1
|
Li DD, Wang Y, Li H, Niu WX, Hong J, Jung JH, Lee JH. Multifaceted Antipathogenic Activity of Two Novel Natural Products, Chermesiterpenoid B and Chermesiterpenoid B Seco Acid Methyl Ester, Against Pseudomonas aeruginosa. Microb Biotechnol 2025; 18:e70101. [PMID: 39936740 DOI: 10.1111/1751-7915.70101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 01/22/2025] [Accepted: 01/22/2025] [Indexed: 02/13/2025] Open
Abstract
Pseudomonas aeruginosa is an opportunistic human pathogen that causes both acute and chronic infections due to its virulence factors, biofilm formation and the ability to suppress the host immune system. Quorum sensing (QS) plays a key role in regulating these pathogenic traits and also downregulates the expression of peroxisome proliferator-activated receptor-γ (PPAR-γ) in host cells. In this study, we isolated two novel natural products from the jellyfish-derived fungus Penicillium chermesinum, chermesiterpenoid B (Che B) seco acid methyl ester (Che B ester) and Che B. Both compounds act as partial agonists of PPAR-γ and exhibit anti-QS activity. Che B ester and Che B were found to inhibit biofilm formation, reduce the production of proteases and decrease the infectivity of P. aeruginosa, all without affecting bacterial growth. In host cells, Che B ester and Che B reduced P. aeruginosa-induced inflammation by activating PPAR-γ. This multifaceted function makes these compounds promising candidates for developing new antipathogenic agents against bacterial infections with few side effects.
Collapse
Affiliation(s)
- Dan-Dan Li
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
- Research Institute for Drug Development, Pusan National University, Busan, Republic of Korea
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Ying Wang
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Huiyan Li
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
- Research Institute for Drug Development, Pusan National University, Busan, Republic of Korea
| | - Wen-Xin Niu
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
- Research Institute for Drug Development, Pusan National University, Busan, Republic of Korea
| | - Jongki Hong
- College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Jee H Jung
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
- Research Institute for Drug Development, Pusan National University, Busan, Republic of Korea
| | - Joon-Hee Lee
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
- Research Institute for Drug Development, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
2
|
Han L, Ren J, Xue Y, Xie G, Gao J, Fu Q, Shao P, Zhu H, Zhang M, Ding F. Palmitoleic acid inhibits Pseudomonas aeruginosa quorum sensing activation and protects lungs from infectious injury. Respir Res 2024; 25:423. [PMID: 39623416 PMCID: PMC11613874 DOI: 10.1186/s12931-024-03035-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 11/08/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND Unsaturated fatty acids targeting quorum sensing (QS) system have shown potential application in reducing bacterial virulence. We aim to investigate the effect of palmitoleic acid (PMA) on P. aeruginosa QS activation, and its impact on infection-induced lung injury. METHODS The influence of PMA on QS signaling molecule (3OC12-HSL and C4-HSL) concentrations, pyocyanin production, and QS gene transcription levels were examined in wildtype PAO1 culture. The roles of PMA in reducing infection-induced injury were assessed in human bronchial epithelial BEAS-2B cells and mouse lung infection models, respectively. PMA levels and QS signaling molecule concentrations were tested in the bronchoalveolar lavage fluid (BALF) of bronchiectasis patients with first-time detection of P. aeruginosa infection. RESULTS PMA administration dose-dependently suppressed the expression of QS signaling molecules, pyocyanin, and QS genes during the logarithmic stage of bacterial growth. In BEAS-2B cells, PMA-treated PAO1 filtrates significantly reduced cell apoptosis and expression of IL-8 and IL-6. In mouse lung infection models, prophylactically oral administration of PMA significantly downregulated the expression of P. aeruginosa QS signals and QS genes (lasR, rhlR, rhlI, lasB, rhlA, phzA1, phnA) in lungs, and relieved neutrophilic airway inflammation. Finally, PMA levels were negatively correlated with the concentrations of both 3OC12-HSL and C4-HSL in BALF of bronchiectasis patients, and positively correlated with their forced vital capacity (FVC) and forced expiratory volume in the first second (FEV1.0). CONCLUSION Our findings show that PMA inhibits P. aeruginosa QS activation and protects lungs from injury caused by bacterial virulence. Hence, PMA may serve as a potential anti-QS agent against P. aeruginosa infection and would help to alleviate lung injury in bronchiectasis patients.
Collapse
Affiliation(s)
- Lei Han
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Ren
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yishu Xue
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guogang Xie
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianwei Gao
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiang Fu
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ping Shao
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Zhu
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Zhang
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Fengming Ding
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
3
|
Khadraoui N, Essid R, Damergi B, Fares N, Gharbi D, Forero AM, Rodríguez J, Abid G, Kerekes EB, Limam F, Jiménez C, Tabbene O. Myrtus communis leaf compounds as novel inhibitors of quorum sensing-regulated virulence factors and biofilm formation: In vitro and in silico investigations. Biofilm 2024; 8:100205. [PMID: 38988475 PMCID: PMC11231753 DOI: 10.1016/j.bioflm.2024.100205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/18/2024] [Accepted: 06/05/2024] [Indexed: 07/12/2024] Open
Abstract
Antibiotic resistance of the Gram-negative bacterium Pseudomonas aeruginosa and its ability to form biofilm through the Quorum Sensing (QS) mechanism are important challenges in the control of infections caused by this pathogen. The extract of Myrtus communis (myrtle) showed strong anti-QS effect on C hromobacterium . violaceum 6267 by inhibiting 80 % of the production of violacein pigment at a sub-MIC concentration of 1/8 (31.25 μg/mL). In addition, the extract exhibited an inhibitory effect on virulence factors of P. aeruginosa PAO1 at half MIC (125 μg/mL), significantly reducing the formation of biofilms (72.02 %), the swarming activity (75 %), and the production of protease (61.83 %) and pyocyanin (97 %). The active fraction also downregulated the expression of selected regulatory genes involved in the biofilm formation and QS in the P. aeruginosa PAO1 strain. These genes included the autoinducer synthase genes (lasI and rhlI), the genes involved in the expression of their corresponding receptors (lasR and rhlR), and the pqsA genes. The analysis of the active fraction by HPLC/UV/MS and NMR allowed the identification of three phenolic compounds, 3,5-di-O-galloylquinic acid, myricetin 3-O-α-l-rhamnopyranoside (myricitrin), and myricetin 3-O-(2″-O-galloyl)-ß-d-galactopyranoside. In silico studies showed that 3,5-di-O-galloylquinic acid, with an affinity score of -9.20 kcal/mol, had the highest affinity to the active site of the CviR protein (3QP8), a QS receptor from C. violaceum. Additionally, myricetin 3-O-α-l-rhamnopyranoside (myricitrin) and myricetin 3-O-(2″-O-galloyl)-ß-d-galactopyranoside interact to a lesser extent with 3QP8. In conclusion, this study contributed significantly to the discovery of new QS inhibitors from M. communis leaves against resistant Gram-negative pathogens.
Collapse
Affiliation(s)
- Nadine Khadraoui
- Laboratory of Bioactive Substances, Biotechnology Center of Borj Cedria, BP-901, Hammam-Lif 2050, Tunisia
| | - Rym Essid
- Laboratory of Bioactive Substances, Biotechnology Center of Borj Cedria, BP-901, Hammam-Lif 2050, Tunisia
| | - Bilel Damergi
- Laboratory of Bioactive Substances, Biotechnology Center of Borj Cedria, BP-901, Hammam-Lif 2050, Tunisia
| | - Nadia Fares
- Laboratory of Bioactive Substances, Biotechnology Center of Borj Cedria, BP-901, Hammam-Lif 2050, Tunisia
| | - Dorra Gharbi
- Laboratory of Bioactive Substances, Biotechnology Center of Borj Cedria, BP-901, Hammam-Lif 2050, Tunisia
| | - Abel Mateo Forero
- CICA-Centro Interdisciplinar de Química e Bioloxía e Departamento de Química, Facultade de Ciencias. Universidade da Coruña, 15071, A Coruña, Spain
| | - Jaime Rodríguez
- CICA-Centro Interdisciplinar de Química e Bioloxía e Departamento de Química, Facultade de Ciencias. Universidade da Coruña, 15071, A Coruña, Spain
| | - Ghassen Abid
- Laboratory of Legumes and Sustainable Agrosystems, Centre de Biotechnology de Borj Cedria, BP-901, 2050, Hammam-Lif, Tunisia
| | - Erika-Beáta Kerekes
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Közép fasor 52, Hungary
| | - Ferid Limam
- Laboratory of Bioactive Substances, Biotechnology Center of Borj Cedria, BP-901, Hammam-Lif 2050, Tunisia
| | - Carlos Jiménez
- CICA-Centro Interdisciplinar de Química e Bioloxía e Departamento de Química, Facultade de Ciencias. Universidade da Coruña, 15071, A Coruña, Spain
| | - Olfa Tabbene
- Laboratory of Bioactive Substances, Biotechnology Center of Borj Cedria, BP-901, Hammam-Lif 2050, Tunisia
| |
Collapse
|
4
|
Garbero OV, Sardelli L, Butnarasu CS, Frasca E, Medana C, Dal Bello F, Visentin S. Tracing the path of Quorum sensing molecules in cystic fibrosis mucus in a biomimetic in vitro permeability platform. Sci Rep 2024; 14:25907. [PMID: 39472521 PMCID: PMC11522324 DOI: 10.1038/s41598-024-77375-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/22/2024] [Indexed: 11/02/2024] Open
Abstract
P. aeruginosa employs specific quorum sensing (QS) mechanisms to orchestrate biofilm formation, enhancing resistance to host defences. In physiological conditions, QS molecules permeate the lung environment and cellular membrane to reach the cytoplasmic Aryl Hydrocarbon Receptor (AhR) that is pivotal for activating the immune response against infection. In pathological conditions like cystic fibrosis (CF) this interkingdom communication is altered, favouring P. aeruginosa persistence and chronic infection. Here, we aim to investigate the molecular journey of QS molecules from CF-like environments to the cytoplasm by quantifying via HPLC-MS the permeability of selected QS molecules (quinolones, lactones, and phenazines) through in vitro models of the two main biological lung barriers: CF-mucus and cellular membrane. While QS molecules not activating AhR exhibit intermediate permeability through the cellular membrane model (PAMPA) (1.0-4.0 × 10-6 cm/s), the AhR-activating molecule (pyocyanin) shows significantly higher permeability (8.6 ± 1.4 × 10-6 cm/s). Importantly, combining the CF mucus model with PAMPA induces a 50% decrease in pyocyanin permeability, indicating a strong mucus-shielding effect with pathological implications in infection eradication. This study underscores the importance of quantitatively describing the AhR-active bacterial molecules, even in vitro, to offer new perspectives for understanding P. aeruginosa virulence mechanisms and for proposing new antibacterial therapeutic approaches.
Collapse
Affiliation(s)
- Olga Valentina Garbero
- Department of Molecular Biotechnology and Health Sciences, University of Torino, via Nizza 44bis, 10126, Turin, Italy
| | - Lorenzo Sardelli
- Department of Molecular Biotechnology and Health Sciences, University of Torino, via Nizza 44bis, 10126, Turin, Italy
| | - Cosmin Stefan Butnarasu
- Institute of Pharmacy Biopharmaceuticals, SupraFAB, Freie Universität Berlin, Altensteinstr 23a, 14195, Berlin, Germany
| | - Enrica Frasca
- Department of Molecular Biotechnology and Health Sciences, University of Torino, via Nizza 44bis, 10126, Turin, Italy
| | - Claudio Medana
- Department of Molecular Biotechnology and Health Sciences, University of Torino, via Nizza 44bis, 10126, Turin, Italy
| | - Federica Dal Bello
- Department of Molecular Biotechnology and Health Sciences, University of Torino, via Nizza 44bis, 10126, Turin, Italy
| | - Sonja Visentin
- Department of Molecular Biotechnology and Health Sciences, University of Torino, via Nizza 44bis, 10126, Turin, Italy.
| |
Collapse
|
5
|
Li S, Jia T, Chi Y, Chen J, Mao Z. Identification and characterization of LuxR solo homolog PplR in pathogenic Pseudomonas plecoglossicida NB2011. Front Cell Infect Microbiol 2024; 14:1458976. [PMID: 39524928 PMCID: PMC11543582 DOI: 10.3389/fcimb.2024.1458976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/23/2024] [Indexed: 11/16/2024] Open
Abstract
Pseudomonas plecoglossicida is a causative agent of visceral granulomas in large yellow croaker (Larimichthys crocea). Quorum sensing (QS) is widely involved in imparting virulence to pathogenic bacteria; however, it has not been studied in P. plecoglossicida. In this study, we annotated a LuxR family transcriptional regulator in P. plecoglossicida NB2011 and designated as PplR. We aligned the protein sequence by BlastP and Clustal X2, monitored the N-acyl-homoserine lactone (AHL) signal production through cross-feeding bioassay and HC-MS/MS; investigated exogenous AHL signal binding by recombinant expression and thin layer chromatography; constructed a deletion mutant of the target gene by method of double homologous recombination; sequenced the transcript RNA and analyzed the data; additionally, characterized phenotypes of wild type and mutant strain. The LuxR homolog PplR was found to share high similarity with PpoR-the LuxR solo of Pseudomonas putida-without a cognate LuxI. The wild-type strain did not produce any AHL signals and the recombinant LuxR protein was found to bind C6-L-homoserine lactone (C6-HSL), C8-HSL, 3-oxo-C10-HSL, and 3-oxo-C12-HSL. RNA-seq analysis indicated 84 differentially expressed genes-5 upregulated and 79 downregulated-mainly enriched in gene ontology terms, such as flagella-dependent motility, integral component of membrane, DNA binding and transcription, and metal ion binding, suggesting that PplR is a master transcription regulator. The mutant strain showed attenuated biofilm-forming ability and stress resistance, and the data support a role for PplR in the regulation of these traits in P. plecoglossicida NB2011 independent of the presence of AHL signals. This is the first study to provide QS-related information on P. plecoglossicida.
