1
|
Nickerson CA, McLean RJC, Barrila J, Yang J, Thornhill SG, Banken LL, Porterfield DM, Poste G, Pellis NR, Ott CM. Microbiology of human spaceflight: microbial responses to mechanical forces that impact health and habitat sustainability. Microbiol Mol Biol Rev 2024; 88:e0014423. [PMID: 39158275 PMCID: PMC11426028 DOI: 10.1128/mmbr.00144-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024] Open
Abstract
SUMMARYUnderstanding the dynamic adaptive plasticity of microorganisms has been advanced by studying their responses to extreme environments. Spaceflight research platforms provide a unique opportunity to study microbial characteristics in new extreme adaptational modes, including sustained exposure to reduced forces of gravity and associated low fluid shear force conditions. Under these conditions, unexpected microbial responses occur, including alterations in virulence, antibiotic and stress resistance, biofilm formation, metabolism, motility, and gene expression, which are not observed using conventional experimental approaches. Here, we review biological and physical mechanisms that regulate microbial responses to spaceflight and spaceflight analog environments from both the microbe and host-microbe perspective that are relevant to human health and habitat sustainability. We highlight instrumentation and technology used in spaceflight microbiology experiments, their limitations, and advances necessary to enable next-generation research. As spaceflight experiments are relatively rare, we discuss ground-based analogs that mimic aspects of microbial responses to reduced gravity in spaceflight, including those that reduce mechanical forces of fluid flow over cell surfaces which also simulate conditions encountered by microorganisms during their terrestrial lifecycles. As spaceflight mission durations increase with traditional astronauts and commercial space programs send civilian crews with underlying health conditions, microorganisms will continue to play increasingly critical roles in health and habitat sustainability, thus defining a new dimension of occupational health. The ability of microorganisms to adapt, survive, and evolve in the spaceflight environment is important for future human space endeavors and provides opportunities for innovative biological and technological advances to benefit life on Earth.
Collapse
Affiliation(s)
- Cheryl A. Nickerson
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, Arizona, USA
| | | | - Jennifer Barrila
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, Arizona, USA
| | - Jiseon Yang
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, Arizona, USA
| | | | - Laura L. Banken
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, Arizona, USA
| | - D. Marshall Porterfield
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, Indiana, USA
| | - George Poste
- Complex Adaptive Systems Initiative, Arizona State University, Tempe, Arizona, USA
| | | | - C. Mark Ott
- Biomedical Research and Environmental Sciences Division, NASA Johnson Space Center, Houston, Texas, USA
| |
Collapse
|
2
|
Zhang J, Wu Y, Li W, Xie H, Li J, Miao Y, Yang Z, Zhou Y, Wang X. Effects of a novel Bacillus subtilis GXYX crude lipopeptide against Salmonella enterica serovar Typhimurium infection in mice. Heliyon 2024; 10:e28219. [PMID: 38524560 PMCID: PMC10958701 DOI: 10.1016/j.heliyon.2024.e28219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 03/26/2024] Open
Abstract
The increased rate of antibiotic resistance strongly limits the resolution of Salmonella enterica serovar Typhimurium (S. Typhimurium) infection. Therefore, new strategies to control bacterial infections are urgently needed. Bacillus subtilis (B. subtilis) and its metabolites are desirable antibacterial agents. Here, we aimed to evaluate the antibacterial activity of the novel B. subtilis strain GXYX (No: PRJNA940956) crude lipopeptide against S. Typhimurium. In vitro, GXYX crude lipopeptides affected S. Typhimurium biofilm formation and swimming and attenuated the adhesion and invasion abilities of S. Typhimurium toward BHK-21 cells; in addition, it inhibited the mRNA expression of the filA, filC, csgA, and csgB genes, which are related to the adhesion and invasion ability of S. Typhimurium. In vivo, pretreatment with GXYX crude lipopeptide via intragastric administration improved the survival rate by 30%, which was related to reductions in organ bacterial loads and clinical signs in mice. Intragastric administration of GXYX crude lipopeptide significantly downregulated the mRNA levels of TNF-α, IL-1β, IL-12 and IL-6 in response to S. Typhimurium-induced inflammation compared with intraperitoneal injection. Moreover, it significantly improved the intestinal barrier-related gene (ZO-1, claudin-1, occludin-1) mRNA levels in intestinal tissue damaged by S. Typhimurium infection. In conclusion, GXYX crude lipopeptides were effective at reducing S. Typhimurium colonization, laying a foundation for the further development of novel antibacterial agents.
