1
|
McGrath KM, Russell SJ, Fer E, Garmendia E, Hosgel A, Baltrus DA, Kaçar B. Fitness benefits of a synonymous substitution in an ancient EF-Tu gene depend on the genetic background. J Bacteriol 2024; 206:e0032923. [PMID: 38289064 PMCID: PMC10882980 DOI: 10.1128/jb.00329-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/05/2024] [Indexed: 02/13/2024] Open
Abstract
Synonymous mutations are changes to DNA sequence, which occur within translated genes but which do not affect the protein sequence. Although often referred to as silent mutations, evidence suggests that synonymous mutations can affect gene expression, mRNA stability, and even translation efficiency. A collection of both experimental and bioinformatic data has shown that synonymous mutations can impact cell phenotype, yet less is known about the molecular mechanisms and potential of beneficial or adaptive effects of such changes within evolved populations. Here, we report a beneficial synonymous mutation acquired via experimental evolution in an essential gene variant encoding the translation elongation factor protein EF-Tu. We demonstrate that this particular synonymous mutation increases EF-Tu mRNA and protein levels as well as global polysome abundance on RNA transcripts. Although presence of the synonymous mutation is clearly causative of such changes, we also demonstrate that fitness benefits are highly contingent on other potentiating mutations present within the genetic background in which the mutation arose. Our results underscore the importance of beneficial synonymous mutations, especially those that affect levels of proteins that are key for cellular processes.IMPORTANCEThis study explores the degree to which synonymous mutations in essential genes can influence adaptation in bacteria. An experimental system whereby an Escherichia coli strain harboring an engineered translation protein elongation factor-Tu (EF-Tu) was subjected to laboratory evolution. We find that a synonymous mutation acquired on the gene encoding for EF-Tu is conditionally beneficial for bacterial fitness. Our findings provide insight into the importance of the genetic background when a synonymous substitution is favored by natural selection and how such changes have the potential to impact evolution when critical cellular processes are involved.
Collapse
Affiliation(s)
- Kaitlyn M. McGrath
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, USA
- School of Plant Sciences, University of Arizona, Tucson, Arizona, USA
| | - Steven J. Russell
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Evrim Fer
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Microbial Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Eva Garmendia
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Ali Hosgel
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - David A. Baltrus
- School of Plant Sciences, University of Arizona, Tucson, Arizona, USA
| | - Betül Kaçar
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
2
|
McGrath KM, Russell SJ, Fer E, Garmendia E, Hosgel A, Baltrus DA, Kaçar B. A beneficial synonymous substitution in EF-Tu is contingent on genetic background. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.06.555949. [PMID: 37886545 PMCID: PMC10602032 DOI: 10.1101/2023.09.06.555949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Synonymous mutations are changes to DNA sequence that occur within translated genes but which do not affect the protein sequence. Although often referred to as silent mutations, evidence suggests that synonymous mutations can affect gene expression, mRNA stability, and even translation efficiency. A collection of both experimental and bioinformatic data has shown that synonymous mutations can impact cell phenotype, yet less is known about the molecular mechanisms and potential of beneficial or adaptive effects of such changes within evolved populations. Here, we report a beneficial synonymous mutation acquired via experimental evolution in an essential gene variant encoding the translation Elongation Factor protein EF-Tu. We demonstrate that this particular synonymous mutation increases EF-Tu mRNA and protein levels, as well as the polysome abundance on global transcripts. Although presence of the synonymous mutation is clearly causative of such changes, we also demonstrate that fitness benefits are highly contingent on other potentiating mutations present within the genetic background in which the mutation arose. Our results underscore the importance of beneficial synonymous mutations, especially those that affect levels of proteins that are key for cellular processes.
Collapse
Affiliation(s)
- Kaitlyn M. McGrath
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, USA
- School of Plant Sciences, University of Arizona, Tucson, AZ, USA
| | - Steven J. Russell
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Evrim Fer
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
- Microbial Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Eva Garmendia
- Department of Medical Biochemistry and Microbiology, Uppsala University, Sweden
| | - Ali Hosgel
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - David A. Baltrus
- School of Plant Sciences, University of Arizona, Tucson, AZ, USA
| | - Betül Kaçar
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
3
|
Garcia AK, Harris DF, Rivier AJ, Carruthers BM, Pinochet-Barros A, Seefeldt LC, Kaçar B. Nitrogenase resurrection and the evolution of a singular enzymatic mechanism. eLife 2023; 12:e85003. [PMID: 36799917 PMCID: PMC9977276 DOI: 10.7554/elife.85003] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/16/2023] [Indexed: 02/18/2023] Open
Abstract
The planetary biosphere is powered by a suite of key metabolic innovations that emerged early in the history of life. However, it is unknown whether life has always followed the same set of strategies for performing these critical tasks. Today, microbes access atmospheric sources of bioessential nitrogen through the activities of just one family of enzymes, nitrogenases. Here, we show that the only dinitrogen reduction mechanism known to date is an ancient feature conserved from nitrogenase ancestors. We designed a paleomolecular engineering approach wherein ancestral nitrogenase genes were phylogenetically reconstructed and inserted into the genome of the diazotrophic bacterial model, Azotobacter vinelandii, enabling an integrated assessment of both in vivo functionality and purified nitrogenase biochemistry. Nitrogenase ancestors are active and robust to variable incorporation of one or more ancestral protein subunits. Further, we find that all ancestors exhibit the reversible enzymatic mechanism for dinitrogen reduction, specifically evidenced by hydrogen inhibition, which is also exhibited by extant A. vinelandii nitrogenase isozymes. Our results suggest that life may have been constrained in its sampling of protein sequence space to catalyze one of the most energetically challenging biochemical reactions in nature. The experimental framework established here is essential for probing how nitrogenase functionality has been shaped within a dynamic, cellular context to sustain a globally consequential metabolism.
Collapse
Affiliation(s)
- Amanda K Garcia
- Department of Bacteriology, University of Wisconsin–MadisonMadisonUnited States
| | - Derek F Harris
- Department of Chemistry and Biochemistry, Utah State UniversityLoganUnited States
| | - Alex J Rivier
- Department of Bacteriology, University of Wisconsin–MadisonMadisonUnited States
| | - Brooke M Carruthers
- Department of Bacteriology, University of Wisconsin–MadisonMadisonUnited States
| | | | - Lance C Seefeldt
- Department of Chemistry and Biochemistry, Utah State UniversityLoganUnited States
| | - Betül Kaçar
- Department of Bacteriology, University of Wisconsin–MadisonMadisonUnited States
| |
Collapse
|
4
|
Sloan DB, Warren JM, Williams AM, Kuster SA, Forsythe ES. Incompatibility and Interchangeability in Molecular Evolution. Genome Biol Evol 2023; 15:evac184. [PMID: 36583227 PMCID: PMC9839398 DOI: 10.1093/gbe/evac184] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022] Open
Abstract
There is remarkable variation in the rate at which genetic incompatibilities in molecular interactions accumulate. In some cases, minor changes-even single-nucleotide substitutions-create major incompatibilities when hybridization forces new variants to function in a novel genetic background from an isolated population. In other cases, genes or even entire functional pathways can be horizontally transferred between anciently divergent evolutionary lineages that span the tree of life with little evidence of incompatibilities. In this review, we explore whether there are general principles that can explain why certain genes are prone to incompatibilities while others maintain interchangeability. We summarize evidence pointing to four genetic features that may contribute to greater resistance to functional replacement: (1) function in multisubunit enzyme complexes and protein-protein interactions, (2) sensitivity to changes in gene dosage, (3) rapid rate of sequence evolution, and (4) overall importance to cell viability, which creates sensitivity to small perturbations in molecular function. We discuss the relative levels of support for these different hypotheses and lay out future directions that may help explain the striking contrasts in patterns of incompatibility and interchangeability throughout the history of molecular evolution.