Collapse
Affiliation(s)
| | | | | | | | - Zhijuan Mao
- Biological and Environmental College, Zhejiang Wanli University, Ningbo, China
| |
Collapse
|
6
|
Han L, Ren J, Xue Y, Gao J, Fu Q, Shao P, Zhu H, Zhang M, Ding F. Fatty acid synthesis promoted by PA1895-1897 operon delays quorum sensing activation in Pseudomonas aeruginosa. AMB Express 2024; 14:110. [PMID: 39354164 PMCID: PMC11445212 DOI: 10.1186/s13568-024-01758-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/19/2024] [Indexed: 10/03/2024] Open
Abstract
PA1895-1897 is a quorum sensing (QS) operon regulated by the anti-activator LuxR homologue QscR in Pseudomonas aeruginosa. We aimed to investigate its impact on bacterial metabolism, and whether it contributes to the delayed QS activation. We performed liquid chromatograph-mass spectrometer-based metabolomics using wildtype PAO1, PA1895-1897-knockout mutant, and mutant with pJN105.PA1895-1897 overexpression vector. The impact of metabolites on QS signaling molecule (3OC12-HSL and C4-HSL) concentrations, pyocyanin production, and QS gene (lasR, lasI, rhlR, and rhlI) expression was examined. Metabolomics analysis found that fatty acid biosynthesis had the highest fold enrichment among all metabolic pathways in PA1895-1897-overexpressed mutants. Among these enriched fatty acids, palmitoleic acid and acetic acid were the predominantly abundant ones that significantly affected by PA1895-1897 operon. When different doses of exogenous palmitoleic acid or acetic acid were added to the cultures of PA1895-1897 knockout mutants, their levels of 3OC12-HSL, C4-HSL, and pyocyanin were decreased in a dose-dependent manner. High doses of palmitoleic acid and acetic acid suppressed the mRNA expression of lasR, rhlR, and rhlI. Inhibition of fatty acid biosynthesis increased the production of 3OC12-HSL, C4-HSL, and pyocyanin in PA1895-1897-overexpressed cultures. Our data suggest that fatty acid synthesis is promoted by PA1895-1897 operon, and contributes the delayed expression of QS phenotypes, furthering the understanding about the regulation of bacterial QS activation.
Collapse
Affiliation(s)
- Lei Han
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Ren
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yishu Xue
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianwei Gao
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiang Fu
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ping Shao
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Zhu
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Zhang
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Fengming Ding
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
7
|
Padaga SG, Bhatt H, Ch S, Paul M, Itoo AM, Ghosh B, Roy S, Biswas S. Glycol Chitosan-Poly(lactic acid) Conjugate Nanoparticles Encapsulating Ciprofloxacin: A Mucoadhesive, Antiquorum-Sensing, and Biofilm-Disrupting Treatment Modality for Bacterial Keratitis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:18360-18385. [PMID: 38573741 DOI: 10.1021/acsami.3c18061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Bacterial keratitis (BK) causes visual morbidity/blindness if not treated effectively. Here, ciprofloxacin (CIP)-loaded nanoparticles (NPs) using glycol chitosan (GC) and poly(lactic acid) (PLA) conjugate at three different ratios (CIP@GC(PLA) NPs (1:1,5,15)) were fabricated. CIP@GC(PLA) NPs (1:1) were more effective than other tested ratios, indicating the importance of optimal hydrophobic/hydrophilic balance for corneal penetration and preventing bacterial invasion. The CIP@GC(PLA) (NPs) (1:1) realized the highest association with human corneal epithelial cells, which were nonirritant to the hen's egg-chorioallantoic membrane test (HET-CAM test) and demonstrated significant antibacterial response in the in vitro minimum inhibitory, bactericidal, live-dead cells, zone of inhibition, and biofilm inhibition assays against the keratitis-inducing pathogen Pseudomonas aeruginosa. The antiquorum sensing activity of GC has been explored for the first time. The NPs disrupted the bacterial quorum sensing by inhibiting the production of virulence factors, including acyl homoserine lactones, pyocyanin, and motility, and caused significant downregulation of quorum sensing associated genes. In the in vivo studies, CIP@GC(PLA) NPs (1:1) displayed ocular retention in vivo (∼6 h) and decreased the opacity and the bacterial load effectively. Overall, the CIP@GC(PLA) NP (1:1) is a biofilm-disrupting antiquorum sensing treatment regimen with clinical translation potential in BK.
Collapse
Affiliation(s)
- Sri Ganga Padaga
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Hyderabad, Telangana 500078, India
| | - Himanshu Bhatt
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Hyderabad, Telangana 500078, India
| | - Sanjay Ch
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Hyderabad, Telangana 500078, India
| | - Milan Paul
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Hyderabad, Telangana 500078, India
| | - Asif Mohd Itoo
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Hyderabad, Telangana 500078, India
| | - Balaram Ghosh
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Hyderabad, Telangana 500078, India
| | - Sanhita Roy
- Prof. Brien Holden Eye Research Centre, Kallam Anji Reddy Campus, L. V. Prasad Eye Institute, Hyderabad, Telangana 500034, India
| | - Swati Biswas
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Hyderabad, Telangana 500078, India
| |
Collapse
|
8
|
Yaeger LN, Ranieri MRM, Chee J, Karabelas-Pittman S, Rudolph M, Giovannoni AM, Harvey H, Burrows LL. A genetic screen identifies a role for oprF in Pseudomonas aeruginosa biofilm stimulation by subinhibitory antibiotics. NPJ Biofilms Microbiomes 2024; 10:30. [PMID: 38521769 PMCID: PMC10960818 DOI: 10.1038/s41522-024-00496-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 03/05/2024] [Indexed: 03/25/2024] Open
Abstract
Biofilms are surface-associated communities of bacteria that grow in a self-produced matrix of polysaccharides, proteins, and extracellular DNA (eDNA). Sub-minimal inhibitory concentrations (sub-MIC) of antibiotics induce biofilm formation, potentially as a defensive response to antibiotic stress. However, the mechanisms behind sub-MIC antibiotic-induced biofilm formation are unclear. We show that treatment of Pseudomonas aeruginosa with multiple classes of sub-MIC antibiotics with distinct targets induces biofilm formation. Further, addition of exogenous eDNA or cell lysate failed to increase biofilm formation to the same extent as antibiotics, suggesting that the release of cellular contents by antibiotic-driven bacteriolysis is insufficient. Using a genetic screen for stimulation-deficient mutants, we identified the outer membrane porin OprF and the ECF sigma factor SigX as important. Similarly, loss of OmpA - the Escherichia coli OprF homolog - prevented sub-MIC antibiotic stimulation of E. coli biofilms. Our screen also identified the periplasmic disulfide bond-forming enzyme DsbA and a predicted cyclic-di-GMP phosphodiesterase encoded by PA2200 as essential for biofilm stimulation. The phosphodiesterase activity of PA2200 is likely controlled by a disulfide bond in its regulatory domain, and folding of OprF is influenced by disulfide bond formation, connecting the mutant phenotypes. Addition of reducing agent dithiothreitol prevented sub-MIC antibiotic biofilm stimulation. Finally, activation of a c-di-GMP-responsive promoter follows treatment with sub-MIC antibiotics in the wild-type but not an oprF mutant. Together, these results show that antibiotic-induced biofilm formation is likely driven by a signaling pathway that translates changes in periplasmic redox state into elevated biofilm formation through increases in c-di-GMP.
Collapse
Affiliation(s)
- Luke N Yaeger
- Biochemistry and Biomedical Sciences and the Michael G. DeGroote Centre for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Michael R M Ranieri
- Biochemistry and Biomedical Sciences and the Michael G. DeGroote Centre for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Jessica Chee
- Biochemistry and Biomedical Sciences and the Michael G. DeGroote Centre for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Sawyer Karabelas-Pittman
- Biochemistry and Biomedical Sciences and the Michael G. DeGroote Centre for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Madeleine Rudolph
- Biochemistry and Biomedical Sciences and the Michael G. DeGroote Centre for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Alessio M Giovannoni
- Biochemistry and Biomedical Sciences and the Michael G. DeGroote Centre for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Hanjeong Harvey
- Biochemistry and Biomedical Sciences and the Michael G. DeGroote Centre for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Lori L Burrows
- Biochemistry and Biomedical Sciences and the Michael G. DeGroote Centre for Infectious Disease Research, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
9
|
Qiu H, Li Y, Yuan M, Chen H, Dandekar AA, Dai W. Uncovering a hidden functional role of the XRE-cupin protein PsdR as a novel quorum-sensing regulator in Pseudomonas aeruginosa. PLoS Pathog 2024; 20:e1012078. [PMID: 38484003 DOI: 10.1371/journal.ppat.1012078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/26/2024] [Accepted: 02/28/2024] [Indexed: 03/27/2024] Open
Abstract
XRE-cupin family proteins containing an DNA-binding domain and a cupin signal-sensing domain are widely distributed in bacteria. In Pseudomonas aeruginosa, XRE-cupin transcription factors have long been recognized as regulators exclusively controlling cellular metabolism pathways. However, their potential functional roles beyond metabolism regulation remain unknown. PsdR, a typical XRE-cupin transcriptional regulator, was previously characterized as a local repressor involved solely in dipeptide metabolism. Here, by measuring quorum-sensing (QS) activities and QS-controlled metabolites, we uncover that PsdR is a new QS regulator in P. aeruginosa. Our RNA-seq analysis showed that rather than a local regulator, PsdR controls a large regulon, including genes associated with both the QS circuit and non-QS pathways. To unveil the underlying mechanism of PsdR in modulating QS, we developed a comparative transcriptome approach named "transcriptome profile similarity analysis" (TPSA). Using this TPSA method, we revealed that PsdR expression causes a QS-null-like transcriptome profile, resulting in QS-inactive phenotypes. Based on the results of TPSA, we further demonstrate that PsdR directly binds to the promoter for the gene encoding the QS master transcription factor LasR, thereby negatively regulating its expression and influencing QS activation. Moreover, our results showed that PsdR functions as a negative virulence regulator, as inactivation of PsdR enhanced bacterial cytotoxicity on host cells. In conclusion, we report on a new QS regulation role for PsdR, providing insights into its role in manipulating QS-controlled virulence. Most importantly, our findings open the door for a further discovery of untapped functions for other XRE-Cupin family proteins.
Collapse
Affiliation(s)
- Huifang Qiu
- Integrative Microbiology Research Center, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Yuanhao Li
- Integrative Microbiology Research Center, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Min Yuan
- Integrative Microbiology Research Center, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Huali Chen
- Integrative Microbiology Research Center, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Ajai A Dandekar
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Weijun Dai
- Integrative Microbiology Research Center, College of Plant Protection, South China Agricultural University, Guangzhou, China
| |
Collapse
|
10
|
Vinodhini V, Kavitha M. Deciphering agr quorum sensing in Staphylococcus aureus: insights and therapeutic prospects. Mol Biol Rep 2024; 51:155. [PMID: 38252331 DOI: 10.1007/s11033-023-08930-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/10/2023] [Indexed: 01/23/2024]
Abstract
The emergence of superbugs like methicillin-resistant Staphylococcus aureus exposed the limitations of treating microbial infections using antibiotics. At present, the discovery of novel and convincing therapeutic methods are being executed increasingly as possible substitutes to conventional antibiotic therapies. The quorum sensing helps Staphylococcus aureus become more viable through their signaling mechanisms. In recent years, targeting the prominent factors of quorum sensing has obtained remarkable attention as a futuristic approach to dealing with bacterial pathogenicity. The standard antibiotic therapy intends to inhibit the organism by targeting specific molecules and afford a chance for the evolution of antibiotic resistance. This prompts the development of novel therapeutic strategies like inhibiting quorum sensing that can limit bacterial virulence by decreasing the selective pressure, thereby restricting antibiotic resistance evolution. This review furnishes new insights into the accessory gene regulator quorum sensing in Staphylococcus aureus and its inhibition by targeting the genes that regulate the operon. Further, this review comprehensively explores the inhibitors reported up to date and their specific targets and discusses their potentially ineffective alternative therapy against methicillin-resistant Staphylococcus aureus.
Collapse
Affiliation(s)
- V Vinodhini
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - M Kavitha
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
11
|
De R, Whiteley M, Azad RK. A gene network-driven approach to infer novel pathogenicity-associated genes: application to Pseudomonas aeruginosa PAO1. mSystems 2023; 8:e0047323. [PMID: 37921470 PMCID: PMC10734507 DOI: 10.1128/msystems.00473-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 10/04/2023] [Indexed: 11/04/2023] Open
Abstract
IMPORTANCE We present here a new systems-level approach to decipher genetic factors and biological pathways associated with virulence and/or antibiotic treatment of bacterial pathogens. The power of this approach was demonstrated by application to a well-studied pathogen Pseudomonas aeruginosa PAO1. Our gene co-expression network-based approach unraveled known and unknown genes and their networks associated with pathogenicity in P. aeruginosa PAO1. The systems-level investigation of P. aeruginosa PAO1 helped identify putative pathogenicity and resistance-associated genetic factors that could not otherwise be detected by conventional approaches of differential gene expression analysis. The network-based analysis uncovered modules that harbor genes not previously reported by several original studies on P. aeruginosa virulence and resistance. These could potentially act as molecular determinants of P. aeruginosa PAO1 pathogenicity and responses to antibiotics.
Collapse
Affiliation(s)
- Ronika De
- Department of Biological Sciences, University of North Texas, Denton, Texas, USA
- BioDiscovery Institute, University of North Texas, Denton, Texas, USA
| | - Marvin Whiteley
- Center for Microbial Dynamics and Infection, School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- Emory-Children’s Cystic Fibrosis Center, Atlanta, Georgia, USA
| | - Rajeev K. Azad
- Department of Biological Sciences, University of North Texas, Denton, Texas, USA
- BioDiscovery Institute, University of North Texas, Denton, Texas, USA
- Department of Mathematics, University of North Texas, Denton, Texas, USA
| |
Collapse
|
12
|
Miranda SW, Greenberg EP. A balancing act: investigations on the impact of altered signal sensitivity in bacterial quorum sensing. J Bacteriol 2023; 205:e0024923. [PMID: 38009926 PMCID: PMC10729764 DOI: 10.1128/jb.00249-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/03/2023] [Indexed: 11/29/2023] Open
Abstract
IMPORTANCE Quorum sensing (QS) is a widespread form of cell-cell signaling that regulates group behaviors important for competition and cooperation within bacterial communities. The QS systems from different bacterial species have diverse properties, but the functional consequences of this diversity are largely unknown. Taking advantage of hyper- and hypo-sensitive QS receptor variants in the opportunistic pathogen Pseudomonas aeruginosa, we examine the costs and benefits of altered signal sensitivity. We find that the sensitivity of a model QS receptor, LasR, impacts the timing and level of quorum gene expression, and fitness during intra- and interspecies competition. These findings suggest competition with kin and with other bacterial species work together to tune signal sensitivity.