Collapse
Affiliation(s)
- Jingya Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yifan Wu
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Wei Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Honglin Xie
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jingyan Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yongqiang Miao
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zengqi Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yefei Zhou
- Department of Life Science, Nanjing Xiaozhuang University, Nanjing, 211171, Jiangsu, China
| | - Xinglong Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| |
Collapse
|
3
|
Grassia G, Bagnarino J, Siciliano M, Barbarini D, Corbella M, Cambieri P, Baldanti F, Monzillo V. Phenotypic and Genotypic Assays to Evaluate Coagulase-Negative Staphylococci Biofilm Production in Bloodstream Infections. Microorganisms 2024; 12:126. [PMID: 38257953 PMCID: PMC10818815 DOI: 10.3390/microorganisms12010126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/05/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Coagulase-negative staphylococci (CoNS) are commensal on human body surfaces and, for years, they were not considered a cause of bloodstream infection and were often regarded as contamination. However, the involvement of CoNS in nosocomial infection is increasingly being recognized. The insertion of cannulas and intravascular catheters represents the primary source of CoNS entry into the bloodstream, causing bacteremia and sepsis. They owe their pathogenic role to their ability to produce biofilms on surfaces, such as medical devices. In this study, we evaluate the adhesive capacity of CoNS isolated from blood cultures by comparing a spectrophotometric phenotypic assay with genotypic analysis based on the evidence of the ica operon. We retrospectively reviewed the database of CoNS isolated from blood cultures from January to December 2021 that were considered responsible for 361 bloodstream infections. Eighty-nine CoNS were selected among these. Our data show that Staphylococcus epidermidis was the predominant species isolated, expressing greater adhesive capacities, especially those with the complete operon. Knowledge of the adhesive capabilities of a microorganism responsible for sepsis can be useful in implementing appropriate corrective and preventive measures, since conventional antibiotic therapy cannot effectively eradicate biofilms.
Collapse
Affiliation(s)
- Giulia Grassia
- Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (G.G.); (D.B.); (M.C.); (P.C.); (F.B.); (V.M.)
| | - Jessica Bagnarino
- Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (G.G.); (D.B.); (M.C.); (P.C.); (F.B.); (V.M.)
| | | | - Daniela Barbarini
- Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (G.G.); (D.B.); (M.C.); (P.C.); (F.B.); (V.M.)
| | - Marta Corbella
- Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (G.G.); (D.B.); (M.C.); (P.C.); (F.B.); (V.M.)
| | - Patrizia Cambieri
- Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (G.G.); (D.B.); (M.C.); (P.C.); (F.B.); (V.M.)
| | - Fausto Baldanti
- Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (G.G.); (D.B.); (M.C.); (P.C.); (F.B.); (V.M.)
- Department of Clinical, Surgical, Diagnostics and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Vincenzina Monzillo
- Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (G.G.); (D.B.); (M.C.); (P.C.); (F.B.); (V.M.)
- Department of Internal Medicine and Medical Therapy, Faculty of Medicine, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
4
|
Watanabe R, Matsugaki A, Gokcekaya O, Ozasa R, Matsumoto T, Takahashi H, Yasui H, Nakano T. Host bone microstructure for enhanced resistance to bacterial infections. BIOMATERIALS ADVANCES 2023; 154:213633. [PMID: 37775399 DOI: 10.1016/j.bioadv.2023.213633] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/08/2023] [Accepted: 09/18/2023] [Indexed: 10/01/2023]
Abstract
Postoperative bacterial infection is a serious complication of orthopedic surgery. Not only infections that develop in the first few weeks after surgery but also late infections that develop years after surgery are serious problems. However, the relationship between host bone and infection activation has not yet been explored. Here, we report a novel association between host bone collagen/apatite microstructure and bacterial infection. The bone-mimetic-oriented micro-organized matrix structure was obtained by prolonged controlled cell alignment using a grooved-structured biomedical titanium alloy. Surprisingly, we have discovered that highly aligned osteoblasts have a potent inhibitory effect on Escherichia coli adhesion. Additionally, the oriented collagen/apatite micro-organization of the bone matrix showed excellent antibacterial resistance against Escherichia coli. The proposed mechanism for realizing the antimicrobial activity of the micro-organized bone matrix is by the controlled secretion of the antimicrobial peptides, including β-defensin 2 and β-defensin 3, from the highly aligned osteoblasts. Our findings contribute to the development of anti-infective strategies for orthopedic surgeries. The recovery of the intrinsically ordered bone matrix organization provides superior antibacterial resistance after surgery.
