbreaks associated with a high rate of congenital ZIKV syndrome (CZVS). The reasons for the enhanced spread and severe disease caused by newly emerging strains are not fully understood. Here we compared viral sequences, viral replication, and innate immune signaling induction of three different ZIKV strains derived from African and Asian lineages and West Nile virus, another flavivirus. We found pronounced differences in activation of innate immune signaling and inhibition of viral replication across ZIKV strains. The newly emerged Asian ZIKV strain Brazil Fortaleza 2015, which is associated with a higher rate of neurodevelopmental disorders like microcephaly, induced much weaker and delayed innate immune signaling in infected cells. However, superinfection studies to assess control of innate immune signaling induced by Sendai virus argue against an active block of IRF3 activation by the Brazilian strain of ZIKV and rather suggest an evasion of detection by host cell pattern recognition receptors. Compared to the Asian strain FSS13025 isolated in Cambodia, both ZIKV Uganda MR766 and ZIKV Brazil Fortaleza appear less sensitive to the interferon-induced antiviral response. ZIKV infection studies of cells lacking the different RIG-I-like receptors identified RIG-I as the major cytosolic pattern recognition receptor for detection of ZIKV.IMPORTANCE Zika Virus (ZIKV), discovered in 1947, is divided into African and Asian lineages. Pandemic outbreaks caused by currently emerging Asian lineage strains are accompanied by high rates of neurological disorders and exemplify the global health burden associated with this virus. Here we compared virological and innate immunological aspects of two ZIKV strains from the Asian lineage, an emerging Brazilian strain and a less-pathogenic Cambodian strain, and the prototypic African lineage ZIKV strain from Uganda. Compared to the replication of other ZIKV strains, the replication of ZIKV Brazil was less sensitive to the antiviral actions of interferon (IFN), while infection with this strain induced weaker and delayed innate immune responses in vitro Our data suggest that ZIKV Brazil directs a passive strategy of innate immune evasion that is reminiscent of a stealth virus. Such strain-specific properties likely contribute to differential pathogenesis and should be taken into consideration when choosing virus strains for future molecular studies.
Collapse
Affiliation(s)
- Katharina Esser-Nobis
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Lauren D Aarreberg
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Justin A Roby
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Marian R Fairgrieve
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Richard Green
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Michael Gale
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
50
|
Tschá MK, Suzukawa AA, Gräf T, Piancini LDS, da Silva AM, Faoro H, Riediger IN, Medeiros LC, Wowk PF, Zanluca C, Duarte Dos Santos CN. Identification of a novel alphavirus related to the encephalitis complexes circulating in southern Brazil. Emerg Microbes Infect 2019; 8:920-933. [PMID: 31237479 PMCID: PMC6598490 DOI: 10.1080/22221751.2019.1632152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In early 2017, an outbreak caused by an unknown and supposedly viral agent in the Marilena region of southern Brazil was investigated. Since the etiological agent causing the outbreak was not identified from human samples, mosquitoes from this region were collected. Three out of 121 mosquito pools collected from the region tested positive for alphavirus in molecular tests. Next generation sequencing results revealed the presence of a novel alphavirus, tentatively named here as Caainguá virus (CAAV). DNA barcoding analyses indicated that different species of Culex are hosts for CAAV. This new virus was basal to the New World encephalitic alphaviruses in a comprehensive and robust phylogenetic approach using complete genomes. Viral particles were observed in the cytosol and inside of intracellular compartments of cells in mosquito-derived cell cultures. Despite being noninfectious in vertebrate derived cell cultures, primary culturing of CAAV in human mononuclear cells suggests monocytes and lymphocytes as CAAV targets. However, the epidemiological link of CAAV on the human outbreak should be further explored.
Collapse
Affiliation(s)
- Marcel Kruchelski Tschá
- a Laboratório de Virologia Molecular, Instituto Carlos Chagas/Fiocruz PR , Curitiba , Brazil
| | - Andreia Akemi Suzukawa
- a Laboratório de Virologia Molecular, Instituto Carlos Chagas/Fiocruz PR , Curitiba , Brazil
| | - Tiago Gräf
- b Departamento de Genética , Instituto de Biologia, Universidade Federal do Rio de Janeiro , Rio de Janeiro , Brazil
| | | | - Allan Martins da Silva
- c Laboratório Central, Secretaria da Saúde do Estado do Paraná , São José dos Pinhais , Brazil
| | - Helisson Faoro
- d Laboratório de Regulação da Expressão Gênica, Instituto Carlos Chagas/Fiocruz PR , Curitiba , Brazil
| | | | - Lia Carolina Medeiros
- e Laboratório de Biologia Celular, Instituto Carlos Chagas/Fiocruz PR , Curitiba , Brazil
| | - Pryscilla Fanini Wowk
- a Laboratório de Virologia Molecular, Instituto Carlos Chagas/Fiocruz PR , Curitiba , Brazil
| | - Camila Zanluca
- a Laboratório de Virologia Molecular, Instituto Carlos Chagas/Fiocruz PR , Curitiba , Brazil
| | | |
Collapse
|