Collapse
Affiliation(s)
| | - E. Peter Greenberg
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
13
|
Koh CMM, Ping LSY, Xuan CHH, Theng LB, San HS, Palombo EA, Wezen XC. A data-driven machine learning approach for discovering potent LasR inhibitors. Bioengineered 2023; 14:2243416. [PMID: 37552115 PMCID: PMC10411317 DOI: 10.1080/21655979.2023.2243416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/09/2023] Open
Abstract
The rampant spread of multidrug-resistant Pseudomonas aeruginosa strains severely threatens global health. This severity is compounded against the backdrop of a stagnating antibiotics development pipeline. Moreover, with many promising therapeutics falling short of expectations in clinical trials, targeting the las quorum sensing (QS) system remains an attractive therapeutic strategy to combat P. aeruginosa infection. Thus, our primary goal was to develop a drug prediction algorithm using machine learning to identify potent LasR inhibitors. In this work, we demonstrated using a Multilayer Perceptron (MLP) algorithm boosted with AdaBoostM1 to discriminate between active and inactive LasR inhibitors. The optimal model performance was evaluated using 5-fold cross-validation and test sets. Our best model achieved a 90.7% accuracy in distinguishing active from inactive LasR inhibitors, an area under the Receiver Operating Characteristic Curve value of 0.95, and a Matthews correlation coefficient value of 0.81 when evaluated using test sets. Subsequently, we deployed the model against the Enamine database. The top-ranked compounds were further evaluated for their target engagement activity using molecular docking studies, Molecular Dynamics simulations, MM-GBSA analysis, and Free Energy Landscape analysis. Our data indicate that several of our chosen top hits showed better ligand-binding affinities than naringenin, a competitive LasR inhibitor. Among the six top hits, five of these compounds were predicted to be LasR inhibitors that could be used to treat P. aeruginosa-associated infections. To our knowledge, this study provides the first assessment of using an MLP-based QSAR model for discovering potent LasR inhibitors to attenuate P. aeruginosa infections.
Collapse
Affiliation(s)
- Christabel Ming Ming Koh
- Faculty of Engineering, Computing, and Science, Swinburne University of Technology, Sarawak, Malaysia
| | - Lilian Siaw Yung Ping
- Faculty of Engineering, Computing, and Science, Swinburne University of Technology, Sarawak, Malaysia
| | - Christopher Ha Heng Xuan
- Faculty of Engineering, Computing, and Science, Swinburne University of Technology, Sarawak, Malaysia
| | - Lau Bee Theng
- Faculty of Engineering, Computing, and Science, Swinburne University of Technology, Sarawak, Malaysia
| | - Hwang Siaw San
- Faculty of Engineering, Computing, and Science, Swinburne University of Technology, Sarawak, Malaysia
| | - Enzo A. Palombo
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, Victoria, Australia
| | - Xavier Chee Wezen
- Faculty of Engineering, Computing, and Science, Swinburne University of Technology, Sarawak, Malaysia
| |
Collapse
|
14
|
Bajire SK, Prabhu A, Bhandary YP, Irfan KM, Shastry RP. 7-Ethoxycoumarin rescued Caenorhabditis elegans from infection of COPD derived clinical isolate Pseudomonas aeruginosa through virulence and biofilm inhibition via targeting Rhl and Pqs quorum sensing systems. World J Microbiol Biotechnol 2023; 39:208. [PMID: 37231227 DOI: 10.1007/s11274-023-03655-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 05/18/2023] [Indexed: 05/27/2023]
Abstract
Pseudomonas aeruginosa is an ambidextrous Gram-negative contagium with density convoluted network defined quorum sensing, which enables the persistent survival within the host environment, contributing to various lung related diseases including Chronic Obstructive Pulmonary Disease (COPD). It is clear that P. aeruginosa is a powerful, exquisite pathogen that has adopted a variety of virulence properties through quorum sensing (QS) regulated phenomenon and that it dominates both in the development and exacerbations of COPD. Interestingly, 7-Ethoxycoumarin (7-EC), a compound that adequately mimics QS signaling molecule of P. aeruginosa, was introduced as part of the process of developing novel ways to treat the severe exacerbations. The results showed that, introduction of 7-EC significantly decreased exopolysaccharide-mediated biofilm development of strains isolated from COPD sputum, as evidenced by SEM analysis. Furthermore, 7-EC was able to modulate a variety of virulence factors and motility without subjecting planktonic cells to any selection pressure. Bacterial invasion assay revealed the potential activity of the 7-EC in preventing the active entry to A549 cells without causing any damage to the cells and found functionally active in protecting the C. elegans from P. aeruginosa infection and being non-toxic to the worms. Docking analysis was further proved that 7-EC to be the potential anti-QS compound competing specifically with Rhl and Pqs Systems. Therefore, 7-EC in the utilisation against the P. aeruginosa based infections, may open an avenue for the futuristic mechanistic study in chronic respiratory diseases and a initiator for the development of non-antibiotic based antibacterial therapy.
Collapse
Affiliation(s)
- Sukesh Kumar Bajire
- Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangaluru, 575018, India
| | - Ashwini Prabhu
- Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangaluru, 575018, India
| | - Yashodhar P Bhandary
- Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangaluru, 575018, India
| | - K M Irfan
- Department of Pulmonary Medicine, Yenepoya Medical College Hospital, Deralakatte, Mangaluru, 575018, India
| | - Rajesh P Shastry
- Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangaluru, 575018, India.
| |
Collapse
|
15
|
Marzhoseyni Z, Mousavi MJ, Saffari M, Ghotloo S. Immune escape strategies of Pseudomonas aeruginosa to establish chronic infection. Cytokine 2023; 163:156135. [PMID: 36724716 DOI: 10.1016/j.cyto.2023.156135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 01/08/2023] [Accepted: 01/12/2023] [Indexed: 02/02/2023]
Abstract
The infection caused by P. aeruginosa still is dangerous throughout the world. This is partly due to its immune escape mechanisms considerably increasing the bacterial survival in the host. By escape from recognition by TLRs, interference with complement system activation, phagocytosis inhibition, production of ROS, inhibition of NET production, interference with the generation of cytokines, inflammasome inhibition, reduced antigen presentation, interference with cellular and humoral immunity, and induction of apoptotic cell death and MDSc, P. aeruginosa breaks down the barriers of the immune system and causes lethal infections in the host. Recognition of other immune escape mechanisms of P. aeruginosa may provide a basis for the future treatment of the infection. This manuscript may provide new insights and information for the development of new strategies to combat P. aeruginosa infection. In the present manuscript, the escape mechanisms of P. aeruginosa against immune response would be reviewed.
Collapse
Affiliation(s)
- Zeynab Marzhoseyni
- Department of Microbiology and Immunology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Javad Mousavi
- Department of Hematology, Faculty of Allied Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mahmood Saffari
- Department of Microbiology and Immunology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Somayeh Ghotloo
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
16
|
Singh A, Yadav VK, Chundawat RS, Soltane R, Awwad NS, Ibrahium HA, Yadav KK, Vicas SI. Enhancing plant growth promoting rhizobacterial activities through consortium exposure: A review. Front Bioeng Biotechnol 2023; 11:1099999. [PMID: 36865031 PMCID: PMC9972119 DOI: 10.3389/fbioe.2023.1099999] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/16/2023] [Indexed: 02/12/2023] Open
Abstract
Plant Growth Promoting Rhizobacteria (PGPR) has gained immense importance in the last decade due to its in-depth study and the role of the rhizosphere as an ecological unit in the biosphere. A putative PGPR is considered PGPR only when it may have a positive impact on the plant after inoculation. From the various pieces of literature, it has been found that these bacteria improve the growth of plants and their products through their plant growth-promoting activities. A microbial consortium has a positive effect on plant growth-promoting (PGP) activities evident by the literature. In the natural ecosystem, rhizobacteria interact synergistically and antagonistically with each other in the form of a consortium, but in a natural consortium, there are various oscillating environmental conditions that affect the potential mechanism of the consortium. For the sustainable development of our ecological environment, it is our utmost necessity to maintain the stability of the rhizobacterial consortium in fluctuating environmental conditions. In the last decade, various studies have been conducted to design synthetic rhizobacterial consortium that helps to integrate cross-feeding over microbial strains and reveal their social interactions. In this review, the authors have emphasized covering all the studies on designing synthetic rhizobacterial consortiums, their strategies, mechanism, and their application in the field of environmental ecology and biotechnology.
Collapse
Affiliation(s)
- Anamika Singh
- Department of Biosciences, School of Liberal Arts and Sciences, Mody University of Science and Technology, Sikar, Rajasthan, India
| | - Virendra Kumar Yadav
- Department of Biosciences, School of Liberal Arts and Sciences, Mody University of Science and Technology, Sikar, Rajasthan, India
| | - Rajendra Singh Chundawat
- Department of Biosciences, School of Liberal Arts and Sciences, Mody University of Science and Technology, Sikar, Rajasthan, India
| | - Raya Soltane
- Department of Basic Sciences, Adham University College, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Nasser S. Awwad
- Chemistry Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Hala A. Ibrahium
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
- Department of Semi Pilot Plant, Nuclear Materials Authority, El Maadi, Egypt
| | - Krishna Kumar Yadav
- Faculty of Science and Technology, Madhyanchal Professional University, Bhopal, India
| | | |
Collapse
|
17
|
O’Connor K, Zhao CY, Mei M, Diggle SP. Frequency of quorum-sensing mutations in Pseudomonas aeruginosa strains isolated from different environments. MICROBIOLOGY (READING, ENGLAND) 2022; 168:001265. [PMID: 36748632 PMCID: PMC10233726 DOI: 10.1099/mic.0.001265] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/27/2022] [Indexed: 12/23/2022]
Abstract
Pseudomonas aeruginosa uses quorum sensing (QS) to coordinate the expression of multiple genes necessary for establishing and maintaining infection. It has previously been shown that lasR QS mutations frequently arise in cystic fibrosis (CF) lung infections, however, there has been far less emphasis on determining whether other QS system mutations arise during infection or in other environments. To test this, we utilized 852 publicly available sequenced P. aeruginosa genomes from the Pseudomonas International Consortium Database (IPCD) to study P. aeruginosa QS mutational signatures. To study isolates by source, we focused on a subset of 654 isolates collected from CF, wounds, and non-infection environmental isolates, where we could clearly identify their source. We also worked with a small collection of isolates in vitro to determine the impact of lasR and pqs mutations on isolate phenotypes. We found that lasR mutations are common across all environments and are not specific to infection nor a particular infection type. We also found that the pqs system proteins PqsA, PqsH, PqsL and MexT, a protein of increasing importance to the QS field, are highly variable. Conversely, RsaL, a negative transcriptional regulator of the las system, was found to be highly conserved, suggesting selective pressure to repress las system activity. Overall, our findings suggest that QS mutations in P. aeruginosa are common and not limited to the las system; however, LasR is unique in the frequency of putative loss-of-function mutations.
Collapse
Affiliation(s)
- Kathleen O’Connor
- Center for Microbial Dynamics & Infection, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Conan Y. Zhao
- Center for Microbial Dynamics & Infection, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Madeline Mei
- Center for Microbial Dynamics & Infection, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Stephen P. Diggle
- Center for Microbial Dynamics & Infection, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
18
|
Shi X, Zarkan A. Bacterial survivors: evaluating the mechanisms of antibiotic persistence. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 36748698 DOI: 10.1099/mic.0.001266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bacteria withstand antibiotic onslaughts by employing a variety of strategies, one of which is persistence. Persistence occurs in a bacterial population where a subpopulation of cells (persisters) survives antibiotic treatment and can regrow in a drug-free environment. Persisters may cause the recalcitrance of infectious diseases and can be a stepping stone to antibiotic resistance, so understanding persistence mechanisms is critical for therapeutic applications. However, current understanding of persistence is pervaded by paradoxes that stymie research progress, and many aspects of this cellular state remain elusive. In this review, we summarize the putative persister mechanisms, including toxin-antitoxin modules, quorum sensing, indole signalling and epigenetics, as well as the reasons behind the inconsistent body of evidence. We highlight present limitations in the field and underscore a clinical context that is frequently neglected, in the hope of supporting future researchers in examining clinically important persister mechanisms.
Collapse
Affiliation(s)
- Xiaoyi Shi
- Cambridge Centre for International Research, Cambridge CB4 0PZ, UK
| | - Ashraf Zarkan
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| |
Collapse
|
19
|
Nyffeler KE, Santa EE, Blackwell HE. Small Molecules with Either Receptor-Selective or Pan-Receptor Activity in the Three LuxR-Type Receptors that Regulate Quorum Sensing in Pseudomonas aeruginosa. ACS Chem Biol 2022; 17:2979-2985. [PMID: 36239990 PMCID: PMC9675725 DOI: 10.1021/acschembio.2c00675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Quorum sensing (QS) allows bacteria to assess their local cell density using chemical signals and plays a prominent role in the ability of common pathogens to infect a host. Non-native molecules capable of attenuating bacterial QS represent useful tools to explore the role of this pathway in virulence. As individual bacterial species can have multiple QS systems and/or reside in mixed communities with other bacteria capable of QS, chemical tools that are either selective for one QS system or "pan-active" and target all QS pathways are of significant interest. Herein we outline the analysis of a set of compounds reported to target one QS system in Pseudomonas aeruginosa for their activity in two other QS circuits in this pathogen and the discovery of molecules with novel activity profiles, including subsets that agonize all three QS systems, agonize one but antagonize the other two, or strongly antagonize just one.