Collapse
Affiliation(s)
- Ryota Watanabe
- Teijin Nakashima Medical Co. Ltd., 688-1 Joto-Kitagata, Higashi-ku, Okayama 709-0625, Japan; Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1, Yamada-Oka, Suita, Osaka 565-0871, Japan.
| | - Aira Matsugaki
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1, Yamada-Oka, Suita, Osaka 565-0871, Japan.
| | - Ozkan Gokcekaya
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1, Yamada-Oka, Suita, Osaka 565-0871, Japan.
| | - Ryosuke Ozasa
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1, Yamada-Oka, Suita, Osaka 565-0871, Japan.
| | - Takuya Matsumoto
- Department of Biomaterials, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1, Shikata-cho, Kita-ku, Okayama 700-8558, Japan.
| | - Hiroyuki Takahashi
- Teijin Nakashima Medical Co. Ltd., 688-1 Joto-Kitagata, Higashi-ku, Okayama 709-0625, Japan.
| | - Hidekazu Yasui
- Teijin Nakashima Medical Co. Ltd., 688-1 Joto-Kitagata, Higashi-ku, Okayama 709-0625, Japan.
| | - Takayoshi Nakano
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1, Yamada-Oka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
5
|
Xu J, Qin C, Xie J, Wang J, He Y, Tan J, Shi X. Transcriptome analysis of Chinese sucker (Myxocyprinus asiaticus) head kidney and discovery of key immune-related genes to cold stress after swimming fatigue. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 47:101104. [PMID: 37390763 DOI: 10.1016/j.cbd.2023.101104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/11/2023] [Accepted: 06/13/2023] [Indexed: 07/02/2023]
Abstract
For Chinese sucker (Myxocyprinus asiaticus), passing through a dam with fast flow and cold water are always unavoidable, and this process can cause stress, disease or even death. In this study, comparative transcriptome analysis was conducted to investigate the potential immune mechanism in head kidney of M. asiaticus with swimming fatigue stress and cold stress after fatigue. In general, a total of 181,781 unigenes were generated, and 38,545 differentially expressed genes (DEGs) were identified. In these DEGs, 22,593, 7286 and 8666 DEGs were identified among groups of fatigue vs. cold, control vs. cold, and control vs. fatigue, respectively. Enrichment analysis revealed these DEGs were involved in coagulation cascades and complement, natural killer cell mediated cytotoxicity, antigen processing and presentation, Toll-like receptor signaling pathways, and chemokine signaling pathway. Notably, immune genes including heat shock protein 4a (HSP4a), HSP70 and HSP90α genes were significantly up-regulated in fishes with cold stress after fatigue. Differently, more immune genes in control vs. cold compared with that in control vs. fatigue were significantly down-regulated expression, such as claudin-15-like, Toll-like receptor 13, antimicrobial peptide (hepcidin), immunoglobulin, CXCR4 chemokine receptor, T-cell receptor, complement factor B/C2-A3, and interleukin 8. In this study, the number of DEGs in the head kidney was less than that our previous study in the spleen, which we speculated was more sensitive to changes in water temperature than the head kidney. In summary, lots of immune-related genes in the head kidney were down-regulated under cold stress after fatigue, suggesting that M. asiaticus might have experienced severe immunosuppression in the process of passing through the dam.