Collapse
Affiliation(s)
- Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, Colorado
| | - Jessica M Warren
- Center for Mechanisms of Evolution, Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, Arizona
| | - Alissa M Williams
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee
| | - Shady A Kuster
- Department of Biology, Colorado State University, Fort Collins, Colorado
| | - Evan S Forsythe
- Department of Biology, Colorado State University, Fort Collins, Colorado
| |
Collapse
|
5
|
Goldman AD, Kaçar B. Very early evolution from the perspective of microbial ecology. Environ Microbiol 2023; 25:5-10. [PMID: 35944516 DOI: 10.1111/1462-2920.16144] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 01/21/2023]
Abstract
The universal ancestor at the root of the species tree of life depicts a population of organisms with a surprising degree of complexity, posessing genomes and translation systems much like that of microbial life today. As the first life forms were most likely to have been simple replicators, considerable evolutionary change must have taken place prior to the last universal common ancestor. It is often assumed that the lack of earlier branches on the tree of life is due to a prevalence of random horizontal gene transfer that obscured the delineations between lineages and hindered their divergence. Therefore, principles of microbial evolution and ecology may give us some insight into these early stages in the history of life. Here, we synthesize the current understanding of organismal and genome evolution from the perspective of microbial ecology and apply these evolutionary principles to the earliest stages of life on Earth. We focus especially on broad evolutionary modes pertaining to horizontal gene transfer, pangenome structure, and microbial mat communities.
Collapse
Affiliation(s)
- Aaron D Goldman
- Department of Biology, Oberlin College and Conservatory, Oberlin, Ohio, USA
| | - Betül Kaçar
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
6
|
Jagdmann J, Andersson DI, Nicoloff H. Low levels of tetracyclines select for a mutation that prevents the evolution of high-level resistance to tigecycline. PLoS Biol 2022; 20:e3001808. [PMID: 36170241 PMCID: PMC9550176 DOI: 10.1371/journal.pbio.3001808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 10/10/2022] [Accepted: 08/29/2022] [Indexed: 11/19/2022] Open
Abstract
In a collection of Escherichia coli isolates, we discovered a new mechanism leading to frequent and high-level tigecycline resistance involving tandem gene amplifications of an efflux pump encoded by the tet(A) determinant. Some isolates, despite carrying a functional tet(A), could not evolve high-level tigecycline resistance by amplification due to the presence of a deletion in the TetR(A) repressor. This mutation impaired induction of tetA(A) (encoding the TetA(A) efflux pump) in presence of tetracyclines, with the strongest effect observed for tigecycline, subsequently preventing the development of tet(A) amplification-dependent high-level tigecycline resistance. We found that this mutated tet(A) determinant was common among tet(A)-carrying E. coli isolates and analysed possible explanations for this high frequency. First, while the mutated tet(A) was found in several ST-groups, we found evidence of clonal spread among ST131 isolates, which increases its frequency within E. coli databases. Second, evolution and competition experiments revealed that the mutation in tetR(A) could be positively selected over the wild-type allele at sub-inhibitory concentrations of tetracyclines. Our work demonstrates how low concentrations of tetracyclines, such as those found in contaminated environments, can enrich and select for a mutation that generates an evolutionary dead-end that precludes the evolution towards high-level, clinically relevant tigecycline resistance. A study on evolution of antimicrobial resistance reveals how sub-inhibitory concentrations of antibiotics enrich and select for a mutated allele that prevents evolution towards clinically significant levels of antibiotic resistance.
Collapse
Affiliation(s)
- Jennifer Jagdmann
- Uppsala University, Department of Medical Biochemistry and Microbiology, Uppsala, Sweden
| | - Dan I. Andersson
- Uppsala University, Department of Medical Biochemistry and Microbiology, Uppsala, Sweden
| | - Hervé Nicoloff
- Uppsala University, Department of Medical Biochemistry and Microbiology, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
7
|
Hogan AM, Cardona ST. Gradients in gene essentiality reshape antibacterial research. FEMS Microbiol Rev 2022; 46:fuac005. [PMID: 35104846 PMCID: PMC9075587 DOI: 10.1093/femsre/fuac005] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 01/14/2022] [Accepted: 01/24/2022] [Indexed: 02/03/2023] Open
Abstract
Essential genes encode the processes that are necessary for life. Until recently, commonly applied binary classifications left no space between essential and non-essential genes. In this review, we frame bacterial gene essentiality in the context of genetic networks. We explore how the quantitative properties of gene essentiality are influenced by the nature of the encoded process, environmental conditions and genetic background, including a strain's distinct evolutionary history. The covered topics have important consequences for antibacterials, which inhibit essential processes. We argue that the quantitative properties of essentiality can thus be used to prioritize antibacterial cellular targets and desired spectrum of activity in specific infection settings. We summarize our points with a case study on the core essential genome of the cystic fibrosis pathobiome and highlight avenues for targeted antibacterial development.
Collapse
Affiliation(s)
- Andrew M Hogan
- Department of Microbiology, University of Manitoba, 45 Chancellor's Circle, Winnipeg, Manitoba R3T 2N2, Canada
| | - Silvia T Cardona
- Department of Microbiology, University of Manitoba, 45 Chancellor's Circle, Winnipeg, Manitoba R3T 2N2, Canada
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Room 543 - 745 Bannatyne Avenue, Winnipeg, Manitoba, R3E 0J9, Canada
| |
Collapse
|
8
|
Garzón MJ, Reyes-Prieto M, Gil R. The Minimal Translation Machinery: What We Can Learn From Naturally and Experimentally Reduced Genomes. Front Microbiol 2022; 13:858983. [PMID: 35479634 PMCID: PMC9035817 DOI: 10.3389/fmicb.2022.858983] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/17/2022] [Indexed: 11/23/2022] Open
Abstract
The current theoretical proposals of minimal genomes have not attempted to outline the essential machinery for proper translation in cells. Here, we present a proposal of a minimal translation machinery based on (1) a comparative analysis of bacterial genomes of insects’ endosymbionts using a machine learning classification algorithm, (2) the empiric genomic information obtained from Mycoplasma mycoides JCVI-syn3.0 the first minimal bacterial genome obtained by design and synthesis, and (3) a detailed functional analysis of the candidate genes based on essentiality according to the DEG database (Escherichia coli and Bacillus subtilis) and the literature. This proposed minimal translational machinery is composed by 142 genes which must be present in any synthetic prokaryotic cell designed for biotechnological purposes, 76.8% of which are shared with JCVI-syn3.0. Eight additional genes were manually included in the proposal for a proper and efficient translation.