Collapse
Affiliation(s)
- Kayleigh E. Nyffeler
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Ave., Madison, WI 53706, USA,Microbiology Doctoral Training Program, University of Wisconsin–Madison, 1550 Linden Dr., Madison, WI 53706, USA
| | - Emma E. Santa
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Ave., Madison, WI 53706, USA
| | - Helen E. Blackwell
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Ave., Madison, WI 53706, USA
| |
Collapse
|
20
|
Ding F, Han L, Xue Y, Yang IT, Fan X, Tang R, Zhang C, Zhu M, Tian X, Shao P, Zhang M. Multidrug-resistant Pseudomonas aeruginosa is predisposed to lasR mutation through up-regulated activity of efflux pumps in non-cystic fibrosis bronchiectasis patients. Front Cell Infect Microbiol 2022; 12:934439. [PMID: 35967851 PMCID: PMC9363577 DOI: 10.3389/fcimb.2022.934439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundMultidrug-resistant (MDR) Pseudomonas aeruginosa is a frequent opportunistic pathogen that causes significant mortality in patients with non-cystic fibrosis bronchiectasis (NCFB). Although the quorum sensing (QS) system is a potential target for treatment, lasR mutants that present with a QS-deficient phenotype have been frequently reported among clinical P. aeruginosa isolates. We aimed to investigate whether antibiotic resistance would select for lasR mutants during chronic P. aeruginosa lung infection and determine the mechanism underlying the phenomenon.MethodsWe prospectively evaluated episodes of chronic P. aeruginosa lung infections in NCFB patients over a 2-year period at two centers of our institution. QS phenotypic assessments and whole-genome sequencing (WGS) of P. aeruginosa isolates were performed. Evolution experiments were conducted to confirm the emergence of lasR mutants in clinical MDR P. aeruginosa cultures.ResultsWe analyzed episodes of P. aeruginosa infection among 97 NCFB patients and found only prior carbapenem exposure independently predictive of the isolation of MDR P. aeruginosa strains. Compared with non-MDR isolates, MDR isolates presented significantly QS-deficient phenotypes, which could not be complemented by the exogenous addition of 3OC12-HSL. The paired isolates showed that their QS-phenotype deficiency occurred after MDR was developed. Whole-genome sequencing analysis revealed that lasR nonsynonymous mutations were significantly more frequent in MDR isolates, and positive correlations of mutation frequencies were observed between genes of lasR and negative-efflux-pump regulators (nalC and mexZ). The addition of the efflux pump inhibitor PAβN could not only promote QS phenotypes of these MDR isolates but also delay the early emergence of lasR mutants in evolution experiments.ConclusionsOur data indicated that MDR P. aeruginosa was predisposed to lasR mutation through the upregulated activity of efflux pumps. These findings suggest that anti-QS therapy combined with efflux pump inhibitors might be a potential strategy for NCFB patients in the challenge of MDR P. aeruginosa infections.
Collapse
Affiliation(s)
- Fengming Ding
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Han
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yishu Xue
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Iris Tingshiuan Yang
- Department of Microbiology, University of Washington, Seattle, WA, United States
| | - Xinxin Fan
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Tuberculosis, Fuzhou Pulmonary Hospital of Fujian Province, Fuzhou, China
| | - Rong Tang
- Department of Clinical Laboratory, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Zhang
- Department of Medicine, Dinfectome Inc., Nanjing, China
| | - Miao Zhu
- Department of Bioinformatics and System Development, Dinfectome Inc., Nanjing, China
| | - Xue Tian
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ping Shao
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Zhang
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Min Zhang,
| |
Collapse
|
21
|
Letizia M, Mellini M, Fortuna A, Visca P, Imperi F, Leoni L, Rampioni G. PqsE Expands and Differentially Modulates the RhlR Quorum Sensing Regulon in Pseudomonas aeruginosa. Microbiol Spectr 2022; 10:e0096122. [PMID: 35604161 PMCID: PMC9241726 DOI: 10.1128/spectrum.00961-22] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/02/2022] [Indexed: 12/22/2022] Open
Abstract
In the opportunistic pathogen Pseudomonas aeruginosa, many virulence traits are finely regulated by quorum sensing (QS), an intercellular communication system that allows the cells of a population to coordinate gene expression in response to cell density. The key aspects underlying the functionality of the complex regulatory network governing QS in P. aeruginosa are still poorly understood, including the interplay between the effector protein PqsE and the transcriptional regulator RhlR in controlling the QS regulon. Different studies have focused on the characterization of PqsE- and RhlR-controlled genes in genetic backgrounds in which RhlR activity can be modulated by PqsE and pqsE expression is controlled by RhlR, thus hampering identification of the distinct regulons controlled by PqsE and RhlR. In this study, a P. aeruginosa PAO1 mutant strain with deletion of multiple QS elements and inducible expression of pqsE and/or rhlR was generated and validated. Transcriptomic analyses performed on this genetic background allowed us to unambiguously define the regulons controlled by PqsE and RhlR when produced alone or in combination. Transcriptomic data were validated via reverse transcription-quantitative PCR (RT-qPCR) and transcriptional fusions. Overall, our results showed that PqsE has a negligible effect on the P. aeruginosa transcriptome in the absence of RhlR, and that multiple RhlR subregulons exist with distinct dependency on PqsE. Overall, this study contributes to untangling the regulatory link between the pqs and rhl QS systems mediated by PqsE and RhlR and clarifying the impact of these QS elements on the P. aeruginosa transcriptome. IMPORTANCE The ability of Pseudomonas aeruginosa to cause difficult-to-treat infections relies on its capacity to fine-tune the expression of multiple virulence traits via the las, rhl, and pqs QS systems. Both the pqs effector protein PqsE and the rhl transcriptional regulator RhlR are required for full production of key virulence factors in vitro and pathogenicity in vivo. While it is known that PqsE can stimulate the ability of RhlR to control some virulence factors, no data are available to allow clear discrimination of the PqsE and RhlR regulons. The data produced in this study demonstrate that PqsE mainly impacts the P. aeruginosa transcriptome via an RhlR-dependent pathway and splits the RhlR regulon into PqsE-dependent and PqsE-independent subregulons. Besides contributing to untangling of the complex QS network of P. aeruginosa, our data confirm that both PqsE and RhlR are suitable targets for the development of antivirulence drugs.
Collapse
Affiliation(s)
| | - Marta Mellini
- Department of Science, Roma Tre University, Rome, Italy
| | | | - Paolo Visca
- Department of Science, Roma Tre University, Rome, Italy
- IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Francesco Imperi
- Department of Science, Roma Tre University, Rome, Italy
- IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Livia Leoni
- Department of Science, Roma Tre University, Rome, Italy
| | - Giordano Rampioni
- Department of Science, Roma Tre University, Rome, Italy
- IRCCS Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
22
|
Antimicrobial peptide S100A12 (calgranulin C) inhibits growth, biofilm formation, pyoverdine secretion and suppresses type VI secretion system in Pseudomonas aeruginosa. Microb Pathog 2022; 169:105654. [PMID: 35753599 DOI: 10.1016/j.micpath.2022.105654] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 12/13/2022]
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen and is the major cause of corneal infections in India and worldwide. The increase in antimicrobial resistance among Pseudomonas has prompted rise in significant research to develop alternative therapeutics. Antimicrobial peptides (AMPs) are considered as potent alternatives to combat bacterial infections. In this study, we investigated the role of S100A12, a host defense peptide, against PAO1 and an ocular clinical isolate. Increased expression of S100A12 was observed in corneal tissues obtained from Pseudomonas keratitis patients by immunohistochemistry. S100A12 significantly inhibited growth of Pseudomonas in vitro as determined from colony forming units. Furthermore, recombinant S100A12 reduced the corneal opacity and the bacterial load in a mouse model of Pseudomonas keratitis. Transcriptome changes in PAO1 in response to S100A12 was investigated using RNA sequencing. The pathway analysis of transcriptome data revealed that S100A12 inhibits expression of genes involved in pyoverdine synthesis and biofilm formation. It also impedes several important pathways like redox, pyocyanin synthesis and type 6 secretion system (T6SS). The transcriptome data was further validated by checking the expression of several affected genes by quantitative PCR. Our study sheds light on how S100A12 impacts Pseudomonas and that it might have the potential to be used as therapeutic intervention in addition to antibiotics to combat infection in future.
Collapse
|
23
|
Genetic and Transcriptomic Characteristics of RhlR-Dependent Quorum Sensing in Cystic Fibrosis Isolates of Pseudomonas aeruginosa. mSystems 2022; 7:e0011322. [PMID: 35471121 PMCID: PMC9040856 DOI: 10.1128/msystems.00113-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In people with the genetic disease cystic fibrosis (CF), bacterial infections involving the opportunistic pathogen Pseudomonas aeruginosa are a significant cause of morbidity and mortality. P. aeruginosa uses a cell-cell signaling mechanism called quorum sensing (QS) to regulate many virulence functions. One type of QS consists of acyl-homoserine lactone (AHL) signals produced by LuxI-type signal synthases, which bind a cognate LuxR-type transcription factor. In laboratory strains and conditions, P. aeruginosa employs two AHL synthase/receptor pairs arranged in a hierarchy, with the LasI/R system controlling the RhlI/R system and many downstream virulence factors. However, P. aeruginosa isolates with inactivating mutations in lasR are frequently isolated from chronic CF infections. We and others have shown that these isolates frequently use RhlR as the primary QS regulator. RhlR is rarely mutated in CF and environmental settings. We were interested in determining whether there were reproducible genetic characteristics of these isolates and whether there was a central group of genes regulated by RhlR in all isolates. We examined five isolates and found signatures of adaptation common to CF isolates. We did not identify a common genetic mechanism to explain the switch from Las- to Rhl-dominated QS. We describe a core RhlR regulon encompassing 20 genes encoding 7 products. These results suggest a key group of QS-regulated factors important for pathogenesis of chronic infections and position RhlR as a target for anti-QS therapeutics. Our work underscores the need to sample a diversity of isolates to understand QS beyond what has been described in laboratory strains. IMPORTANCE The bacterial pathogen Pseudomonas aeruginosa can cause chronic infections that are resistant to treatment in immunocompromised individuals. Over the course of these infections, the original infecting organism adapts to the host environment. P. aeruginosa uses a cell-cell signaling mechanism termed quorum sensing (QS) to regulate virulence factors and cooperative behaviors. The key QS regulator in laboratory strains, LasR, is frequently mutated in infection-adapted isolates, leaving another transcription factor, RhlR, in control of QS gene regulation. Such isolates provide an opportunity to understand Rhl-QS regulation without the confounding effects of LasR, as well as the scope of QS in the context of within-host evolution. We show that a core group of virulence genes is regulated by RhlR in a variety of infection-adapted LasR-null isolates. Our results reveal commonalities in infection-adapted QS gene regulation and key QS factors that may serve as therapeutic targets in the future.
Collapse
|
24
|
Miranda SW, Asfahl KL, Dandekar AA, Greenberg EP. Pseudomonas aeruginosa Quorum Sensing. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1386:95-115. [PMID: 36258070 PMCID: PMC9942581 DOI: 10.1007/978-3-031-08491-1_4] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Pseudomonas aeruginosa, like many bacteria, uses chemical signals to communicate between cells in a process called quorum sensing (QS). QS allows groups of bacteria to sense population density and, in response to changing cell densities, to coordinate behaviors. The P. aeruginosa QS system consists of two complete circuits that involve acyl-homoserine lactone signals and a third system that uses quinolone signals. Together, these three QS circuits regulate the expression of hundreds of genes, many of which code for virulence factors. P. aeruginosa has become a model for studying the molecular biology of QS and the ecology and evolution of group behaviors in bacteria. In this chapter, we recount the history of discovery of QS systems in P. aeruginosa, discuss how QS relates to virulence and the ecology of this bacterium, and explore strategies to inhibit QS. Finally, we discuss future directions for research in P. aeruginosa QS.
Collapse
Affiliation(s)
| | - Kyle L Asfahl
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA, USA
| | - Ajai A Dandekar
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA, USA
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - E P Greenberg
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA, USA.
| |
Collapse
|
25
|
Pseudomonas aeruginosa in the Cystic Fibrosis Lung. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1386:347-369. [DOI: 10.1007/978-3-031-08491-1_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
26
|
Brinkman FSL, Winsor GL, Done RE, Filloux A, Francis VI, Goldberg JB, Greenberg EP, Han K, Hancock REW, Haney CH, Häußler S, Klockgether J, Lamont IL, Levesque RC, Lory S, Nikel PI, Porter SL, Scurlock MW, Schweizer HP, Tümmler B, Wang M, Welch M. The Pseudomonas aeruginosa whole genome sequence: A 20th anniversary celebration. Adv Microb Physiol 2021; 79:25-88. [PMID: 34836612 DOI: 10.1016/bs.ampbs.2021.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Toward the end of August 2000, the 6.3 Mbp whole genome sequence of Pseudomonas aeruginosa strain PAO1 was published. With 5570 open reading frames (ORFs), PAO1 had the largest microbial genome sequenced up to that point in time-including a large proportion of metabolic, transport and antimicrobial resistance genes supporting its ability to colonize diverse environments. A remarkable 9% of its ORFs were predicted to encode proteins with regulatory functions, providing new insight into bacterial network complexity as a function of network size. In this celebratory article, we fast forward 20 years, and examine how access to this resource has transformed our understanding of P. aeruginosa. What follows is more than a simple review or commentary; we have specifically asked some of the leaders in the field to provide personal reflections on how the PAO1 genome sequence, along with the Pseudomonas Community Annotation Project (PseudoCAP) and Pseudomonas Genome Database (pseudomonas.com), have contributed to the many exciting discoveries in this field. In addition to bringing us all up to date with the latest developments, we also ask our contributors to speculate on how the next 20 years of Pseudomonas research might pan out.