Collapse
Affiliation(s)
- Jing Xu
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang 641000, China
| | - Chuanjie Qin
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang 641000, China.
| | - Jiang Xie
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang 641000, China
| | - Jun Wang
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang 641000, China
| | - Yang He
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang 641000, China
| | - Junjun Tan
- Hubei International Science and Technology Cooperation Base of Fish Passage, China Three Gorges University, Yichang 443002, China
| | - Xiaotao Shi
- Hubei International Science and Technology Cooperation Base of Fish Passage, China Three Gorges University, Yichang 443002, China.
| |
Collapse
|
6
|
Li P, Yin R, Cheng J, Lin J. Bacterial Biofilm Formation on Biomaterials and Approaches to Its Treatment and Prevention. Int J Mol Sci 2023; 24:11680. [PMID: 37511440 PMCID: PMC10380251 DOI: 10.3390/ijms241411680] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Bacterial biofilms can cause widespread infection. In addition to causing urinary tract infections and pulmonary infections in patients with cystic fibrosis, biofilms can help microorganisms adhere to the surfaces of various medical devices, causing biofilm-associated infections on the surfaces of biomaterials such as venous ducts, joint prostheses, mechanical heart valves, and catheters. Biofilms provide a protective barrier for bacteria and provide resistance to antimicrobial agents, which increases the morbidity and mortality of patients. This review summarizes biofilm formation processes and resistance mechanisms, as well as the main features of clinically persistent infections caused by biofilms. Considering the various infections caused by clinical medical devices, we introduce two main methods to prevent and treat biomaterial-related biofilm infection: antibacterial coatings and the surface modification of biomaterials. Antibacterial coatings depend on the covalent immobilization of antimicrobial agents on the coating surface and drug release to prevent and combat infection, while the surface modification of biomaterials affects the adhesion behavior of cells on the surfaces of implants and the subsequent biofilm formation process by altering the physical and chemical properties of the implant material surface. The advantages of each strategy in terms of their antibacterial effect, biocompatibility, limitations, and application prospects are analyzed, providing ideas and research directions for the development of novel biofilm infection strategies related to therapeutic materials.
Collapse
Affiliation(s)
| | | | | | - Jinshui Lin
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Sciences, Yan’an University, Yan’an 716000, China; (P.L.); (R.Y.); (J.C.)
| |
Collapse
|
7
|
Asp ME, Thanh MTH, Dutta S, Comstock JA, Welch RD, Patteson AE. Mechanobiology as a tool for addressing the genotype-to-phenotype problem in microbiology. BIOPHYSICS REVIEWS 2023; 4:021304. [PMID: 38504926 PMCID: PMC10903382 DOI: 10.1063/5.0142121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/03/2023] [Indexed: 03/21/2024]
Abstract
The central hypothesis of the genotype-phenotype relationship is that the phenotype of a developing organism (i.e., its set of observable attributes) depends on its genome and the environment. However, as we learn more about the genetics and biochemistry of living systems, our understanding does not fully extend to the complex multiscale nature of how cells move, interact, and organize; this gap in understanding is referred to as the genotype-to-phenotype problem. The physics of soft matter sets the background on which living organisms evolved, and the cell environment is a strong determinant of cell phenotype. This inevitably leads to challenges as the full function of many genes, and the diversity of cellular behaviors cannot be assessed without wide screens of environmental conditions. Cellular mechanobiology is an emerging field that provides methodologies to understand how cells integrate chemical and physical environmental stress and signals, and how they are transduced to control cell function. Biofilm forming bacteria represent an attractive model because they are fast growing, genetically malleable and can display sophisticated self-organizing developmental behaviors similar to those found in higher organisms. Here, we propose mechanobiology as a new area of study in prokaryotic systems and describe its potential for unveiling new links between an organism's genome and phenome.
Collapse
|
8
|
Both LTA and LTB Subunits Are Equally Important to Heat-Labile Enterotoxin (LT)-Enhanced Bacterial Adherence. Int J Mol Sci 2023; 24:ijms24021245. [PMID: 36674760 PMCID: PMC9863850 DOI: 10.3390/ijms24021245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 01/10/2023] Open
Abstract
There is increasing evidence indicating that the production of heat-labile enterotoxin (LT) enhances bacterial adherence within in vitro and in vivo models. However, which subunit plays the main role, and the precise regulatory mechanisms remain unclear. To further elucidate the contribution of the A subunit of LT (LTA) and the B subunit of LT (LTB) in LT-enhanced bacterial adherence, we generated several LT mutants where their ADP-ribosylation activity or GM1 binding ability was impaired and evaluated their abilities to enhance the two LT-deficient E. coli strains (1836-2 and EcNc) adherence. Our results showed that the two LT-deficient strains, expressing either the native LT or LT derivatives, had a significantly greater number of adhesions to host cells than the parent strains. The adherence abilities of strains expressing the LT mutants were significantly reduced compared with the strains expressing the native LT. Moreover, E. coli 1836-2 and EcNc strains when exogenously supplied with cyclic AMP (cAMP) highly up-regulated the adhesion molecules expression and improved their adherence abilities. Ganglioside GM1, the receptor for LTB subunit, is enriched in lipid rafts. The results showed that deletion of cholesterol from cells also significantly decreased the ability of LT to enhance bacterial adherence. Overall, our data indicated that both subunits are equally responsible for LT-enhanced bacterial adherence, the LTA subunit contributes to this process mainly by increasing bacterial adhesion molecules expression, while LTB subunit mainly by mediating the initial interaction with the GM1 receptors of host cells.