Collapse
Affiliation(s)
| | - Mariana Reyes-Prieto
- Institute for Integrative Systems Biology, Universitat de València–Consejo Superior de Investigaciones Científicas, Paterna, Spain
- Sequencing and Bioinformatics Service, Foundation for the Promotion of Sanitary and Biomedical Research of the Valencian Community, Valencia, Spain
| | - Rosario Gil
- Departament de Genètica, Universitat de València, Burjassot, Spain
- Institute for Integrative Systems Biology, Universitat de València–Consejo Superior de Investigaciones Científicas, Paterna, Spain
- *Correspondence: Rosario Gil,
| |
Collapse
|
9
|
Hu EZ, Lan XR, Liu ZL, Gao J, Niu DK. A positive correlation between GC content and growth temperature in prokaryotes. BMC Genomics 2022; 23:110. [PMID: 35139824 PMCID: PMC8827189 DOI: 10.1186/s12864-022-08353-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 01/31/2022] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND GC pairs are generally more stable than AT pairs; GC-rich genomes were proposed to be more adapted to high temperatures than AT-rich genomes. Previous studies consistently showed positive correlations between growth temperature and the GC contents of structural RNA genes. However, for the whole genome sequences and the silent sites of the codons in protein-coding genes, the relationship between GC content and growth temperature is in a long-lasting debate. RESULTS With a dataset much larger than previous studies (681 bacteria and 155 archaea with completely assembled genomes), our phylogenetic comparative analyses showed positive correlations between optimal growth temperature (Topt) and GC content both in bacterial and archaeal structural RNA genes and in bacterial whole genome sequences, chromosomal sequences, plasmid sequences, core genes, and accessory genes. However, in the 155 archaea, we did not observe a significant positive correlation of Topt with whole-genome GC content (GCw) or GC content at four-fold degenerate sites. We randomly drew 155 samples from the 681 bacteria for 1000 rounds. In most cases (> 95%), the positive correlations between Topt and genomic GC contents became statistically nonsignificant (P > 0.05). This result suggested that the small sample sizes might account for the lack of positive correlations between growth temperature and genomic GC content in the 155 archaea and the bacterial samples of previous studies. Comparing the GC content among four categories (psychrophiles/psychrotrophiles, mesophiles, thermophiles, and hyperthermophiles) also revealed a positive correlation between GCw and growth temperature in bacteria. By including the GCw of incompletely assembled genomes, we expanded the sample size of archaea to 303. Positive correlations between GCw and Topt appear especially after excluding the halophilic archaea whose GC contents might be strongly shaped by intense UV radiation. CONCLUSIONS This study explains the previous contradictory observations and ends a long debate. Prokaryotes growing in high temperatures have higher GC contents. Thermal adaptation is one possible explanation for the positive association. Meanwhile, we propose that the elevated efficiency of DNA repair in response to heat mutagenesis might have the by-product of increasing GC content like that happens in intracellular symbionts and marine bacterioplankton.
Collapse
Affiliation(s)
- En-Ze Hu
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering and Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Xin-Ran Lan
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering and Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Zhi-Ling Liu
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering and Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Jie Gao
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering and Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Deng-Ke Niu
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering and Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
10
|
De Tarafder A, Parajuli NP, Majumdar S, Kaçar B, Sanyal S. Kinetic Analysis Suggests Evolution of Ribosome Specificity in Modern Elongation Factor-Tus from "Generalist" Ancestors. Mol Biol Evol 2021; 38:3436-3444. [PMID: 33871630 PMCID: PMC8321524 DOI: 10.1093/molbev/msab114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
It has been hypothesized that early enzymes are more promiscuous than their extant orthologs. Whether or not this hypothesis applies to the translation machinery, the oldest molecular machine of life, is not known. Efficient protein synthesis relies on a cascade of specific interactions between the ribosome and the translation factors. Here, using elongation factor-Tu (EF-Tu) as a model system, we have explored the evolution of ribosome specificity in translation factors. Employing presteady state fast kinetics using quench flow, we have quantitatively characterized the specificity of two sequence-reconstructed 1.3- to 3.3-Gy-old ancestral EF-Tus toward two unrelated bacterial ribosomes, mesophilic Escherichia coli and thermophilic Thermus thermophilus. Although the modern EF-Tus show clear preference for their respective ribosomes, the ancestral EF-Tus show similar specificity for diverse ribosomes. In addition, despite increase in the catalytic activity with temperature, the ribosome specificity of the thermophilic EF-Tus remains virtually unchanged. Our kinetic analysis thus suggests that EF-Tu proteins likely evolved from the catalytically promiscuous, “generalist” ancestors. Furthermore, compatibility of diverse ribosomes with the modern and ancestral EF-Tus suggests that the ribosomal core probably evolved before the diversification of the EF-Tus. This study thus provides important insights regarding the evolution of modern translation machinery.
Collapse
Affiliation(s)
- Arindam De Tarafder
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | | | - Soneya Majumdar
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Betül Kaçar
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, USA.,Lunar and Planetary Laboratory and Steward Observatory University of Arizona, Tucson, AZ, USA
| | - Suparna Sanyal
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
11
|
Bartke K, Garoff L, Huseby DL, Brandis G, Hughes D. Genetic Architecture and Fitness of Bacterial Interspecies Hybrids. Mol Biol Evol 2021; 38:1472-1481. [PMID: 33247724 PMCID: PMC8042766 DOI: 10.1093/molbev/msaa307] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Integration of a conjugative plasmid into a bacterial chromosome can promote the transfer of chromosomal DNA to other bacteria. Intraspecies chromosomal conjugation is believed responsible for creating the global pathogens Klebsiella pneumoniae ST258 and Escherichia coli ST1193. Interspecies conjugation is also possible but little is known about the genetic architecture or fitness of such hybrids. To study this, we generated by conjugation 14 hybrids of E. coli and Salmonella enterica. These species belong to different genera, diverged from a common ancestor >100 Ma, and share a conserved order of orthologous genes with ∼15% nucleotide divergence. Genomic analysis revealed that all but one hybrid had acquired a contiguous segment of donor E. coli DNA, replacing a homologous region of recipient Salmonella chromosome, and ranging in size from ∼100 to >4,000 kb. Recombination joints occurred in sequences with higher-than-average nucleotide identity. Most hybrid strains suffered a large reduction in growth rate, but the magnitude of this cost did not correlate with the length of foreign DNA. Compensatory evolution to ameliorate the cost of low-fitness hybrids pointed towards disruption of complex genetic networks as a cause. Most interestingly, 4 of the 14 hybrids, in which from 45% to 90% of the Salmonella chromosome was replaced with E. coli DNA, showed no significant reduction in growth fitness. These data suggest that the barriers to creating high-fitness interspecies hybrids may be significantly lower than generally appreciated with implications for the creation of novel species.
Collapse
Affiliation(s)
- Katrin Bartke
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Linnéa Garoff
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Douglas L Huseby
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Gerrit Brandis
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Diarmaid Hughes
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
12
|
Islam MI, Lin A, Lai YW, Matzke NJ, Baker MAB. Corrigendum: Ancestral Sequence Reconstructions of MotB Are Proton-Motile and Require MotA for Motility. Front Microbiol 2021; 12:650373. [PMID: 33815339 PMCID: PMC8017333 DOI: 10.3389/fmicb.2021.650373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/11/2021] [Indexed: 11/26/2022] Open
Affiliation(s)
- Md Imtiazul Islam
- School of Biotechnology and Biomolecular Sciences (BABS), University of New South Wales, Sydney, NSW, Australia
| | - Angela Lin
- School of Biotechnology and Biomolecular Sciences (BABS), University of New South Wales, Sydney, NSW, Australia
| | - Yu-Wen Lai
- School of Biotechnology and Biomolecular Sciences (BABS), University of New South Wales, Sydney, NSW, Australia
| | - Nicholas J Matzke
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Matthew A B Baker
- School of Biotechnology and Biomolecular Sciences (BABS), University of New South Wales, Sydney, NSW, Australia.,CSIRO Synthetic Biology Future Science Platform, Brisbane, QLD, Australia
| |
Collapse
|
13
|
Islam MI, Lin A, Lai YW, Matzke NJ, Baker MAB. Ancestral Sequence Reconstructions of MotB Are Proton-Motile and Require MotA for Motility. Front Microbiol 2020; 11:625837. [PMID: 33424826 PMCID: PMC7787011 DOI: 10.3389/fmicb.2020.625837] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 11/27/2020] [Indexed: 12/23/2022] Open
Abstract
The bacterial flagellar motor (BFM) is a nanomachine that rotates the flagellum to propel many known bacteria. The BFM is powered by ion transit across the cell membrane through the stator complex, a membrane protein. Different bacteria use various ions to run their BFM, but the majority of BFMs are powered by either proton (H+) or sodium (Na+) ions. The transmembrane (TM) domain of the B-subunit of the stator complex is crucial for ion selectivity, as it forms the ion channel in complex with TM3 and TM4 of the A-subunit. In this study, we reconstructed and engineered thirteen ancestral sequences of the stator B-subunit to evaluate the functional properties and ionic power source of the stator proteins at reconstruction nodes to evaluate the potential of ancestral sequence reconstruction (ASR) methods for stator engineering and to test specific motifs previously hypothesized to be involved in ion-selectivity. We found that all thirteen of our reconstructed ancient B-subunit proteins could assemble into functional stator complexes in combination with the contemporary Escherichia coli MotA-subunit to restore motility in stator deleted E. coli strains. The flagellar rotation of the thirteen ancestral MotBs was found to be Na+ independent which suggested that the F30/Y30 residue was not significantly correlated with sodium/proton phenotype, in contrast to what we had reported previously. Additionally, four among the thirteen reconstructed B-subunits were compatible with the A-subunit of Aquifex aeolicus and able to function in a sodium-independent manner. Overall, this work demonstrates the use of ancestral reconstruction to generate novel stators and quantify which residues are correlated with which ionic power source.