Collapse
Affiliation(s)
- Fiona S L Brinkman
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Geoffrey L Winsor
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Rachel E Done
- Department of Pediatrics, Division of Pulmonary, Allergy and Immunology, Cystic Fibrosis, and Sleep, Emory Children's Center for Cystic Fibrosis and Airway Disease Research, Emory University School of Medicine, Atlanta, GA, United States
| | - Alain Filloux
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Vanessa I Francis
- Geoffrey Pope Building, University of Exeter, Exeter, United Kingdom
| | - Joanna B Goldberg
- Department of Pediatrics, Division of Pulmonary, Allergy and Immunology, Cystic Fibrosis, and Sleep, Emory Children's Center for Cystic Fibrosis and Airway Disease Research, Emory University School of Medicine, Atlanta, GA, United States
| | - E Peter Greenberg
- Department of Microbiology, University of Washington, Seattle, WA, United States
| | - Kook Han
- Department of Microbiology, Harvard Medical School, Boston, MA, United States
| | | | - Cara H Haney
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, Canada
| | - Susanne Häußler
- Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Jens Klockgether
- Klinik für Pädiatrische Pneumologie, Allergologie und Neonatologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Iain L Lamont
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Roger C Levesque
- Institut de biologie intégrative et des systèmes (IBIS), Pavillon Charles-Eugène Marchand, Faculté of Médicine, Université Laval, Québec City, QC, Canada
| | - Stephen Lory
- Department of Microbiology, Harvard Medical School, Boston, MA, United States
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Steven L Porter
- Geoffrey Pope Building, University of Exeter, Exeter, United Kingdom
| | | | - Herbert P Schweizer
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, United States
| | - Burkhard Tümmler
- Klinik für Pädiatrische Pneumologie, Allergologie und Neonatologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Meng Wang
- Department of Biochemistry (Hopkins Building), University of Cambridge, Cambridge, United Kingdom
| | - Martin Welch
- Department of Biochemistry (Hopkins Building), University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
27
|
Fang YL, Cui Y, Zhou L, Thawai C, Naqvi TA, Zhang HY, He YW. H-NS family protein MvaU downregulates phenazine-1-carboxylic acid (PCA) biosynthesis via binding to an AT-rich region within the promoter of the phz2 gene cluster in the rhizobacterium Pseudomonas strain PA1201. Synth Syst Biotechnol 2021; 6:262-271. [PMID: 34584994 PMCID: PMC8455314 DOI: 10.1016/j.synbio.2021.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 11/06/2022] Open
Abstract
Histone-like nucleoid-structuring (H-NS) proteins are key regulators in gene expression silencing and in nucleoid compaction. The H-NS family member proteins MvaU in Pseudomonas aeruginosa are thought to bind the same AT-rich regions of chromosomes and function to coordinate the control of a common set of genes. Here, we explored the molecular mechanism by which MvaU controls PCA biosynthesis in P. aeruginosa PA1201. We present evidence suggesting that MvaU is self-regulated. Deletion of mvaU significantly increased PCA production, and PCA production sharply decreased when mvaU was over-expressed. MvaU transcriptionally repressed phz2 cluster expression and consequently reduced PCA biosynthesis. β-galactosidase assays confirmed that base pairing near the −35 box is required when MvaU regulates PCA production in PA1201. Electrophoretic mobility shift assays (EMSA) and additional point mutation analysis demonstrated that MvaU directly bound to an AT-rich motif within the promoter of the phz2 cluster. Chromatin immunoprecipitation (ChIP) analysis also indicated that MvaU directly bound to the P5 region of the phz2 cluster promoter. MvaU repression of PCA biosynthesis was independent of QscR and OxyR in PA1201 and neither PCA or H2O2 were the environmental signals that induced mvaU expression. These findings detail a new MvaU-dependent regulatory pathway of PCA biosynthesis in PA1201 and provide a foundation to increase PCA fermentation titer by genetic engineering.
Collapse
Affiliation(s)
- Yun-Ling Fang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, SJTU-Shanghai Nong Le Joint R&D Center on Biopesticides and Biofertilizers, Shanghai Jiao Tong University (SJTU), Shanghai, 200240, China
| | - Ying Cui
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, SJTU-Shanghai Nong Le Joint R&D Center on Biopesticides and Biofertilizers, Shanghai Jiao Tong University (SJTU), Shanghai, 200240, China
| | - Lian Zhou
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, SJTU-Shanghai Nong Le Joint R&D Center on Biopesticides and Biofertilizers, Shanghai Jiao Tong University (SJTU), Shanghai, 200240, China
| | - Chitti Thawai
- Department of Biology, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Tatheer Alam Naqvi
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | - Hong-Yan Zhang
- Shanghai Nong Le Biological Products Company Limited, Shanghai, 201419, China
| | - Ya-Wen He
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, SJTU-Shanghai Nong Le Joint R&D Center on Biopesticides and Biofertilizers, Shanghai Jiao Tong University (SJTU), Shanghai, 200240, China
| |
Collapse
|
28
|
The predatory soil bacterium Lysobacter reprograms quorum sensing system to regulate antifungal antibiotic production in a cyclic-di-GMP-independent manner. Commun Biol 2021; 4:1131. [PMID: 34561536 PMCID: PMC8463545 DOI: 10.1038/s42003-021-02660-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 09/10/2021] [Indexed: 11/17/2022] Open
Abstract
Soil bacteria often harbour various toxins to against eukaryotic or prokaryotic. Diffusible signal factors (DSFs) represent a unique group of quorum sensing (QS) chemicals that modulate interspecies competition in bacteria that do not produce antibiotic-like molecules. However, the molecular mechanism by which DSF-mediated QS systems regulate antibiotic production for interspecies competition remains largely unknown in soil biocontrol bacteria. In this study, we find that the necessary QS system component protein RpfG from Lysobacter, in addition to being a cyclic dimeric GMP (c-di-GMP) phosphodiesterase (PDE), regulates the biosynthesis of an antifungal factor (heat-stable antifungal factor, HSAF), which does not appear to depend on the enzymatic activity. Interestingly, we show that RpfG interacts with three hybrid two-component system (HyTCS) proteins, HtsH1, HtsH2, and HtsH3, to regulate HSAF production in Lysobacter. In vitro studies show that each of these proteins interacted with RpfG, which reduced the PDE activity of RpfG. Finally, we show that the cytoplasmic proportions of these proteins depended on their phosphorylation activity and binding to the promoter controlling the genes implicated in HSAF synthesis. These findings reveal a previously uncharacterized mechanism of DSF signalling in antibiotic production in soil bacteria. Li et al shows that the quorum sensing system component protein RpfG from Lysobacter, in addition to being a cyclic dimeric GMP (c-di-GMP) phosphodiesterase, also regulates the biosynthesis of an antifungal factor. They show that RpfG regulates the production of HSAF through a direct interaction with three hybrid two component system (HyTCS) proteins, providing insights into the antifungal defence in soil bacteria.
Collapse
|
29
|
Xuan G, Lv C, Xu H, Li K, Liu H, Xia Y, Xun L. Sulfane Sulfur Regulates LasR-Mediated Quorum Sensing and Virulence in Pseudomonas aeruginosa PAO1. Antioxidants (Basel) 2021; 10:antiox10091498. [PMID: 34573130 PMCID: PMC8469610 DOI: 10.3390/antiox10091498] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/10/2021] [Accepted: 09/18/2021] [Indexed: 12/18/2022] Open
Abstract
Sulfane sulfur, such as inorganic and organic polysulfide (HSn- and RSn-, n > 2), is a common cellular component, produced either from hydrogen sulfide oxidation or cysteine metabolism. In Pseudomonas aeruginosa PAO1, LasR is a quorum sensing master regulator. After binding its autoinducer, LasR binds to its target DNA to activate the transcription of a suite of genes, including virulence factors. Herein, we report that the production of hydrogen sulfide and sulfane sulfur were positively correlated in P. aeruginosa PAO1, and sulfane sulfur was able to modify LasR, which generated Cys188 persulfide and trisulfide and produced a pentasulfur link between Cys201 and Cys203. The modifications did not affect LasR binding to its target DNA site, but made it several-fold more effective than unmodified LasR in activating transcription in both in vitro and in vivo assays. On the contrary, H2O2 inactivates LasR via producing a disulfide bond between Cys201 and Cys203. P. aeruginosa PAO1 had a high cellular sulfane sulfur and high LasR activity in the mid log phase and early stationary phase, but a low sulfane sulfur and low LasR activity in the declination phase. Thus, sulfane sulfur is a new signaling factor in the bacterium, adding another level of control over LasR-mediated quorum sensing and turning down the activity in old cells.
Collapse
Affiliation(s)
- Guanhua Xuan
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China; (G.X.); (C.L.); (H.X.); (K.L.); (H.L.)
| | - Chuanjuan Lv
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China; (G.X.); (C.L.); (H.X.); (K.L.); (H.L.)
| | - Huangwei Xu
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China; (G.X.); (C.L.); (H.X.); (K.L.); (H.L.)
| | - Kai Li
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China; (G.X.); (C.L.); (H.X.); (K.L.); (H.L.)
| | - Huaiwei Liu
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China; (G.X.); (C.L.); (H.X.); (K.L.); (H.L.)
| | - Yongzhen Xia
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China; (G.X.); (C.L.); (H.X.); (K.L.); (H.L.)
- Correspondence: (Y.X.); (L.X.); Tel.: +86-532-5863-1572 (Y.X.); +1-509-335-2787 (L.X.)
| | - Luying Xun
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China; (G.X.); (C.L.); (H.X.); (K.L.); (H.L.)
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-7520, USA
- Correspondence: (Y.X.); (L.X.); Tel.: +86-532-5863-1572 (Y.X.); +1-509-335-2787 (L.X.)
| |
Collapse
|
30
|
Tobramycin Adaptation Enhances Policing of Social Cheaters in Pseudomonas aeruginosa. Appl Environ Microbiol 2021; 87:e0002921. [PMID: 33837019 DOI: 10.1128/aem.00029-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The Pseudomonas aeruginosa LasR-LasI (LasR-I) quorum sensing system regulates secreted proteases that can be exploited by cheaters, such as quorum sensing receptor-defective (lasR) mutants. lasR mutants emerge in populations growing on casein as a sole source of carbon and energy. These mutants are exploitative cheaters because they avoid the substantial cost of engaging in quorum sensing. Previous studies showed that quorum sensing increases resistance to some antibiotics, such as tobramycin. Here, we show that tobramycin suppressed the emergence of lasR mutants in casein-passaged populations. Several mutations accumulated in those populations, indicating evidence of antibiotic adaptation. We found that mutations in one gene, ptsP, increased antibiotic resistance and also pleiotropically increased production of a quorum sensing-controlled phenazine, pyocyanin. When passaged on casein, ptsP mutants suppressed cheaters in a manner that was tobramycin independent. We found that the mechanism of cheater suppression in ptsP mutants relied on pyocyanin, which acts as a policing toxin by selectively blocking growth of cheaters. Thus, tobramycin suppresses lasR mutants through two mechanisms: first, through direct effects on cheaters and, second, by selecting mutations in ptsP that suppressed cheating in a tobramycin-independent manner. This work demonstrates how adaptive mutations can alter the dynamics of cooperator-cheater relationships, which might be important for populations adapting to antibiotics during interspecies competition or infections. IMPORTANCE The opportunistic pathogen Pseudomonas aeruginosa is a model for understanding quorum sensing, a type of cell-cell signaling important for cooperation. Quorum sensing controls production of cooperative goods, such as exoenzymes, which are vulnerable to cheating by quorum sensing-defective mutants. Because uncontrolled cheating can ultimately cause a population to collapse, much focus has been on understanding how P. aeruginosa can control cheaters. We show that an antibiotic, tobramycin, can suppress cheaters in cooperating P. aeruginosa populations. Tobramycin suppresses cheaters directly because the cheaters are more susceptible to tobramycin than cooperators. Tobramycin also selects for mutations in a gene, ptsP, that suppresses cheaters independent of tobramycin through pleiotropic regulation of a policing toxin, pyocyanin. This work supports the idea that adaptation to antibiotics can have unexpected effects on the evolution of quorum sensing and has implications for understanding how cooperation evolves in dynamic bacterial communities.
Collapse
|
31
|
Anju VT, Busi S, Ranganathan S, Ampasala DR, Kumar S, Suchiang K, Kumavath R, Dyavaiah M. Sesamin and sesamolin rescues Caenorhabditis elegans from Pseudomonas aeruginosa infection through the attenuation of quorum sensing regulated virulence factors. Microb Pathog 2021; 155:104912. [PMID: 33932548 DOI: 10.1016/j.micpath.2021.104912] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/21/2021] [Accepted: 04/21/2021] [Indexed: 10/21/2022]
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen emerging as a public health threat owing to their multidrug resistance profiles. The quorum sensing systems of P. aeruginosa play a pivotal role in the regulation of virulence and act as the target for the development of alternative therapeutics. The study discussed about anti-quorum sensing and antibiofilm properties of lignans (sesamin and sesamolin) found in Sesamum indicum (L.) against P. aeruginosa. The effect of lignans, sesamin and sesamolin on LasR/RhlR mediated virulence factor production, biofilm formation and bacterial motility were studied. To elucidate the mechanism of action of lignans on QS pathways, QS gene expression and in depth in silico analysis were performed. Both the lignans exerted anti-quorum sensing activity at 75 μg/ml without affecting the growth of bacteria. SA and SO exhibited decreased production of virulence factors such as pyocyanin, proteases, elastase and chitinase. The important biofilm constituents of P. aeruginosa including alginate, exopolysaccharides and rhamnolipids were strongly affected by the lignans. Likewise, plausible mechanism of action of lignans were determined through the down regulation of QS regulated gene expression, molecular docking and molecular simulation studies. The in vitro analysis was supported by C. elegans infection model. SA and SO rescued pre-infected worms within 8 days of post infection and reduced the colonization of bacteria inside the intestine due to the anti-infective properties of lignans. The lignans exhibited profound action on Las pathway rather than Rhl which was elucidated through in vitro and in silico assays. In silico pharmacokinetic analysis portrayed the opportunities to employ ligands as potential therapeutics for human use. The deep insights into the anti-QS, anti-biofilm and mechanism of action of lignans can contribute to the development of novel anti-infectives against pseuodmonal infections.