Collapse
|
9
|
Choudhury K, Chattopadhyay A, Ghosh SS. Mannosylated Gold Nanoclusters Incorporated with a Repurposed Antihistamine Drug Promethazine for Antibacterial and Antibiofilm Applications. ACS APPLIED BIO MATERIALS 2022; 5:5911-5923. [PMID: 36417570 DOI: 10.1021/acsabm.2c00867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Drug repurposing presents a workable strategy in tackling antibiotic resistance. Many known drugs have been repurposed for their applications against different targets. Antihistamines that are usually used to treat allergy symptoms can be combined with nanoscale materials to enhance their efficiency. Herein, we explored the antimicrobial properties of a common antihistamine drug, promethazine, in Gram-positive and Gram-negative bacteria. Being positively charged, promethazine was easily incorporated into the mannose-conjugated bovine serum albumin-stabilized promethazine hydrochloride gold nanoclusters. Capping with d-mannose helped in targeting the bacteria by inhibiting their adhesive appendage called pili. Following their uptake, drugs released inside the bacteria caused reactive oxygen species production and membrane permeability alteration, ultimately resulting in bacterial inhibition. Additionally, they were also explored for biofilm eradication. As observed through staining assays, the number of dead cells increased with increasing concentration of drug-loaded gold nanoclusters in the biofilm mass. Therefore, the as-synthesized mannosylated gold nanoclusters incorporated with promethazine were analyzed for potential antibacterial and antibiofilm applications.
Collapse
Affiliation(s)
- Konika Choudhury
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Arun Chattopadhyay
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.,Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Siddhartha Sankar Ghosh
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.,Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
10
|
Pierrat X, Pham A, Wong JPH, Al-Mayyah Z, Persat A. Engineering Agrobacterium tumefaciens Adhesion to Target Cells. ACS Synth Biol 2022; 11:2662-2671. [PMID: 35881049 DOI: 10.1021/acssynbio.2c00069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Agrobacterium tumefaciens is a plant pathogen commonly repurposed for genetic modification of crops. Despite its versatility, it remains inefficient at transferring DNA to many hosts, including to animal cells. Like many pathogens, physical contact between A. tumefaciens and host cells promotes infection efficacy. Thus, improving the strength and specificity of A. tumefaciens to target cells has the potential for enhancing DNA transfer for biotechnological and therapeutic purposes. Here, we demonstrate a methodology for engineering genetically encoded exogeneous adhesins at the surface of A. tumefaciens. We identified an autotransporter gene we named Aat that is predicted to show canonical β-barrel and passenger domains. We engineered the β-barrel scaffold and linker (Aatβ) to display synthetic adhesins susceptible to rewire A. tumefaciens to alternative host targets. As a proof of concept, we leveraged the versatility of a VHH domain to rewire A. tumefaciens adhesion to yeast and mammalian hosts displaying a GFP target receptor. Finally, to demonstrate how synthetic A. tumefaciens adhesion can improve transfer to host cells, we showed improved protein translocation into HeLa cells using a sensitive split luciferase reporter system. Engineering A. tumefaciens adhesion has therefore a strong potential in generating complex heterogeneous cellular assemblies and in improving DNA transfer efficiency against non-natural hosts.