Collapse
Affiliation(s)
- Md Imtiazul Islam
- School of Biotechnology and Biomolecular Sciences (BABS), University of New South Wales, Sydney, NSW, Australia
| | - Angela Lin
- School of Biotechnology and Biomolecular Sciences (BABS), University of New South Wales, Sydney, NSW, Australia
| | - Yu-Wen Lai
- School of Biotechnology and Biomolecular Sciences (BABS), University of New South Wales, Sydney, NSW, Australia
| | - Nicholas J. Matzke
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Matthew A. B. Baker
- School of Biotechnology and Biomolecular Sciences (BABS), University of New South Wales, Sydney, NSW, Australia
- CSIRO Synthetic Biology Future Science Platform, Brisbane, QLD, Australia
| |
Collapse
|
14
|
Kang Y, Yuan L, Shi X, Chu Y, He Z, Jia X, Lin Q, Ma Q, Wang J, Xiao J, Hu S, Gao Z, Chen F, Yu J. A fine-scale map of genome-wide recombination in divergent Escherichia coli population. Brief Bioinform 2020; 22:6034796. [PMID: 33319232 DOI: 10.1093/bib/bbaa335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/19/2020] [Accepted: 10/23/2020] [Indexed: 01/09/2023] Open
Abstract
Recombination is one of the most important molecular mechanisms of prokaryotic genome evolution, but its exact roles are still in debate. Here we try to infer genome-wide recombination within a species, utilizing a dataset of 149 complete genomes of Escherichia coli from diverse animal hosts and geographic origins, including 45 in-house sequenced with the single-molecular real-time platform. Two major clades identified based on physiological, clinical and ecological characteristics form distinct genetic lineages based on scarcity of interclade gene exchanges. By defining gene-based syntenies for genomic segments within and between the two clades, we build a fine-scale recombination map for this representative global E. coli population. The map suggests extensive within-clade recombination that often breaks physical linkages among individual genes but seldom interrupts the structure of genome organizational frameworks as well as primary metabolic portfolios supported by the framework integrity, possibly due to strong natural selection for both physiological compatibility and ecological fitness. In contrast, the between-clade recombination declines drastically when phylogenetic distance increases to the extent where a 10-fold reduction can be observed, establishing a firm genetic barrier between clades. Our empirical data suggest a critical role for such recombination events in the early stage of speciation where recombination rate is associated with phylogenetic distance in addition to sequence and gene variations. The extensive intraclade recombination binds sister strains into a quasisexual group and optimizes genes or alleles to streamline physiological activities, whereas the sharply declined interclade recombination split the population into clades adaptive to divergent ecological niches.
Collapse
Affiliation(s)
- Yu Kang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, 100101, Beijing, PR China.,China National Center for Bioinformation, Beijing 100101, PR China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lina Yuan
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, 100101, Beijing, PR China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xing Shi
- Department of Respiratory & Critical Care Medicine, Peking University People's Hospital, Beijing, 100044, PR China
| | - Yanan Chu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, 100101, Beijing, PR China.,China National Center for Bioinformation, Beijing 100101, PR China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zilong He
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Interdisciplinary Innovation Institute of Medicine and Engineering, Beihang University, Beijing, 100191, PR China
| | - Xinmiao Jia
- Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, PR China
| | - Qiang Lin
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Qin Ma
- Department of Agronomy, Horticulture, and Plant Science, South Dakota State University, Brookings, SD, 57007, USA
| | - Jian Wang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, 100101, Beijing, PR China.,China National Center for Bioinformation, Beijing 100101, PR China
| | - Jingfa Xiao
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, 100101, Beijing, PR China.,China National Center for Bioinformation, Beijing 100101, PR China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Songnian Hu
- University of Chinese Academy of Sciences, Beijing 100049, China.,State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, PR China
| | - Zhancheng Gao
- Department of Respiratory & Critical Care Medicine, Peking University People's Hospital, Beijing, 100044, PR China
| | - Fei Chen
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, 100101, Beijing, PR China.,China National Center for Bioinformation, Beijing 100101, PR China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Yu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, 100101, Beijing, PR China.,China National Center for Bioinformation, Beijing 100101, PR China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
15
|
Kacar B, Garcia AK, Anbar AD. Evolutionary History of Bioessential Elements Can Guide the Search for Life in the Universe. Chembiochem 2020; 22:114-119. [PMID: 33136319 DOI: 10.1002/cbic.202000500] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/29/2020] [Indexed: 11/10/2022]
Abstract
Our understanding of life in the universe comes from one sample, life on Earth. Current and next-generation space missions will target exoplanets as well as planets and moons in our own solar system with the primary goal of detecting, interpreting and characterizing indications of possible biological activity. Thus, understanding life's fundamental characteristics is increasingly critical for detecting and interpreting potential biological signatures elsewhere in the universe. Astrobiologists have outlined the essential roles of carbon and water for life, but we have yet to decipher the rules governing the evolution of how living organisms use bioessential elements. Does the suite of life's essential chemical elements on Earth constitute only one possible evolutionary outcome? Are some elements so essential for biological functions that evolution will select for them despite low availability? How would this play out on other worlds that have different relative element abundances? When we look for life in the universe, or the conditions that could give rise to life, we must learn how to recognize it in extremely different chemical and environmental conditions from those on Earth. We argue that by exposing self-organizing biotic chemistries to different combinations of abiotic materials, and by mapping the evolutionary history of metalloenzyme biochemistry onto geological availabilities of metals, alternative element choices that are very different from life's present-day molecular structure might result. A greater understanding of the paleomolecular evolutionary history of life on Earth will create a predictive capacity for detecting and assessing life's existence on worlds where alternate evolutionary paths might have been taken.