Collapse
Affiliation(s)
- V T Anju
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, 605014, India
| | - Siddhardha Busi
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, 605014, India.
| | - Sampathkumar Ranganathan
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry, 605014, India
| | - Dinakara Rao Ampasala
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry, 605014, India
| | - Sandeep Kumar
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, 605014, India
| | - Kitlangki Suchiang
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, 605014, India
| | - Ranjith Kumavath
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kerala, 671316, India
| | - Madhu Dyavaiah
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, 605014, India.
| |
Collapse
|
32
|
Kumar M, Rao M, Mathur T, Barman TK, Joshi V, Chaira T, Singhal S, Pandya M, Al Khodor S, Upadhyay DJ, Masuda N. Azithromycin Exhibits Activity Against Pseudomonas aeruginosa in Chronic Rat Lung Infection Model. Front Microbiol 2021; 12:603151. [PMID: 33967970 PMCID: PMC8102702 DOI: 10.3389/fmicb.2021.603151] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 03/15/2021] [Indexed: 12/19/2022] Open
Abstract
Pseudomonas aeruginosa forms biofilms in the lungs of chronically infected cystic fibrosis patients, which are tolerant to both the treatment of antibiotics and the host immune system. Normally, antibiotics are less effective against bacteria growing in biofilms; azithromycin has shown a potent efficacy in cystic fibrosis patients chronically infected with P. aeruginosa and improved their lung function. The present study was conducted to evaluate the effect of azithromycin on P. aeruginosa biofilm. We show that azithromycin exhibited a potent activity against P. aeruginosa biofilm, and microscopic observation revealed that azithromycin substantially inhibited the formation of solid surface biofilms. Interestingly, we observed that azithromycin restricted P. aeruginosa biofilm formation by inhibiting the expression of pel genes, which has been previously shown to play an essential role in bacterial attachment to solid-surface biofilm. In a rat model of chronic P. aeruginosa lung infection, we show that azithromycin treatment resulted in the suppression of quorum sensing-regulated virulence factors, significantly improving the clearance of P. aeruginosa biofilms compared to that in the placebo control. We conclude that azithromycin attenuates P. aeruginosa biofilm formation, impairs its ability to produce extracellular biofilm matrix, and increases its sensitivity to the immune system, which may explain the clinical efficacy of azithromycin in cystic fibrosis patients.
Collapse
Affiliation(s)
- Manoj Kumar
- Department of Microbiology, Daiichi Sankyo India Pharma Private Limited, Gurgaon, India.,Research Department, Sidra Medicine, Doha, Qatar
| | - Madhvi Rao
- Department of Microbiology, Daiichi Sankyo India Pharma Private Limited, Gurgaon, India
| | - Tarun Mathur
- Department of Microbiology, Daiichi Sankyo India Pharma Private Limited, Gurgaon, India
| | - Tarani Kanta Barman
- Department of Microbiology, Daiichi Sankyo India Pharma Private Limited, Gurgaon, India
| | - Vattan Joshi
- Department of Microbiology, Daiichi Sankyo India Pharma Private Limited, Gurgaon, India
| | - Tridib Chaira
- Department of Pharmacokinetics and Metabolism, Daiichi Sankyo India Pharma Private Limited, Gurgaon, India
| | - Smita Singhal
- Department of Microbiology, Daiichi Sankyo India Pharma Private Limited, Gurgaon, India
| | - Manisha Pandya
- Department of Microbiology, Daiichi Sankyo India Pharma Private Limited, Gurgaon, India
| | | | - Dilip J Upadhyay
- Department of Microbiology, Daiichi Sankyo India Pharma Private Limited, Gurgaon, India
| | - Nobuhisa Masuda
- Department of Microbiology, Daiichi Sankyo India Pharma Private Limited, Gurgaon, India
| |
Collapse
|
33
|
Kumar L, Brenner N, Brice J, Klein-Seetharaman J, Sarkar SK. Cephalosporins Interfere With Quorum Sensing and Improve the Ability of Caenorhabditis elegans to Survive Pseudomonas aeruginosa Infection. Front Microbiol 2021; 12:598498. [PMID: 33584609 PMCID: PMC7876323 DOI: 10.3389/fmicb.2021.598498] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 01/07/2021] [Indexed: 11/13/2022] Open
Abstract
Pseudomonas aeruginosa utilizes the quorum sensing (QS) system to strategically coordinate virulence and biofilm formation. Targeting QS pathways may be a potential anti-infective approach to treat P. aeruginosa infections. In the present study, we define cephalosporins' anti-QS activity using Chromobacterium violaceum CV026 for screening and QS-regulated mutants of P. aeruginosa for validation. We quantified the effects of three cephalosporins, cefepime, ceftazidime, and ceftriaxone, on (1) pyocyanin production using spectrophotometric assay, (2) bacterial motility using agar plate assay, and (3) biofilm formation using scanning electron microscopy. We also studied isogenic QS mutant strains of PAO1 (ΔlasR,ΔrhlR,ΔpqsA, and ΔpqsR) to compare and distinguish QS-mediated effects on the motility phenotypes and bacterial growth with and without sub-MIC concentrations of antibiotics. Results showed that cephalosporins have anti-QS activity and reduce bacterial motility, pyocyanin production, and biofilm formation for CV026 and PAO1. Also, sub-MICs of cefepime increased aminoglycosides' antimicrobial activity against P. aeruginosa PAO1, suggesting the advantage of combined anti-QS and antibacterial treatment. To correlate experimentally observed anti-QS effects with the interactions between cephalosporins and QS receptors, we performed molecular docking with ligand binding sites of quorum sensing receptors using Autodock Vina. Molecular docking predicted cephalosporins' binding affinities to the ligand-binding pocket of QS receptors (CviR, LasR, and PqsR). To validate our results using an infection model, we quantified the survival rate of Caenorhabditis elegans following P. aeruginosa PAO1 challenge at concentrations less than the minimum inhibitory concentration (MIC) of antibiotics. C. elegans infected with PAO1 without antibiotics showed 0% survivability after 72 h. In contrast, PAO1-infected C. elegans showed 65 ± 5%, 58 ± 4%, and 49 ± 8% survivability after treatment with cefepime, ceftazidime, and ceftriaxone, respectively. We determined the survival rates of C. elegans infected by QS mutant strains ΔlasR (32 ± 11%), ΔrhlR (27 ± 8%), ΔpqsA (27 ± 10%), and ΔpqsR (37 ± 6%), which suggest essential role of QS system in virulence. In summary, cephalosporins at sub-MIC concentrations show anti-QS activity and enhance the antibacterial efficacy of aminoglycosides, a different class of antibiotics. Thus, cephalosporins at sub-MIC concentrations in combination with other antibiotics are potential candidates for developing therapies to combat infections caused by P. aeruginosa.
Collapse
Affiliation(s)
- Lokender Kumar
- Department of Physics, Colorado School of Mines, Golden, CO, United States
| | - Nathanael Brenner
- Quantitative Biosciences and Engineering, Colorado School of Mines, Golden, CO, United States
| | - John Brice
- Department of Physics, Colorado School of Mines, Golden, CO, United States
| | - Judith Klein-Seetharaman
- Quantitative Biosciences and Engineering, Colorado School of Mines, Golden, CO, United States.,Department of Chemistry, Colorado School of Mines, Golden, CO, United States
| | - Susanta K Sarkar
- Department of Physics, Colorado School of Mines, Golden, CO, United States
| |
Collapse
|
34
|
Barton IS, Eagan JL, Nieves-Otero PA, Reynolds IP, Platt TG, Fuqua C. Co-dependent and Interdigitated: Dual Quorum Sensing Systems Regulate Conjugative Transfer of the Ti Plasmid and the At Megaplasmid in Agrobacterium tumefaciens 15955. Front Microbiol 2021; 11:605896. [PMID: 33552018 PMCID: PMC7856919 DOI: 10.3389/fmicb.2020.605896] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 12/21/2020] [Indexed: 11/13/2022] Open
Abstract
Members of the Rhizobiaceae, often carry multiple secondary replicons in addition to the primary chromosome with compatible repABC-based replication systems. Unlike secondary chromosomes and chromids, repABC-based megaplasmids and plasmids can undergo copy number fluctuations and are capable of conjugative transfer in response to environmental signals. Several Agrobacterium tumefaciens lineages harbor three secondary repABC-based replicons, including a secondary chromosome (often linear), the Ti (tumor-inducing) plasmid and the At megaplasmid. The Ti plasmid is required for virulence and encodes a conjugative transfer (tra) system that is strictly regulated by a subset of plant-tumor released opines and a well-described acyl-homoserine lactone (AHL)-based quorum-sensing mechanism. The At plasmids are generally not required for virulence, but carry genes that enhance rhizosphere survival, and these plasmids are often conjugatively proficient. We report that the At megaplasmid of the octopine-type strain A. tumefaciens 15955 encodes a quorum-controlled conjugation system that directly interacts with the paralogous quorum sensing system on the co-resident Ti plasmid. Both the pAt15955 and pTi15955 plasmids carry homologs of a TraI-type AHL synthase, a TraR-type AHL-responsive transcription activator, and a TraM-type anti-activator. The traI genes from both pTi15955 and pAt15955 can direct production of the inducing AHL (3-octanoyl-L-homoserine lactone) and together contribute to the overall AHL pool. The TraR protein encoded on each plasmid activates AHL-responsive transcription of target tra gene promoters. The pAt15955 TraR can cross-activate tra genes on the Ti plasmid as strongly as its cognate tra genes, whereas the pTi15955 TraR is preferentially biased toward its own tra genes. Putative tra box elements are located upstream of target promoters, and comparing between plasmids, they are in similar locations and share an inverted repeat structure, but have distinct consensus sequences. The two AHL quorum sensing systems have a combinatorial effect on conjugative transfer of both plasmids. Overall, the interactions described here have implications for the horizontal transfer and evolutionary stability of both plasmids and, in a broad sense, are consistent with other repABC systems that often have multiple quorum-sensing controlled secondary replicons.
Collapse
Affiliation(s)
- Ian S Barton
- Department of Biology, Indiana University, Bloomington, IN, United States
| | - Justin L Eagan
- Department of Biology, Indiana University, Bloomington, IN, United States
| | | | - Ian P Reynolds
- Department of Biology, Indiana University, Bloomington, IN, United States
| | - Thomas G Platt
- Division of Biology, Kansas State University, Manhattan, KS, United States
| | - Clay Fuqua
- Department of Biology, Indiana University, Bloomington, IN, United States
| |
Collapse
|
35
|
Khan M, Husain FM, Zia Q, Ahmad E, Jamal A, Alaidarous M, Banawas S, Alam MM, Alshehri BA, Jameel M, Alam P, Ahamed MI, Ansari AH, Ahmad I. Anti-quorum Sensing and Anti-biofilm Activity of Zinc Oxide Nanospikes. ACS OMEGA 2020; 5:32203-32215. [PMID: 33376858 PMCID: PMC7758897 DOI: 10.1021/acsomega.0c03634] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/04/2020] [Indexed: 05/25/2023]
Abstract
This study evaluates the impact of two separate incubation periods (4 and 6 weeks) on the morphology of sol-gel-fabricated ZnO nanospikes (ZNs), that is, ZN1 and ZN2, respectively. We further analyzed the inhibitory effects of ZN1 and ZN2 on quorum sensing (QS) and biofilm formation in Pseudomonas aeruginosa (PAO1) and Chromobacterium violaceum (strains 12472 and CVO26). The size of the synthesized ZNs was in the range of 40-130 nm, and finer nanoparticles were synthesized after an incubation period of 6 weeks. Treatment with ZNs decreased the production of violacein in the pathogen without affecting the bacterial growth, which indicated that ZNs inhibited the QS signaling regulated by N-acyl homoserine lactone. ZN2 had a higher inhibitory action on the virulence factor productivity than ZN1. Furthermore, ZN2-treated cells displayed a substantial decrease in azocasein-degrading protease activity (80%), elastase activity (83%), and pyocyanin production (85%) relative to untreated P. aeruginosa PAO1 cells. Treatment with ZN2 decreased swarming motility and exopolysaccharide production by 89 and 85%, respectively. ZN2 was effective against both the las & pqs systems of P. aeruginosa and exhibited broad-spectrum activity. Additionally, ZN2 was more efficient in inhibiting the biofilm formation at the attachment stage than ZN1. These findings revealed that in P. aeruginosa, ZN2 demonstrated inhibitory effects on QS as well as on the development of biofilms. Thus, ZN2 can be potentially used to treat drug-resistant P. aeruginosa infections.
Collapse
Affiliation(s)
- Mohd.