Collapse
Affiliation(s)
- Xavier Pierrat
- School of Life Sciences, Institute of Bioengineering and Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Alix Pham
- School of Life Sciences, Institute of Bioengineering and Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Jeremy P H Wong
- School of Life Sciences, Institute of Bioengineering and Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Zainebe Al-Mayyah
- School of Life Sciences, Institute of Bioengineering and Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Alexandre Persat
- School of Life Sciences, Institute of Bioengineering and Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
11
|
Leitao S, Drake B, Pinjusic K, Pierrat X, Navikas V, Nievergelt AP, Brillard C, Djekic D, Radenovic A, Persat A, Constam DB, Anders J, Fantner GE. Time-Resolved Scanning Ion Conductance Microscopy for Three-Dimensional Tracking of Nanoscale Cell Surface Dynamics. ACS NANO 2021; 15:17613-17622. [PMID: 34751034 PMCID: PMC8613909 DOI: 10.1021/acsnano.1c05202] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Nanocharacterization plays a vital role in understanding the complex nanoscale organization of cells and organelles. Understanding cellular function requires high-resolution information about how the cellular structures evolve over time. A number of techniques exist to resolve static nanoscale structure of cells in great detail (super-resolution optical microscopy, EM, AFM). However, time-resolved imaging techniques tend to either have a lower resolution, are limited to small areas, or cause damage to the cells, thereby preventing long-term time-lapse studies. Scanning probe microscopy methods such as atomic force microscopy (AFM) combine high-resolution imaging with the ability to image living cells in physiological conditions. The mechanical contact between the tip and the sample, however, deforms the cell surface, disturbs the native state, and prohibits long-term time-lapse imaging. Here, we develop a scanning ion conductance microscope (SICM) for high-speed and long-term nanoscale imaging of eukaryotic cells. By utilizing advances in nanopositioning, nanopore fabrication, microelectronics, and controls engineering, we developed a microscopy method that can resolve spatiotemporally diverse three-dimensional (3D) processes on the cell membrane at sub-5-nm axial resolution. We tracked dynamic changes in live cell morphology with nanometer details and temporal ranges of subsecond to days, imaging diverse processes ranging from endocytosis, micropinocytosis, and mitosis to bacterial infection and cell differentiation in cancer cells. This technique enables a detailed look at membrane events and may offer insights into cell-cell interactions for infection, immunology, and cancer research.
Collapse
Affiliation(s)
- Samuel
M. Leitao
- Laboratory
for Bio- and Nano-Instrumentation, Institute of Bioengineering, School
of Engineering, Swiss Federal Institute
of Technology Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Barney Drake
- Laboratory
for Bio- and Nano-Instrumentation, Institute of Bioengineering, School
of Engineering, Swiss Federal Institute
of Technology Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Katarina Pinjusic
- Laboratory
of Developmental and Cancer Cell Biology, Institute for Experimental
Cancer Research, School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Xavier Pierrat
- Laboratory
of Microbial Mechanics, Institute of Bioengineering and Global Health,
School of Life Sciences, Swiss Federal Institute
of Technology Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Vytautas Navikas
- Laboratory
of Nanoscale Biology, Institute of Bioengineering, School of Engineering, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Adrian P. Nievergelt
- Laboratory
for Bio- and Nano-Instrumentation, Institute of Bioengineering, School
of Engineering, Swiss Federal Institute
of Technology Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Charlène Brillard
- Laboratory
for Bio- and Nano-Instrumentation, Institute of Bioengineering, School
of Engineering, Swiss Federal Institute
of Technology Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Denis Djekic
- Institute
of Smart Sensors, Universität Stuttgart, Stuttgart 70049, Germany
| | - Aleksandra Radenovic
- Laboratory
of Nanoscale Biology, Institute of Bioengineering, School of Engineering, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Alexandre Persat
- Laboratory
of Microbial Mechanics, Institute of Bioengineering and Global Health,
School of Life Sciences, Swiss Federal Institute
of Technology Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Daniel B. Constam
- Laboratory
of Developmental and Cancer Cell Biology, Institute for Experimental
Cancer Research, School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Jens Anders
- Institute
of Smart Sensors, Universität Stuttgart, Stuttgart 70049, Germany
| | - Georg E. Fantner
- Laboratory
for Bio- and Nano-Instrumentation, Institute of Bioengineering, School
of Engineering, Swiss Federal Institute
of Technology Lausanne (EPFL), Lausanne 1015, Switzerland
| |
Collapse
|