Collapse
Affiliation(s)
- Betul Kacar
- Department of Molecular and Cellular Biology, University of Arizona, 1007 E Lowell St, Tucson, AZ, 85721, USA.,Department of Astronomy and Steward Observatory, University of Arizona, 933 N Cherry Ave, Tucson, AZ, 85719, USA.,Lunar and Planetary Laboratory, University of Arizona, 1629 E University Blvd, Tucson, AZ, 85721, USA.,Earth-Life Science Institute, Tokyo Institute of Technology, 1 Chome-31 Ishikawacho, Ota City, Tokyo, Japan
| | - Amanda K Garcia
- Department of Molecular and Cellular Biology, University of Arizona, 1007 E Lowell St, Tucson, AZ, 85721, USA
| | - Ariel D Anbar
- School of Earth and Space Exploration, Arizona State University, E Tyler Mall, Tempe, AZ, 85281, USA
| |
Collapse
|
16
|
Sandberg TE, Szubin R, Phaneuf PV, Palsson BO. Synthetic cross-phyla gene replacement and evolutionary assimilation of major enzymes. Nat Ecol Evol 2020; 4:1402-1409. [PMID: 32778753 PMCID: PMC7529951 DOI: 10.1038/s41559-020-1271-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 07/10/2020] [Indexed: 01/06/2023]
Abstract
The ability of DNA to produce a functional protein even after transfer to a foreign host is of fundamental importance in both evolutionary biology and biotechnology, enabling horizontal gene transfer in the wild and heterologous expression in the lab. However, the influence of genetic particulars on DNA functionality in a new host is poorly understood, as are the evolutionary mechanisms of assimilation and refinement. Here, we describe an automation-enabled large-scale experiment wherein Escherichia coli strains were evolved in parallel after replacement of the genes pgi or tpiA with orthologous DNA from donor species spanning all domains of life, from humans to hyperthermophilic archaea. Via analysis of hundreds of clones evolved for 50,000+ cumulative generations across dozens of independent lineages, we show that orthogene-upregulating mutations can completely mitigate fitness defects that result from initial non-functionality, with coding sequence changes unnecessary. Gene target, donor species and genomic location of the swap all influenced outcomes-both the nature of adaptive mutations (often synonymous) and the frequency with which strains successfully evolved to assimilate the foreign DNA. Additionally, time series DNA sequencing and replay evolution experiments revealed transient copy number expansions, the contingency of lineage outcome on first-step mutations and the ability for strains to escape from suboptimal local fitness maxima. Overall, this study establishes the influence of various DNA and protein features on cross-species genetic interchangeability and evolutionary outcomes, with implications for both horizontal gene transfer and rational strain design.
Collapse
Affiliation(s)
- Troy E Sandberg
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Richard Szubin
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Patrick V Phaneuf
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Bernhard O Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA. .,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark.
| |
Collapse
|
17
|
Venkataram S, Monasky R, Sikaroodi SH, Kryazhimskiy S, Kacar B. Evolutionary stalling and a limit on the power of natural selection to improve a cellular module. Proc Natl Acad Sci U S A 2020; 117:18582-18590. [PMID: 32680961 PMCID: PMC7414050 DOI: 10.1073/pnas.1921881117] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cells consist of molecular modules which perform vital biological functions. Cellular modules are key units of adaptive evolution because organismal fitness depends on their performance. Theory shows that in rapidly evolving populations, such as those of many microbes, adaptation is driven primarily by common beneficial mutations with large effects, while other mutations behave as if they are effectively neutral. As a consequence, if a module can be improved only by rare and/or weak beneficial mutations, its adaptive evolution would stall. However, such evolutionary stalling has not been empirically demonstrated, and it is unclear to what extent stalling may limit the power of natural selection to improve modules. Here we empirically characterize how natural selection improves the translation machinery (TM), an essential cellular module. We experimentally evolved populations of Escherichia coli with genetically perturbed TMs for 1,000 generations. Populations with severe TM defects initially adapted via mutations in the TM, but TM adaptation stalled within about 300 generations. We estimate that the genetic load in our populations incurred by residual TM defects ranges from 0.5 to 19%. Finally, we found evidence that both epistasis and the depletion of the pool of beneficial mutations contributed to evolutionary stalling. Our results suggest that cellular modules may not be fully optimized by natural selection despite the availability of adaptive mutations.
Collapse
Affiliation(s)
- Sandeep Venkataram
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093
| | - Ross Monasky
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721
| | - Shohreh H Sikaroodi
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093
| | - Sergey Kryazhimskiy
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093;
| | - Betul Kacar
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721;
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721
| |
Collapse
|
18
|
Liberles DA, Chang B, Geiler-Samerotte K, Goldman A, Hey J, Kaçar B, Meyer M, Murphy W, Posada D, Storfer A. Emerging Frontiers in the Study of Molecular Evolution. J Mol Evol 2020; 88:211-226. [PMID: 32060574 PMCID: PMC7386396 DOI: 10.1007/s00239-020-09932-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A collection of the editors of Journal of Molecular Evolution have gotten together to pose a set of key challenges and future directions for the field of molecular evolution. Topics include challenges and new directions in prebiotic chemistry and the RNA world, reconstruction of early cellular genomes and proteins, macromolecular and functional evolution, evolutionary cell biology, genome evolution, molecular evolutionary ecology, viral phylodynamics, theoretical population genomics, somatic cell molecular evolution, and directed evolution. While our effort is not meant to be exhaustive, it reflects research questions and problems in the field of molecular evolution that are exciting to our editors.
Collapse
Affiliation(s)
- David A Liberles
- Department of Biology and Center for Computational Genetics and Genomics, Temple University, Philadelphia, PA, 19122, USA.
| | - Belinda Chang
- Department of Ecology and Evolutionary Biology and Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON, M5S 3G5, Canada
| | - Kerry Geiler-Samerotte
- Center for Mechanisms of Evolution, School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Aaron Goldman
- Department of Biology, Oberlin College and Conservatory, K123 Science Center, 119 Woodland Street, Oberlin, OH, 44074, USA
| | - Jody Hey
- Department of Biology and Center for Computational Genetics and Genomics, Temple University, Philadelphia, PA, 19122, USA
| | - Betül Kaçar
- Department of Molecular and Cell Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Michelle Meyer
- Department of Biology, Boston College, Chestnut Hill, MA, 02467, USA
| | - William Murphy
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA
| | - David Posada
- Biomedical Research Center (CINBIO), University of Vigo, Vigo, Spain
| | - Andrew Storfer
- School of Biological Sciences, Washington State University, Pullman, WA, 99164, USA
| |
Collapse
|
19
|
Brandis G, Hughes D. The SNAP hypothesis: Chromosomal rearrangements could emerge from positive Selection during Niche Adaptation. PLoS Genet 2020; 16:e1008615. [PMID: 32130223 PMCID: PMC7055797 DOI: 10.1371/journal.pgen.1008615] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 01/17/2020] [Indexed: 12/23/2022] Open
Abstract
The relative linear order of most genes on bacterial chromosomes is not conserved over evolutionary timescales. One explanation is that selection is weak, allowing recombination to randomize gene order by genetic drift. However, most chromosomal rearrangements are deleterious to fitness. In contrast, we propose the hypothesis that rearrangements in gene order are more likely the result of selection during niche adaptation (SNAP). Partial chromosomal duplications occur very frequently by recombination between direct repeat sequences. Duplicated regions may contain tens to hundreds of genes and segregate quickly unless maintained by selection. Bacteria exposed to non-lethal selections (for example, a requirement to grow on a poor nutrient) can adapt by maintaining a duplication that includes a gene that improves relative fitness. Further improvements in fitness result from the loss or inactivation of non-selected genes within each copy of the duplication. When genes that are essential in single copy are lost from different copies of the duplication, segregation is prevented even if the original selection is lifted. Functional gene loss continues until a new genetic equilibrium is reached. The outcome is a rearranged gene order. Mathematical modelling shows that this process of positive selection to adapt to a new niche can rapidly drive rearrangements in gene order to fixation. Signature features (duplication formation and divergence) of the SNAP model were identified in natural isolates from multiple species showing that the initial two steps in the SNAP process can occur with a remarkably high frequency. Further bioinformatic and experimental analyses are required to test if and to which extend the SNAP process acts on bacterial genomes. All life on earth has evolved from a universal common ancestor with a specific order of genes on the chromosome. This order is not maintained in modern species and the standard hypothesis is that changes reflect a lack of strong selection on gene order. Here, we propose an alternative hypothesis, SNAP. The occupation of a novel environment by bacteria is generally a trade-off situation. For example, while the bacteria may not be adapted to grow well under the new conditions, they may benefit by not having to share available resources with other microorganisms. Bacterial populations frequently acquire duplications of chromosomal segments containing genes that can help them adapt to a new environment. Other genes that are also duplicated are not required in two copies so that over time a superfluous copy can be lost. Eventually, the process of duplication and gene loss can lead to the rearrangement of the gene order in the chromosomal segment. The major benefit of this model over the standard hypothesis is that the process is driven by positive selection and can reach fixation rapidly.