Farhan Khan
- Nano
Solver Lab, Department of Mechanical Engineering, Z. H. College of
Engineering & Technology, Aligarh Muslim
University, Aligarh 202002, India
- Department
of Science, Gagan College of Management
and Technology, Aligarh 202002, India
| | - Fohad Mabood Husain
- Department
of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Qamar Zia
- Health
and Basic Science Research Centre, Majmaah
University, Majmaah 11952, Saudi Arabia
- Department
of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia
| | - Ejaz Ahmad
- Interdisciplinary
Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Azfar Jamal
- Health
and Basic Science Research Centre, Majmaah
University, Majmaah 11952, Saudi Arabia
- Department
of Biology, College of Science, Majmaah
University, Majmaah 11952, Saudi Arabia
| | - Mohammed Alaidarous
- Health
and Basic Science Research Centre, Majmaah
University, Majmaah 11952, Saudi Arabia
- Department
of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia
| | - Saeed Banawas
- Health
and Basic Science Research Centre, Majmaah
University, Majmaah 11952, Saudi Arabia
- Department
of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia
- Department
of Biomedical Sciences, Oregon State University, Corvallis, Oregon 97331, United States
| | - Md. Manzar Alam
- Regional
Research Institute of Unani Medicine (Under CCRUM, Ministry of AYUSH), Patna 800008, India
| | - Bader A. Alshehri
- Health
and Basic Science Research Centre, Majmaah
University, Majmaah 11952, Saudi Arabia
| | - Mohd. Jameel
- Department
of Zoology, Faculty of Life Sciences, Aligarh
Muslim University, Aligarh 202002, India
| | - Pravej Alam
- Department of Biology, Prince Sattam bin
Abdulaziz Univrsity, Alkharj 11942, Kingdom of Saudi Arabia
| | - Mohd Imran Ahamed
- Department of Chemistry, Aligarh
Muslim
University, Aligarh 202002, India
| | - Akhter H. Ansari
- Nano
Solver Lab, Department of Mechanical Engineering, Z. H. College of
Engineering & Technology, Aligarh Muslim
University, Aligarh 202002, India
| | - Iqbal Ahmad
- Department of
Agricultural Microbiology, Faculty of Agricultural
Sciences, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
36
|
Haque M, Islam S, Sheikh MA, Dhingra S, Uwambaye P, Labricciosa FM, Iskandar K, Charan J, Abukabda AB, Jahan D. Quorum sensing: a new prospect for the management of antimicrobial-resistant infectious diseases. Expert Rev Anti Infect Ther 2020; 19:571-586. [PMID: 33131352 DOI: 10.1080/14787210.2021.1843427] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Quorum-sensing (QS) is a microbial cell-to-cell communication system that utilizes small signaling molecules to mediates interactions between cross-kingdom microorganisms, including Gram-positive and -negative microbes. QS molecules include N-acyl-homoserine-lactones (AHLs), furanosyl borate, hydroxyl-palmitic acid methylester, and methyl-dodecanoic acid. These signaling molecules maintain the symbiotic relationship between a host and the healthy microbial flora and also control various microbial virulence factors. This manuscript has been developed based on published scientific papers. AREAS COVERED Furanones, glycosylated chemicals, heavy metals, and nanomaterials are considered QS inhibitors (QSIs) and are therefore capable of inhibiting the microbial QS system. QSIs are currently being considered as antimicrobial therapeutic options. Currently, the low speed at which new antimicrobial agents are being developed impairs the treatment of drug-resistant infections. Therefore, QSIs are currently being studied as potential interventions targeting QS-signaling molecules and quorum quenching (QQ) enzymes to reduce microbial virulence. EXPERT OPINION QSIs represent a novel opportunity to combat antimicrobial resistance (AMR). However, no clinical trials have been conducted thus far assessing their efficacy. With the recent advancements in technology and the development of well-designed clinical trials aimed at targeting various components of the, QS system, these agents will undoubtedly provide a useful alternative to treat infectious diseases.
Collapse
Affiliation(s)
- Mainul Haque
- Faculty of Medicine and Defence Health, Universiti Pertahanan Nasional Malaysia (National Defence University of Malaysia), Kuala Lumpur, Malaysia
| | - Salequl Islam
- Department of Microbiology, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | | | - Sameer Dhingra
- School of Pharmacy, Faculty of Medical Sciences, The University of the West Indies, St. Augustine Campus, Eric Williams Medical Sciences Complex, Trinidad & Tobago
| | - Peace Uwambaye
- Department of Preventive & Community Dentistry, University of Rwanda College of Medicine and Health Sciences, School of Dentistry, Kigali, Rwanda
| | | | - Katia Iskandar
- Department of Mathématiques Informatique et Télécommunications, Université Toulouse III, Paul Sabatier, INSERM, UMR 1027, F-31000 Toulouse, France.,INSPECT-LB: Institut National de Santé Publique, d'Épidémiologie Clinique et de Toxicologie-Liban, Beirut 6573-14, Lebanon.,Faculty of Pharmacy, Lebanese University, Beirut 1106, Lebanon
| | - Jaykaran Charan
- Department of Pharmacology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | | | - Dilshad Jahan
- Department of Hematology, Asgar Ali Hospital, Dhaka, Bangladesh
| |
Collapse
|
37
|
Current Knowledge and Future Directions in Developing Strategies to Combat Pseudomonas aeruginosa Infection. J Mol Biol 2020; 432:5509-5528. [PMID: 32750389 DOI: 10.1016/j.jmb.2020.07.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/17/2020] [Accepted: 07/22/2020] [Indexed: 12/21/2022]
Abstract
In the face of growing antimicrobial resistance, there is an urgent need for the development of effective strategies to target Pseudomonas aeruginosa. This metabolically versatile bacterium can cause a wide range of severe opportunistic infections in patients with serious underlying medical conditions, such as those with burns, surgical wounds or people with cystic fibrosis. Many of the key adaptations that arise in this organism during infection are centered on core metabolism and virulence factor synthesis. Interfering with these processes may provide a new strategy to combat infection which could be combined with conventional antibiotics. This review will provide an overview of the most recent work that has advanced our understanding of P. aeruginosa infection. Strategies that exploit this recent knowledge to combat infection will be highlighted alongside potential alternative therapeutic options and their limitations.
Collapse
|
38
|
Dehbashi S, Pourmand MR, Alikhani MY, Asl SS, Arabestani MR. Coordination of las regulated virulence factors with Multidrug-Resistant and extensively drug-resistant in superbug strains of P. aeruginosa. Mol Biol Rep 2020; 47:4131-4143. [PMID: 32474845 DOI: 10.1007/s11033-020-05559-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 05/26/2020] [Indexed: 12/21/2022]
Abstract
Successful pathogenicity often resulted from a complicated association between virulence and antibiotic resistance in Pseudomonas aeruginosa infections. Therefore, the current study aimed to investigate the relationship between the las system and antibiotic resistance. Seventy-three (73) P. aeruginosa isolates were collected from burn wounds (26.02%), blood cultures (30.13%), catheters (12.32%), and urine culture (31.50%). Among the 73 collected isolates, 22 isolates were considered as multi-drug resistant (MDR) and 11 isolates as extensively-drug resistant (XDR). Furthermore, phenazines and LasA protease were detected among 21.91% and 32.87% of isolates, respectively. Quantitative real-time PCR assessment of KPC, MBL, and lasI/R indicated that resistance and virulence factors are more expressed in XDR strains than MDR strains. Also, the expression level of KPC and MBL reduced in non-biofilm forming strains. However, increased expression levels of lasI, lasR, and the KPC genes were observed in LasA and LasB protease producing strains. Interestingly, 16 known sequence types (including ST108, ST260, ST217) and three novel STs (ST2452, ST2427, and ST2542) were characterized among the collected isolates, which are related to the virulence and resistance. In MDR-XDR strains, a strong correlation between lasI/R and the variants of antibiotic resistance genes was found. In conclusion, the pathogenicity of P. aeruginosa may increase the prevalence of antibiotic-resistant strains.
Collapse
Affiliation(s)
- Sanaz Dehbashi
- Department of Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Reza Pourmand
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Yousef Alikhani
- Department of Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sara Soleimani Asl
- Department of Anatomy, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Reza Arabestani
- Department of Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
- Nutrition Health Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
39
|
Yang Y, Ma S, Xie Y, Wang M, Cai T, Li J, Guo D, Zhao L, Xu Y, Liang S, Xia X, Shi C. Inactivation of Pseudomonas aeruginosa Biofilms by 405-Nanometer-Light-Emitting Diode Illumination. Appl Environ Microbiol 2020; 86:e00092-20. [PMID: 32169938 PMCID: PMC7205484 DOI: 10.1128/aem.00092-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/07/2020] [Indexed: 12/26/2022] Open
Abstract
Biofilm formation by Pseudomonas aeruginosa contributes to its survival on surfaces and represents a major clinical threat because of the increased tolerance of biofilms to disinfecting agents. This study aimed to investigate the efficacy of 405-nm light-emitting diode (LED) illumination in eliminating P. aeruginosa biofilms formed on stainless steel coupons under different temperatures. Time-dependent killing assays using planktonic and biofilm cells were used to determine the antimicrobial and antibiofilm activities of LED illumination. We also evaluated the effects of LED illumination on the disinfectant susceptibility, biofilm structure, extracellular polymeric substance (EPS) structure and composition, and biofilm-related gene expression of P. aeruginosa biofilm cells. Results showed that the abundance of planktonic P. aeruginosa cells was reduced by 0.88, 0.53, and 0.85 log CFU/ml following LED treatment for 2 h compared with untreated controls at 4, 10, and 25°C, respectively. For cells in biofilms, significant reductions (1.73, 1.59, and 1.68 log CFU/cm2) were observed following LED illumination for 2 h at 4, 10, and 25°C, respectively. Moreover, illuminated P. aeruginosa biofilm cells were more sensitive to benzalkonium chloride or chlorhexidine than untreated cells. Scanning electron microscopy and confocal laser scanning microscopic observation indicated that both the biofilm structure and EPS structure were disrupted by LED illumination. Further, reverse transcription-quantitative PCR revealed that LED illumination downregulated the transcription of several genes associated with biofilm formation. These findings suggest that LED illumination has the potential to be developed as an alternative method for prevention and control of P. aeruginosa biofilm contamination.IMPORTANCEPseudomonas aeruginosa can form biofilms on medical implants, industrial equipment, and domestic surfaces, contributing to high morbidity and mortality rates. This study examined the antibiofilm activity of 405-nm light-emitting diode (LED) illumination against mature biofilms formed on stainless steel coupons. We found that the disinfectant susceptibility, biofilm structure, and extracellular polymeric substance structure and composition were disrupted by LED illumination. We then investigated the transcription of several critical P. aeruginosa biofilm-related genes and analyzed the effect of illumination temperature on the above characteristics. Our results confirmed that LED illumination could be developed into an effective and safe method to counter P. aeruginosa biofilm contamination. Further research will be focused on the efficacy and application of LED illumination for elimination of complicated biofilms in the environment.
Collapse
Affiliation(s)
- Yanpeng Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Sheng Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Yawen Xie
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Muxue Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Ting Cai
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Jiahui Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Du Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Lingjun Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Yunfeng Xu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan, China
| | - Sen Liang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| | - Xiaodong Xia
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Chao Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
40
|
Parasuraman P, Devadatha B, Sarma VV, Ranganathan S, Ampasala DR, Reddy D, Kumavath R, Kim IW, Patel SKS, Kalia VC, Lee JK, Siddhardha B. Inhibition of Microbial Quorum Sensing Mediated Virulence Factors by Pestalotiopsis sydowiana. J Microbiol Biotechnol 2020; 30:571-582. [PMID: 31986566 PMCID: PMC9728384 DOI: 10.4014/jmb.1907.07030] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Quorum sensing (QS)-mediated infections cause severe diseases in human beings. The control of infectious diseases by inhibiting QS using antipathogenic drugs is a promising approach as antibiotics are proving inefficient in treating these diseases. Marine fungal (Pestalotiopsis sydowiana PPR) extract was found to possess effective antipathogenic characteristics. The minimum inhibitory concentration (MIC) of the fungal extract against test pathogen Pseudomonas aeruginosa PAO1 was 1,000 μg/ml. Sub-MIC concentrations (250 and 500 μg/ml) of fungal extract reduced QS-regulated virulence phenotypes such as the production of pyocyanin, chitinase, protease, elastase, and staphylolytic activity in P. aeruginosa PAO1 by 84.15%, 73.15%, 67.37%, 62.37%, and 33.65%, respectively. Moreover, it also reduced the production of exopolysaccharides (74.99%), rhamnolipids (68.01%), and alginate (54.98%), and inhibited the biofilm formation of the bacteria by 90.54%. In silico analysis revealed that the metabolite of P. sydowiana PPR binds to the bacterial QS receptor proteins (LasR and RhlR) similar to their respective natural signaling molecules. Cyclo(-Leu-Pro) (CLP) and 4-Hydroxyphenylacetamide (4-HPA) were identified as potent bioactive compounds among the metabolites of P. sydowiana PPR using in silico approaches. The MIC values of CLP and 4-HPA against P. aeruginosa PAO1 were determined as 250 and 125 μg/ml, respectively. All the antivirulence assays were conducted at sub-MIC concentrations of CLP (125 μg/ml) and 4-HPA (62.5 μg/ml), which resulted in marked reduction in all the investigated virulence factors. This was further supported by gene expression studies. The findings suggest that the metabolites of P. sydowiana PPR can be employed as promising QS inhibitors that target pathogenic bacteria.
Collapse
Affiliation(s)
- Paramanantham Parasuraman
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - B Devadatha
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - V. Venkateswara Sarma
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Sampathkumar Ranganathan
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Dinakara Rao Ampasala
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Dhanasekhar Reddy
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Tejaswini Hills, Periya (P.O), Kasaragod, Kerala 671320, India
| | - Ranjith Kumavath
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Tejaswini Hills, Periya (P.O), Kasaragod, Kerala 671320, India
| | - In-Won Kim
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Sanjay K. S. Patel
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Vipin Chandra Kalia
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea,Corresponding authors B.S. Phone: +91-9597761788 E-mail: V.C.K. Phone: +82-2-458-3501 E-mail: J.-K.L. Phone: 82-2-450-3505 Fax: 82-2-458-3504 E-mail:
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea,Corresponding authors B.S. Phone: +91-9597761788 E-mail: V.C.K. Phone: +82-2-458-3501 E-mail: J.-K.L. Phone: 82-2-450-3505 Fax: 82-2-458-3504 E-mail:
| | - Busi Siddhardha
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry 605014, India,Corresponding authors B.S. Phone: +91-9597761788 E-mail: V.C.K. Phone: +82-2-458-3501 E-mail: J.-K.L. Phone: 82-2-450-3505 Fax: 82-2-458-3504 E-mail:
| |
Collapse
|
41
|
Walker JN, Poppler LH, Pinkner CL, Hultgren SJ, Myckatyn TM. Establishment and Characterization of Bacterial Infection of Breast Implants in a Murine Model. Aesthet Surg J 2020; 40:516-528. [PMID: 31259380 DOI: 10.1093/asj/sjz190] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Staphylococcus epidermidis and Pseudomonas aeruginosa are the most common causes of Gram-positive and Gram-negative breast implant-associated infection. Little is known about how these bacteria infect breast implants as a function of implant surface characteristics and timing of infection. OBJECTIVES The aim of this work was to establish a mouse model for studying the impact of various conditions on breast implant infection. METHODS Ninety-one mice were implanted with 273 breast implant shells and infected with S. epidermidis or P. aeruginosa. Smooth, microtextured, and macrotextured breast implant shells were implanted in each mouse. Bacterial inoculation occurred during implantation or 1 day later. Implants were retrieved 1 or 7 days later. Explanted breast implant shells were sonicated, cultured, and colony-forming units determined or analyzed with scanning electron microscopy. RESULTS P. aeruginosa could be detected on all device surfaces at 1- and 7- days post infection (dpi), when mice were implanted and infected concurrently or when they were infected 1- day after implantation. However, P. aeruginosa infection was more robust on implant shells retrieved at 7 dpi and particularly on the macrotextured devices that were infected 1 day post implantation. S. epidermidis was mostly cleared from implants when mice were infected and implanted concurrently. Other the other hand, S. epidermidis could be detected on all device surfaces at 1 dpi and 2 days post implantation. However, S. epidermdis infection was suppressed by 7 dpi and 8 days post implantation. CONCLUSIONS S. epidermidis required higher inoculating doses to cause infection and was cleared within 7 days. P. aeruginosa infected at lower inoculating doses, with robust biofilms noted 7 days later.
