Umachandran S, Mohamed W, Jayaraman M, Hyde G, Brazill D, Baskar R. A PKC that controls polyphosphate levels, pinocytosis and exocytosis, regulates stationary phase onset in Dictyostelium.
J Cell Sci 2022;
135:274945. [PMID:
35362518 DOI:
10.1242/jcs.259289]
[Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 03/25/2022] [Indexed: 11/20/2022] Open
Abstract
Many cells can pause their growth cycle, a topic much enriched by studies of the stationary phase (SP) of model microorganisms. While several kinases are implicated in SP onset, a possible role for protein kinase C remains unknown. We show that Dictyostelium discoideum cells lacking pkcA entered SP at a reduced cell density, but only in shaking conditions. Precocious SP entry occurs because extracellular polyphosphate (polyP) levels reach a threshold at the lower cell density; adding exopolyphosphatase to pkcA- cells reverses the effect and mimics wild type growth. PkcA's regulation of polyP depended on inositol hexakisphosphate kinase and phospholipase D. PkcA- mutants also had higher actin levels, higher rates of exocytosis and lower pinocytosis rates. Postlysosomes were smaller and present in fewer pkcA- cells, compared to the wildtype. Overall, the results suggest that a reduced PkcA level triggers SP primarily because cells do not acquire or retain nutrients as efficiently, thus mimicking, or amplifying, the conditions of actual starvation.
Collapse