Collapse
Affiliation(s)
- Gerrit Brandis
- Department of Medical Biochemistry and Microbiology, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Diarmaid Hughes
- Department of Medical Biochemistry and Microbiology, Biomedical Center, Uppsala University, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
20
|
Chen Y, Bendix C, Lewis JD. Comparative Genomics Screen Identifies Microbe-Associated Molecular Patterns from ' Candidatus Liberibacter' spp. That Elicit Immune Responses in Plants. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:539-552. [PMID: 31790346 DOI: 10.1094/mpmi-11-19-0309-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Citrus huanglongbing (HLB), caused by phloem-limited 'Candidatus Liberibacter' bacteria, is a destructive disease threatening the worldwide citrus industry. The mechanisms of pathogenesis are poorly understood and no efficient strategy is available to control HLB. Here, we used a comparative genomics screen to identify candidate microbe-associated molecular patterns (MAMPs) from 'Ca. Liberibacter' spp. We identified the core genome from multiple 'Ca. Liberibacter' pathogens, and searched for core genes with signatures of positive selection. We hypothesized that genes encoding putative MAMPs would evolve to reduce recognition by the plant immune system, while retaining their essential functions. To efficiently screen candidate MAMP peptides, we established a high-throughput microtiter plate-based screening assay, particularly for citrus, that measured reactive oxygen species (ROS) production, which is a common immune response in plants. We found that two peptides could elicit ROS production in Arabidopsis and Nicotiana benthamiana. One of these peptides elicited ROS production and defense gene expression in HLB-tolerant citrus genotypes, and induced MAMP-triggered immunity against the bacterial pathogen Pseudomonas syringae. Our findings identify MAMPs that boost immunity in citrus and could help prevent or reduce HLB infection.
Collapse
Affiliation(s)
- Yuan Chen
- Plant Gene Expression Center, United States Department of Agriculture-Agricultural Research Service and Department of Plant and Microbial Biology, University of California-Berkeley, 800 Buchanan Street, Albany, CA 94710, U.S.A
| | - Claire Bendix
- Plant Gene Expression Center, United States Department of Agriculture-Agricultural Research Service and Department of Plant and Microbial Biology, University of California-Berkeley, 800 Buchanan Street, Albany, CA 94710, U.S.A
| | - Jennifer D Lewis
- Plant Gene Expression Center, United States Department of Agriculture-Agricultural Research Service and Department of Plant and Microbial Biology, University of California-Berkeley, 800 Buchanan Street, Albany, CA 94710, U.S.A
| |
Collapse
|
21
|
Wideman JG, Novick A, Muñoz-Gómez SA, Doolittle WF. Neutral evolution of cellular phenotypes. Curr Opin Genet Dev 2019; 58-59:87-94. [PMID: 31574422 DOI: 10.1016/j.gde.2019.09.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/09/2019] [Accepted: 09/11/2019] [Indexed: 12/29/2022]
Abstract
Eukaryotes exhibit a great diversity of cellular and subcellular morphologies, but their basic underlying architecture is fairly constant. All have a nucleus, Golgi, cytoskeleton, plasma membrane, vesicles, ribosomes, and all known lineages but one have mitochondrion-related organelles. Moreover, most eukaryotes undergo processes such as mitosis, meiosis, DNA recombination, and often perform feats such as phagocytosis, and amoeboid and flagellar movement. With all of these commonalities, it is obvious that eukaryotes evolved from a common ancestor, but it is not obvious how eukaryotes came to have their diverse structural phenotypes. Are these phenotypes adaptations to particular niches, their evolution dominated by positive natural selection? Or is eukaryotic cellular diversity substantially the product of neutral evolutionary processes, with adaptation either illusory or a secondary consequence? In this paper, we outline how a hierarchical view of phenotype can be used to articulate a neutral theory of phenotypic evolution, involving processes such as gene loss, gene replacement by homologues or analogues, gene duplication followed by subfunctionalization, and constructive neutral evolution. We suggest that neutral iterations of these processes followed by entrenchment of their products can explain much of the diversity of cellular, developmental, and biochemical phenotypes of unicellular eukaryotes and should be explored in addition to adaptive explanations.
Collapse
Affiliation(s)
- Jeremy G Wideman
- Centre for Mechanisms of Evolution, Arizona State University, Tempe, AZ, 85287, USA; Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada.
| | - Aaron Novick
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada; Department of Philosophy, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada; Department of Philosophy, Purdue University, West Lafayette, IN, 47907, USA
| | - Sergio A Muñoz-Gómez
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | - W Ford Doolittle
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| |
Collapse
|
22
|
Smith BA, Leligdon C, Baltrus DA. Just the Two of Us? A Family of Pseudomonas Megaplasmids Offers a Rare Glimpse into the Evolution of Large Mobile Elements. Genome Biol Evol 2019; 11:1192-1206. [PMID: 30918968 PMCID: PMC6482414 DOI: 10.1093/gbe/evz066] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2019] [Indexed: 02/06/2023] Open
Abstract
Pseudomonads are ubiquitous group of environmental proteobacteria, well known for their roles in biogeochemical cycling, in the breakdown of xenobiotic materials, as plant growth promoters, and as pathogens of a variety of host organisms. We have previously identified a large megaplasmid present within one isolate of the plant pathogen Pseudomonas syringae, and here we report that a second member of this megaplasmid family is found within an environmental Pseudomonad isolate most closely related to Pseudomonas putida. Many of the shared genes are involved in critical cellular processes like replication, transcription, translation, and DNA repair. We argue that presence of these shared pathways sheds new light on discussions about the types of genes that undergo horizontal gene transfer (i.e., the complexity hypothesis) as well as the evolution of pangenomes. Furthermore, although both megaplasmids display a high level of synteny, genes that are shared differ by over 50% on average at the amino acid level. This combination of conservation in gene order despite divergence in gene sequence suggests that this Pseudomonad megaplasmid family is relatively old, that gene order is under strong selection within this family, and that there are likely many more members of this megaplasmid family waiting to be found in nature.
Collapse
Affiliation(s)
| | | | - David A Baltrus
- School of Plant Sciences, University of Arizona.,School of Animal and Comparative Biomedical Sciences, University of Arizona
| |
Collapse
|
23
|
Socha RD, Chen J, Tokuriki N. The Molecular Mechanisms Underlying Hidden Phenotypic Variation among Metallo-β-Lactamases. J Mol Biol 2019; 431:1172-1185. [PMID: 30769117 DOI: 10.1016/j.jmb.2019.01.041] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 01/31/2019] [Accepted: 01/31/2019] [Indexed: 12/31/2022]
Abstract
Genetic variation among orthologous genes has been largely formed through neutral genetic drift while maintaining the functional role of these genes. However, because the evolution of gene occurs in the context of each host organism, their sequence changes are also associated with adaptation to a specific environment. Thus, genetic variation can create critical phenotypic variation, particularly when genes are transferred to a new host by horizontal gene transfer. Unveiling "hidden phenotypic variation" is particularly important for genes that confer resistance to antibiotics. However, our understanding of the molecular mechanisms that underlie phenotypic variation remains limited. Here we sought to determine the extent of phenotypic variation in the B1 metallo-β-lactamase (MBL) family and its molecular basis by systematically characterizing eight MBL orthologs, including NDM-1 and VIM-2 and IMP-1. We found that these MBLs confer diverse levels of resistance. The phenotypic variation cannot be explained by variation in catalytic efficiency alone; rather, it is the combination of the catalytic efficiency and abundance of functional periplasmic enzyme that best predicts the observed variation in resistance. The level of functional periplasmic expression varied dramatically between MBL orthologs. This was the result of changes at multiple levels of each ortholog's: (1) quantity of mRNA, (2) amount of MBL expressed, and (3) efficacy of functional enzyme translocation to the periplasm. Overall, it is the interaction between each gene and the host's underlying cellular processes (transcription, translation, and translocation) that determines MBL genetic incompatibility through horizontal gene transfer. These host-specific processes may constrain the effective spread and deployment of MBLs to certain host species and could explain the current observed distribution bias.