Collapse
|
42
|
Valli RXE, Lyng M, Kirkpatrick CL. There is no hiding if you Seq: recent breakthroughs in Pseudomonas aeruginosa research revealed by genomic and transcriptomic next-generation sequencing. J Med Microbiol 2020; 69:162-175. [PMID: 31935190 DOI: 10.1099/jmm.0.001135] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The advent of next-generation sequencing technology has revolutionized the field of prokaryotic genetics and genomics by allowing interrogation of entire genomes, transcriptomes and global transcription factor binding profiles. As more studies employing these techniques have been performed, the state of the art regarding prokaryotic gene regulation has developed from the level of individual genes to genetic regulatory networks and systems biology. When applied to bacterial pathogens, particularly valuable insights have been gained into the regulation of virulence-associated genes, their relative importance to bacterial survival in planktonic, biofilm or host infection scenarios, antimicrobial resistance and the molecular details of host-pathogen interactions. This review outlines some of the latest developments and applications of next-generation sequencing techniques that have used primarily Pseudomonas aeruginosa as a model system. We focus particularly on insights into Pseudomonas virulence and infection that have been gained from these approaches and the future directions in which this field could develop.
Collapse
Affiliation(s)
- Richard X E Valli
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Mark Lyng
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Clare L Kirkpatrick
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| |
Collapse
|
43
|
PQS Signaling for More than a Quorum: the Collective Stress Response Protects Healthy Pseudomonas aeruginosa Populations. J Bacteriol 2019; 201:JB.00568-19. [PMID: 31527112 DOI: 10.1128/jb.00568-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
In this issue, Bru et al. connect Pseudomonas aeruginosa PQS signaling secretion during stress response to swarming behavior (J.-L. Bru, B. Rawson, C. Trinh, K. Whiteson, et al., J Bacteriol 201:e00383-19, 2019, https://doi.org/10.1128/JB.00383-19). Phage-infected or antibiotic-treated bacterial cells secrete PQS to repel healthy, unexposed cells away from the source of the stress. Thus, the collective stress response mechanism driven by PQS signaling influences spatial organization and population dynamics in P. aeruginosa that may provide competitive advantages in certain niches.
Collapse
|
44
|
An integrated genomic regulatory network of virulence-related transcriptional factors in Pseudomonas aeruginosa. Nat Commun 2019; 10:2931. [PMID: 31270321 PMCID: PMC6610081 DOI: 10.1038/s41467-019-10778-w] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 05/30/2019] [Indexed: 01/12/2023] Open
Abstract
The virulence of Pseudomonas aeruginosa, a Gram-negative opportunistic pathogen, is regulated by many transcriptional factors (TFs) that control the expression of quorum sensing and protein secretion systems. Here, we report a genome-wide, network-based approach to dissect the crosstalk between 20 key virulence-related TFs. Using chromatin immunoprecipitation coupled with high-throughput sequencing (ChIP-seq), as well as RNA-seq, we identify 1200 TF-bound genes and 4775 differentially expressed genes. We experimentally validate 347 of these genes as functional target genes, and describe the regulatory relationships of the 20 TFs with their targets in a network that we call ‘Pseudomonas aeruginosa genomic regulatory network’ (PAGnet). Analysis of the network led to the identification of novel functions for two TFs (ExsA and GacA) in quorum sensing and nitrogen metabolism. Furthermore, we present an online platform and R package based on PAGnet to facilitate updating and user-customised analyses. The virulence of Pseudomonas aeruginosa is regulated by many transcriptional factors (TFs). Here, the authors study the crosstalk between 20 key virulence-related TFs, validate 347 functional target genes, and describe the regulatory relationships of the 20 TFs with their targets in a network that is available as an online platform.
Collapse
|
45
|
Prateeksha, Rao CV, Das AK, Barik SK, Singh BN. ZnO/Curcumin Nanocomposites for Enhanced Inhibition of Pseudomonas aeruginosa Virulence via LasR-RhlR Quorum Sensing Systems. Mol Pharm 2019; 16:3399-3413. [PMID: 31260316 DOI: 10.1021/acs.molpharmaceut.9b00179] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The indiscriminate and excessive use of antibiotics has ultimately led to the emergence of bacterial resistant mutants or superbugs. These superbugs are difficult to control with conventional antibiotics. Disabling quorum sensing (QS), a population-density-dependent cell-to-cell communication process used by bacteria to coordinate the expression of virulence genes and biofilm formation, with dietary phytochemicals is emerging as a non-antibiotic strategy to inhibit bacterial pathogenicity. Although curcumin is an anti-QS agent and its delivery to cells has been a challenge due to poor bioavailability, ZnO/curcumin nanocomposites (ZnC-NCs) were fabricated with enhanced delivery of curcumin inside the bacterial superbug Pseudomonas aeruginosa PAO1 for effective inhibition of its QS and biofilm formation. Sustained release of curcumin from ZnC-NCs was observed where 51% curcumin at pH 7.2 and 83% curcumin at pH 5.5 were released within 48 h. ZnC-NCs also decreased the production of virulence factors and biofilm formation without affecting planktonic cell growth. Both LasR and RhlR QS systems were inhibited by ZnC-NCs. ZnC-NCs were also capable of protecting both mice as well as lung epithelial cells from killing by PAO1. The superoxide anions (O2·-) were also found as key players in suppressing PAO1 QS systems by ZnC-NCs. Overall, ZnC-NCs enhanced curcumin bioavailability for effective inhibition of QS signaling in P. aeruginosa via LasR-RhlR suppression and O2·- generation.
Collapse
Affiliation(s)
- Prateeksha
- Pharmacology Division , CSIR-National Botanical Research Institute , Lucknow 226001 , India
| | - Chandana V Rao
- Pharmacology Division , CSIR-National Botanical Research Institute , Lucknow 226001 , India
| | - Arun K Das
- Pharmacology Division , CSIR-National Botanical Research Institute , Lucknow 226001 , India
| | - Saroj K Barik
- Pharmacology Division , CSIR-National Botanical Research Institute , Lucknow 226001 , India
| | - Brahma N Singh
- Pharmacology Division , CSIR-National Botanical Research Institute , Lucknow 226001 , India
| |
Collapse
|
46
|
Modulation of Pseudomonas aeruginosa Quorum Sensing by Glutathione. J Bacteriol 2019; 201:JB.00685-18. [PMID: 30782628 DOI: 10.1128/jb.00685-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 02/07/2019] [Indexed: 01/24/2023] Open
Abstract
Pseudomonas aeruginosa uses quorum sensing (QS) to regulate the production of a battery of secreted products. At least some of these products are shared among the population and serve as public goods. When P. aeruginosa is grown on casein as the sole carbon and energy source, the QS-induced extracellular protease elastase is required for growth. We isolated a P. aeruginosa variant, which showed increased production of QS-induced factors after repeated transfers in casein broth. This variant, P. aeruginosa QS*, had a mutation in the glutathione synthesis gene gshA We describe several experiments that show a gshA coding variant and glutathione affect the QS response. The P. aeruginosa QS transcription factor LasR has a redox-sensitive cysteine (C79). We report that GshA variant cells with a LasR C79S substitution show a similar QS response to that of wild-type P. aeruginosa Surprisingly, it is not LasR but the QS transcription factor RhlR that is more active in bacteria containing the variant gshA Our results demonstrate that QS integrates information about cell density and the cellular redox state via glutathione levels.IMPORTANCE Pseudomonas aeruginosa and other bacteria coordinate group behaviors using a chemical communication system called quorum sensing (QS). The QS system of P. aeruginosa is complex, with several regulators and signals. We show that decreased levels of glutathione lead to increased gene activation in P. aeruginosa, which did not occur in a strain carrying the redox-insensitive variant of a transcription factor. The ability of P. aeruginosa QS transcription factors to integrate information about cell density and cellular redox state shows these transcription factors can fine-tune levels of the gene products they control in response to at least two types of signals or cues.
Collapse
|
47
|
Abstract
The bacterial pathogen Pseudomonas aeruginosa activates expression of many virulence genes in a cell density-dependent manner by using an intricate quorum-sensing (QS) network. QS in P. aeruginosa involves two acyl-homoserine-lactone circuits, LasI-LasR and RhlI-RhlR. LasI-LasR is required to activate many genes including those coding for RhlI-RhlR. P. aeruginosa causes chronic infections in the lungs of people with cystic fibrosis (CF). In these infections, LasR mutants are common, but rhlR-rhlI expression has escaped LasR regulation in many CF isolates. To better understand the evolutionary trajectory of P. aeruginosa QS in chronic infections, we grew LasR mutants of the well-studied P. aeruginosa strain, PAO1, in conditions that recapitulate an environment where QS signal synthesis by other bacteria might still occur. When QS is required for growth, addition of the RhlI product butyryl-homoserine lactone (C4-HSL), or bacteria that produce C4-HSL, to LasR mutants results in the rapid emergence of a population with a LasR-independent RhlI-RhlR QS system. These evolved populations exhibit subsequent growth without added C4-HSL. The variants that emerge have mutations in mexT, which codes for a transcription factor that controls expression of multiple genes. LasR-MexT mutants have a competitive advantage over both the parent LasR mutant and a LasR-MexT-RhlR mutant. Our findings suggest a plausible evolutionary trajectory for QS in P. aeruginosa CF infections where LasR mutants arise during infection, but because these mutants are surrounded by C4-HSL-producing P. aeruginosa, variants rewired to have a LasR-independent RhlIR system quickly emerge.
Collapse
|
48
|
Boursier ME, Combs JB, Blackwell HE. N-Acyl l-Homocysteine Thiolactones Are Potent and Stable Synthetic Modulators of the RhlR Quorum Sensing Receptor in Pseudomonas aeruginosa. ACS Chem Biol 2019; 14:186-191. [PMID: 30668907 DOI: 10.1021/acschembio.8b01079] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The RhlR quorum sensing (QS) receptor in the pathogen Pseudomonas aeruginosa plays a prominent role in infection, and both antagonism and agonism of RhlR have been shown to negatively regulate important virulence phenotypes. Non-native lactone ligands are known to modulate RhlR activity, but their utility as chemical probes is relatively limited due to hydrolytic instability. Herein, we report our design and biological evaluation of a suite of hybrid AHL analogs with structures merging (1) features of reported lead RhlR ligands and (2) head groups with improved hydrolytic stabilities. The most promising compounds identified were N-acyl l-homocysteine thiolactones, which displayed enhanced stabilities relative to lactones. Moreover, they were highly selective for RhlR over another key QS receptor in P. aeruginosa, LasR. These compounds are among the most potent RhlR modulators known and represent robust chemical tools to dissect the complex roles of RhlR in the P. aeruginosa QS circuitry.
Collapse
Affiliation(s)
- Michelle E. Boursier
- Department of Chemistry, University of Wisconsin−Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Joshua B. Combs
- Department of Chemistry, University of Wisconsin−Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Helen E. Blackwell
- Department of Chemistry, University of Wisconsin−Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
49
|
Das T, Das MC, Das A, Bhowmik S, Sandhu P, Akhter Y, Bhattacharjee S, De UC. Modulation of S. aureus and P. aeruginosa biofilm: an in vitro study with new coumarin derivatives. World J Microbiol Biotechnol 2018; 34:170. [PMID: 30406882 DOI: 10.1007/s11274-018-2545-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 10/20/2018] [Indexed: 02/07/2023]
Abstract
Coumarin is an important heterocyclic molecular framework of bioactive molecules against broad spectrum pathological manifestations. In the present study 18 new coumarin derivatives (CDs) were synthesized and characterized for antibiofilm activity against two model bacteria such as Staphylococcus aureus and Pseudomonas aeruginosa. It was observed that all the CDs executed significant effect in moderating activities against both planktonic and biofilm forms of these selected bacteria. Hence, to interpret the underlying probable reason of such antibiofilm effect, in-silico binding study of CDs with biofilm and motility associated proteins of these organisms were performed. All CDs have shown their propensity for occupying the native substrate binding pocket of each protein with moderate to strong binding affinities. One of the CDs such as CAMN1 showed highest binding affinity with these proteins. Interestingly, the findings of in-silico studies coincides the experimental results of antibiofilm and motility affect of CDs against both S. aureus and P. aeruginosa. Moreover, in-silico studies suggested that the antibiofilm activity of test CDs may be due to the interference of biofilm and motility associated proteins of the selected model organisms (PilT from P. aeruginosa and TarK, TarO from S. aureus). The detailed synthesis, characterization, methodology and results of biological screening along with computational studies have been reported. This study could be of greater interest in the context of the development of new anti-bacterial agent in the future.
Collapse
Affiliation(s)
- Tapas Das
- Department of Chemistry, Tripura University, Suryamaninagar, Tripura, 799022, India
| | - Manash C Das
- Department of Molecular Biology & Bioinformatics, Tripura University, Suryamaninagar, Tripura, 799022, India
| | - Antu Das
- Department of Molecular Biology & Bioinformatics, Tripura University, Suryamaninagar, Tripura, 799022, India
| | - Sukhen Bhowmik
- Department of Chemistry, Tripura University, Suryamaninagar, Tripura, 799022, India
| | - Padmani Sandhu
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, Shahpur, District-Kangra, Himachal Pradesh, 176206, India
| | - Yusuf Akhter
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, Shahpur, District-Kangra, Himachal Pradesh, 176206, India
| | - Surajit Bhattacharjee
- Department of Molecular Biology & Bioinformatics, Tripura University, Suryamaninagar, Tripura, 799022, India.
| | - Utpal Ch De
- Department of Chemistry, Tripura University, Suryamaninagar, Tripura, 799022, India.
| |
Collapse
|