Collapse
Affiliation(s)
- Raymond D Socha
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - John Chen
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Nobuhiko Tokuriki
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
24
|
Abstract
The regulatory processes in cells are typically organized into complex genetic networks. However, it is still unclear how this network structure modulates the evolution of cellular regulation. One would expect that mutations in central and highly connected modules of a network (so-called hubs) would often result in a breakdown and therefore be an evolutionary dead end. However, a new study by Koubkova-Yu and colleagues finds that in some circumstances, altering a hub can offer a quick evolutionary advantage. Specifically, changes in a hub can induce significant phenotypic changes that allow organisms to move away from a local fitness peak, whereas the fitness defects caused by the perturbed hub can be mitigated by mutations in its interaction partners. Together, the results demonstrate how network architecture shapes and facilitates evolutionary adaptation. Genes are organized into complex interaction networks, but it is unclear how network architecture affects evolution. This Primer explores a new study which uses experimental evolution to show how alterations in a gene central to a network affect evolutionary processes.
Collapse
Affiliation(s)
- Jana Helsen
- CMPG Laboratory of Genetics and Genomics, Departement Microbiële en Moleculaire Systemen (M2S), KU Leuven, Leuven, Belgium
- VIB Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, Leuven, Belgium
- CMPG Laboratory of Predictive Genetics and Multicellular Systems, Departement Microbiële en Moleculaire Systemen (M2S), KU Leuven, Leuven, Belgium
| | - Jens Frickel
- CMPG Laboratory of Genetics and Genomics, Departement Microbiële en Moleculaire Systemen (M2S), KU Leuven, Leuven, Belgium
- VIB Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Rob Jelier
- CMPG Laboratory of Predictive Genetics and Multicellular Systems, Departement Microbiële en Moleculaire Systemen (M2S), KU Leuven, Leuven, Belgium
| | - Kevin J. Verstrepen
- CMPG Laboratory of Genetics and Genomics, Departement Microbiële en Moleculaire Systemen (M2S), KU Leuven, Leuven, Belgium
- VIB Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, Leuven, Belgium
- * E-mail:
| |
Collapse
|
25
|
Koubkova-Yu TCT, Chao JC, Leu JY. Heterologous Hsp90 promotes phenotypic diversity through network evolution. PLoS Biol 2018; 16:e2006450. [PMID: 30439936 PMCID: PMC6264905 DOI: 10.1371/journal.pbio.2006450] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 11/29/2018] [Accepted: 10/30/2018] [Indexed: 12/24/2022] Open
Abstract
Biological processes in living cells are often carried out by gene networks in which signals and reactions are integrated through network hubs. Despite their functional importance, it remains unclear to what extent network hubs are evolvable and how alterations impact long-term evolution. We investigated these issues using heat shock protein 90 (Hsp90), a central hub of proteostasis networks. When native Hsp90 in Saccharomyces cerevisiae cells was replaced by the ortholog from hypersaline-tolerant Yarrowia lipolytica that diverged from S. cerevisiae about 270 million years ago, the cells exhibited improved growth in hypersaline environments but compromised growth in others, indicating functional divergence in Hsp90 between the two yeasts. Laboratory evolution shows that evolved Y. lipolytica-HSP90–carrying S. cerevisiae cells exhibit a wider range of phenotypic variation than cells carrying native Hsp90. Identified beneficial mutations are involved in multiple pathways and are often pleiotropic. Our results show that cells adapt to a heterologous Hsp90 by modifying different subnetworks, facilitating the evolution of phenotypic diversity inaccessible to wild-type cells. Biological processes in living cells are often carried out by gene networks. Hubs are highly connected network components important for integrating signal inputs and generating responsive functional outputs. Heat shock protein 90 (Hsp90), a versatile hub in the protein homeostasis network, is a molecular chaperone essential for cell viability in all tested eukaryotic cells. In yeast, about a quarter of the expressed proteins are profoundly influenced when Hsp90 activity is reduced. Despite its pivotal role, we found that the function of Hsp90 has diverged between two yeast species, Yarrowia lipolytica and Saccharomyces cerevisiae, which split about 270 million years ago. To understand the impacts and adaptive strategies in cells with an altered network hub, we conducted laboratory evolution experiments using a S. cerevisiae strain in which native Hsp90 is replaced by its counterpart in Y. lipolytica. We observed different fitness gain or loss under various stress conditions in individual evolved clones, suggesting that cells adapted via different evolutionary paths. Genome sequencing and mutation reconstitution experiments show that beneficial mutations occurred in multiple Hsp90-related pathways that interact with each other. Our results show that a perturbed network allows cells to evolve a broader range of phenotypic diversity unavailable to wild-type cells.
Collapse
Affiliation(s)
- Tracy Chih-Ting Koubkova-Yu
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung-Hsing University and Academia Sinica, Taipei, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, Taiwan
| | - Jung-Chi Chao
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Jun-Yi Leu
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung-Hsing University and Academia Sinica, Taipei, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- Biotechnology Center, National Chung-Hsing University, Taichung, Taiwan
- * E-mail:
| |
Collapse
|
26
|
Wang T, Guan C, Guo J, Liu B, Wu Y, Xie Z, Zhang C, Xing XH. Pooled CRISPR interference screening enables genome-scale functional genomics study in bacteria with superior performance. Nat Commun 2018; 9:2475. [PMID: 29946130 PMCID: PMC6018678 DOI: 10.1038/s41467-018-04899-x] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 05/18/2018] [Indexed: 12/26/2022] Open
Abstract
To fully exploit the microbial genome resources, a high-throughput experimental platform is needed to associate genes with phenotypes at the genome level. We present here a novel method that enables investigation of the cellular consequences of repressing individual transcripts based on the CRISPR interference (CRISPRi) pooled screening in bacteria. We identify rules for guide RNA library design to handle the unique structure of prokaryotic genomes by tiling screening and construct an E. coli genome-scale guide RNA library (~60,000 members) accordingly. We show that CRISPRi outperforms transposon sequencing, the benchmark method in the microbial functional genomics field, when similar library sizes are used or gene length is short. This tool is also effective for mapping phenotypes to non-coding RNAs (ncRNAs), as elucidated by a comprehensive tRNA-fitness map constructed here. Our results establish CRISPRi pooled screening as a powerful tool for mapping complex prokaryotic genetic networks in a precise and high-throughput manner.
Collapse
Affiliation(s)
- Tianmin Wang
- MOE Key Laboratory for Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Changge Guan
- MOE Key Laboratory for Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Jiahui Guo
- MOE Key Laboratory for Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Bing Liu
- Beijing Syngentech Co., Ltd., Beijing, 102206, China
| | - Yinan Wu
- MOE Key Laboratory for Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Zhen Xie
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division, Center for Synthetic and System Biology, Department of Automation, Tsinghua National Lab for Information Science and Technology, Tsinghua University, Beijing, 100084, China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China
| | - Chong Zhang
- MOE Key Laboratory for Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China.
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China.
| | - Xin-Hui Xing
- MOE Key Laboratory for Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
27
|
Phylogenomic analysis demonstrates a pattern of rare and long-lasting concerted evolution in prokaryotes. Commun Biol 2018; 1:12. [PMID: 30271899 PMCID: PMC6053082 DOI: 10.1038/s42003-018-0014-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 01/11/2018] [Indexed: 12/15/2022] Open
Abstract
Concerted evolution, where paralogs in the same species show higher sequence similarity to each other than to orthologs in other species, is widely found in many species. However, cases of concerted evolution that last for hundreds of millions of years are very rare. By genome-wide analysis of a broad selection of prokaryotes, we provide strong evidence of recurrent concerted evolution in 26 genes, most of which have lasted more than ~500 million years. We find that most concertedly evolving genes are key members of important pathways, and encode proteins from the same complexes and/or pathways, suggesting coevolution of genes via concerted evolution to maintain gene balance. We also present LRCE-DB, a comprehensive online repository of long-lasting concerted evolution. Collectively, our study reveals that although most duplicated genes may diverge in sequence over a long period, on rare occasions this constraint can be breached, leading to unexpected long-lasting concerted evolution in a recurrent manner. Sishuo Wang and Youhua Chen present an analysis of concerted evolution in prokaryotes using a new computational pipeline, iSeeCE. They find evidence in 26 genes for recurrent concerted evolution, most of which last more than ~500 million years, and provide a database, LRCE-DB, for data exploration.
Collapse
|
28
|
Porse A, Schou TS, Munck C, Ellabaan MMH, Sommer MOA. Biochemical mechanisms determine the functional compatibility of heterologous genes. Nat Commun 2018; 9:522. [PMID: 29410400 PMCID: PMC5802803 DOI: 10.1038/s41467-018-02944-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 01/09/2018] [Indexed: 11/28/2022] Open
Abstract
Elucidating the factors governing the functional compatibility of horizontally transferred genes is important to understand bacterial evolution, including the emergence and spread of antibiotic resistance, and to successfully engineer biological systems. In silico efforts and work using single-gene libraries have suggested that sequence composition is a strong barrier for the successful integration of heterologous genes. Here we sample 200 diverse genes, representing >80% of sequenced antibiotic resistance genes, to interrogate the factors governing genetic compatibility in new hosts. In contrast to previous work, we find that GC content, codon usage, and mRNA-folding energy are of minor importance for the compatibility of mechanistically diverse gene products at moderate expression. Instead, we identify the phylogenetic origin, and the dependence of a resistance mechanism on host physiology, as major factors governing the functionality and fitness of antibiotic resistance genes. These findings emphasize the importance of biochemical mechanism for heterologous gene compatibility, and suggest physiological constraints as a pivotal feature orienting the evolution of antibiotic resistance. Sequence composition is thought to be a major factor governing the functionality of horizontally transferred genes. In contrast, Porse et al. show that phylogenetic origin, and the type of resistance mechanism, are major factors affecting the functionality of horizontally transferred antibiotic resistance genes.
Collapse
Affiliation(s)
- Andreas Porse
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| | - Thea S Schou
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| | - Christian Munck
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| | - Mostafa M H Ellabaan
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| | - Morten O A Sommer
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark.
| |
Collapse
|
29
|
Kacar B, Guy L, Smith E, Baross J. Resurrecting ancestral genes in bacteria to interpret ancient biosignatures. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2017; 375:20160352. [PMID: 29133450 PMCID: PMC5686408 DOI: 10.1098/rsta.2016.0352] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/17/2017] [Indexed: 05/04/2023]
Abstract
Two datasets, the geologic record and the genetic content of extant organisms, provide complementary insights into the history of how key molecular components have shaped or driven global environmental and macroevolutionary trends. Changes in global physico-chemical modes over time are thought to be a consistent feature of this relationship between Earth and life, as life is thought to have been optimizing protein functions for the entirety of its approximately 3.8 billion years of history on the Earth. Organismal survival depends on how well critical genetic and metabolic components can adapt to their environments, reflecting an ability to optimize efficiently to changing conditions. The geologic record provides an array of biologically independent indicators of macroscale atmospheric and oceanic composition, but provides little in the way of the exact behaviour of the molecular components that influenced the compositions of these reservoirs. By reconstructing sequences of proteins that might have been present in ancient organisms, we can downselect to a subset of possible sequences that may have been optimized to these ancient environmental conditions. How can one use modern life to reconstruct ancestral behaviours? Configurations of ancient sequences can be inferred from the diversity of extant sequences, and then resurrected in the laboratory to ascertain their biochemical attributes. One way to augment sequence-based, single-gene methods to obtain a richer and more reliable picture of the deep past, is to resurrect inferred ancestral protein sequences in living organisms, where their phenotypes can be exposed in a complex molecular-systems context, and then to link consequences of those phenotypes to biosignatures that were preserved in the independent historical repository of the geological record. As a first step beyond single-molecule reconstruction to the study of functional molecular systems, we present here the ancestral sequence reconstruction of the beta-carbonic anhydrase protein. We assess how carbonic anhydrase proteins meet our selection criteria for reconstructing ancient biosignatures in the laboratory, which we term palaeophenotype reconstruction.This article is part of the themed issue 'Reconceptualizing the origins of life'.
Collapse
Affiliation(s)
- Betul Kacar
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Lionel Guy
- Department of Medical Biochemistry and Microbiology, Uppsala University, 75123 Uppsala, Sweden
| | - Eric Smith
- Earth-Science Life Institute, Meguro-ku, Tokyo 152-8550, Japan
- Santa Fe Institute, Santa Fe, NM 87501, USA
| | - John Baross
- The School of Oceanography, University of Washington, Seattle, WA 98105, USA
| |
Collapse
|
30
|
Kacar B, Hanson‐Smith V, Adam ZR, Boekelheide N. Constraining the timing of the Great Oxidation Event within the Rubisco phylogenetic tree. GEOBIOLOGY 2017; 15:628-640. [PMID: 28670785 PMCID: PMC5575542 DOI: 10.1111/gbi.12243] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 05/09/2017] [Indexed: 05/04/2023]
Abstract
Ribulose 1,5-bisphosphate (RuBP) carboxylase/oxygenase (RuBisCO, or Rubisco) catalyzes a key reaction by which inorganic carbon is converted into organic carbon in the metabolism of many aerobic and anaerobic organisms. Across the broader Rubisco protein family, homologs exhibit diverse biochemical characteristics and metabolic functions, but the evolutionary origins of this diversity are unclear. Evidence of the timing of Rubisco family emergence and diversification of its different forms has been obscured by a meager paleontological record of early Earth biota, their subcellular physiology and metabolic components. Here, we use computational models to reconstruct a Rubisco family phylogenetic tree, ancestral amino acid sequences at branching points on the tree, and protein structures for several key ancestors. Analysis of historic substitutions with respect to their structural locations shows that there were distinct periods of amino acid substitution enrichment above background levels near and within its oxygen-sensitive active site and subunit interfaces over the divergence between Form III (associated with anoxia) and Form I (associated with oxia) groups in its evolutionary history. One possible interpretation is that these periods of substitutional enrichment are coincident with oxidative stress exerted by the rise of oxygenic photosynthesis in the Precambrian era. Our interpretation implies that the periods of Rubisco substitutional enrichment inferred near the transition from anaerobic Form III to aerobic Form I ancestral sequences predate the acquisition of Rubisco by fully derived cyanobacterial (i.e., dual photosystem-bearing, oxygen-evolving) clades. The partitioning of extant lineages at high clade levels within our Rubisco phylogeny indicates that horizontal transfer of Rubisco is a relatively infrequent event. Therefore, it is possible that the mutational enrichment periods between the Form III and Form I common ancestral sequences correspond to the adaptation of key oxygen-sensitive components of Rubisco prior to, or coincident with, the Great Oxidation Event.
Collapse
Affiliation(s)
- B. Kacar
- Department of Organismic and Evolutionary BiologyHarvard UniversityCambridgeMAUSA
| | - V. Hanson‐Smith
- Department of Microbiology and ImmunologyUniversity of California San FranciscoSan FranciscoCAUSA
| | - Z. R. Adam
- Department of Earth and Planetary SciencesHarvard UniversityCambridgeMAUSA
| | | |
Collapse
|